
Journal of Automated Reasoning (2020) 64:555–578
https://doi.org/10.1007/s10817-019-09532-0

Automatically Verifying Temporal Properties of Pointer
Programs with Cyclic Proof

Gadi Tellez1 · James Brotherston1

Received: 1 August 2019 / Accepted: 2 August 2019 / Published online: 9 August 2019
© The Author(s) 2019

Abstract
In this article, we investigate the automated verification of temporal properties of heap-aware
programs. We propose a deductive reasoning approach based on cyclic proof. Judgements
in our proof system assert that a program has a certain temporal property over memory
state assertions, written in separation logic with user-defined inductive predicates, while
the proof rules of the system unfold temporal modalities and predicate definitions as well as
symbolically executing programs.Cyclic proofs in our systemare, as usual, finite proof graphs
subject to a natural, decidable soundness condition, encoding a form of proof by infinite
descent. We present a proof system tailored to proving CTL properties of nondeterministic
pointer programs, and then adapt this system to handle fair execution conditions. We show
both versions of the system to be sound, and provide an implementation of each in theCyclist
theorem prover, yielding an automated tool that is capable of automatically discovering
proofs of (fair) temporal properties of pointer programs. Experimental evaluation of our tool
indicates that our approach is viable, and offers an interesting alternative to traditional model
checking techniques.

Keywords Cyclic proof · Temporal logic · Separation logic

1 Introduction

Program verification can be described as the problem of deciding whether a given program
exhibits a desired behaviour, often called its specification. Temporal logic, in its various
flavours [24], is a very popular and widely studied specification formalism due to its relative
simplicity and expressive power: a wide variety of safety (“something bad cannot happen”)
and liveness properties (“something good eventually happens”) can be captured [20].

Historically, perhaps the most popular approach to automatically verify temporal prop-
erties of programs has been model checking: one first builds an abstract model that

B James Brotherston
J.Brotherston@ucl.ac.uk

Gadi Tellez
gadi.tellez.isc@gmail.com

1 Department of Computer Science, University College London, London, UK

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10817-019-09532-0&domain=pdf
http://orcid.org/0000-0002-7536-4496

556 G. Tellez, J. Brotherston

overapproximates all possible executions of the program, and then checks that the desired
temporal property holds for this model (see e.g. [10,13,15]). However, this approach has
been applied mainly to integer programs; the situation for memory-aware programs over
heap data structures becomes significantly more challenging, mainly because of the difficul-
ties in constructing suitable abstract models. One possible approach is simply to translate
such heap-aware programs into integer programs, in such a way that properties such as mem-
ory safety or termination of the original program follow from corresponding properties in its
integer translation [13,15,22]. However, for more general temporal properties, this technique
can produce unsound results. In general, it is not clear whether it is feasible to provide suitable
translations from heap to integer programs for any given temporal property; in particular,
numerical abstraction of heap programs often removes important information about the exact
shape of heap data structures, which might be needed to prove some temporal properties.

Example 1 Consider a “server” program that, given an acyclic linked list with head pointer
x, nondeterministically alternates between adding an arbitrary number of “job requests” to
the head of the list and removing all requests in the list:

while(true) do
if(*)

while(x!=nil) do temp :=[x]; free(x); x:=temp; od
else

while (*) do y:=new(); [y]:=x; x:=y; od
od

Memory safety of this programcan be proven using a simple numeric abstraction recording
emptiness/nonemptiness of the list. Proving instead that throughout the program execution it
is always possible for the heap to become empty, expressed in CTL as AGEF(emp), requires
a finer abstraction, recording the length of the list. However, such an abstraction is still not
sufficient to prove shape analysis properties of the heap, say that the heap is always a nil-
terminating acyclic list from x , expressed in CTL as AG(ls(x, nil)) (where ls is the standard
list segment predicate of separation logic [26]), because the information about acyclicity and
head/tail pointer values is lost, begging the question: how to differentiate cyclic from acyclic
lists using only their length? ��

Thus, although it is often possible to provide numeric abstractions to suit specific programs
and temporal properties, it is not clear that this is so for arbitrary programs and properties.

In this article, we instead approach the above problem via the main (perhaps less fash-
ionable) alternative to model checking, namely the direct deductive verification. Common
limitations of previous temporal logic proof systems include restriction to finite state transi-
tion systems [4,18,19] and/or a reliance on complex verification conditions that are seemingly
difficult to fully automate [23,29], the latter being arguably the most cited argument against
deductive verification. In contrast, our proof system can handle infinite state systems, and
an automated implementation is directly derivable from the proof rules and automata-based
soundness checks, showing that temporal logic proof systems can indeed work in practice.

Our proof system manipulates temporal judgements about programs, and employs auto-
matic proof search in this system to verify that a program has a given temporal property.
Given some fixed program, the judgements of our system assert a temporal property of the
program whose initial state satisfies some precondition, written in a fragment of separation
logic [26], a well-known language for describing heap memory; in particular we also permit
user-defined (inductive) predicates. The core of the proof system is a set of logical rules that
operate on common logical connectives and unfold temporal modalities and predicate defi-
nitions, along with a set of symbolic execution rules that simulate program execution steps.

123

Automatically Verifying Temporal Properties of Pointer Programs 557

To handle the fact that symbolic execution can in general be applied ad infinitum, we employ
cyclic proof [6,7,9,30], in which proofs are finite cyclic graphs subject to a global soundness
condition. Using this approach, we are frequently able to verify temporal properties of heap
programs in an automatic and sound way without the need of numeric abstractions or pro-
gram translations. Moreover, our analysis has the added benefit of producing independently
checkable proof objects.

Our proof system is tailored to proving standard CTL program properties over separation
logic assertions; subsequently, we show how to adapt this system to handle fairness con-
straints, where nondeterministic branching may not unfairly favour one branch over another.
We have also adapted our system to (fair) LTL properties, though we do not present this
adaptation in this paper due to space constraints. The details of our LTL cyclic proof systems
will appear in the first author’s forthcoming PhD thesis.

We provide an implementation of our proof system as an automated verification tool
within the Cyclist theorem proving framework [9] and evaluate its performance on a range
of examples. The source code, benchmark and executable binaries of the implementation
are publicly available online [1]. Our tool is able to discover surprisingly complex cyclic
proofs of temporal program properties, with times often in the millisecond range. Practically
speaking, the advantages and disadvantages of our approach are entirely typical of deductive
verification: on the one hand, we do not need to employ abstraction or program translation,
and we guarantee soundness; on the other hand, our algorithms might fail to terminate, and
(at least currently) we do not provide counterexamples in case of failure. Thus we believe
our approach should be understood as a useful complement to, rather than a replacement for,
model checking.

The remainder of this paper is structured as follows. Section 2 introduces our programming
language, the memory state assertion language, and temporal (CTL) assertions over these.
Section 3 introduces our proof system for verifying temporal properties of programs, and
Sect. 4 modifies this system to account for fair program executions. Section 5 presents our
implementation and experimental evaluation, Sect. 6 discusses related work and Sect. 7
concludes.

This is an expanded journal version of our previous conference paper [31]. In the present
paper we have endeavoured to include as much of the technical detail of our development
(particularly our soundness proofs) as space permits.

2 Programs and Assertions

In this section we introduce our programming language, our language of assertions about
memory states (based on a fragment of separation logic) and our language for expressing
temporal properties of programs, given by CTL over memory assertions.
Programming language We use a simple language of while programs with pointers and
(de)allocation, but without procedures. We assume a countably infinite set Var of variables
and a first-order language of expressions over Var. Branching conditions B and commands
C are given by the following grammar:

B :: = E = E | E �= E
C :: = x := [E] | [E] := E | x := alloc() | free(E) | x := E |

skip | if B then C else C fi | while B do C od |
if ∗ then C else C fi | while ∗ do C od | C;C

123

558 G. Tellez, J. Brotherston

Fig. 1 Small-step operational semantics of programs.Note that, in the rule formemory deallocation (f ree(E)),
we write h | D for the restriction of heap h to domain D

where x ∈ Var and E ranges over expressions. We write * for a nondeterministic condition,
and [E] for dereferencing of expression E ; in particular, the assignment forms x := [E] and
[E] := E respectively read from and write to heap cells.

We define the semantics of the language in a stack-and-heap model employing heaps
of records. We fix an infinite set Val of values, of which an infinite subset Loc ⊂ Val are
addressable memory locations. A stack is a map s : Var → Val from variables to values.
The semantics �E�s of expression E under stack s is standard; in particular, �x�s = s(x)
for x ∈ Var. Assuming some fixed interpretation for any function symbols in the expression
language, s can then be extended to all expressions in the usual way � f (E1, . . . , En)�s =
f (�E1�s, . . . , �En�s).We extend stacks pointwise to act on tuples of terms.Aheap is a partial,
finite-domain function h : Loc⇀fin(Val List), mapping finitely many memory locations to
records, i.e. arbitrary-length tuples of values; we write dom(h) for the set of locations on
which h is defined. We write e for the empty heap, and 	 to denote composition of domain-
disjoint heaps: h1	h2 is the union of h1 and h2 when dom(h1)∩dom(h2) = ∅ (and undefined
otherwise). If f is a stack or a heap then we write f [x �→ v] for the stack or heap defined as
f except that f [x �→ v](x) = v. A paired stack and heap, (s, h), is called a (memory) state.
A (program) configuration γ is a triple 〈C, s, h〉 where C is a command, s a stack and h

a heap. If γ is a configuration, we write γC, γs, and γh respectively for its first, second and
third components. A configuration γ is called final if γC = skip.

The small-step operational semantics of programs is given by a binary relation � on
program configurations, where γ � γ ′ holds if the execution of the command γC in the state
(γs, γh) can result in a new program configuration γ ′.Wewrite�∗ for the reflexive-transitive
closure of �. The special configuration fault is used to denote a memory fault, which results
when a command tries to access non-allocated memory. The operational semantics of our
programming language is shown in Fig. 1.

An execution path is a (maximally finite or infinite) sequence (γi)i≥0 of configurations
such that γi � γi+1 for all i ≥ 0. If π is a path, then we write πi for the i th element of π . A
path π starts from configuration γ if π0 = γ .

123

Automatically Verifying Temporal Properties of Pointer Programs 559

Remark 1 In temporal program verification, it is common to consider all program execution
paths to be infinite, and all temporal operators to quantify over infinite paths. This can be
achieved either (i) by modifying programs to contain an infinite loop at every exit point, or
(i i) by modifying the operational semantics so that final configurations loop infinitely (i.e.
〈skip, s, h〉 � 〈skip, s, h〉).

Here, instead, our temporal assertions quantify over paths that are either infinite or else
maximally finite. This has the same effect as directly modifying programs or their operational
semantics, but seems to us slightly cleaner.

An execution tree, arising from the nondeterministic and branching nature of program
executions, is a directed rooted tree in which any two vertices are connected by an execution
path.
Memory state assertions We express properties of memory states (s, h) using a standard
symbolic-heap fragment of separation logic (cf. [2]) extended with user-defined (inductive)
predicates, typically used to express data structures in the memory.

We assume a fixed first-order logic languageΣlog that extends the expression language of
our programming language (i.e. Σlog ⊇ Σexp). The terms of Σlog are defined as usual, with
variables drawn from Var. We write t(x1, . . . , xk) for a term t all of whose variables occur
in {x1, . . . , xk} and we use vector notation to abbreviate sequences. The interpretation �t�s
of a term t of Σlog in a stack s is then defined in the same way as expressions, provided we
are given an interpretation for any constant or function symbol that is not in Σexp.

Definition 1 A symbolic heap is given by a disjunction of assertions each of the formΠ : Σ ,
where Π is a finite set of pure formulas of the form E = E or E �= E , and Σ is a spatial
formula given by the following grammar:

Σ :: = emp | E �→ E | Σ ∗ Σ | Ψ (E),

where E ranges over expressions,E over tuples of expressions andΨ over predicate symbols
(of arity matching the length of E in Ψ (E)). A symbolic heap singleton is a symbolic heap
composed of a single assertion.

Definition 2 The satisfaction relation s, h |� φ between program states (s, h) and pure or
spatial formulas φ is given inductively as follows:

s, h |� E1 = E2 ⇔ �E1�s = �E2�s
s, h |� E1 �= E2 ⇔ �E1�s �= �E2�s

s, h |� emp ⇔ dom(h) = ∅
s, h |� E �→ E ⇔ dom(h) = {�E�s} and h(�E�s) = �E�s
s, h |� Ψ (E) ⇔ (�E�s, h) ∈ �Ψ �Φ

s, h |� Σ1 ∗ Σ2 ⇔ ∃h1, h2. h = h1 	 h2 and s, h1 |� Σ1 and s, h2 |� Σ2

where the definition of �Ψ �Φ , the interpretation of inductive predicate Ψ according to induc-
tive definition(s)Φ, is given below. We extend satisfaction conjunctively from pure formulas
to sets of pure formulas, and then to full symbolic heaps by

s, h |� Π1 : Σ1 ∨ · · · ∨ Πn : Σn ⇔ ∨

1≤i≤n
s, h |� Πi and s, h |� Σi .

As usual in separation logic, the separating conjunction ∗ is easily seen by the above definition
to be associative and commutative, with unit emp. In the remainder of this paper, we take
these laws for granted.

123

560 G. Tellez, J. Brotherston

It remains to define the interpretation �Ψ � of each inductive predicate symbol Ψ , which
is determined by a given inductive definition for Ψ . Our inductive definition schema follows
closely the one formulated in e.g. [6,8].

Definition 3 (Inductive definition) An inductive definition of an inductive predicate symbol
Ψ is a finite set of inductive rules, each of the form Π : Σ ⇒ Ψ (E), where Π : Σ is a
symbolic heap singleton and Ψ (E) is a predicate formula.

The standard interpretation of all inductive predicate symbolsΨ1, . . . , Ψn is then the least
prefixed point of a mutual monotone operator constructed from the inductive definitions of
all inductive predicate symbols.

Definition 4 (Interpretation of inductive predicates) Let inductive definitions of predicate
symbols = (Ψ1, . . . , Ψn), with arities a1, . . . , an respectively, be given. We may write the
inductive definition for any such symbol, say Ψi , in the form

Π1 : Σ1 ⇒ Ψi (E1), . . . , Πk : Σk ⇒ Ψi (Ek) .

We define a corresponding n-ary function χi by

χi (X) = ⋃
1≤ j≤k {(�E j �s, h) | s, h |�X Π j : Σ j }

where X = (X1, . . . , Xn) with each Xi ⊆ Valai ×Heaps and s is an arbitrary stack and |�X
is exactly the satisfaction relation given above, except that �Ψi �

X = Xi . We then write �Ψi �
Φ

for the i th component of �Ψ �Φ = μX. (χ1(X), . . . , χn(X)).

Example 2 Consider the following inductive definition for a binary inductive predicate sym-
bol ls denoting singly-linked list segments:

emp ⇒ ls(x, x)
x �→ x ′ ∗ ls(x ′, y) ⇒ ls(x, y)

Then �ls� is the least (pre)fixed point of the following operator, which has domain and
codomain Pow(Val2 × Heaps):

χls(X) = {((v, v), emp) | v ∈ Val}
∪ {((v, v′), h1 	 h2) | ∃w. dom(h1) = v and h1(v) = w

and ((w, v′), h2) ∈ X} .

We note that the operators χi in Definition 4 are all monotone [6] and consequently the
least prefixed point �Ψ �Φ indeed exists. Moreover, this least prefixed point can be iteratively
approached in approximant stages.

Definition 5 (Approximants) Let �Ψ �Φ be as given in Definition 4, and write χ(X) =
(χ1(X, . . . , χk(X), so that �Ψ �Φ = μX. χ(X). Define a chain of ordinal-indexed sets
�Ψ �α)α≥0 by transfinite induction : �Ψ �α = ⋃

β<α χ(χβ). Then, for each i ∈ 1, . . . , n,

the set �Ψ �α) is called the αth approximant of �Ψ �Φ .

It is a standard fact that, for some ordinal α, the prefixed point �Ψ �Φ is equal to the
approximant �Ψ �α); in [6] it is shown that for our definition schema the closure ordinal is at
most ω.
Temporal assertionsWe describe temporal properties of our programs using temporal asser-
tions, built from the memory state assertions given above using standard operators of
computation tree logic (CTL) [11], where the temporal operators quantify over execution
paths from a given configuration.

123

Automatically Verifying Temporal Properties of Pointer Programs 561

Definition 6 CTL assertions are described by the following grammar:

ϕ :: = P | error | final | ϕ ∧ ϕ | ϕ ∨ ϕ | ♦ϕ | �ϕ

| EFϕ | AFϕ | EGϕ | AGϕ | E(ϕUϕ) | A(ϕUϕ)

where P ranges over symbolic heaps (Definition. 1).

Note that final and error denote final, respectively faulting configurations.

Definition 7 A configuration γ is amodel of the CTL assertion ϕ if the relation γ |� ϕ holds,
defined by structural induction on ϕ as follows:

γ |� P ⇔ γs, γh |� P
γ |� error ⇔ γ = fault
γ |� final ⇔ γC = skip

γ |� ϕ1 ∧ ϕ2 ⇔ γ |� ϕ1 and γ |� ϕ2

γ |� ϕ1 ∨ ϕ2 ⇔ γ |� ϕ1 or γ |� ϕ2

γ |� ♦ϕ ⇔ ∃γ ′. γ � γ ′ and γ ′ |� ϕ

γ |� �ϕ ⇔ ∀γ ′. γ � γ ′ implies γ ′ |� ϕ

γ |� EFϕ ⇔ ∃γ ′. γ �∗ γ ′ and γ ′ |� ϕ

γ |� AFϕ ⇔ ∀π starting from γ. ∃γ ′ ∈ π. γ ′ |� ϕ

γ |� EGϕ ⇔ ∃π starting from γ. ∀γ ′ ∈ π. γ ′ |� ϕ

γ |� AGϕ ⇔ ∀γ ′. if γ �∗ γ ′ then γ ′ |� ϕ

γ |� E(ϕ1Uϕ2) ⇔ ∃π starting from γ. ∃i ≥ 0. πi |� ϕ2 and
∀ j : 0 ≤ j < i . π j |� ϕ1

γ |� A(ϕ1Uϕ2) ⇔ ∀π starting from γ. ∃i ≥ 0. πi |� ϕ2 and
∀ j : 0 ≤ j < i . π j |� ϕ1

Judgements in our system are given by P � C : ϕ, where P is a symbolic heap, C is a
command sequence and ϕ is a CTL assertion.

Definition 8 (Validity) A CTL judgement P � C : ϕ is valid if and only if, for all memory
states (s, h) such that s, h |� P , we have 〈C, s, h〉 |� ϕ.

3 A Cyclic Proof System for Verifying CTL Properties

In this section, we present a cyclic proof system for establishing the validity of our CTL
judgements on programs, as described in the previous section.

Our proof rules for CTL judgements are shown in Fig. 2. The symbolic execution rules
for commands are adapted from those in the proof system for program termination in [7],
accounting for whether a diamond ♦ or box � property is being established. The dichotomy
between ♦ and � is only visible for the nondeterministic components of our programs,
namely: (i) nondeterministic while; (ii) nondeterministic if; and (iii) memory allocation.
It is only for these constructs that we need a specific symbolic execution rule for � and ♦
properties. Incidentally, the difference between E properties and A properties is basically the
same as the difference between♦ and�, but extended to execution paths rather than individual
steps. We also introduce faulting execution rules to allow us to prove that a program faults.
The logical rules comprise rules for the standard logical connectives, analogous to those
found in standard Hoare logic, and unfolding rules for the temporal operators and inductive
predicates in memory assertions. The (Cons) rule is analogous to the rule of consequence in

123

562 G. Tellez, J. Brotherston

Fig. 2 Proof rules for CTL judgements. We write ©ϕ to mean “either �ϕ or ♦ϕ”. Note that primed variables
x ′ are always chosen fresh

standard Hoare logic, appealing to entailment |� between symbolic heaps, and between CTL
assertions. In particular, the (Unfold-Pre) rule performs a case-split on an inductive predicate
in the precondition by replacing the predicate with the body of each clause of its inductive

123

Automatically Verifying Temporal Properties of Pointer Programs 563

definition. For example, the inductive definition of the linked list segment predicate from
Example 2 determines the following (Unfold-Pre) rule:

x = y,Π : emp ∗ F � C : ϕ Π : F ∗ x �→ x ′ ∗ ls(x ′, y) � C : ϕ

Π : F ∗ ls(x, y) � C : ϕ
(Unfold-Pre)

Proofs in our systemare cyclic proofs: standard derivation trees inwhich open subgoals can
be closed either by applying an axiom or by forming a back-link to an identical interior node.
To ensure that such structures correspond to sound proofs, a global soundness condition is
imposed. The following definitions, adaptations of similar notions in e.g. [6–9,27], formalise
this notion.

Definition 9 (Pre-proof) A leaf of a derivation tree is called open if it is not the conclusion
of an axiom. A pre-proof is a pairP = (D,L), whereD is a finite derivation tree constructed
according to the proof rules and L is a back-link function assigning to every open leaf of D
a companion: an interior node of D labelled by an identical proof judgement.

A pre-proof P = (D,L) can be seen as a finite cyclic graph by identifying each open
leaf of D with its companion. A path in P is then simply a path in this graph with no further
implications. It is easy to see that a path in a pre-proof corresponds to one or more paths in
the execution of a program, interleaved with logical inferences.

To qualify as a proof, a cyclic pre-proof must satisfy a global soundness condition, defined
using the notion of a trace along a path in a pre-proof.

Definition 10 (Trace) Let (Ji = Pi � Ci : ϕi)i≥0 be a path in a pre-proof P . The sequence
of temporal formulas along the path, (ϕi)i≥0, is a �-trace (♦-trace) following that path if
there exists a formula ψ such that, for all i ≥ 0:

– the formula ϕi is of the form AGψ (EGψ) or �AGψ (♦EGψ); and
– ϕi+1 = ϕi whenever Ji is the conclusion of (Cons).

We say that a trace progresses whenever a symbolic execution rule is applied. A trace is
infinitely progressing if it progresses at infinitely many points.

We remark that CTL formulas with an outermost AF/EF quantifier never form part of
a trace. Such properties, which express that something will eventually happen, are typically
proven by appealing to an infinite descent in the precondition. To this end, we also introduce
precondition traces as employed in [7]. Roughly speaking, a precondition trace tracks an
occurrence of an inductive predicate in the preconditions of the judgements along the path,
progressing whenever the predicate occurrence is unfolded.

Definition 11 (Precondition trace) Let (Ji = Pi � Ci : ϕi)i≥0 be a path in a pre-proof P .
A sequence of inductive predicate formulas, (Ψi)i≥0, is a precondition trace following that
path (Ji)i≥0 if Ψi occurs in Pi for each i and

(i) whenever Ji is the conclusion of the (Unfold-Pre) rule, the predicate formula Ψi is the
predicate in the spatial formula of Pi being unfolded andΨi+1 is obtained in the premise
Ji+1 by unfolding Ψi ; and

(ii) Ψi = Ψi+1 for all other rules, modulo any substitutions applied by rules (Assign),
(Read), (Alloc�), (Alloc♦) and (Subst). (For example, if the rule (Subst) is applied
with conclusion Ji and substitution [E/x], then we must also have Ψi = Ψi+1[E/x].)

We say that a precondition trace progresseswhenever (Unfold-Pre) is applied. A precondition
trace is infinitely progressing if it progresses at infinitely many points.

123

564 G. Tellez, J. Brotherston

Definition 12 (Cyclic proof) A pre-proofP is a cyclic proof if it satisfies the following global
soundness condition: for every infinite path (Pi � Ci : ϕi)i≥0 in P , there is an infinitely
progressing �-trace, ♦-trace or precondition trace following some tail (Pi � Ci : ϕi)i≥n of
the path.

While admittedly not the most interesting program in itself, the following simple example
has been designed to illustrate complex cycle structures that arise from the nesting of temporal
operators to provide a non-trivial satisfaction of the soundness condition.

Example 3 Consider the following program, where each atomic command is labelled with a
program counter:

1 : if(*) then
2 : x:=1;

else
3 : skip;

fi;
4 : while(x=x) do
5 : skip;

od;

One can observe that, under the precondition P = (x = 1), the program has the invariant
property AG(x = 1), since the assignment command on line 2 does not break the invariant
and the variable will not be updated throughout the rest of the program execution. Moreover,
since there exists at least one program execution in which the invariant holds, the program
satisfies the formula EGAG(x = 1).

Figure 3 shows the proof of this property in our system, including the six cycles that are
formed during the proof search, with traces that follow the infinite paths. For the rightmost
cycle in the lower branch of the figure we note that the temporal components of the sequents
in the infinite proof path are all of the form EGψ or ♦EGψ , where ψ = AG(x = 1), so
that there is a ♦-trace following the proof path as per Definition 10. Moreover, due to the
application of symbolic execution rules (Wh) and (Skip) along the infinite proof path, the
trace progresses infinitely often. Similarly, for the leftmost cycle in the top branch of the
figure, we note that the temporal components of the sequents in the infinite proof path are
of the form AGψ or �AGψ , where ψ = (x = 1), so that there is a �-trace following the
proof path. Moreover, due to the application of symbolic execution rules (Wh) and (Skip)
along the infinite proof path, the trace progresses infinitely often. Contrary to the previous
two cycles, the remaining 4 back-links shown in the proof do not match their corresponding
leaf node to a direct ancestor. Nevertheless, these infinite paths are, too, followed by�-traces
that progress infinitely often. Consequently, our pre-proof qualifies as a valid cyclic proof. ��

For a more realistic example, we now present a proof of a heap-aware server program that
nondeterministically alternates between adding an arbitrary number of “job requests” to the
head of a linked-list and processing job requests by means of deleting them from the list.

Example 4 Consider the following server-like programC fromExample 1 in the Introduction,
restated here with line numbers for convenience:

1 : while (x=x) do
2 : if (*) then
3 : while x != nil do
4 : temp :=[x]; free(x); x:=temp;

od; else
5 : while (*) do
6 : y:=new(); [y]:=x; x:=y;

od; fi; od;

123

Automatically Verifying Temporal Properties of Pointer Programs 565

Fig. 3 Nested temporal operators example. We write Ci to indicate atomic commandC labelled with program
counter i

Fig. 4 Proof of ls(x, nil) � C1 : EF(emp) in Example 4. Some simple inferences are suppressed for space
reasons

First we show that, given that the heap is initially a linked list from x to nil, it is possible
for the heap to become empty when running the program. Writing Ci for the program from
line i , this property is expressed as the judgement ls(x, nil) � C1 : EF(emp). We show a
cyclic proof of this property in Fig. 4, relying on a precondition trace over ls(x, nil), which
is unfolded during the proof.

Using this proof as a lemma, we can then show that it is always possible for the heap
to become empty at any point during program execution: ls(x, nil) � C1 : AGEF(emp).
Essentially, given the above lemma, the remaining proof burden consists in showing that line
1 is reachable from any other program point. Figure 5 shows an outline cyclic proof of this
judgement in our system (we suppress the internal judgements for space reasons, but show
the cycle structure and rule applications). Note that the back-links depicted in blue all point
to a companion in the proof of our auxiliary lemma, and do not yield any new infinite paths.

123

566 G. Tellez, J. Brotherston

Fig. 5 Single threaded monolithic server example. Note that judgements [A] and [B] are both proven as part
of the auxiliary lemma (Fig. 4)

The red back-links do give rise to new infinite paths; one can see that the pre-proof qualifies
as a valid cyclic proof since there is an infinitely progressing�-trace along every one of these
paths. ��

Proposition 1 (Decidable soundness condition) It is decidable whether a pre-proof is a cyclic
proof.

Proof (Sketch) Given a pre-proof P , we construct two Büchi automata over strings of nodes
ofP . The first automaton B1 accepts all infinite paths ofP . The second automaton B2 accepts
all infinite paths of P such that an infinitely progressing �-, ♦- or precondition-trace exists
on some tail of the path. We then simply check L(B1) ⊆ L(B2), which is decidable. ��

We now show that our proof system is sound.

Lemma 1 Let J = (P � C : ϕ) be the conclusion of an instance of a proof rule R. If J is
invalid under (s, h), then there exists a premise of the rule J ′ = P ′ � C ′ : ϕ′ and a model
(s′, h′) such that J ′ is not valid under (s′, h′) and, furthermore,

1. if there is a�-trace following the edge (J , J ′) then, lettingψ be the subformula ofϕ given
by Definition 10, there is a configuration γ such that γ �|� ψ , and the finite execution
path π ′ = 〈C ′, s′, h′〉 . . . γ is well-defined and a subpath of π = 〈C, s, h〉 . . . γ . There-
fore length(π ′) ≤ length(π). Moreover, length(π ′) < length(π) when R is a symbolic
execution rule.

123

Automatically Verifying Temporal Properties of Pointer Programs 567

2. if there is a ♦-trace following the edge (J , J ′) then, letting ψ be the subformula of ϕ

given by Definition 10, there is a smallest finite execution tree κ with root 〈C, s, h〉, each
of whose leaves γ satisfies γ �|� ψ . Moreover, κ has a subtree κ ′ with root 〈C ′, s′, h′〉
and whose leaves are all leaves of κ . Therefore height(κ ′) ≤ height(κ). Moreover,
height(κ ′) < height(κ) when R is a symbolic execution rule.

3. if there is a precondition trace (Ψ (E), Ψ ′(E′)) following the edge (J , J ′) then letting α

(β) be the index of the least approximant for which the inductive predicateΨ (E) (Ψ ′(E′))
is interpreted (i.e. (s, h0) |� Ψ α(E) and (s′, h′

0) |� Ψ ′β(E′) for subheaps h0 of h and h′
0

of h′), then α, β are well defined and β ≤ α. Moreover β < α when R is the (Unfold-Pre)
rule.

Proof We distinguish a case for each proof rule. Due to space constraints, we show only a few
interesting cases: the symbolic execution rules (If*♦1) and (If*�),which provide progress for
♦- and �-traces respectively, and the unfolding rule (Unfold-Pre), which provides progress
for precondition traces.
Case (If*♦1)

P � C1 ; C3 : ϕ

P � (if ∗ then C1 else C2 fi ; C3) : ♦ϕ
(If*♦1)

Assume the conclusion of the rule is invalid. Pick an arbitrary program state such that
(s, h) |� P but γ = 〈if ∗ then C1 else C2 fi ; C3, s, h〉 �|� ♦ϕ. By Definition 7, if γ �|� ♦ϕ

then for all γ ′ such that γ � γ ′, γ ′ �|� ϕ. By the operational semantics of our programming
language we know that there are two possible transitions: γ � 〈C1 ; C3, s, h〉 and γ �
〈C2 ; C3, s, h〉. Hence, 〈C1 ; C3, s, h〉 �|� ϕ and 〈C2 ; C3, s, h〉 �|� ϕ. Consequently, since by
our assumption (s, h) |� P but 〈C1 ; C3, s, h〉 �|� ϕ then the premise is invalid.

Given the structure of the temporal formula ϕ/♦ϕ, there cannot be a �-trace following
the edge.

If there is a ♦-trace following the edge, then by Definition 10, ϕ = EGψ . Since γ �|�
EGψ , by Definition 7 we know that for all paths π ′ starting from γ there exists γ̄ ∈ π such
that γ̄ �|� ψ . In other words, there is a finite execution tree κ with root γ and whose leaves
all fail to satisfy ψ . Moreover, since γ � 〈C1 ; C3, s, h〉 by the operational semantics, there
is a maximal subtree κ ′ of κ with root 〈C1 ; C3, s, h〉 and whose leaves also all fail to satisfy
ψ . Clearly height(κ ′) < height(κ).

Finally, if there is a precondition trace (Ψ (E), Ψ ′(E)) following the edge then Ψ (E) =
Ψ ′(E′) by Definition 11. Since (s, h) |� P and Ψ (E) is a predicate formula in P , we have
(s, h0) |� Ψ (E) for some subheap h0 of h. Therefore a smallest approximant α such that
(s, h0) |� Ψ α(E). Since here our (s′, h′) is just (s, h) and our Ψ ′(E′) is just Ψ (E), we
trivially have the required β = α ≤ α.
Case (If*�)

P � C1 ; C3 : ϕ P � C2 ; C3 : ϕ

P � (if ∗ then C1 else C2 fi ; C3) : �ϕ
(If*�)

Assume the conclusion of the rule is invalid. Pick an arbitrary program state such that
(s, h) |� P but γ = 〈if ∗ then C1 else C2 fi ; C3, s, h〉 �|� �ϕ. By Definition 7, if γ �|� �ϕ

then there exists γ ′ such that γ � γ ′ and γ ′ �|� ϕ. By the operational semantics we know
that there are two possibilities: γ ′ = 〈C1 ; C3, s, h〉 or γ ′ = 〈C2 ; C3, s, h〉. Hence, either
〈C1 ; C3, s, h〉 �|� ϕ or 〈C2 ; C3, s, h〉 �|� ϕ. We show the first of these cases, the second
being similar.
Case γ ′ = 〈C1 ; C3, s, h〉.

123

568 G. Tellez, J. Brotherston

By our assumption (s, h) |� P and invalidity result γ ′ �|� ϕ then it is the case that the
left-most premise is invalid.

If there is a �-trace following the edge, then by Definition 10, ϕ = AGψ . Furthermore,
since γ ′ �|� AGψ , then by Definition 7 we know that there exists γ̄ such that γ ′ �∗ γ̄ and
γ̄ �|� ψ (call this path π ′). Finally, since by the operational semantics γ � γ ′, then π ′ is a
subpath of π from γ to γ¬, and moreover length(π ′) < length(π).

Given the structure of the temporal formula ϕ/�ϕ, there cannot be a ♦-trace following
either of the edges.

The situation for precondition traces is similar to the previous case.

Case (Unfold-Pre)

(Π ∪ Π ′
i : Σ ∗ Σ ′

i � C : ϕ)1≤i≤k

Π : Ψ (E) ∗ Σ � C : ϕ
(Unfold-Pre)

Assume the conclusion of the rule is invalid. Pick an arbitrary program state such that
(s, h) |� Π : Ψ (E) ∗ Σ but 〈C, s, h〉 �|� ϕ. By Definition 2 we can split h into two disjoint
subheaps h = h′ 	 h′′ so that (s, h′) |� Π : Ψ (E) and (s, h′′) |� Π : Σ . Since (s, h′) |�
Π : Ψ (E) then by Definition 2 we know that (�E�s, h′) ∈ �Ψ �. Moreover, by Definition 5
we know that the program state (s, h′) is in the αth approximant of Ψ for some smallest α

(i.e. (�E�s, h′) ∈ �Ψ �α). By construction of the definition set operator for Ψ (Definition 4),
it follows that there is some inductive rule Π j : Σ j ⇒ Ψ (E)) such that (s, h′) |� Π j : Σ j

(we ignore variable renaming issues for simplicity). We choose Ji+1 to be the j th premise
of the rule, Π ∪ Π j : Σ ∗ Σ j � C : ϕ, and our falsifying state to be (s, h). It follows that
(s, h) |� Π ∪ Π j : Σ ∗ Σ j , and so the premise Ji+1 is not valid, as required.

If there is a �-trace following the edge (Ji , Ji+1), then by Definition 10, ϕ = AGψ

or ϕ = �AGψ . Furthermore, since by our previous invalidity result 〈C, s, h〉 �|� ϕ, then
by Definition 7 we know that there exists γ̄ such that 〈C, s, h〉 �∗ γ̄ and γ̄ �|� ψ (call
this path π). Thus the paths π ′ = π in item 1 of the lemma are well defined and, trivially,
length(π ′) ≤ length(π).

If there is a ♦-trace following the edge (Ji , Ji+1), then by Definition 10, ϕ = EGψ or
ϕ = ♦EGψ . Furthermore, since by our previous invalidity result 〈C, s, h〉 �|� ϕ, then by
Definition 7 we know that for all paths π starting from 〈C, s, h〉 there exists a configuration
γ̄ ∈ π such that γ̄ �|� ψ (call this tree κ . Thus the trees κ = κ ′ in item 2 of the lemma are
well-defined and, trivially, height(κ ′) ≤ height(κ).

If there is a precondition trace (Ψ (E), Ψ ′(E′)) following the edge then Ψ ′(E′) is an
unfolding of Ψ (E) appearing in Σ j . Since (�E�s, h′) ∈ �Ψ �α , it follows that (�E′�s, h0) ∈
�Ψ ′�β for some subheap h0 of h′ and some approximant β < α. This completes the case. ��
Theorem 1 (Soundness) If P � C : ϕ is provable, then it is valid.

Proof Suppose for contradiction that there is a cyclic proof P of J = P � C : ϕ but J
is invalid. That is, for some stack s and heap h, we have (s, h) |� P but 〈C, s, h〉 �|� ϕ.
Then, by local soundness of the proof rules (Lemma 1), we can construct an infinite path
(Pi � Ci : ϕi)i≥0 in P of invalid judgements. Since P is a cyclic proof, by Definition 12
there exists an infinitely progressing trace following some tail (Pi � Ci : ϕi)i≥n of this path.

If this trace is a �-trace, using condition 1 of Lemma 1, we can construct an infinite
sequence of finite paths to a fixed configuration γ of infinitely decreasing length, contradic-
tion. If the trace is a ♦-trace, we can construct an infinite sequence of execution trees (whose
leaves are again fixed configurations) of infinitely decreasing height, contradiction. Finally,

123

Automatically Verifying Temporal Properties of Pointer Programs 569

a precondition trace yields an infinitely decreasing sequence of ordinal approximations of
some inductive predicate, also a contradiction. The conclusion is that P � C : ϕ must be
valid after all. ��

We remark that the dichotomy between inductive and coinductive arguments can be
discerned in our trace condition. Coinductive (G) properties need to show that something
happens infinitely oftenwhereas inductive (F) properties have to show that something cannot
happen infinitely often. Both cases give us a progress condition: for coinductive properties,we
essentially need infinite program progress on the right of judgements, whereas for inductive
properties we need an infinite descent on the left of judgements (or the proof to be finite).

Readers familiar with Hoare-style proof systems might wonder about relative complete-
ness of our system, i.e., whether all valid judgements are derivable if all valid entailments
between formulas are derivable. Typically, such a result might be established by showing that
for any program C and temporal property ϕ, we can (a) express the logically weakest pre-
condition for C to satisfy ϕ, say wp(C, ϕ), and (b) derive wp(C, ϕ) � C : ϕ in our system.
Relative completeness then follows from the rule of consequence, (Cons). Unfortunately,
it seems certain that such weakest preconditions are not expressible in our language. For
example, in [7], the multiplicative implication of separation logic, —∗, is needed to express
weakest preconditions, whereas it is not present in our language due to the problems it poses
for automation (a compromise typical of most separation logic analyses). Indeed, it seems
likely that we would need to extend our precondition language well beyond this, since [7]
only treats termination, whereas we treat arbitrary temporal properties. Since our focus in
this paper is on automation, we leave such an analysis to future work.

4 Fairness

An important component in the verification of reactive systems is a set of fairness require-
ments to guarantee that no computation is neglected forever. In this section, we show how our
cyclic proof system for CTL program properties can be adapted to incorporate such fairness
constraints when verifying nondeterministic programs.

These fairness constraints are usually categorised as weak and strong fairness [20]. How-
ever, since weak fairness requirements are usually restricted to the parallel composition of
processes, a property that our programming language lacks, we limit ourselves to the treat-
ment of strong fairness.

Definition 13 (Fair execution) Let C be a program command and π = (πi)i≥0 a program
execution. We say that π visits C infinitely often if there are infinitely many distinct i ≥ 0
such that πi = 〈C, _ , _ 〉. A program execution π is fair for commands Ci ,C j if it is the
case that π visits Ci infinitely often if and only if π visits C j infinitely often. Furthermore,
π is fair for a program C if it is fair for all pairs of commands Ci ,C j such that C contains a
command of the form if ∗ then Ci else C j fi or while ∗ do Ci od ; C j .

Note that every finite program execution is trivially fair. Also, for the purposes of fairness,
we consider program commands to be uniquely labelled (to avoid confusion between different
instances of the same command).

Remark 2 One can argue that Definition 13 does not consider programs of the form
while ∗ do Ci od. Whereas this program, being finite, would be considered fair, one can
also imagine more involved scenarios with nested branching commands which difficult the
establishment of a clear continuation for a while command.

123

570 G. Tellez, J. Brotherston

In these cases, we can see programs of the form while ∗ do Ci od as having a no-op
continuation resulting in programs of the form while ∗ do Ci od ; skip to avoid confusion.

We now modify our cyclic CTL system to treat fairness constraints. First, we adjust the
interpretation of judgements to account for fairness, then we lift the definition of fairness
from program executions to paths in a pre-proof.

Definition 14 (Fair CTL judgement) A fair CTL judgement P �f C : ϕ is valid if and only
if, for all memory states (s, h) such that s, h |� P , we have 〈C, s, h〉 |�f ϕ, where |�f is the
satisfaction relation obtained from |� in Definition 7 by interpreting the temporal operators
as quantifying over fair paths, rather than all paths. For example, the clause for AG becomes

γ |�f AGϕ ⇔ ∀ f airπ starting from γ. ∀γ ′ ∈ π. γ ′ |�f ϕ.

Definition 15 A path in a pre-proof (Ji = Pi �f Ci : ϕi)i≥0 is said to visit C infinitely often
if there are infinitely many distinct i ≥ 1 such that JiC = C and the rule applied at Ji−1 is a
symbolic execution rule. A path in a pre-proof is fair for commands Ci ,C j if it is the case
that (Ji)i≥0 visits Ci infinitely often if and only if it visits C j infinitely often. Finally, the
path is fair for program C iff it is fair for all pairs of commands Ci ,C j such that C contains
a command of the form if ∗ then Ci else C j fi or while ∗ do Ci od ; C j .

Intuitively, to account for fairness constraints, we simply need to restrict the global sound-
ness condition fromDefinition 12 so that it quantifies over all fair infinite paths in a pre-proof,
ignoring unfair paths. However, as it stands, this intuition is not quite correct. Consider the
program

while (true) do { if (∗) then x := 1 else x := 2 } od.

Under precondition x = 1, this program has the CTL property EG(x = 1) owing precisely
to the unfair execution that always favours the first branch of the nondeterministic if. We
can witness this using a cyclic proof with a single loop that invokes the rule (If*♦1) infinitely
often. The infinite path created by this loop is unfair and thus such a proof should not count
as a “fair” cyclic proof. However, if we simply ignore this infinite path, the only one in the
pre-proof, then the global soundness condition is trivially satisfied! Our answer is to take a
more subtle view of the roles played by existential (EG/EF/♦) and universal (AG/AF/�)

properties; unfair paths created by the former must be disallowed, whereas unfair paths
created by the latter can simply be disregarded.

Definition 16 A pre-proof P is bad if there is an infinite path (Ji = Pi �f Ci : ϕi)i≥0 in
P such that, given a program point C , the rule (Wh*♦1) or (If*♦1) is applied to infinitely
many distinct Ji such that JiC = C and (Wh*♦2) or (If*♦2) is applied to only finitely many
distinct Ji such that JiC = C or vice versa.

Definition 17 (Fair cyclic proof) A pre-proof P is a fair cyclic proof if it is not bad in
the sense of Definition 16 above and, for every infinite fair path (Pi �f Ci : ϕi)i≥0 in P ,
there is an infinitely progressing �-trace, ♦-trace or precondition trace following some tail
(Pi �f Ci : ϕi)i≥n of the path.

Proposition 2 (Decidable soundness condition) It is decidable whether a pre-proof is a valid
fair cyclic proof.

123

Automatically Verifying Temporal Properties of Pointer Programs 571

Fig. 6 Fair CTL cyclic proof example. We write Ci to indicate atomic command C labelled with program
counter i

Proof (Sketch) Given a pre-proof P , we first have to check that it is not bad in the sense of
Definition 16. This can be done using Büchi automata: given a particular program point C ,
one can construct automata B1 and B2 accepting the infinite paths inP such that (Wh*♦1) or
(If*♦1), respectively (Wh*♦2) or (If*♦2) are applied infinitely often to C . We simply check
L(AB1) ⊆ L(AB2) and L(AB2) ⊆ L(AB1), which is decidable (repeating this exercise for
each needed program point).

It just remains to check that there exists an infinitely progressing trace along every infinite
fair path of P . The argument is similar to the argument for our non-fair cyclic proofs, except
that instead of an automaton accepting all infinite paths of P we now require one accepting
only fair infinite paths. This can be done using a Streett automaton with an acceptance
condition of conjuncts of the form (Fin(i) ∨ Inf(j)) ∧ (Fin(j) ∨ Inf(i)) for each pair of
fairness constraints (i, j). We are then done since Streett automata can be transformed into
Büchi automata [21]. ��

To illustrate the concepts introduced in this section, we show a fair cyclic CTL proof of
the following example.

Example 5 Consider the following labelled program C :

1 : while(x=x) do
2 : while (*) do
3 : x:=true;

od;
4 : x:=false;

od;

While the property AF(x = false) fails for this program in general, it becomes true under
the fairness constraint (C3,C4). Figure 6 shows an abridged proof of this property in our fair
cyclic CTL proof system, where the application of a ∨ rule following each (AF) rule has
been omitted from the proof for brevity. Note the formation of a cycle on the leftmost branch,
along which there is no trace. Whereas this cycle invalidates the general CTL soundness
condition, it does not invalidate the fair CTL soundness condition, since the path in question
visits C3 infinitely often but not C4; hence it is unfair as per Definition 15 (but not bad in
the sense of Definition 16). Hence, the fair global soundness condition is trivially satisfied
as there are only finite fair paths in the pre-proof. Consequently, the pre-proof qualifies as a
fair CTL cyclic proof. ��
Example 6 We return to our server program from Examples 1 and 4. Suppose we wish to
prove, not that it is always possible for the heap to become empty, i.e. AGEF(emp), but

123

572 G. Tellez, J. Brotherston

Fig. 7 Single threaded monolithic server example

that the heap will always eventually become empty, i.e. AGAF(emp). While the program
does not satisfy this property in general, it does satisfy the property under the assumption of
fair execution, which prevents the second loop from being executed infinitely often without
executing the first loop.

Figure 7 shows an abridged proof of this property in the our fair cyclic CTL proof system.
Adding the fairness constraints relaxes the conditions under which back-links can be formed.
The back-links depicted in green induce infinite paths with no valid trace. However, because
these infinite paths are unfair (and not bad), they are not considered in the global soundness
condition. Our pre-proof thus qualifies as a fair cyclic proof since along every fair infinite
path there is either a �-trace or a precondition trace progressing infinitely often. ��

Theorem 2 (Soundness) If P �f C : ϕ is provable, then it is valid.

Proof (Sketch) Suppose for contradiction that there is a fair cyclic proof P of J = P �f

C : ϕ but J is invalid. That is, for some stack s and heap h, we have (s, h) |� P but
〈C, s, h〉 �|�f ϕ. Then, by local soundness of the proof rules, we can construct an infinite path
Π = (Pi �f Ci : ϕi)i≥0 in P of invalid sequents. We have an infinitely progressing trace
along this path and can thus obtain a contradiction exactly as in the proof of soundness for
the standard system (Theorem 1) provided that Π is fair.

Suppose therefore that Π is unfair for commands (Ci ,C j) say. We consider the case in
which C contains the command if ∗ then Ci else C j fi and Π visits Ci infinitely often
and C j only finitely often; the while case is similar. Using Definition 15 we know that
if ∗ then Ci else C j fi itself is symbolically executed infinitely often on Π . It cannot be that
(If ∗ ♦1) is applied infinitely often and (If ∗ ♦2) only finitely often on Π , since Π would

123

Automatically Verifying Temporal Properties of Pointer Programs 573

in that case be a bad path, which is specifically excluded by Definition 16. Nor can it be
that both rules are applied infinitely often, since in that case Π would be fair for (Ci ,C j),
contrary to assumption.

The only remaining possibility is that (If∗�) is applied infinitely often on Π . In that case
it must be thatΠ contains infinitely many occurrences of the left premise of the rule and only
finitely many instances of the right premise (or vice versa). Hence the program execution
underlying the pre-proof path Π is also unfair. Since the satisfaction relation |�f is restricted
to fair program executions, this contradicts the assumption that 〈C, s, h〉 �|�f ϕ. (The full
justification of this last step requires the observation that, in order to produce a � infinitely
often, the underlying temporal property must contain an outermost AF or AG quantifier.) ��

5 Implementation and Evaluation

We implement our proof systems on top of the Cyclist [9], a mechanised cyclic theorem
proving framework. The implementation, source code and benchmarks are publicly available
at [1].

Our implementation performs iterative depth-first search, aimed at closing open nodes in
the proof by either applying an inference rule or forming a back-link. If an open node cannot
be closed, we attempt to apply symbolic execution; if this is not possible, we try unfolding
temporal operators and inductive predicates in the precondition to enable symbolic execu-
tion to proceed. Forming back-links typically requires the use of the consequence rule (i.e.
a lemma proven on demand) to re-establish preconditions altered by symbolic executions
(as can be seen in Figs. 5 and 7). When forming a back-link, we check automatically that
the global soundness condition is satisfied. Entailment queries over symbolic heaps in sep-
aration logic, which arise at backlinks and when applying the (Check) axiom or checking
rule side conditions, are handled by a separate instantiation of Cyclist for separation logic
entailments [9].

We evaluate the implementation on handcrafted nondeterministic and nonterminating
programs similar to Example 1. Our test suite is essentially an adaptation of the model check-
ing benchmarks in [14,15] for temporal properties of nondeterministic programs. Roughly
speaking, we replace operations on integer variables by analogous operations on heap data
structures.

Our test suite comprises the following programs:

• Examples discussed in the paper are named Exmp;
• Fin- Lock - a finite program that acquires a lock and, once obtained, proceeds to free

from memory the elements of a list and reset the lock;
• Inf- Lock wraps the previous program inside an infinite loop;
• Nd- In- Lock is an infinite loop that nondeterministically acquires a lock, then proceeds

to perform a nondeterministic number of operations before releasing the lock;
• Inf- List is an infinite loop that nondeterministically adds a new element to the list or

advances the head of the list by one element on each iteration;
• Insert- List has a nondeterministic if statement that either adds a single elements to the

head of the list or deletes all elements but one, and is followed by an infinite loop;
• Append- List appends the second argument to the end of the first argument;
• Cyclic- List is a nonterminating program that iterates through a non-empty cyclic list;
• Inf- BinTree is an infinite loop that nondeterministically inserts nodes to a binary three

or performs a random walk of the three;

123

574 G. Tellez, J. Brotherston

• The programs named with Branch define a somewhat arbitrary nesting of nondetermin-
istic if and while statements, aimed at testing the capability of the tool in terms of
lines of code and nesting of cycles;

• Finally we also cover sample programs taken from the Windows Update system (Win

Update), the back-end infrastructure of the PostgreSQL database server (PostgreSQL)
and an implementation of the acquire-release algorithm taken from the aforementioned
benchmarks (Acq- Rel).

We show the results of the evaluation of the CTL system and its fair extension in Table 1.
For each test,we reportwhether fairness constraintswere needed to verify the desired property
and the time taken in seconds (we use TO in case the tool failed to produce a proof within
60 seconds). The tests were carried out on an Intel x-64 i5 system at 2.50GHz.

Our experiments demonstrate the viability of our approach: our runtimes are mostly in
fractions of seconds and show similar performance to existing tools for the model checking
benchmarks. Overall, the execution times in the evaluation are quite varied, as they depend on
factors such as the complexity of the program and temporal property in question, but sources
of potential slowdown can be witnessed by different test cases. Even at the level of pure
memory assertions, the base case rule (Check) has to check entailments P |� Q between
symbolic heaps, which involves calling an inductive theorem prover; this is reasonably fast
in some cases, but very costly in others (e.g. the Append- List example). Another source of
slowdown is in attempting to form back-links too eagerly (e.g. when encountering the same
command at two different program locations); since we check soundness when forming a
back-link, which involves calling a model checker (cf. [9]), this too is an expensive operation,
as can be seen in the runtimes of test cases with suffix Branch.

Notwithstanding the broadly encouraging results, our implementation is not without lim-
itations; in some cases, the proof search will fail to terminate. Some of this cases are due to
the invalidity of the jugment that is intended to be demonstrated (as in is the case of Exmp,
Fin- Lock and Nd- In- Lock) whereas in some other cases we fail to establish a sufficiently
general “invariant” to form backlinks in the proof (the case of Inf- BinTree).

6 RelatedWork

Related work on the automated verification of temporal program properties can broadly be
classified into two main schools, model checking and deductive verification. In recent years,
model checking has been the more popular of these two. Although earlier work in model
checking focused on finite-state transition systems (e.g. [11,25]), recent advances in areas
such as state space restriction [3], precondition synthesis [13], CEGAR [15], bounded model
checking [10] and automata theory [12] have enabled the treatment of infinite transition
systems.

The present paper takes the deductive verification approach. In the realm of infinite state,
previous proof systems for verifying temporal properties of arbitrary transition systems [23,
29] have shed some light on the soundness and relative completeness of deductive verification.
Of particular relevance here are those proof systems for temporal properties based on cyclic
proof.

Our work can be seen as an extension to arbitrary temporal properties of the cyclic termi-
nation proofs in Brotherston et al. [7]. A procedure for the verification of CTL* properties that
employs a cyclic proof system for LTL as a sub-procedure was developed by Bath et al. [4]. A
subtle but important difference when compared with our work is the lack of cut/consequence

123

Automatically Verifying Temporal Properties of Pointer Programs 575

Table 1 Experimental results. Time is listed in miliseconds. TO indicated the experiment failed to produce a
proof in under 60 seconds

Program Precondition Property Fairness Time (s)

Exmp ls(x,nil) AGEF emp No 2.43

Exmp ls(x,nil) AGAF emp Yes 4.29

Exmp ls(x,nil) AGAF (ls(x,nil)) No 0.26

Exmp ls(x,nil) AGEG (ls(x,nil)) No 0.44

Exmp ls(x,nil) AF emp Yes 0.77

Exmp ls(x,nil) AFEG emp Yes 0.86

Exmp ls(x,nil) AGAF emp No TO

Fin- Lock l �→0 * ls(x,nil) AF (l �→1 * emp) No 0.20

Fin- Lock l �→0 * ls(x,nil) AGAF(l �→1 * emp) No 0.62

Fin- Lock l �→0 * ls(x,nil) AGAF(l �→1 * emp ∧ ♦l �→0) No 0.24

Fin- Lock l �→0 * ls(x,nil) AF (l �→1 * ls(x,nil)) No TO

Inf- Lock l �→0 * ls(x,nil) AGAF(l �→1 * emp) No 1.52

Inf- Lock l �→0 * ls(x,nil) AGAF(l �→1 * emp ∧ ♦l �→0)) No 3.26

Inf- Lock d = f : l �→0 * ls(x,nil) AG(d! = t ∨ AF (l �→1 * emp)) No 3.87

Nd- Inf- Lock l �→0 AF(l �→1) Yes 0.15

Nd- Inf- Lock l �→0 AGAF(l �→1) Yes 0.25

Nd- Inf- Lock l �→0 AF(l �→1) No TO

Inf- List ls(x,nil) AG ls(x,nil) No 0.21

Inf- List ls(x,nil) AGEF x = nil No 4.39

Inf- List ls(x,nil) AGAF x = nil Yes 8.10

Insert- List ls(three,zero) EF ls(five,zero) No 0.14

Insert- List ls(three,zero) AF ls(five,zero) Yes 0.26

Insert- List ls(n,zero) AGAF n! = zero Yes 17.21

Append- List ls(y,x) * ls(x,nil) AF (ls(y,nil)) No 12.67

Cyclic- List cls(x,x) AG cls(x,x) No 0.88

Cyclic- List cls(x,x) AGEG cls(x,x) No 0.34

Inf- BinTree x! = nil : bintree(x) AGEG x! = nil No 0.72

Inf- BinTree x! = nil : bintree(x) AGAF bintree(x) No TO

AFAG Branch x �→zero AFAG x �→one No 1.80

EGAG Branch x �→zero EGAG x �→one No 0.23

EGAF Branch x �→zero EGAF x �→one No 15.48

EG⇒ EF Branch p = z ∧ q = z : ls(z,n) EG(p! = one ∨ EF q = one) No 1.60

EG⇒ AF Branch p = z ∧ q = z : ls(z,n) EG(p! = one ∨ AF q = one) Yes 5.33

AG⇒ EG Branch p = z ∧ q = one : ls(z,n) AG(p! = one ∨ EG q = one) No 0.36

AG⇒ EF Branch p = z ∧ q = one :u ls(z,n) AG(p! = one ∨ EF q = one) No 1.53

Acq- rel ls(zero,three) AG(acq = 0 ∨ AF rel! = 0) No 1.25

Acq- rel ls(zero,three) AG(acq = 0 ∨ EF rel! = 0) No 1.25

Acq- rel ls(zero,three) EF acq! = 0 ∧ EF AG rel = 0 No 0.33

Acq- rel ls(zero,three) AF AG rel = 0 Yes 0.42

Acq- rel ls(zero,three) EF acq! = 0 ∧ EF EG rel = 0 No 0.25

123

576 G. Tellez, J. Brotherston

Table 1 continued

Program Precondition Property Fairness Time (s)

Acq- rel ls(zero,three) AF EG rel = 0 Yes 0.33

PostgreSQL w = true ∧ s = s′ ∧ f = f′ AGAF w = true ∧ s = s′ ∧ f = f′ No 0.27

PostgreSQL w = true ∧ s = s′ ∧ f = f′ AGEF w = true ∧ s = s′ ∧ f = f′ No 0.26

PostgreSQL w = true ∧ s = s′ ∧ f = f′ EFEG w = false ∧ s = s′ ∧ f = f′ No 0.44

PostgreSQL w = true ∧ s = s′ ∧ f = f′ EFAG w = false ∧ s = s′ ∧ f = f′ No 0.77

Win Update W! = nil : ls(W,nil) AGAF W! = nil : ls(W,nil) No 1.50

Win Update W! = nil : ls(W,nil) AGEF W! = nil : ls(W,nil) No 1.00

Win Update W! = nil : ls(W,nil) EFEG W = nil : emp No 3.60

Win Update W! = nil : ls(W,nil) AFEG W = nil : emp Yes 3.70

Win Update W! = nil : ls(W,nil) EFAG W = nil : emp No 3.15

Win Update W! = nil : ls(W,nil) AFAG W = nil : emp Yes 4.16

rule (used e.g. to generalise precondition formulas or to apply intermediary lemmas). A side
benefit of this restriction is a simplification of the soundness condition on cyclic proofs.

A cyclic proof system for the verification of CTL* properties of infinite-state transition
systems is presented in Sprenger’s PhD thesis [29]. Focusing on generality, this system avoids
considering details of state formulas and their evolution throughout program execution by
assuming an oracle for a general transition system. The system relies on a soundness condition
that is similar to Definition 12, but does not track progress in the same way, imposing extra
conditions on the order in which rules are applied. The success criterion for validity of a proof
also presents some differences; it relies on finding ranking functions, intermediate assertions
and checking for the validity of Hoare triples, and it is far from clear that such checks can
be fully automated. In contrast, we rely on a relatively simple ω-regular condition, which is
decidable and can be automatically checked by Cyclist [5,9,30].

7 Conclusions and FutureWork

Our main contribution in this paper is the formulation, implementation and evaluation of a
deductive cyclic proof system for verifying temporal properties of pointer programs, building
on previous systems for separation logic and for other temporal verification settings [4,7,29].
We present two variants of our system and prove both systems sound. We have implemented
these proof systems, and proof search algorithms for them, in the Cyclist theorem prover,
and evaluated them on benchmarks drawn from the literature.

The main advantage of our approach is that we never obtain false positive results. This
advantage is not in fact exclusive to deductive verification: some automata-theoretic model
checking approaches are also proven to be sound [33]. Nonetheless, when compared to such
approaches, our treatment of the temporal verification problem has the advantage of being
direct. Owing to our use of separation logic and a deductive proof system, we do not need to
apply approximation or transformations to the program as a first step; in particular, we avoid
the translation of temporal formulas into complex automata [34] and the instrumentation of
the original program with auxiliary constructs [12].

One natural direction for future work is to develop improved mechanised techniques, such
as generalisation / abstraction, to enhance the performance of proof search in our system(s).

123

Automatically Verifying Temporal Properties of Pointer Programs 577

Another possible direction is to consider larger classes of programs. In particular, concurrency
is onevery interesting suchpossibility, perhaps buildingon existingverification techniques for
concurrency in separation logic (e.g. [32]). A different direction to explore is the enrichment
of our assertion language, for example to CTL* [17] or μ-calculus [16]. The structure of
CTL* formulas and their classification into path and state subformulas suggest a possible
combination of our CTL system with an LTL system to produce a proof object composed
of smaller proof structures (cf. [4,29]). The encoding of CTL* into μ-calculus [16] and the
applicability of cyclic proofs for the verification of μ-calculus properties (see e.g. [28]) hint
at the feasibility of such an extension.

OpenAccess This article is distributed under the terms of the Creative Commons Attribution 4.0 International
License (http://creativecommons.org/licenses/by/4.0/),which permits unrestricted use, distribution, and repro-
duction in any medium, provided you give appropriate credit to the original author(s) and the source, provide
a link to the Creative Commons license, and indicate if changes were made.

References

1. https://github.com/ngorogiannis/cyclist/releases/tag/JAR
2. Berdine, J., Calcagno, C., O’Hearn, P.W.: A decidable fragment of separation logic. In: Proceedings of

FSTTCS-24, pp. 97–109. Springer, Berlin (2004)
3. Beyer, D., Henzinger, T.A., Jhala, R., Majumdar, R.: The software model checker blast: applications to

software engineering. Int. J. Softw. Tools Technol. Transfer 9, 505–525 (2007)
4. Bhat, G., Cleaveland, R., Grumberg, O.: Efficient on-the-fly model checking for CTL*. In: Proceedings

of LICS-10, pp. 388–397. IEEE (1995)
5. Brotherston, J.: Sequent calculus proof systems for inductive definitions. Ph.D. thesis, University of

Edinburgh (2006)
6. Brotherston, J.: Formalised inductive reasoning in the logic of bunched implications. In: Proceedings of

SAS-14, LNCS, vol. 4634, pp. 87–103. Springer, Berlin (2007)
7. Brotherston, J., Bornat, R., Calcagno, C.: Cyclic proofs of program termination in separation logic. In:

Proceedings of POPL-35, pp. 101–112. ACM (2008)
8. Brotherston, J., Gorogiannis, N.: Cyclic abduction of inductively defined safety and termination precon-

ditions. In: Proceedings of SAS-21, LNCS, vol. 8723, pp. 68–84. Springer, Berlin (2014)
9. Brotherston, J., Gorogiannis, N., Petersen, R.L.: A generic cyclic theorem prover. In: Proceedings of

APLAS-10, LNCS, pp. 350–367. Springer, Berlin (2012)
10. Clarke, E., Kroening, D., Lerda, F.: A tool for checking ANSI-C programs. In: Proceedings of TACAS,

LNCS, vol. 2988, pp. 168–176. Springer, Berlin (2004)
11. Clarke, E.M., Emerson, E.A.: Design and synthesis of synchronization skeletons using branching-time

temporal logic. Logic of Programs. Workshop, pp. 52–71. Springer, Berlin (1981)
12. Cook, B., Gotsman, A., Podelski, A., Rybalchenko, A., Vardi, M.Y.: Proving that programs eventually do

something good. In: Proceedings of POPL-34, POPL ’07, pp. 265–276. ACM (2007)
13. Cook, B., Khlaaf, H., Piterman, N.: On automation of CTL* verification for infinite-state systems. In:

Proceedings of CAV-27, LNCS, vol. 9206. Springer, Berlin (2015)
14. Cook, B., Koskinen, E.:Making prophecieswith decision predicates. In: Proceedings of POPL-38, vol. 46,

pp. 399–410. ACM (2011)
15. Cook, B., Koskinen, E.: Reasoning about nondeterminism in programs. In: Proceedings of PLDI-34, pp.

219–230. ACM (2013)
16. Dam, M.: Translating CTL* Into the Modal Mu-calculus. ECS-LFCS-.University of Edinburgh, Depart-

ment of Computer Science, Laboratoryfor Foundations of Computer Science (1990)
17. Emerson, E.A., Halpern, J.Y.: “Sometimes” and “Not never” revisited: on branching versus linear time

temporal logic. J. ACM 33, 151–178 (1986)
18. Fix, L., Grumberg, O.: Verification of temporal properties. J. Log. Comput. 6, 343–361 (1996)
19. Hungar, H., Grumberg, O., Damm, W.: What if model checking must be truly symbolic. In: Proceedings

of CHARME, pp. 1–20. Springer, Berlin (1995)
20. Lamport, L.: Proving the correctness of multiprocess programs. IEEE Trans. Softw. Eng. 3, 125–143

(1977)

123

http://creativecommons.org/licenses/by/4.0/
https://github.com/ngorogiannis/cyclist/releases/tag/JAR

578 G. Tellez, J. Brotherston

21. Löding, C., Thomas, W.: Methods for the transformation of ω-automata: complexity and connection to
second order logic (2007)

22. Magill, S., Tsai, M.H., Lee, P., Tsay, Y.K.: Automatic numeric abstractions for heap-manipulating pro-
grams. In: Proceedings of the 37th Annual Symposium on Principles of Programming Languages, POPL
’10, pp. 211–222. ACM (2010)

23. Manna, Z., Pnueli, A.: Completing the temporal picture. Theor. Comput. Sci. 83(1), 97–130 (1991)
24. Pnueli, A.: The temporal logic of programs. In: 18th Annual Symposium on Foundations of Computer

Science, pp. 46–57. IEEE (1977)
25. Queille, J.P., Sifakis, J.: Specification and verification of concurrent systems in cesar. In: Proceedings of

the 5th CISP, pp. 337–351. Springer, Berlin (1982)
26. Reynolds, J.C.: Separation logic: a logic for shared mutable data structures. In: Proceedings LICS-17, pp.

55–74. IEEE (2002)
27. Rowe, R.N.S., Brotherston, J.: Automatic cyclic termination proofs for recursive procedures in separation

logic. In: Proceedings of CPP-6. ACM (2016)
28. Schopp, U., Simpson, A.: Verifying temporal properties using explicit approximants: completeness for

context-free processes. In: Proceedings of FoSSaCS, pp. 372–386. Springer, Berlin (2002)
29. Sprenger, C.: Deductive local model checking—on the verification of ctl* properties of infinite-state

reactive systems. Ph.D. thesis, Swiss Federal Institute of Technology (2000)
30. Sprenger, C., Dam, M.: On the structure of inductive reasoning: circular and tree-shaped proofs in the

μ-calculus. In: Proceedings of FOSSACS 2003, LNCS, vol. 2620, pp. 425–440. Springer, Berlin (2003)
31. Tellez, G., Brotherston, J.: Automatically verifying temporal properties of pointer programs with cyclic

proof. In: Automated Deduction—CADE 26, pp. 491–508. Springer, Berlin (2017)
32. Vafeiadis, V., Parkinson, M.: A marriage of rely/guarantee and separation logic. In: Proceedings of

CONCUR-18, pp. 256–271. Springer, Berlin (2007)
33. Vardi, M.Y.: Verification of concurrent programs: the automata-theoretic framework*. Ann. Pure Appl.

Logic 51(1), 79–98 (1991)
34. Visser, W., Barringer, H.: Practical CTL* model checking: should spin be extended? Int. J. Softw. Tools

Technol. Transfer 2(4), 350–365 (2000)

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

123

	Automatically Verifying Temporal Properties of Pointer Programs with Cyclic Proof
	Abstract
	1 Introduction
	2 Programs and Assertions
	3 A Cyclic Proof System for Verifying CTL Properties
	4 Fairness
	5 Implementation and Evaluation
	6 Related Work
	7 Conclusions and Future Work
	References

