
Journal of Automated Reasoning (2019) 63:809–811
https://doi.org/10.1007/s10817-019-09529-9

Preface to the Special Issue on Linearity

Iliano Cervesato1 ·Maribel Fernández2

Received: 12 July 2019 / Accepted: 15 July 2019 / Published online: 27 July 2019
© Springer Nature B.V. 2019

Since the birth of linear logic, there has been a stream of research where linearity is a key
issue, covering both theoretical topics and applications to several areas of Computer Science,
such as work on proof technology, complexity classes and more recently quantum compu-
tation, program analysis, expressive operational semantics, linear programming languages,
and techniques for program transformation, update analysis and efficient implementation.

The wealth of recent results and the opening of new, exciting, research directions in
the area led to the introduction of a series of international workshops. The LINEARITY
workshops bring together researchers who are developing theory and applications of linear
calculi. Topics of interest include: sub-linear logics, linear term calculi, linear type systems,
linear proof theory, linear programming languages, applications to concurrency, interaction-
based systems, verification of linear systems, quantummodels of computation, and biological
and chemical models of computation.

This special issue is devoted to papers describing recent advances in this area. It came out
of a call for papers issued after the fourth International Workshop on Linearity, with the aim
of including a selection of extended versions of workshop papers in addition to opening it
up to other authors. Six articles were selected for this special issue, covering the following
topics:

1 Implicit Computational Complexity

Linear type systems are a useful tool in the analysis of the complexity of higher-order pro-
grams. The article by Baillot, Dal Lago and Barthe, Implicit Computational Complexity of
Subrecursive Definitions and Applications to Cryptographic Proofs, defines a linear depen-
dent type and effect system for a call-by-value variant of Godel’s System T with references,
which can estimate the complexity of programs as a function of the size of their inputs. The
authors describe a sound and complete type inference procedure that over-approximates the

B Iliano Cervesato
iliano@cmu.edu

B Maribel Fernández
maribel.fernandez@kcl.ac.uk

1 Carnegie Mellon University, Pittsburgh, USA

2 King’s College London, London, UK

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10817-019-09529-9&domain=pdf


810 I. Cervesato, M. Fernández

complexity of executing the programs on a variant of the CEK abstract machine. The power
of this result is illustrated on several examples of cryptographic proofs.

2 Model Checking

Model checking and theorem proving are two classic approaches to certifying the correctness
of programs and systems. Although both are rooted in logic, they largely occupy separate
worlds, the former stemming from model theory, the latter from proof theory. The paper by
Heath and Miller, A Proof Theory for Model Checking, takes a step towards bridging these
twoworlds by exploring proof-theoretic support for model checking techniques. Specifically,
they leverage the interplay between additive and multiplicative connectives in focused linear
logic to explain notions such as reachability, non-reachability, as well as tabled deduction,
bisimulation, and winning strategies.

3 Numeral Systems

Mackie’s article, Linear Numeral Systems, provides an answer to a long-standing question,
namely the possibility of defining efficient numeral systems in the linear lambda calculus,
where terms cannot be copied or erased. The paper addresses three problems: how to repre-
sent numbers, how to define constant time arithmetic operations for successor, addition and
predecessor, and how to define subtraction in an efficient way. The latter is well-known to be
difficult in numeral systems.

4 Proof Diagrams

Proof nets, a graphical syntax for linear logic proofs, are a popular tool to represent and analyse
proofs: their graphical nature avoids the need to explicitly define some proof equivalences
that are needed when using textual representations. Acclavio’s article, Proof Diagrams for
Multiplicative Linear Logic: Syntax and Semantics, proposes an alternative 2-dimensional
syntax for multiplicative linear logic derivations using string diagrams. In this approach,
deciding whether a term corresponds to a correct proof derivation is efficient: the check can
be done in linear time, thanks to the fact that string diagrams permit to include control strings
to encode the correct application of inference rules. Moreover, the paper shows how to define
a denotational semantics for multiplicative linear logic proofs with units, using equivalence
classes of proof diagrams.

5 Quantum Programming Languages

In the approaches to the design of quantum programming languages that exist in the literature,
linear logic plays a major role. Many of the languages are based on a linear algebraic lambda-
calculus, or use linear types to model features of the quantum computation. Two articles in
this special issue study quantum languages. In the article by Paolini, Piccolo and Zorzi,
QPCF: higher order languages and quantum circuits, a quantum programming language is
built on top of PCF, by adding quantum circuits and a quantum co-processor. A dependent

123



Preface to the Special Issue on Linearity 811

type system is used to deal with quantum circuits in a way that is completely different from
the standard approaches, based on linear types. Using a big-step operational semantics, the
authors show that despite the extensionwith quantum features, the language satisfies standard
evaluation properties and is sufficiently expressive.

In the article byMahmoud andFelty,Formalization ofMetatheory of theQuipperQuantum
Programming Language in a Linear Logic, a linear logical framework is defined within the
Hybrid system in order to analyse the type system of a quantum lambda calculus called
Proto-Quipper, which contains the core of Quipper. To facilitate reasoning on Quipper’s
linear type system, the authors introduce a linear specification logic and formalise the typing
and evaluation rules of Proto-Quipper in this logic. The article shows the type soundness of
Proto-Quipper and discusses the adequacy of the encodings.

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

123


	Preface to the Special Issue on Linearity
	1 Implicit Computational Complexity
	2 Model Checking
	3 Numeral Systems
	4 Proof Diagrams
	5 Quantum Programming Languages




