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Abstract
SAT solvers decide the satisfiability of Boolean formulas in conjunctive normal form. They
are commonly used for software and hardware verification. Modern SAT solvers are highly
complex and optimized programs. As a single bug in the solvermay invalidate the verification
of many systems, SAT solvers output certificates for their answer, which are then checked
independently. However, even certificate checking requires highly optimized non-trivial pro-
grams. This paper presents the first SAT solver certificate checker that is formally verified
down to the integer sequence representing the formula. Our tool supports the full DRAT
standard, and is even faster than the unverified state-of-the-art tool drat-trim, on a realistic set
of benchmarks drawn from the 2016 and 2017 SAT competitions. An optional multi-threaded
mode further reduces the runtime, in particular for big certificates.

Keywords Unsat certificates · SAT solving · DRAT · Isabelle/HOL · Stepwise refinement ·
Formal verification · Verified software

1 Introduction

Modern SAT solvers are highly optimized and use complex algorithms and heuristics. This
makes them prone to bugs. Given that SAT solvers are used in software and hardware veri-
fication, a single bug in a SAT solver may invalidate the verification of many systems. One
measure to increase the trust in SAT solvers is to make them output a certificate, which is
used to check the result of the solver by a simpler algorithm. Most SAT solvers support the
output of a satisfying valuation of the variables as an easily checkable certificate for satisfia-
bility. Certificates for unsatisfiability are more complicated, and different formats have been
proposed (e. g. [44–46]). Since 2013, the SAT competition [40] requires solvers to output
unsat certificates. Since 2014, only certificates in the DRAT format [46] are accepted [41].

The standard tool to check DRAT certificates is drat-trim [9,46]. It is a highly optimized
C program with many features, including forward and backward checking modes, a satis-
fiability certificate checking mode, and a feature to output reduced (trimmed) certificates.
However, the high degree of optimization and the wealth of features come at the price of
code complexity, increasing the likelihood of bugs. And indeed, during our formalization
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of DRAT certificates, we realized that drat-trim was missing a crucial check, thus accepting
(maliciously engineered) unsat certificates for satisfiable formulas. This bug has been con-
firmed by the authors, and is now fixed. Moreover, we discovered several numeric and buffer
overflow issues in the parser [10], which could lead to misinterpretation of the formula. Thus,
although being less complex than SAT solvers, efficient DRAT checkers are still complex
enough to easily overlook bugs.

Onemethod to ensure correctness of software is to conduct amachine-checked correctness
proof. A common approach is to prove correct a specification in the logic of an interactive
theorem prover, and then generate executable code from the specification. Here, code gener-
ation is merely a syntax transformation from the executable fragment of the theorem prover’s
logic to the target language. Following the LCF approach [14], modern theorem provers
like Isabelle [38] and Coq [3] are explicitly designed to maximize their trustworthiness.
Unfortunately, the algorithms and low-level optimizations required for efficient unsat certifi-
cate checking are hard to verify and existing approaches (e. g. [8,45]) do not scale to large
problems.

While working on the verification of an efficient DRAT checker, the author learned about
GRIT, proposed by Cruz-Filipe et al. [7]: They use a modified version of drat-trim to generate
an enriched certificate from the original DRAT certificate. The crucial idea is to record the
required unit propagations, such that the checker of the enriched certificate only needs to
implement a check whether a clause is unit, instead of a fully fledged unit propagation
algorithm.

Cruz-Filipe et al. formalize a checker for their enriched certificates in the Coq theorem
prover [3], and generate OCaml code from the formalization. However, their approach still
has some deficits: GRIT only supports the less powerful DRUP fragment [45] of DRAT,
making it unsuitable for SAT solvers that output full DRAT. Also, their checker does not
consider the original formula but assumes that the certificate correctly mirrors the formula.
Moreover, they use unverified code to parse the certificate into the internal data structures
of the checker. Finally, their verified checker is quite slow: Checking a certificate requires
roughly the same time as generating it, which effectively doubles the verification time. In
contrast, an unverified implementation of their checker in C is two orders of magnitude faster.

Independently of us, Cruz-Filipe et al. also extended their tool to DRAT [6], and optimized
their verified checker [18]. Their tool is called LRAT.

In this paper we present the GRAT toolchain: An enriched certificate format for full
DRAT, a highly optimized certificate generator, and a certificate checker whose correctness
is formally verified down to the integer array representing the formula. The simple unverified
parser that reads a formula into an integer array is written in Standard ML [34], which
guarantees that numeric and buffer overflows will not go unnoticed. On the same basis, we
also implement and verify a sat certificate checker, obtaining a complete and formally verified
SAT solver certification tool.

We use stepwise refinement techniques to obtain an efficient verified checker, and imple-
ment aggressive optimizations in the generator. A distinguishing feature is a multi-threaded
mode for the generator, which allows us to trade computing resources for additional speedup.

We benchmark our tool against drat-trim and LRAT on a realistic benchmark suite drawn
from the 2016 and 2017 SAT competitions: Already in single-threadedmode, our tool is faster
than LRAT on every single problem, and, on most problems, even faster than the (unverified)
drat-trim. In multi-threaded mode with 8 threads, we get an average speedup of 2.2.

This paper is an extended version of our conference papers [28,29]. It provides a unified
description of both the certificate generator and checker, and extends the benchmark set to

123
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include problems from the 2017 SAT competition. Our tools, formalizations, and benchmark
results are available online [23].

The rest of this paper is organized as follows: After briefly recalling the theory of DRAT
certificates (Sect. 2), we introduce our enriched certificate format (Sect. 3). We then give a
short overview of the Isabelle Refinement Framework (Sect. 4) and describe its application to
verifying our certificate checker (Sect. 5). Next, we describe our certificate generator (Sect. 6)
and report on the experimental evaluation of our tools (Sect. 7). Finally, we discuss future
work (Sect. 8) and give a conclusion (Sect. 9).

2 Unsatisfiability Certificates

We briefly recall the theory of DRAT unsatisfiability certificates. Let V be a set of variable
names. The set of literals is defined as L := V ∪̇{¬v | v ∈ V }. We identify v and ¬¬v.
Let F = C1 ∧ · · · ∧ Cn for Ci ∈ 2L be a formula in conjunctive normal form (CNF). F is
satisfied by an assignment A : V ⇒ bool iff instantiating the variables in F with A yields a
true (ground) formula. We call F satisfiable iff there exists an assignment that satisfies F .

A clause C is called a tautology iff there is a variable v with {v,¬v} ⊆ C . Removing
a tautology from a formula yields an equivalent formula. In the following we assume that
formulas do not contain tautologies. The empty clause is called a conflict. A formula that
contains a conflict is unsatisfiable. A singleton clause {l} ∈ F is called a unit clause. Remov-
ing all clauses that contain l, and all literals ¬l from F yields an equisatisfiable formula.
Repeating this exhaustively for all unit clauses is called unit propagation. We name the result
of unit propagation Fu, defining Fu = {∅} if unit propagation yields a conflict.1

A DRAT certificate χ = χ1 · · · χn with χi ∈ 2L ∪̇ {dC | C ∈ 2L } is a list of clause
addition and deletion items. The effect of a (prefix of) a DRAT certificate is to add/delete the
specified clauses to/from the original formula F0, and apply unit propagation:

eff(ε) = (F0)
u eff(χC) = (eff(χ) ∧ C)u eff(χdC) = eff(χ)\C

where F\C removes one occurrence of clause C from F . We call the clause addition items
of a DRAT certificate lemmas.

A DRAT certificate χ = χ1 . . . χn is valid iff eff(χ) = {∅} and each lemma has the RAT
property wrt. the effect of the previous items:

valid(χ1 . . . χn) := ∀1 ≤ i ≤ n. χi ∈ 2L 
⇒ RAT(eff(χ1 . . . χi−1), χi )

A clauseC has the RAT (resolution asymmetric tautology) property wrt. formula F (we write
RAT(F,C)) iff either C is empty and Fu = {∅}, or if there is a pivot literal l ∈ C , such that
for all RAT candidates D ∈ F with ¬l ∈ D, we have (F ∧¬(C ∪ D\{¬l}))u = {∅}. Adding
a lemmawith the RAT property to a satisfiable formula preserves satisfiability [45], and so do
unit propagation and deletion of clauses. Thus, existence of a valid DRAT certificate implies
unsatisfiability of the original formula.

A more restrictive property than RAT is RUP (reverse unit propagation): A lemma C
has the RUP property wrt. formula F iff (F ∧ ¬C)u = {∅}. Adding a lemma with the RUP
property yields an equivalent formula. The predecessor of DRAT is DRUP [19], which admits
only lemmas with the RUP property.

Checking a lemma for RAT is much more expensive than checking for RUP, as the clause
database must be searched for candidate clauses, performing a unit propagation for each of

1 This is well-defined as unit-propagation is strongly normalizing up to conflicts.
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them. Thus, practical DRAT certificate checkers first perform a RUP check on a lemma, and
only if this fails they resort to a full RAT check. Exploiting that (F∧¬(C∪D))u is equivalent
to ((F∧¬C)u∧¬D)u, the result of the initial unit propagation from the RUP check can even
be reused. Another important optimization is backward checking [13,19]: The lemmas are
processed in reverse order, marking the lemmas that are actually needed in unit propagations
during RUP and RAT checks. Lemmas that remain unmarked need not be processed at all. To
further reduce the number of marked lemmas, core-first unit propagation [46] prefers marked
unit clauses over unmarked ones.

In practice, DRAT certificate checkers spend most time on unit propagation,2 for which
highly optimized implementations of rather complex algorithms are used (e. g. drat-trim uses
a two-watched-literals algorithm [36]). Unfortunately, verifying such highly optimized code
in a proof assistant is a major endeavor. Thus, a crucial idea is to implement an unverified
tool that enriches the certificate with additional information that can be used for simpler and
more efficient verification. For DRUP, the GRIT format has been proposed recently [7]. It
stores, for each lemma, a list of unit clauses in the order they become unit, followed by a
conflict clause. Thus, finding the next unit or conflict clause is replaced by simply checking
whether a clause is unit or conflict. A modified version of drat-trim can be used to generate
a GRIT certificate from the original DRAT certificate.

3 The GRAT Format

The first contribution of this paper is to extend the ideas of GRIT from DRUP to DRAT. To
this end, we define the GRAT format. Like for GRIT, each clause is identified by a unique
positive ID. The clauses of the original formula implicitly get the IDs 1 . . . N . The lemma
IDs explicitly occur in the certificate.

For memory efficiency reasons, we store the certificate in two parts: The lemma file
contains the lemmas, and is stored in DIMACS format. During certificate checking, this
part is entirely loaded into memory. The proof file contains the hints and instructions for
the certificate checker. It is not completely loaded into memory but only streamed during
checking.

The proof file is a binary file, containing a sequence (stored in reverse order) of 32 bit
signed integers in 2’s complement little endian format. The sequence is interpreted according
to the following grammar:

proof ::= rat-counts item* conflict
literal ::= int32 != 0
id ::= int32 > 0
count ::= int32 > 0
rat-counts ::= 6 (literal count)* 0
item ::= unit-prop | deletion | rup-lemma | rat-lemma
unit-prop ::= 1 id* 0
deletion ::= 2 id* 0
rup-lemma ::= 3 id id* 0 id
rat-lemma ::= 4 literal id id* 0 cand-prf* 0
cand-prf ::= id id* 0 id
conflict ::= 5 id

The checker maintains a clause map that maps IDs to clauses, and a partial assignment
that maps variables to true, false, or undecided. Partial assignments are extended to literals

2 Our profiling data indicates that, depending on the problem, up to 93% of the time is spent for unit propa-
gation.
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in the natural way. Initially, the clause map contains the clauses of the original formula, and
the partial assignment maps all variables to undecided. Then, the checker iterates over the
items of the proof, processing each item as follows:

rat-counts This item contains a list of pairs of literals and the count how often they are
used in RAT proofs. This map allows the checker to maintain lists of RAT
candidates for the relevant literals, instead of gathering the possible RAT
candidates by iterating over the whole clause database for each RAT proof,
which is expensive. Literals that are not used in RAT proofs at all do not
occur in the list. This item is the first item of the proof.

unit-prop For each listed clause ID, the corresponding clause is checked to be unit, and
the unit literal is assigned to true. Here, a clause is unit if the unit literal is
undecided, and all other literals are assigned to false.

deletion The specified IDs are removed from the clause map.
rup-lemma The item specifies the ID for the new lemma, which is the next unprocessed

lemma from the lemma file, a list of unit clause IDs, and a conflict clause
ID. First, the literals of the lemma are assigned to false. The lemma must not
be blocked, i. e. none of its literals may be already assigned to true.3 Note
that assigning the literals of a clause C to false is equivalent to adding the
conjunct ¬C to the formula. Second, the unit clauses are checked and the
corresponding unit literals are assigned to true. Third, it is checked that the
conflict clause ID actually identifies a conflict clause, i. e. that all its literals
are assigned to false. Finally, the lemma is added to the clause-map and the
assignment is rolled back to the state before checking of the item started.

rat-lemma The item specifies a pivot literal l, an ID f or the lemma, an initial list of
unit clause IDs, and a list of candidate proofs. First, as for rup-lemma, the
literals of the lemma are assigned to false and the initial unit propagations
are performed. Second, it is checked that the provided RAT candidates are
exhaustive, and then the corresponding cand-prf items are processed: A
cand-prf item consists of the ID of the candidate clause D, a list of unit
clause IDs, and a conflict clause ID. To check a candidate proof, the literals
of D\{¬l} are assigned to false, the listed unit propagations are performed,
and the conflict clause is checked to be actually conflict. Afterwards, the
assignment is rolled back to the state before checking the candidate proof.
Third, when all candidate proofs have been checked, the lemma is added to
the clause map and the assignment is rolled back.
To simplify certificate generation in backward mode, we allow candidate
proofs referring to arbitrary, even invalid, clause IDs. Those proofs must be
ignored by the checker.

conflict This is the last item of the certificate. It specifies the ID of the conflict clause
found by unit propagation after adding the last lemma of the certificate (root
conflict). It is checked that the ID actually refers to a conflict clause.

4 Program Verification with Isabelle/HOL

Isabelle/HOL [38] is an interactive theorem prover for higher order logic. Its design fea-
tures the LCF approach [14], where a small logical inference kernel is the only code that

3 Blocked lemmas are useless for unsat proofs, such that there is no point to include them in the certificate.
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can produce theorems. Bugs in the non-kernel part may result in failure to prove a theorem
but never in a false proposition being accepted as a theorem. Isabelle/HOL includes a code
generator [15–17] that translates the executable fragment of HOL to various functional pro-
gramming languages, currently OCaml, Standard ML, Scala, and Haskell. Via Imperative
HOL [5], the code generator also supports imperative code, modeled by a heap monad inside
the logic.

A common problemwhen verifying efficient implementations of algorithms is that imple-
mentation details tend to obfuscate the proof and increase its complexity. Hence, efficiency of
the implementation is often traded for simplicity of the proof. A well-known approach to this
problem is stepwise refinement [1,2,48], where an abstract version of the algorithm is refined
towards an efficient implementation in multiple correctness preserving steps. The abstract
version focuses on the algorithmic ideas, leaving open the exact implementation, while the
refinement steps focus onmore andmore concrete implementation aspects. This modularizes
the correctness proof, and makes verification of complex algorithms manageable in the first
place.

For Isabelle/HOL, the Isabelle Refinement Framework [24,26,27,32] provides a pow-
erful stepwise refinement tool chain, featuring a nondeterministic shallowly embedded
programming language [32], a library of efficient collection data structures and generic
algorithms [26,27,30], and convenience tools to simplify canonical refinement steps [24,26].
It has been used for various software verification projects (e. g. [25,31,47]), including a fully
fledged verified LTL model checker [4,11].

5 A Verified GRAT Certificate Checker

We give an overview of our Isabelle/HOL formalization of a GRAT certificate checker (cf.
Sect. 3). We use the stepwise refinement techniques provided by the Isabelle Refinement
Framework to verify an efficient implementation at manageable proof complexity.

Note that we display only slightly edited Isabelle/HOL source text, and try to explain
its syntax as far as needed to get a basic understanding. Isabelle/HOL uses a mixture of
common mathematical notations and Standard ML [34] syntax (e. g. there are algebraic data
types, function application is written as f x, functions are usually curried, e. g. f x y, and
abstraction is written as λx y. t).

5.1 Syntax and Semantics of Formulas

For the abstract syntax of CNF formulas, we represent variables by natural numbers, use an
algebraic data type to specify positive and negative literals, model clauses as sets of literals,
and a CNF formula as a set of clauses:

datatype literal = Pos nat | Neg nat
type_synonym clause = literal set
type_synonym cnf = clause set

The concrete syntax that our tool accepts is a list (array) of integers, representing a formula
in the well-known DIMACS format. Variables are positive natural numbers. Literals are non-
zero integers of the form v or −v, representing positive and negative literals on variable v.
A clause is a list of literals, and a formula is the concatenation of its clauses, separated and
terminated by nulls. The following definitions specify the restrictions on the concrete syntax
(xxx_invar) and the translation from concrete to abstract syntax (xxx_α):
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definition lit_invar l ≡ l �=0
definition lit_α l ≡ if l<0 then Neg (nat (-l)) else Pos (nat l)

definition clause_invar l ≡ ∀x∈set l. lit_invar x
definition clause_α l ≡ lit_α‘set l
definition F_invar lst ≡ lst �=[] 
⇒ last lst = 0
definition F_α lst ≡ set (map clause_α (tokenize lst))

where nat converts an integer to a natural number, set converts a list to the set of its
elements, and tokenize l splits the concatenation of null-terminated lists into a list of
lists. Note that every list that ends with a null represents a valid formula.

We define the semantics of literals, clauses, and formulas wrt. a valuation, which is a
function from variables to Booleans. A positive literal is true if its variable is assigned to
true, a negative literal is true if its variable is false, a clause is true if it contains a true literal,
and a formula is true if all its clauses are true:

type_synonym valuation = nat ⇒ bool
fun sem_lit :: literal ⇒ valuation ⇒ bool where

sem_lit (Pos x) σ = σ x
| sem_lit (Neg x) σ = ¬ σ x
definition sem_clause :: clause ⇒ valuation ⇒ bool where

sem_clause C σ ≡ ∃l∈C. sem_lit l σ

definition sem_cnf :: cnf ⇒ valuation ⇒ bool where
sem_cnf F σ ≡ ∀C∈F. sem_clause C σ

Note that type specifications on constant definitions are optional in Isabelle/HOL, and if they
are omitted, the most general type is inferred automatically.

We define the models of a formula to be the set of all valuations that make the formula
true, and we define a formula to be satisfiable if it has a model:

definition models F ≡ {σ. sem_cnf F σ }
definition sat F ≡ models F �= {}

While unit propagation can be presented bymodifying the formula (removing false literals
and true clauses), practical implementations use a partial assignment (where variables can be
true, false, or undecided) and do not change the formula on unit propagation. At this point,
we have the design choice to either formalize unit-propagation by modifying the formula,
and then refine this model to partial assignments, or to formalize unit propagation on partial
assignments directly. We decided for the latter, as we found it to be convenient, and it saves
the overhead of one refinement step.

A partial assignment has type nat ⇒ bool option, which is abbreviated as
nat ⇀ bool. It maps a variable to None for undecided, or to Some True or
Some False. We specify the semantics of literals and clauses as follows:

primrec sem_lit′ :: literal ⇒ (nat⇀bool) ⇀ bool where
sem_lit′ (Pos x) A = A x | sem_lit′ (Neg x) A = map_option Not (A x)

definition sem_clause′ C A ≡
if (∃l∈C. sem_lit′ l A = Some True) then Some True
else if (∀l∈C. sem_lit′ l A = Some False) then Some False
else None

For a fixed formula F , we define the models induced by a partial assignment A to be all total
extensions that satisfy the formula, and a predicate sat′ which holds iff such a model exists:

definition compat_assignment :: (nat ⇀ bool) ⇒ valuation ⇒ bool
where compat_assignment A σ ≡ ∀x v. A x = Some v 
⇒ σ x = v

definition models′ F A ≡ models F ∩ {A. compat_assignment A}
definition sat′ F A ≡ models′ F A �= {}
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Obviously, a formula is satisfiable wrt. the empty partial assignment if, and only if, it is
satisfiable:

lemma sat′_empty_iff: sat′ F Map.empty = sat F

Two assignments A and A′ are equivalent iff they induce the same models:

definition equiv′ F A A′ ≡ models′ F A = models′ F A′

5.2 Unit Propagation and RAT

We define a predicate to state that, wrt. a partial assignment A, a clause C is unit, with unit
literal l:

definition is_unit_lit A C l
≡ l∈C ∧ sem_lit′ l A = None ∧ sem_clause′ (C-{l}) A = Some False

Assigning a unit literal to true yields an equivalent assignment:

lemma unit_propagation:
assumes C∈F and is_unit_lit A C l
shows equiv′ F A (assign_lit A l)

For a fixed formula F and assignment A, a clause C is implied if adding it to F does not
change the models, and redundant if it does not change satisfiability:

definition implied_clause F A C ≡ models′ (insert C F) A = models′ F A
definition redundant_clause F A C ≡ sat′ (insert C F) A = sat′ F A

Recall thatDRATproofswork by deleting clauses, adding redundant clauses, and applying
unit propagations, until the formula becomes trivially unsatisfiable (cf. Sect. 2). A clause is
accepted as redundant if it has the RAT property. Abstractly, the RAT property is justified by
the following lemma:

lemma abs_rat_criterion:
assumes l∈C and sem_lit′ l A �= Some False
assumes ∀D∈F. neg_lit l ∈ D 
⇒ implied_clause F A (C∪(D-{neg_lit l}))
shows redundant_clause F A C

To test whether a clause is implied, we use the RUP property:

lemma one_step_implied:
assumes RC: ¬is_blocked A C 
⇒

∃A1. equiv′ F (and_not_C A C) A1 ∧ (∃E∈F. is_conflict_clause A1 E)

shows implied_clause F A C

where the assignment A1 will be computed by unit propagation.

5.3 Abstract Checker Algorithm

Having formalized the basic theory of CNF formulas, unit propagation, and RAT, we can
specify an abstract version of the certificate checker algorithm. Our specifications live in
an exception monad stacked onto the nondeterminism monad of the Isabelle Refinement
Framework. Exceptions are used to indicate failure of the checker, and are never caught.
We only prove soundness of our checker, i. e. that it does not accept satisfiable formulas.
Our checker actually accepted all certificates in our benchmark set (cf. Sect. 7), yielding an
empirical argument that it is sufficiently complete.
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At the abstract level, we model the proof as a stream of integers. On this, we define
functionsparse_id and parse_lit that fetch an element from the stream, try to interpret
it as an ID or literal, and fail if this is not possible. The state of the checker is a tuple (CM,A).
The clause map CM contains the current formula as a mapping from IDs to clauses, and also
maintains the RAT candidate database. The assignment A is the current partial assignment.

As first example, we present the abstract algorithm that is invoked after reading the item-
type of a rup-lemma item (cf. Sect. 3), i. e. we expect a sequence of the form id id* "0" id

(lemma, unit-clauses, conflict-clause).

1 check_rup_proof ≡ λ(CM,A0) it prf. do {
2 (i,prf) ← parse_id prf;
3 check (i/∈cm_ids CM);
4 (C,A′,it) ← parse_check_blocked A0 it;
5 (A′,prf) ← apply_units CM A′ prf;
6 (confl_id,prf) ← parse_id prf;
7 confl ← resolve_id CM confl_id;
8 check (sem_clause′ confl A′ = Some False);
9 CM ← add_clause i C CM;

10 return ((CM,A0),it,prf)

11 }
We use do-notation to conveniently express monadic programs. First, the ID for the new
lemma is pulled from the proof stream (line 2) and checked to be available (3). The
check function throws an exception unless the first argument evaluates to true. Next,
parse_check_blocked (4) parses the next lemma from the lemma file, checks that
it is not blocked, and assigns its literals to false. Then, the function apply_units (5) pulls
the unit clause IDs from the proof stream, checks that they are actually unit, and assigns the
unit literals to true. Finally, we pull the ID of the conflict clause (6), obtain the corresponding
clause from the clause map (7), check that it is actually conflict (8), and add the lemma to the
clause map (9). We return (10) the new clause map and the old assignment, as the changes
to the assignment are local and must be backtracked before checking the next clause. Addi-
tionally, we return the new position in the lemma file (it) and the new proof stream (prf).
Note that this abstract specification contains non-algorithmic parts: For example, in line 8,
we check for the semantics of the conflict clause to be Some False, without specifying
how to implement this check. We prove the following lemma for check_rup_proof:

lemma check_rup_proof_correct:
assumes invar (CM,A)

shows check_rup_proof (CM,A) it prf
≤ spec True (λ((CM′,A′), it′, prf′).

invar (CM′,A′) ∧ (sat′ (cm_F CM) A 
⇒ sat′ (cm_F CM′) A′))

Here, spec Φ Ψ describes the postcondition Φ in case of an exception, and the postcon-
dition Ψ for a normal result. As we only prove soundness of the checker, we use True as
postcondition for exceptions. For normal results, we show that an invariant on the state is
preserved,4 and that the resulting formula and partial assignment is satisfiable if the original
formula and partial assignment was.

Finally, we present the definition of the checker’s main function:

1 definition verify_unsat F_begin F_end it prf ≡ do {
2 (CM,prf) ← init_rat_counts prf;

4 The invariant states that there are no syntactic tautologies, i. e. clauses that contain both a positive and
negative literal over the same variable, and that the RAT candidate database, which is used to quickly identify
RAT candidates (cf. Sect. 3), is accurate.
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3 CM ← read_cnf F_end F_begin CM;
4 let s = (CM, λ_. None);
5 while (λso. so �=None) (λso. do {
6 let (s,it,prf) = the so;
7 check_item s it
8 }) (Some (s,it,prf));
9 }

The parameters F_begin and F_end indicate the range that holds the representation of
the formula, it points to the first lemma, and prf is the proof stream. First, the RAT literal
counts are read (2) and the formula is parsed into the clause map (3). Then, the assignment is
initialized to everything undecided (4). The function then iterates over the proof stream and
checks each item (5–9), until the formula has been certified (or an exception terminates the
program). Here, the checker’s state is wrapped into an option type, where None indicates
that the formula has been certified. The function the (Some x) = x extracts the value
from an option. Correctness of the abstract checker is expressed by the following lemma:

lemma verify_unsat_correct:
assumes seg F_begin lst F_end
shows verify_unsat F_begin F_end it prf

≤ spec True (λ_. F_invar lst ∧ ¬sat (F_α lst))

Intuitively, if the range from F_begin to F_end is valid and contains the sequence lst,
and if verify_unsat returns a normal value, then lst represents a valid CNF formula
(F_invar lst) that is unsatisfiable (¬sat (F_α lst)). Note that the correctness state-
ment does not depend on the lemmas (it) or the proof stream (prf). This will later allow us
to use an optimized (unverified) implementation for streaming the proof, without impairing
the formal correctness statement.

5.4 Refinement Towards an Efficient Implementation

The abstract checker algorithm that we described so far contains non-algorithmic parts and
uses abstract types like sets. Even if we could extract executable code, its performance would
be poor. For example, we model assignments as functions. Translating this directly to a
functional language results in assignments to be stored as long chains of function updates
with worst-case linear time lookup.

We now refine the abstract checker to an efficient implementation, replacing the specifica-
tions by actual algorithms, and the abstract types by efficient data structures. The refinement
is done in multiple steps, where each step focuses on different aspects of the implementation.
Formally, we use a refinement relation that relates objects of the refined type (e. g. a hash
table) to objects of the abstract type (e. g. a set). In our framework, refinement is expressed
by propositions of the form (c,a)∈R 
⇒ g c ≤⇓S (f a): if the concrete argument c
is related to the abstract argument a by R, then the result of the concrete algorithm g c is
related to the result of the abstract algorithm f a by S. Moreover, if the concrete algorithm
throws an exception, the abstract algorithm must also throw an exception.

In the first refinement step, we record the set of variables assigned while checking a
lemma, and use this set to reconstruct the original assignment from the current assignment
after the check. This saves us from copying the whole original assignment before each check.
Formally, we define an A0-backtrackable assignment to be an assignment A together with a
set of assigned variables T , such that unassigning the variables in T yields A0. The relation
bt_assign_rel relates A0-backtrackable assignments to plain assignments:

bt_assign_rel A0 ≡ { ((A,T),A) | A T. T ⊆ dom A ∧ A0 = A�(-T) }
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where A�(-T) restricts a partial assignment A to the variables not in T.
We define apply_units_bt, which operates on A0-backtrackable assignments. If

applied to assignments (A′,T) and A related by bt_assign_rel A0, and to the same
proof stream prf, then the results of apply_units_bt and apply_units are related
by bt_assign_rel A0 × Id, i. e. the returned assignments are again related by
bt_assign_rel A0, and the new proof streams are the same (related by Id):

lemma apply_units_bt_refine:
assumes ((A′,T),A)∈bt_assign_rel A0
shows apply_units_bt CM A′ T prf

≤ ⇓(bt_assign_rel A0 × Id) (apply_units CM A prf)

In the next refinement step, we implement clauses by iterators pointing to the start of a
null-terminated sequence of integers. Thus, the clause map will only store iterators instead of
(replicated) clauses. Now, we can specify algorithms for functions on clauses. For example,
we define:

check_conflict_clause1 A cref ≡ iterate_clause cref (λl _. do {
check (sem_lit′ l A = Some False)

}) ()

i. e. we iterate over the clause, checking each literal to be false. We show:

lemma check_conflict_clause1_refine:
assumes (cref,C)∈cref_rel
shows check_conflict_clause1 A cref

≤⇓Id (check (sem_clause′ C A = Some False))

where the relation cref_rel relates iterators to clauses.
In the next refinement step, we introduce efficient data structures. For example, we

implement the iterators by indexes into an array of integers that stores both the formula
and the lemmas. For many of the abstract types, we use general purpose data structures
from the Isabelle Refinement Framework [26,27]. For example, we refine assignments to
arrays, using the array_map_default data structure, which implements functions of
type nat ⇒ ′a option by arrays of type ′b array. It is parameterized by a relation
R : (′b×′a) set and a default concrete elementd that does not correspond to any abstract
element (�a. (d,a)∈R). The implementation uses d to represent the abstract value None.
We define:

definition vv_rel ≡ {(1, False), (2, True)}
definition assignment_assn ≡ amd_assn 0 id_assn (pure vv_rel)

i. e. we implement Some False by 1, Some True by 2, and None by 0. Here,
amd_assn is the relation of the array_map_default data structure.5 The refined pro-
grams and refinement theorems in this step are automatically generated by theSepref tool [26].
For example, the command

sepref_definition check_rup_proof3 is check_rup_proof2

:: cdb_assnk * state_assnd * it_assnk * prf_assnd

→ error_assn + state_assn × it_assn × prf_assn

takes the definition of check_rup_proof2, generates a refined version, and proves the
corresponding refinement theorem. The first parameter is refined wrt. cdb_assn (refining
the set of clauses into an array), the second parameter is refined wrt. state_assn (refining
the clause map and the assignment into arrays), the third parameter is refined wrt. it_assn

5 The name suffix _assn instead of _rel indicates that the data structure may be stored on the heap.
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(refining the iterator into an array index), and the fourth parameter is refined wrt. prf_assn
(refining the stream position). Exception results are refined wrt. error_assn (basically
the identity relation), and normal results are refined wrt. state_assn, it_assn, and
prf_assn. The xd and xk annotations indicate whether the generated function may over-
write a parameter (d like destroy) or not (k like keep).

By combining all the refinement steps and unfolding some definitions, we prove the
following correctness theorem for the implementation of our checker:

theorem verify_unsat_impl_correct:
<DBi �→a DB>

verify_unsat_impl DBi prf_next F_end it prf
<λresult. DBi �→a DB * ↑(¬isl result 
⇒ verify_unsat_spec DB F_end)>

This Hoare triple states that if DBi points to an array holding the elements DB, and we
run verify_unsat_impl, the array will be unchanged, and if the return value is no
exception, the range 1. . .F_end in the array6 represents a valid unsatisfiable formula in
DIMACS format:

definition verify_unsat_spec DB F_end ≡ 1 ≤ F_end ∧ F_end ≤ length DB ∧
(let lst = tl (take F_end DB) in F_invar lst ∧ ¬sat (F_α lst))

We also define a checker for satisfiability certificates, which are null-terminated lists of
non-contradictory literals starting at index F_end, and prove:

theorem verify_sat_impl_correct:
<DBi �→a DB>

verify_sat_impl DBi F_end
<λresult. DBi �→a DB * ↑(¬isl result 
⇒ verify_sat_spec DB F_end)>

definition verify_sat_spec DB F_end ≡ 1 ≤ F_end ∧ F_end ≤ length DB ∧
(let lst = tl (take F_end DB) in F_invar lst ∧ sat (F_α lst))

Finally, to obtain our verified sat and unsat checker gratchk, Isabelle/HOL’s code generator
is used to extract StandardML code for verify_(un)sat_impl. We add a command line
interface and a small (40 LOC) parser to read the formula into an array. Moreover, we
implement a buffered reader for the proof file. This, however, does not affect the correctness
statement, which is valid for all proof stream implementations. The resulting program is
compiled with MLton [35].

5.5 Concise Correctness Statement

We have shown that our checker only accepts arrays containing (un)satisfiable formulas in
DIMACS format. To describe a satisfiable input (cf. Sect. 5.1), we have first mapped the
array to a formula (constants tokenize, F_α, clause_α, lit_α). Then, we defined a
semantics to describe satisfiability of a formula (sat, models, sem_cnf, sem_clause,
sem_lit). In this section, we outline a more direct specification, which only uses elemen-
tary list and set operations of Isabelle/HOL, and show that it is equivalent to our original
specification. This can be seen as a sanity check for our semantics.

We again use tokenization to convert the input into a list of lists. We further justify
tokenization by showing that it is the unique inverse of concatenation:

definition concat0 ll = concat (map (λl . l@[0]) ll)

lemma unique_tokenization:

6 Element 0 is used as a guard in our implementation.
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assumes l�=[] 
⇒ last l = 0
shows ∃1ls. (0/∈⋃

set (map set ls) ∧ concat0 ls = l)

and tokenize l = (THE ls. 0/∈⋃
set (map set ls) ∧ concat0 ls = l)

where THE is the definite description operator. Next, we define an assignment from integers
to Booleans to be consistent iff a negative value is mapped to the opposite of its absolute
value:

definition assn_consistent :: (int ⇒ bool) ⇒ bool
where assn_consistent σ = (∀x. x�=0 
⇒ ¬ σ (-x) = σ x)

Finally, we characterize an (un)satisfiable input by the (non)existence of a consistent assign-
ment that assigns at least one literal of each clause to true:

lemma verify_sat_spec DB F_end = (1≤F_end ∧ F_end ≤ length DB ∧ (

let lst = tl (take F_end DB) in
(lst �=[] 
⇒ last lst = 0)

∧ (∃σ. assn_consistent σ ∧ (∀C∈set (tokenize 0 lst). ∃l∈set C. σ l))))

lemma verify_unsat_spec DB F_end = (1 < F_end ∧ F_end ≤ length DB ∧ (

let lst = tl (take F_end DB) in
last lst = 0

∧ (�σ. assn_consistent σ ∧ (∀C∈set (tokenize 0 lst). ∃l∈set C. σ l))))

In the case of unsatisfiability, the bounds have been adjusted to exclude the empty formula,
which is trivially satisfiable.

6 Multithreaded Generation of Enriched Certificates

In order to generateGRATcertificates,we extend aDRATchecker algorithm to record the unit
clauses that lead to a conflict when checking each lemma. As the certificate generator is not
part of the trusted code base, we can afford aggressive optimizations. Our generator gratgen
started as a reimplementation of the backward mode of drat-trim [9,45] in C++, to which
we added certificate generation. Later, we implemented multithreading and some additional
optimizations. The multithreading mode allows us to trade computing resources for faster
response time. It makes sense in settings where parallelization on the granularity of whole
problems does not exhaust the available computing resources, e. g. when one is interested in
a quick answer for a single problem.
The following displays high-level pseudocode of our certificate generator:

1 fun forward_phase:
2 F := original formula
3 propagate units in F; if F has conflict then exit "s UNSAT"
4 for item in certificate do
5 if item = d C then
6 remove clause C from F
7 else if item = C then
8 add C to F
9 propagate units in F
10 if F has conflict then
11 mark clauses required for conflict
12 truncate certificate
13 return F

14 exit "s ERROR"

15 fun backward_phase(F):
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16 for item in reverse certificate do
17 if item = d C then
18 add clause to F
19 else if item = C
20 remove C from F; undo unit propagations due to C
21 if is_marked(C) and acquire(C) then
22 verify C and mark required clauses
23 synchronize marked clauses

24 fun main:
25 F = forward_phase
26 for parallel 1..N do
27 backward_phase(copy(F))

The initial forward phase starts with the original formula (line 2), and performs unit
propagation (3). If this already yields a conflict, the formula is unsatisfiable. Otherwise, we
iterate over the certificate (4). Each item of the certificate either deletes (6) or adds (8) a
clause. After adding, we perform unit propagation (9), and if this yields a conflict, we mark
all clauses required for the conflict (11), discard the remaining items in the certificate if any
(12), and finish the forward phase.

Next, the backward phase iterates over the certificate in reverse order (line 16), undoes
the effects of the items (18 and 20), verifies the lemmas, and marks all lemmas required for
verification (22). Unmarked lemmas are skipped (21). The enriched certificate is generated
during the backwards phase, while undoing unit propagations and verifying lemmas. For
better readability, we have omitted certificate generation from the above listing.

The backwards phase is parallelized: Each thread maintains its own copy of the clause
database. Before proving a lemma, a thread needs to acquire it (21), thus ensuring that
each lemma is only proved by a single thread. The information about marked lemmas is
periodically synchronized between the threads (23), such that a thread can generate work for
other threads. Interestingly, there is no synchronization apart from lemma acquisition and
sharing of marked clauses between the threads. In theory, one thread could prove most of
the lemmas, while the other threads quickly run to the beginning of the certificate, seeing
only very few marked lemmas. However, we have not observed such behavior in practice,
and thus did not implement any further synchronization between the threads.

In the remainder of this section, we describe the most important optimizations that we
have implemented in gratgen: RAT-run heuristics and separate watchlists.

6.1 RAT-Run Heuristics

To verify that a lemma has the RAT property (cf. Sect. 5.2), one has to collect all RAT
candidate lemmas, i. e. those clauses in the database that contain the negated pivot literal. As
it is not known in advance which of the lemmas will actually be marked and require a full
RAT proof (most lemmas are proved by a RUP-proof), maintaining a database of candidate
lemmas for each literal would be inefficient. Thus, drat-trim iterates over the whole clause
database on each RAT proof. Our profiling indicated that a significant amount of the runtime
may be spent on searching candidate lemmas. However, we observed that certificates usually
contain runs of multiple RAT lemmas with the same pivot. Thus, we store the result of the
last search through the database, and reuse it if we should encounter a RAT lemma over the
same pivot. Moreover, in multi-threaded mode, we always allocate a run of lemmas with the
same pivot to the same thread, as the stored search result is maintained thread-locally. Our
benchmarks (Sect. 7) indicate that this optimization is very efficient if actual RAT lemmas

123



Efficient Verified (UN)SAT Certificate Checking 527

are present. If there are no RAT lemmas, the heuristics’ overhead is effectively a single check
in the outer loop of the backwards phase, and, as expected, we observed no decrease in
performance.

6.2 SeparateWatchlists

Another important heuristics, which is already implemented in drat-trim, is core-first unit
propagation. On unit propagation, marked lemmas are preferred over unmarked ones. This
way, the unit clauses used for a proof are more likely to be already marked, thus reducing
the overall number of marked lemmas.

Unit propagation is done by a two-watched-literals data structure [36], where, for each
clause, two distinct literals are marked as watched. As long as the clause is not blocked or
conflict, the two watched literals must be undecided. When assigning a new variable, this
invariant may be broken, and is then restored by the unit propagation algorithm: For each
clause watching a literal that has been assigned to false, a new watched literal is searched.
If no new watched literal can be found, the clause is unit or conflict, in which case the unit
literal is assigned to true or unit propagation stops with a conflict. To efficiently iterate over
the clauses watching a literal, they are stored in a watchlist for each literal.

In drat-trim, core first unit propagation is implemented by two iterators over the watchlists
of the newly assigned literals. The first iterator ignores unmarked clauses, while the second
iterator processes unmarked clauses. The second iterator is only advanced when the first
iterator cannot be advanced further. By advancing the second iterator, new literals may be
assigned, which makes advancing the first iterator possible again. However, skipping the
iterators over irrelevant clausesmay yield considerable overhead in the performance sensitive
inner loop of unit propagation. Thus, for gratgen, we have implemented two watchlists for
each literal, one for the marked and one for the unmarked lemmas. This way, the iterators
during unit propagation never have to skip over irrelevant clauses. On the other hand, when
marking a clause, we have to spend additional time to move it from the unmarked to the
marked watchlists.7 In practice, we found this optimization to be effective.

7 Benchmarks

We have benchmarked GRAT with one and eight threads against drat-trim and LRAT [18]
on problems taken from the main tracks of the 2016 and 2017 SAT competitions [42,43]. We
consider the problems solved by 2017 gold medalist Maple, and the problems solved by 2016
silver medalist Riss6. We chose the silver medalist for 2016, as the gold medalist is, again,
Maple. Moreover, we consider the problems solved by CryptoMiniSat in 2016. Although not
among the Top 3 solvers, we included CryptoMiniSat because it seems to be the only prover
that produces a significant amount of RAT lemmas. For the 2017 competition, only abcdSAT
seems to produce RAT lemmas, and we did not include it in our benchmarks.8

All tested tools verified all but four unsatisfiability certificates: On two certificates, drat-
trim timed out (using the default timeout of 20.000 s), and it segfaulted on a third one. A

7 We have also experimented with lazily moving marked clauses if they are encountered in the unmarked list
during unit propagation but this turned out to be less efficient.
8 Due to constraints on available computation time. Note that this shifts the benchmark results in favor of
drat-trim, as our tool has optimizations specifically tailored to handle RAT lemmas.
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Table 1 Solving times for problems where at least one tool failed

Problem SAT-solver drat-trim GRAT-1 GRAT-8

sokoban-p16.sas.cr.37 cmsat Timeout 2.3h 39m

valves-gates-1-k617-unsat cmsat Timeout 2.1h 27m

sokoban-p20.sas.ex.13 cmsat SEGV 1.1h 38m

10pipe_k riss6 52m 1.1h OOM

The drat-trim column displays the times required by only drat-trim (without LRAT). The GRAT-1 column
displays the times for the whole GRAT toolchain in single-threaded mode, and GRAT-8 displays the times
when using 8 threads
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Fig. 1 Comparison of drat-trim and GRAT, ran on a server board with a 22-core XEON Broadwell CPU
@2.2GHz and 128GiB RAM

fourth certificate led to an out-of-memory error of multithreaded gratgen. Table 1 displays
the results for these certificates.

Figure 1 shows the results for the other unsatisfiability certificates. The first three scatter
plots compare the wall-clock time of LRAT against GRAT with one and eight threads. Here,
already single-threaded GRAT is faster than LRAT on every problem. As expected, the
difference is more significant on problems that contain RAT lemmas: for the problems that
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Table 2 Runtimes in minutes of
the second phase, summed over
all certificates generated by a
prover

Prover gratchk lrat-check

Maple 275 346

Cmsat 66 613

Riss6 253 575

actually contain RAT lemmas, single-threaded GRAT is about 3 times faster than LRAT,
while, for the other problems, it is only 1.7 times faster.

Except for small problems, multithreading yields a significant speedup: Considering only
problems where single-threaded gratgen needs longer than 100 s, the average speedup with
eight threads is 2.1, the average speedup of the backwards checking phase of gratgen, which
is the only parallelized part, is 3.3.

Finally, the last scatter plot in Fig. 1 compares GRAT against drat-trim. Although we
compare a verified tool against an unverified one, GRAT wins this comparison: Except for a
few certificates, it is faster than drat-trim, and there is only a single outlier where GRAT is
significantly slower than drat-trim.

We also compare the memory consumption: In single threaded mode, gratgen needs
roughly three times more memory than drat-trim, with eight threads, this figure increases
to roughly nine times more memory. Due to the garbage collection in StandardML, we could
not measure meaningful memory consumptions for gratchk. The extra memory in single-
threaded mode is mostly due to the proof being stored in memory, the extra memory in
multithreaded mode is due to the duplication of data for each thread.

Finally, Table 2 shows the runtimes of the verified second phase only. Here, gratchk is
significantly faster thanLRAT’s verified phase lrat-check. In particular, due to theRAT-counts
field that is available in GRAT, but not in LRAT (cf. Sect. 3), true RAT lemmas are handled
more efficiently. This explains the large discrepancy for the CryptoMiniSat prover.

For completeness, we also report on the satisfiable problems in our benchmark set: The
241 sat certificates in our benchmark set have a size of 566MiB and could be checked in
roughly 100s.

8 Discussion and FutureWork

Currently, the formal proof of our verified checker goes down to the representation of the
formula as integer array, thus requiring a (small) unverified parser. A next step would be to
verify the parser, too. Moreover, verification stops at the Isabelle/HOL code generator, whose
correctness is only proved on paper [16,17]. There is work on the mechanical verification
of code generators [37], and even the subsequent compilers [22]. This technology became
available for Isabelle/HOL only recently [20] but does not yet support the imperative arrays
required for our application.

If the memory consumption of gratgen should become a problem, we could easily write
out the proof to disk instead of storing it in RAM. We expect that this would yield a memory
consumption similar to drat-trim. Formulti-threadedmode,we plan to sharemore (read-only)
data between the threads.

An interesting research topic would be to integrate enriched certificate generation directly
into SAT solvers. The performance decrease in the solver could be weighed against the cost
of generating an enriched certificate. A main challenge would be to manage the size of the
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enriched certificates, which, without reductions as done by, e. g. backward checking, may
become prohibitively large. Moreover, such modifications are probably SAT-solver specific,
whereasDRAT certificates are designed to be easily integrated into virtually anyCDCLbased
SAT solver.

An alternative to certification would be to verify the SAT solver itself. While this has been
attempted several times (e. g. [33,39]), including our own work [12], we do not expect that
verified SAT solvers will become competitive to unverified solvers in the near future.

Finally, we chose a benchmark set which is realistic but can be run in a few weeks on
the available hardware. We plan to run our tools on larger benchmark suites, once we have
access to sufficient (supercomputing) hardware.

9 Conclusions

Wehave presented a formally verifiedSAT solver certification tool.Already in single threaded
mode, it is significantly faster than the unverified standard tool drat-trim, on a benchmark
suite taken from the 2017 and 2016 SAT competitions. Additionally, we implemented a
multi-threaded mode, which allows us to trade computing resources for significantly smaller
response times. The formal proof covers the actual implementation of the checker and the
semantics of the formula down to the sequence of integers by which it is represented.

Our approach involves two phases: The first phase generates an enriched certificate, which
is then checked against the original formula by the second phase. While the main computa-
tional work is done by the first phase, soundness of the approach only depends on the second
phase, which is also algorithmically less complex, making it more amenable to formal ver-
ification. Using stepwise refinement techniques, we were able to formally verify a rather
efficient implementation of the second phase. Together with novel optimizations in the first
phase, this makes our tool faster than the unverified drat-trim. Although most computational
work is done in the first phase, optimizing the second phase is important: While gratchk was
quite efficient from the beginning, the LRAT checker has seen several improvements over
time [18]. The initial version was purely functional, and often dominated the runtime of the
whole certification process [6].

We conclude with some statistics: The formalization of the certificate checker is roughly
5k lines of code. In order to realize this formalization, several general purpose libraries (e. g.
the exception monad and some imperative data structures) had to be developed. These sum
up to additional 3.5k lines. The time spent on the formalization was roughly three man-
months. The multi-threaded certificate generator has roughly 3k lines of code, and took two
man-months to develop.
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