
Journal of Automated Reasoning (2020) 64:197–251
https://doi.org/10.1007/s10817-019-09515-1

Blocking and Other Enhancements for Bottom-UpModel
Generation Methods

Peter Baumgartner1 · Renate A. Schmidt2

Received: 23 November 2016 / Accepted: 5 February 2019 / Published online: 1 March 2019
© The Author(s) 2019

Abstract
Model generation is a problem complementary to theorem proving and is important for fault
analysis and debugging of formal specifications of security protocols, programs and termino-
logical definitions, for example. This paper discusses several ways of enhancing the paradigm
of bottom-upmodel generation,with the twomain contributions being a new range-restriction
transformation and generalized blocking techniques. The range-restriction transformation
refines existing transformations to range-restricted clauses by carefully limiting the creation
of domain terms. The blocking techniques are based on simple transformations of the input
set together with standard equality reasoning and redundancy elimination techniques, and
allow for finding small, finite models. All possible combinations of the introduced tech-
niques and a classical range-restriction technique were tested on the clausal problems of the
TPTP Version 6.0.0 with an implementation based on the SPASS theorem prover using a
hyperresolution-like refinement. Unrestricted domain blocking gave best results for satisfi-
able problems, showing that it is an indispensable technique for bottom-up model generation
methods, that yields good results in combinationwith both new and classical range-restricting
transformations. Limiting the creation of terms during the inference process by using the new
range-restricting transformation has paid off, especially when using it together with a shift-
ing transformation. The experimental results also show that classical range restriction with
unrestricted blocking provides a useful complementary method. Overall, the results show
bottom-up model generation methods are good for disproving theorems and generating mod-
els for satisfiable problems, but less efficient for unsatisfiable problems.

Keywords Automated reasoning · Model generation · Blocking · First-order logic ·
Bernays–Schönfinkel class

B Renate A. Schmidt
Renate.Schmidt@manchester.ac.uk

Peter Baumgartner
Peter.Baumgartner@data61.csiro.au

1 CSIRO/Data61 and Australian National University, CSIT Building (108), North Road, Canberra,
ACT 2601, Australia

2 School of Computer Science, The University of Manchester, Oxford Rd, Manchester M13 9PL, UK

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10817-019-09515-1&domain=pdf
http://orcid.org/0000-0002-6673-3333

198 P. Baumgartner, R. A. Schmidt

1 Introduction

The bottom-up model generation (BUMG) paradigm encompasses a wide family of calculi
and proof procedures designed to construct models of given clause sets by reading clauses
as rules and applying them in a bottom-up way until saturation. Variants of (positive) hyper-
resolution, grounding tableau calculi, hypertableau calculi and instantiation-based methods
belong to this family. BUMG methods have been known for a long time to be useful for
proving theorems and the dual task of computing models for satisfiable problems, which is
recognized as important to solving mathematical problems [96,99], program synthesis [59],
in software engineering [30], model checking, and other applications for fault analysis [9]
and debugging of logical specifications [18,70].

This paper discusses several ways of enhancing the methods in the BUMG paradigm for
first-order logic with equality (function symbols are allowed). Our presentation is focused
on the use of hyperresolution, or the positive strategy or selection-based refinement in the
framework of resolution and superposition defined over complete simplification orders and
other refinements [4,48,68,75] as a BUMG method. We assume that interpretations are Her-
brand interpretations defined by ground atom sets (which is a commonly used definition).
To compute such models (i) clauses must be transformed into range-restricted form and
(ii) these methods must be enhanced with splitting of positive ground clauses.

These observations are based on the following commonly exploited insights, e.g. [24,
42,53,63]. A clause is range-restricted when every variable occurring in the positive part
of the clause (the head) also occurs in the negative part of the clause (the body). In this
class all positive clauses (those without any negative literals) are ground. The class of range-
restricted clauses is a reduction class for first-order logic; this means that every first-order
formula (and also every first-order clause set) can be transformed in an equi-satisfiability
and model-preserving way into a set of range-restricted clauses. In general, hyperresolution
resolves n positive clauses with the main clause and the resolvent is again a positive clause.
Consequently, on range-restricted clauses, hyperresolution resolvesn ground, positive clauses
with the main clause, always producing a positive, ground resolvent. In a calculus with
splitting, the ground clauses are split into ground positive units and derivations are tree
derivations. The positive units in an open branch in such a derivation can be seen to define a
(partial) Herbrand model of the input clause set.

One of the contributions of the paper is the introduction to first-order logic of blocking
techniques partially inspired by techniques successfully used in description and modal logic
tableau-based theorem proving [2,50,79]. In this context blocking is an important mechanism
to discover periodicity and merging worlds, or objects, which creates loops in the model
reducing the otherwise infinite, freely generated (Herbrand) model to a finite model.1 A
common form of blocking or loop checking in this context is ancestor blocking. In [16] we
introduced a first-order version of ancestor blocking and showed how blocking techniques of
description and modal logic tableau-based theorem provers can be generalized to full first-
order logic with equality. In the present paper this blockingmethod is named subterm domain
blocking. An unrestricted version of this blocking technique, called unrestricted blocking, was
introduced in [79] showing that it allows semantic tableau methods to decide the expressive
description logicALBO. Unrestricted blocking was shown to be a strong technique to devise
general tableau-based decision procedures for modal-type logics and expressive description

1 Our notion of blocking should not be confused with blocking of resolution or superposition steps whose
most general unifier replaces a variable by a term that can be reduced by simplification [3].

123

Blocking and Other Enhancements for Bottom-Up Model Generation Methods 199

logics with complex role operators [80,82] and is an important ingredient in the tableau
synthesis framework and the prover generator MetTeL [56,81].

Subterm domain blocking and unrestricted blocking drop the requirement to check for a
loop in the partially constructed model and allows for the merging of terms to be undone [16,
79], which is an important departure from loop-checking. Roughly, the idea of unrestricted
blocking is to add a clause x ≈ y ∨ x �≈ y to the input set and use it via a range-restriction
transformation and hyperresolution to produce instances s ≈ t ∨ s �≈ t for all ground terms s
and t . However these clauses are not treated as tautologies, because �≈ in the literal x �≈ y is
a new predicate constrained by the clause ¬(x �≈ y) ∨ ¬(x ≈ y). This means x �≈ y should
be thought as being a positive literal and x ≈ y ∨ x �≈ y is a positive clause. Splitting on
such a clause creates one branch where s ≈ t holds and a second branch where it does not
hold, but s �≈ t holds. In the left branch, s ≈ t is handled by rewriting; this means that s and
t are merged (and reduced to an irreducible term with respect to all the equalities present on
the current branch). We can think of the larger of the two terms as being blocked by the other
one. When no models can be found in the left subderivation rooted by the equation s ≈ t ,
standard backtracking reverts the blocking of s and t and the inference process continues
with the right branch asserting s �≈ t . This avoids that the two terms are equated again in
subsequent steps of the derivation.

Since the clause x ≈ y ∨ x �≈ y (together with the ‘definition’ ¬(x �≈ y) ∨ ¬(x ≈ y)
of �≈) is tautologous it can be added to any set of clauses; consequently blocking in this form
is generally sound and can be widely used. Any instance of the clause is a tautology (taking
into account the ‘definition’ of �≈), thus blocking for any specific terms s and t is sound.
Even with a constraint B the clause B → x ≈ y ∨ x �≈ y preserves soundness and thus
realizes a form of blocking but is triggered only when the constraint B holds. For instance,
the constraint could trigger merging of two terms s and t only when s is a subterm of t .
This generalises dynamic anywhere ancestor blocking from the description logic literature
to first-order logic.

In this paper we present four different blocking techniques for varying the kinds of models
that can be found. The difference between the four techniques is how restrictive the blocking
is. Unrestricted domain blocking ensures that domain minimal models are generated. With
subterm domain blocking or subterm predicate blocking larger models are produced because
two terms are only merged if one is a subterm of the other. With unrestricted predicate
blocking and subterm predicate blocking two terms are merged if they both belong to the
extension of a unary predicate symbol, the intention being that less constrained (and thus
larger) finite model can be found. This is useful for applications with types.

The second contribution of the paper is a refinement of the ‘transformation to range-
restricted form’ introduced by Winker [96] as a trick to find small counter-examples for
solving axiom independence problems. This technique has been used by Manthey and
Bry [63] to build the SATCHMOprover based on hyperresolution and splitting. An improved
range-restriction transformation can be found in [15]. These range-restricting transformations
have the property that they force BUMGmethods to enumerate the entire Herbrand universe
and are therefore non-terminating except in the simplest cases. Two solutions are presented
in this paper: One solution is to combine classical range-restriction transformations [63,96]
with blocking. Another solution is to modify the range-restricting transformation so that
new terms are created only when needed. All the BUMG enhancements introduced in this
paper are defined as transformations of the clause sets and are shown to preserve satisfiability
equivalence or equivalence with respect to E-satisfiability, where E is the theory of equality.

Since the enhancements are encoded on the clausal level for use with standard hyperres-
olution techniques, we have implemented them using the SPASS theorem prover [93,94].

123

200 P. Baumgartner, R. A. Schmidt

The third contribution is a comprehensive evaluation of the different techniques on the TPTP
problem library [89] with an analysis of the results leading to interesting findings.

The transformations enable standard resolution theorem proving approaches to decide the
Bernays-Schönfinkel class (with or without equality).2 For this class blocking is not essential.
Moreover, we claim that BUMG methods with blocking can decide fragments of first-order
logic with the finite model property and can construct finite models for finitely satisfiable
formulae.

The structure of the paper is as follows. Definitions of basic terminology and notation can
be found in Sect. 2. In Sect. 3 we recall the characteristic properties of BUMG methods and
recall the definition of hyperresolution with splitting. The main part of the paper are Sects. 4
to 10. Sections 4, 5, 6 and 7 define new techniques for generating small models and generating
them more efficiently. The techniques are based on a series of transformations including
a refined range-restricting transformation (Sect. 4), its modification for equality (Sect. 5),
instances of standard renaming and flattening (Sect. 6), and the introduction of blocking
in various forms via amendments of the clause set and standard saturation-based equality
reasoning (Sect. 7). The transformations are shown to be sound and complete in Sect. 8. One
consequence of the results is a general decidability result of the Bernays–Schönfinkel class
for all BUMG methods and related approaches. This is presented in Sect. 9. In Sect. 10 we
present and discuss results of an evaluation carried out with our implementation in SPASS-
Yarralumla on clausal problems in the TPTP library. Sect. 11 summarizes and discusses
related work.

This paper is an extended and improved version of [16].

2 Basic Definitions

We use standard terminology from automated reasoning. We assume as given a signature
� = � f ∪ �P of function symbols � f and predicate symbols �P of given arities. We
assume � f contains at least one constant symbol. As we are working (also) with equality,
we assume �P contains a distinguished binary predicate symbol ≈. Terms, atoms, literals
and formulas over � and a given (denumerable) set of variables V are defined as usual. In
particular, every term is either a variable or a functional term f (t1, . . . , tn), i.e., the application
of an n-ary function symbol f to n terms t1, . . . , tn , for some n ≥ 0. A function symbol c
of arity 0 is also called a constant and we just write c instead of the functional term c(). A
functional term is called compound (or proper) if it is not a constant. An atom is of the form
P(t1, . . . , tn) where P is an n-ary predicate symbol, for some n ≥ 0. Equations are atoms
of the form ≈(t1, t2), which we always write using infix notation as t1 ≈ t2. A literal is an
atom or the negation of an atom. When L is a literal we write L[t] to indicate that L contains
a subterm t at a position left implicit.

We treat the Boolean operators ∧ and ∨ as multi-arity operators that ignore the order of
their arguments, which is justified by their associativity and commutativity properties. In
other words, for instance, a disjunction H1 ∨ · · · ∨ Hn of atoms is treated as the (possibly
empty) multiset {H1, . . . , Hn}; similarly for conjunctions.

A clause is a (finite) implicitly universally quantified disjunction¬B1 ∨· · ·∨¬Bk ∨H1∨
· · · ∨ Hm of literals, where m, k ≥ 0. To emphasize their bottom-up operational semantics
we write clauses in implication style B1∧· · ·∧Bk → H1∨· · ·∨Hm . The part H1∨· · ·∨Hm

2 The Bernays–Schönfinkel class with equality is sometimes referred to as the Bernays–Schönfinkel–Ramsay
class.

123

Blocking and Other Enhancements for Bottom-Up Model Generation Methods 201

is called the head of the clause and B1 ∧ · · ·∧ Bk is its body. We write ⊥ for the empty head.
Each Hi , if any, is called a head atom, and each Bj , if any, is called a body atom. Clauses
with empty head are called negative clauses, and clauses with empty body are called positive
clauses. Positive clauses are written as H1 ∨ · · · ∨ Hm , instead of → H1 ∨ · · · ∨ Hm . Notice
the empty clause is written as ⊥.

When writing expressions such as B ∧ B → H ∨ H we mean any clause whose head
literals are H and those in the disjunction (or multiset) of literalsH , and whose body literals
are B and those in the conjunction (or multiset) of literals B.

Let F be a term, literal, head, body or clause. By var(F) we denote the set of variables
occurring in F . If var(F) = ∅ then F is ground. As usual, a substitution is a mapping
from variables to terms that is the identity almost everywhere. We identify a substitution σ

with its homomorphic extension to terms, literals, heads, bodies and clauses. Consequently,
σ(F) denotes the result of simultaneously replacing in F every occurrence of every variable
x ∈ var(F) by σ(x). We use the notion of (most general) unifiers in the standard way. Given
two terms or atoms e1 and e2 we write σ = mgu(e1, e2) to indicate that the substitution σ

is a most general unifier of e1 and e2. We also need the notion of simultaneous most general
unifiers: given a set E = {(e11, e12), . . . , (en1 , en2)} of pairs of terms or atoms, where n ≥ 0,
we say that σ is a simultaneous most general unifier of E and write σ = smgu(E) iff σ is
a most general substitution such that σ(ei1) = σ(ei2) for all i ∈ {1, . . . , n}. It is well-known
that a simultaneous most general unifier can always be computed (if it exists) by iterated
most general unifier computation.

For a given atom P(t1, . . . , tn), the terms t1, . . . , tn are called the top-level terms of
P(t1, . . . , tn) (P being ≈ is permitted). This notion generalizes to clause bodies, clause
heads and clauses as expected. For example, for a clause B → H the top-level terms of its
body B are exactly the top-level terms of its body atoms.

A (standard first-order) interpretation I consists of a non-empty domain, denoted as |I |,
and interpretation functions P I and f I on |I |, for every P ∈ �P and f ∈ � f , as usual. A
valuation μ is a (total) mapping from the set of variables to |I |. We form pairs (I , μ) for
evaluating terms, atoms and formulas in the usual way and write, e.g., (I , μ)(t) for the result
of evaluating the term t . We write (I , μ) |� F to denote the fact that (I , μ) satisfies F . If a
term t does not have free variables we may write I (t) instead of (I , μ)(t) without loosing
anything. Similarly for atoms, formulas and clauses.

As usual, the Herbrand universe HU� of � is the set of all ground terms of the signa-
ture � f , and the Herbrand base HB� of � is the set of all ground atoms of �. A Herbrand
interpretation I is identified with a subset of ground atoms in HB� , namely, those that are
true in the interpretation. Using the above terminology, for every Herbrand interpretation I
we have |I | = HU� and I (t) = t for every t ∈ HU� .

We work mostly, but not always, with Herbrand interpretations. Of particular interest
are standard first-order interpretations that behave like Herbrand interpretations for a subset
of the Herbrand universe. They are introduced as quasi-Herbrand interpretations below.
Indeed, the purpose of our transformations is to enable BUMG methods to construct such
interpretations with a domain as small as possible (and ideally a finite one).

Let us say that a setU ⊆ HU� of ground terms is subterm-closed if with every t ∈ U the
set U also contains every subterm of t .

Definition 1 (Quasi-Herbrand interpretation) A quasi-Herbrand interpretation is a standard
first-order interpretation I with domain |I | ⊆ HU� such that |I | is subterm-closed and
I (t) = t for every t ∈ |I |. Furthermore, |I | must contain at least one constant c.

123

202 P. Baumgartner, R. A. Schmidt

Every Herbrand interpretation is a quasi-Herbrand interpretation by taking |I | = HU� .
Unlike in Herbrand interpretations, function symbols are not always trivially interpreted as
total functions in quasi-Herbrand interpretations. For instance, in the presence of a constant a,
a unary function symbol f, and the domain |I | = {a, f(a)}, say, one has to assign a value in
the interpretation to every term. However f(f(a)), for instance, cannot be evaluated to itself,
as f(f(a)) /∈ |I | and, hence, one has to have fI (f(a)) = a or fI (f(a)) = f(a). But still we can
specify quasi-Herbrand interpretations I as sets of atoms, as with Herbrand interpretations,
however in conjunction with interpretation functions f I for every f ∈ � f .

Satisfiability and validity in a Herbrand interpretation of ground literals, clauses, and
clause sets are defined as expected. We write I |� F to denote that I satisfies F , where F is
a ground literal, clause or clause set (read conjunctively). For instance, for a ground clause
B → H it holds that I |� B → H iff I �|� B or I |� H . The satisfaction relation |� carries
over to non-ground clauses and clause sets by taking a clause as the set of its ground instances
and a clause set as the union of their sets of ground instances, respectively. If M is a clause
set and I |� M we say that I is a Herbrand model of M .

If I is instead a quasi-Herbrand interpretation then, as the domain |I | consists of terms, we
can still define satisfaction of non-ground clauses (and clause sets) in terms of substitutions
instead of using pairs (I , μ). For instance, I |� B → H iff for all substitutions γ with
codomain |I | it holds that I |� (B → H)γ .

An E-interpretation is a standard first-order interpretation I such that (I , μ) |� s ≈ t if
and only if (I , μ)(s) = (I , μ)(t). We use the notion of E-(un)satisfiability in the expected
way, as (un)satisfiability with respect to E-interpretations. In particular, if M is a clause set
and I |� M we say that I is an E-model of M .

An E-interpretation is not necessarily a Herbrand interpretation, but E-satisfiability is the
same as satisfiability in Herbrand interpretations that interpret ≈ as a congruence relation.
In such Herbrand interpretations the following is true: for every ground term t , t ≈ t ∈ I ,
and for every ground atom A (including ground equations) whenever I |� A[s] and I |�
s ≈ t , then I |� A[t]. Alternatively, given such a Herbrand interpretation I its induced
E-interpretation I≈ is given by the domain I≈ = |I |/≈, the partitioning of |I | into its
equivalence classes modulo ≈. Let [t]≈, or just [t], denote the equivalence class modulo
≈ of a ground term t ∈ |I | (= HU�). Each n-ary function f ∈ � f is interpreted in I≈ as
f I≈([t1], . . . , [tn]) = [f (t1, . . . , tn)], and eachn-ary predicate symbol P ∈ �P is interpreted
in I≈ as P I≈([t1], . . . , [tn]) = P I (t1, . . . , tn). This is a well-known construction and it holds
that a clause set M is satisfied by a model I iff it is E-satisfied by I≈. See [36] for details.

Yet another characterization is to add to a given clause set M its equality axioms EAX(�),
that is, the axioms expressing that≈ is a congruence relation on the terms and atoms induced
by the predicate symbols �P and function symbols � f occurring in M . It is well-known
that M is E-satisfiable iff M ∪ EAX(�) is satisfiable [36].

3 BUMGMethods

Reasoners based on model generation approaches establish the satisfiability of a problem by
trying to build a model for the problem. In this paper we are interested in bottom-up model
generation approaches (BUMG) for first-order logic with equality and function symbols.
BUMGapproaches use a forward reasoning approachwhere implications or clauses,B → H ,
are read as rules and are repeatedly used to derive (instances of) the headH from (instances
of) the body B until saturation is achieved.

123

Blocking and Other Enhancements for Bottom-Up Model Generation Methods 203

The family of BUMG approaches includes many familiar calculi and proof procedures
such as Smullyan-type semantic tableaux [86], SATCHMO [41,63], positive unit hyper-
resolution (PUHR) tableaux [23,24], the model generation theorem prover MGTP [37] and
hypertableaux [12]. Awell-established and widely knownmethod for BUMG is hyperresolu-
tion [75]. In the framework of resolution and superposition-based on complete simplification
orders, positive strategies areBUMGmethods (also known as negative selection-based refine-
ments). Relevant references are [32] for the Horn case and [4,48] for the general case. As
outlined in the Introduction, BUMG can be realized by simple combinations of insights
and results based on such hyperresolution-style methods. In a nutshell, what is exploited is
that any first-order formula can be effectively transformed into a class of range-restricted
clauses, and on range-restricted clauses thesemethods are instantiationmethods, the positive
premises are always positive ground clauses and the conclusion is a positive ground clause.
With splitting they produce models represented as sets of positive ground atoms, which is a
common representation of Herbrand models (e.g. [42,63]).

In this paper we describe methods for transforming a given clause set into another clause
set so that BUMGmethods benefit from the transformation. Our theoretical results are all of a
semantic nature, in essence, equi-satisfiability results, which are complemented by practical
experiments with a BUMG prover. Strictly speaking, we do not need to get into the details of
the calculi or proof procedures behind BUMGmethods for the purpose of this paper. For the
sake of self-containedness, however, we summarize one BUMGmethod, the hyperresolution
calculus extended with a splitting rule. A good in-depth overview of all aspects of the follow-
ing brief exposition can be found in [6,92], see also [31,42,51,53,63,73] where splitting is
used in resolution calculi, including hyperresolution calculi. The methods introduced below
can be adapted to other BUMG methods without great effort.

In itsmost basic form, the hyperresolution calculus consists of two inference rules, positive
hyperresolution (HRes) and positive factoring (Fact):

HRes
B1 ∧ . . . ∧ Bn → H H1 ∨ H1 · · · Hn ∨ Hn

(H ∨ H1 ∨ · · · ∨ Hn)σ

if σ = smgu{(B1, H1), . . . , (Bn, Hn)}
Fact

H1 ∨ H2 ∨ H
(H1 ∨ H)σ

if σ = mgu(H1, H2)

On ground clauses, positive factoring amounts to the elimination of duplicate head atoms. In
the sequel we often omit the inference rule qualifier ‘positive’.

A derivation then is a (possibly infinite) sequence of clauses that starts with the given
clauses, in any order, and that is extended step by step with the conclusion of an inference
rule applied to premise clauses earlier in the sequence. A derivation that contains (ends
with) the empty clause is called a refutation, which indicates that the given clause set is
unsatisfiable.

Proof procedures for resolution donot directly search for derivations (say, by backtracking)
and instead are saturation-based. That is, a clause set initially comprised of the given clauses
is closed under application of the inference rules modulo deletion of redundant clauses (e.g.,
subsumed clauses, tautological clauses). Once the empty clause is derived a refutation can
be extracted easily from the history of inference rule applications. If the empty clause is not
derived then the given clause set is satisfiable. In the finite case, a (Herbrand) model can be
extracted from the positive clauses of the saturated state. Specifically, for each such clause
H it suffices to pick an atom H ∈ H and assign true in the model to all ground instances of

123

204 P. Baumgartner, R. A. Schmidt

H . While this is a crude scheme (and can be improved in practice by ordering restrictions)
it is helpful for getting an understanding of the transformations below.

Most BUMG methods for first-order logic include some form of β-rule (in tableaux
parlance) or splitting rule. If C ∨ D is a clause such that C and D are both non-empty
and do not share variables then we say that C ∨ D is splittable. The terminology ‘splitting
C ∨ D’ refers to deriving from a clause set M ∪ {C ∨ D} the two clause sets M ∪ {C} and
M ∪ {D}. By variable-disjointness, M ∪ {C ∨ D} is equi-satisfiable with the conjunction of
the two latter clause sets. Notice that derivations (or saturations) with a splitting rule enabled
are tree-shaped now, in accordance with the splittings applied in the course of a derivation.
Moreover, the empty clause has to be derived in every branch to make a refutation. As for
model generation, it suffices to derive one branch in a saturated state and extract a model
from that.

The splitting rule can be defined with arbitrary restrictions, as deemed useful, without
loosing refutational completeness. For instance, the SPASS prover [93,94] implements a
version that splits on positive parts of clauses only. In the hyperresolution context it can be
defined (approximately) as follows:

Split
B → H1 ∨ H2

B → H1 | B → H2
if var(B → H1) ∩ var(B → H2) = ∅,H1 �= ∅ andH2 �= ∅

Making the Split rule mandatory, however, can be useful for model computation. In partic-
ular, if all given and derived positive, non-unit clauses H ∨H are splittable into a unit clause
H and a rest-clause H then every branch not containing the empty clause in its saturated
state specifies a model simply by these unit clauses. Indeed, our transformations below make
sure it is always the case that all derived positive non-unit clauses H ∨ H are splittable in
this way, and, moreover, that the (ground) unit clauses H in a saturated state not containing
the empty clause specify a model of the given clause set.

Our experiments show the splitting rule is useful for BUMG (cf. Sect. 10). Moreover, for
our blocking transformations (considered later in Sect. 7), splitting on positive ground clauses
(those with an empty body B in the Split rule) is in fact mandatory to make it effective. Most
BUMG procedures support this splitting technique.

Another crucial requirement for the effective use of blocking is support of equality
reasoning (for example, ordered paramodulation, rewriting or superposition [5,48,68]), in
combination with simplification techniques based on orderings. We refer to [5,7,20] for gen-
eral notions of redundancy in superposition-based theorem proving approaches. However,
for the sake of self-containedness we include inference rules for equality below:

EqRes
s ≈ t ∧ B → H

(B → H)σ
if σ = mgu(s, t)

ParaUnitPos
H [s] s ≈ t

H [t]

ParaNeg
B[u] ∧ B → H s ≈ t

(B[t] ∧ B → H)σ
if u is not a variable and σ = mgu(u, s)

The EqRes rule eliminates a body equation s ≈ t whose sides can be made equal by means
of a most general unifier σ . The ParaUnitPos rule replaces in a head atom (equational or
otherwise) a subterm s by t in presence of a unit clause s ≈ t . The ParaNeg rule is similar,

123

Blocking and Other Enhancements for Bottom-Up Model Generation Methods 205

but it targets a body atom and it uses unification to make the target term u and s equal. In
both rules the right premise s ≈ t stands also for its symmetric version t ≈ s.

These inference rules are slimmed-down versions of more sophisticated inference rules
for equality reasoning as exhibited, e.g., in the superposition calculus. First, all inference
rules can be restricted by applying them only if certain ordering restrictions are met. We refer
the reader to the literature cited above. Second, the inference rule ParaUnitPos does not use
unification. This is not necessary in our context as all positive unit clauses, derived or given,
are always ground (so that unifiability coincides with syntactic equality). We also do not
need to formulate the rule on non-unit clauses, as (positive) non-unit clauses are always split
eagerly into unit clauses. The ParaNeg rule, however, is more general by being applicable to
clauses of arbitrary shape and by using unification.3

To sum up, the inference rules of our prototypical BUMG method are HRes, Fact (which
is actually not necessary in our context), Split, EqRes, ParaUnitPos and ParaNeg. We assume
that the Split rule is applied eagerly.4 The hypertableau calculus with equality [13,14] fea-
tures similarly structured inference rules, but includes ordering restrictions and redundancy
elimination techniques.

Figure 1 shows a deliberately simple sample derivation. It exhibits an initially given
clause set M , as stated, and its rr transformed version rr(M) for the derivation, proper. The
rr transformation is introduced only below; how it is obtained is not important yet. The
purpose of the example is to convey the flavour and some important aspects of the approach.

Referring to Fig. 1, if we develop the derivation tree in a depth-first left-to-right fashion,
say, then the branch with Case (1) leads to the empty clause. The derivation hence continues
by branching into Case (2), Case (2.1) and then Case (2.1.1). No new clause is derivable
here and the derivation stops. (Other branches are infinite.) The positive unit clauses in this
saturated state are

a ≈ b P(a) dom(a) Q(f(a))

P(b) dom(b) Q(f(b))

P(f(a)) dom(f(a)) R(f(a))

P(f(b)) dom(f(b)) R(f(b))

They can be interpreted as a model of M in two ways. First, as a Herbrand model whose
domain is the set of all ground terms and that assigns true to all atoms in the saturated state.
Notice that ≈ is interpreted as a congruence relation. (Corollary 1 below has the formal
result.) Second, as an E-interpretation that is derived from the quasi-Herbrand model with a
(finite) domain. The (finite) domain of that quasi-Interpretation J is |J | = {a,b, f(a), f(b)}
as specified by the dom-atoms in the saturated state. The induced E-interpretation J≈
has a domain consisting of equivalence classes determined by the congruence relation
obtained from J and the interpretation function f J . In this construction, ground terms
not in |J | are put into equivalence classes by uniformly evaluating them to a default
constant. In the example, if a is that constant, we get f(f(a)) ≈ a, f(f(b)) ≈ a and
|J≈| = {{a,b, f(f(a)), f(f(b)), f(f(f(f(a)))), . . .}, {f(a), f(b), f(f(f(a))), . . .}}. Every element
in |J≈| is represented by an element from |J |, but not vice versa. The construction is explained
in detail in Sect. 5.

3 Strictly speaking, the ParaNeg rule is not necessary to get a complete calculus. However, as soon as ordering
restrictions are added it will become necessary.
4 Again this is very crude. A more realistic calculus would only require that a split inference rule cannot be
deferred indefinitely unless the clause it is applied to becomes redundant at some point in the derivation.

123

206 P. Baumgartner, R. A. Schmidt

Fig. 1 Sample derivation. The ‘derivation’ part only lists the newly derived clauses, those extending the
derivation starting with the clauses from rr(M). Likewise, a sub-case implicitly includes all clauses derived in
its parent case

123

Blocking and Other Enhancements for Bottom-Up Model Generation Methods 207

4 Range-Restricting Transformations

Definition 2 (Range-restricted clause (set) [63]) A clause B → H is range-restricted iff
var(H) ⊆ var(B), i.e., the body B contains all the variables in the clause. A clause set is
range-restricted iff it contains only range-restricted clauses. ��

This means that a positive clauseH is range-restricted only if it is a ground clause. A negative
clause B → ⊥ is always range-restricted. Following [63], the algorithm crr (for classical
range-restriction) below transforms a given clause set into a range-restricted set.

1 Algorithm crr(M)
2 // Input: a clause set M
3 // Output: a range-restricted version of M
4 let dom = a fresh unary predicate symbol not in �P

5 // Step (1): initialization
6 let c = any constant in � f

7 var res := {dom(c)} // initialized result clause set
8 // Step (2): domain restriction of clauses in M :
9 foreach (B → H) ∈ M do

10 let {x1, . . . , xk} = var(H) \ var(B)

11 res := res ∪ {dom(x1) ∧ · · · ∧ dom(xk) ∧ B → H}
12 // Step (3): domain upward closure:
13 foreach f ∈ � f where n is the arity of f do
14 res := res ∪ {dom(x1) ∧ · · · ∧ dom(xn) → dom(f (x1, . . . , xn))}
15 return res

It is not difficult to see that crr(M) is indeed range-restricted for any clause set M . In
Step (3) the arity n of f ∈ � f can be 0, that is, constants are included. The transformation
is sound and complete, that is, M is satisfiable iff crr(M) is satisfiable [24,63]. The size
of crr(M) is linear in the size of M and can be computed in linear time.

Perhaps the easiest way to understand the transformation achieved by the classical range
restriction algorithm crr is to imagine we use a BUMGmethod, for example, hyperresolution
as described in Sect. 3. The idea is to build the model(s) during the derivation. The clause
used in the initialization in Step (1) ensures that the domain of interpretation given by the
domain predicate dom is non-empty. (Recall, we assume � f contains at least one constant.)
The loop in Step (2) turns clauses into range-restricted clauses. This is done by shielding the
variables {x1, . . . , xk} in the head, that do not occur negatively, with the added dom-literals
in the body. Clauses that are already range-restricted are unaffected by this step. The loop
in Step (3) ensures that all elements of the Herbrand universe of the (original) clause set are
added to the domain via hyperresolution inference steps. Notice that all positive non-unit
clauses given in crr(M) or derived from these are splittable (because hyperresolvents on
range restricted clauses are positive ground clauses), which suggests the use of the Split rule.

As a consequence a clause set M with at least one non-nullary function symbol causes
hyperresolution derivations on crr(M) to be unbounded, unless M is unsatisfiable. This is
a negative aspect of the classical range-restricting transformation. However, the method has
been shown to be useful for (domain-)minimal model generation when combined with other
techniques [23,24]. In particular, [23] use splitting and the δ∗-rule to generate domainminimal
models. In the present research we have evaluated the combination of blocking techniques

123

208 P. Baumgartner, R. A. Schmidt

(introduced later in Sect. 7) with the classical range-restricting transformation crr. This has
shown promising empirical results as presented in Sect. 10.

Next, we introduce an improved transformation to range-restricted form. Instead of enu-
merating the generally infinite Herbrand universe in a bottom-up fashion, the intuition is
that it generates terms only as needed. A major difference to the crr transformation is that it
involves term abstraction for body atoms.

Definition 3 (Term abstraction) Let P(t1, . . . , tn) be an atom and x1, . . . , xn distinct, fresh
variables. For all i ∈ {1, . . . , n}, let si = ti , if ti is a variable, and si = xi , otherwise. The
atom P(s1, . . . , sn) is called the term abstraction of P(t1, . . . , tn). ��
For example, the term abstraction of P(x, x, a, f(x)) is P(x, x, x3, x4).

The range-restricting transformation of a clause set M , denoted by rr(M), is defined by
the following algorithm (explanations and an example are given afterwards).

1 Algorithm rr(M)
2 // Input: a clause set M
3 // Output: a range-restricted version of M
4 let dom = a fresh unary predicate symbol not in �P

5 // Step (1): initialization
6 let c = any constant in � f

7 var res := {dom(c)} // initialized result clause set
8 var N := ∅ // Auxiliary set of clauses
9 // Step (2): domain elements from clause bodies:

10 foreach (B → H) ∈ M do
11 foreach P(t1, . . . , tn) ∈ B do
12 let P(s1, . . . , sn) = the term abstraction of P(t1, . . . , tn)
13 N := N ∪ {P(s1, . . . , sn) → dom(ti) | 1 ≤ i ≤ n and ti is not a variable}
14 // Step (3): classical domain restriction of clauses in M ∪ N :
15 foreach (B → H) ∈ M ∪ N do
16 let {x1, . . . , xk} = var(H) \ var(B)

17 res := res ∪ {dom(x1) ∧ · · · ∧ dom(xk) ∧ B → H}
18 // Step (4): domain elements from �P -literals:
19 foreach P ∈ �P do
20 let {x1, . . . , xn} = n distinct variables,where n is the arity of P
21 res := res ∪ {P(x1, . . . , xn) → dom(xi) | 1 ≤ i ≤ n}
22 // Step (5): domain elements from � f :
23 foreach f ∈ � f do
24 let {x1, . . . , xn} = n distinct variables,where n is the arity of f
25 res := res ∪ {dom(f (x1, . . . , xn)) → dom(xi) | 1 ≤ i ≤ n}
26 return res

The intuition of the rr transformation reveals itself if we think of what happens when using
hyperresolution with splitting. The idea is again to build model(s) during the derivation, but
this time terms are added to the domain only as necessary.

The initialization of the dom-relation in Step (1) is the same as in the definition of crr.
The auxiliary clauses collected in N in Step (2) cause functional terms that occur in clause
bodies to be inserted into the domain. Below, after Definition 4 we explain why these clauses

123

Blocking and Other Enhancements for Bottom-Up Model Generation Methods 209

are needed. Step (3) is the classical range-restrictedness transformation applied to the given
clauses and the auxiliary clauses N . Step (4) ensures that positively occurring functional terms
are added to the domain, and Step (5) ensures that the domain is closed under subterms.

To illustrate the steps of the rr transformation consider the clause set M comprised of the
single clause

P(a, f(x, y), x) → Q(x,g(x, y)) ∨ R(y, z) . (†)

Suppose the clause initializing res in Step (1) is dom(a). In Step (2) the term abstraction of
the body literal of clause (†) is P(x1, x2, x). The clauses added to N are the following:

P(x1, x2, x) → dom(a) (‡)

P(x1, x2, x) → dom(f(x, y)) .

Notice that among the three clauses in M∪N the clauses (†) and (‡) are not range-restricted.
They are however added as range-restricted clauses to res in Step (3), namely:

dom(z) ∧ P(a, f(x, y), x) → Q(x,g(x, y)) ∨ R(y, z)

dom(y) ∧ P(x1, x2, x) → dom(f(x, y)) .
(††)

Step (4) generates clauses responsible for inserting the terms that occur in the heads of
clauses into the domain. That is, for each i ∈ {1, 2, 3} and each j ∈ {1, 2} these clauses are
added.

P(x1, x2, x3) → dom(xi)

Q(x1, x2) → dom(x j)

R(x1, x2) → dom(x j)

Now, to explain the effect of the rr transformation assume additional clauses so that the
instance Q(a,g(a, f(a, a))) of one of the head atoms of the clause (†) is derived (by hyper-
resolution with splitting, say). With the available clauses, dom(a) and dom(g(a, f(a, a)))
are also derived. It is not necessary to insert the terms of the instance of the other head atom
R(y, z) into the domain. The reason is that it does not matter how these (extra) terms are
evaluated, or whether the atom is evaluated to true or false in order to satisfy the disjunction.

The clauses added in Step (4) are not sufficient, however. For each term in the domain all
its subterms have to be in the domain, too. This is achieved with the clauses in Step (5). That
is, for each j ∈ {1, 2} these clauses are added.

dom(f(x1, x2)) → dom(x j)

dom(g(x1, x2)) → dom(x j)

In the example, from dom(g(a, f(a, a))) and the second of these clauses, the clause
dom(f(a, a)) is derivable. Notice that, dom(g(a, a)) for example is not derivable. Indeed,
g(a, a) it is not a subterm of dom(g(a, f(a, a))).

We are interested in quasi-Herbrand interpretations that mimic a given Herbrand interpre-
tation for rr(M) as close as possible, in the following way.

Definition 4 (Induced quasi-Herbrand interpretation) LetM be a clause set and suppose that
rr(M) is satisfied by a Herbrand interpretation I . Let c be the constant in Step (1) of rr (so
that dom(c) ∈ rr(M)). The quasi-Herbrand interpretation J induced by M and I is defined
as follows:

(i) |J | = {t | t is a ground term and I |� dom(t)}.

123

210 P. Baumgartner, R. A. Schmidt

(ii) For every n-ary f ∈ � f , the interpretation function f J : |J |×· · ·×|J | �→ |J | is defined
as follows, for all d1, . . . , dn ∈ |J |:

f J (d1, . . . , dn) =
{
f (d1, . . . , dn) if f (d1, . . . , dn) ∈ |J |, and

c otherwise.

(iii) For every n-ary P ∈ �P , the interpretation function P J : |J |× · · ·×|J | �→ {false, true}
is defined as follows, for all d1, . . . , dn ∈ |J |:

P J (d1, . . . , dn) = P I (d1, . . . , dn) .

��
Some comments are due. Let J be a quasi-Herbrand interpretation induced by some

M and I . We wish to verify that J is indeed a quasi-Herbrand interpretation in the sense
of Definition 1. For that, first, observe that |J | is subterm-closed. This is achieved by the
clauses added in Step (5) in rr and the fact that I |� rr(M). Second, item (ii) in Definition 4
fixes the interpretation of function symbols such that J (t) = t , for all t ∈ |J |. This can
be shown by induction on the term structure, in the induction step using the fact that |J | is
subterm-closed.5 Third, |J | contains at least one constant per Step (1) in rr and item (i) in
Definition 4.

Item (iii) makes J the same as I with respect to predicate symbols on the domain |J |.
The clauses added in Step (2) in the rr transformation may seem unintuitive. We are

now in a position to explain why they are needed, from a completeness perspective. More
precisely, if I is a Herbrandmodel of rr(M) then wewish to conclude that the quasi-Herbrand
interpretation J induced by M and I is a model of M , cf. Proposition 1 below.

Bymeans of an example assume a clause set M that contains the clause P(f(x), y, z, z) →
Q(y). Let c be the constant picked in Step (1) and assume as given a quasi-Herbrand inter-
pretation J with |J | = {b, c, . . .} induced by M and Herbrand model I of rr(M). That is, |J |
contains at least the constants b and c and other terms unspecified for now.

Suppose, for example, that J satisfies the body of the clause instance P(f(c), c,b,b) →
Q(c). For completeness, we need an argument that J also satisfies the head instance Q(c).

That J satisfies P(f(c), c,b,b) can only be the case because I satisfies P(f(c), c,b,b) or
I satisfies P(c, c,b,b). The latter is the case if f(c) is interpreted as the default element c in
J , cf. Definition 4 (iii). In fact, the clauses added in Step (2) make this case impossible (for
all ground instances that matter).

More precisely, the rr transformation adds in Step (2) the clause P(x1, y, z, z) →
dom(f(x))which gets range-restricted asC = dom(x)∧P(x1, y, z, z) → dom(f(x)) in Step
(3). From Definition 4(i) and the assumption c ∈ |J | it follows that I |� dom(c). Regarding
the other body literal P(x1, y, z, z) of C , notice that the variable x1 is unconstrained. This
means that we can instantiate x1 with f(c) or c as required to make P(x1, c,b,b) true in I .
But then, because I is a model of rr(M) it follows that I must satisfy the instantiated head
dom(f(c)). Again from Definition 4(i), f(c) ∈ |J | follows. That is, f(c) is not interpreted as
the default element c, as indicated above.

But then, by Definition 4(ii) and 4(iii) the body literal P(f(c), c,b,b) is evaluated to the
same truth value under I and J , which is true, as J satisfies it. As I satisfies P(f(c), c,b,b) →
Q(c), it satisfiesQ(c). Oncemore fromDefinition 4(iii) conclude that J satisfiesQ(c) as well,
as desired.

5 The interpretation J (t) = c for terms t /∈ |J | is irrelevant in our main application, the completeness proof
of the rr transformation.

123

Blocking and Other Enhancements for Bottom-Up Model Generation Methods 211

The following lemma and proposition give the general argument.

Lemma 1 Let M, I and J be defined as in Definition 4.

(i) If t1, . . . , tn ∈ |J | then J (P(t1, . . . , tn)) = I (P(t1, . . . , tn)).
(ii) For everyB → H ∈ M and substitution γ with codomain |J |: if J |� Bγ then I |� Bγ .

Proof (i) Assume t1, . . . , tn ∈ |J | and let P ∈ �P arbitrary. For all 1 ≤ i ≤ n let di = J (ti).
By definition of quasi-Herbrand interpretation di = ti . From Definition 4(iii) it follows

J (P(t1, . . . , tn)) = P J (J (t1), . . . , J (tn)) = P J (d1, . . . , dn)

= P I (d1, . . . , dn) = P I (t1, . . . , tn)

= P I (I (t1), . . . , I (tn)) = I (P(t1, . . . , tn)) .

(ii) Take any B → H ∈ M and choose an arbitrary substitution γ with codomain
|J |. Assume J |� Bγ . Take any body atom P(t1, . . . , tn) ∈ B. It follows that J |�
P(t1, . . . , tn)γ . To prove the lemma statement it suffices to show I |� P(t1, . . . , tn)γ .

The rr transformation adds in Step (2) the clauses P(s1, . . . , sn) → dom(t j), for all
j ∈ {1 ≤ i ≤ n | ti is not a variable} where P(s1, . . . , sn) is the term abstraction of
P(t1, . . . , tn). Let C j = dom(y1) ∧ · · · ∧ dom(yk) ∧ P(s1, . . . , sn) → dom(t j) be the
range-restricted versions of these clauses, obtained in Step (3),where {y1, . . . , yk} = var(t j)\
var(P(s1, . . . , sn)).

The first subgoal is to show J (siγ) = J (tiγ) for all i ∈ {1, . . . , n}. In the first case ti
is a variable. By construction si = ti and hence, trivially, J (siγ) = J (tiγ). In the second
case ti is not a variable and si is a fresh variable xi . After extending γ by the binding
xi �→ J (tiγ) it follows xiγ = siγ = J (tiγ). Notice this extension trivially preserves γ

as a substitution with codomain |J |. In particular, hence, xiγ ∈ |J |. By quasi-Herbrand
interpretation J (xiγ) = xiγ . Altogether then J (siγ) = J (tiγ). That is, in either case
J (siγ) = J (tiγ) which completes the proof of the subgoal.

From J (siγ) = J (tiγ) it follows J (P(t1, . . . , tn)γ) = J (P(s1, . . . , sn)γ) by semantics
of first-order logic. From J |� P(t1, . . . , tn)γ above it follows J |� P(s1, . . . , sn)γ . By
construction every si is a variable. Because γ is a substitution with codomain |J | it follows
trivially that siγ ∈ |J |. By item (i) of this lemma then I |� P(s1, . . . , sn)γ .

The next subgoal is to show tiγ ∈ |J |, for all i ∈ {1, . . . , n}. The first case when ti is a
variable is trivial as γ is a substitution with codomain |J |.

In the second case ti is not a variable and rr(M) contains the clauseCi = dom(y1)∧· · ·∧
dom(yk)∧P(s1, . . . , sn) → dom(ti) asmentioned above. Recall that γ is a substitutionwith
codomain |J | and that |J | consists of the extension of thedom-predicate in I (Definition 4(i)).
It follows that ymγ ∈ |J | and hence I |� dom(ym)γ , for all m ∈ {1, . . . , k}.

Altogether, I satisfies (dom(y1)∧· · ·∧dom(yk)∧P(s1, . . . , sn))γ , the body of the clause
instance Ciγ . The lemma assumes that I is a Herbrand model of rr(M) as per Definition 4. It
follows that I satisfies the instantiated head atomdom(tiγ) ofCiγ . AgainwithDefinition 4(i)
conclude tiγ ∈ |J |. This completes the proof of the second subgoal. That is, tiγ ∈ |J | for
all i ∈ {1, . . . , n}. With that result and J |� P(t1, . . . , tn)γ from above we can apply item
(i) of this lemma and conclude I |� P(t1, . . . , tn)γ , which remained to be shown. ��
Proposition 1 (Completeness of range-restriction) Let M be any clause set. If rr(M) is sat-
isfiable then M is satisfiable. More specifically, if I is a Herbrand model of rr(M) then the
quasi-Herbrand interpretation J induced by M and I is a model of M.

123

212 P. Baumgartner, R. A. Schmidt

Proof Let I be a Herbrand model of rr(M) and J be the quasi-Herbrand interpretation
induced by M and I . We show J |� M . Take any clause B → H ∈ M and choose an
arbitrary substitution γ with codomain |J |. It suffices to show J |� (B → H)γ . The case
of J �|� Bγ being trivial, we assume J |� Bγ from now on and show J |� Hγ .

From Lemma 1(ii) it follows that I |� Bγ . Let dom(x1) ∧ · · · ∧ dom(xk) ∧ B → H
be the range-restricted version of B → H as introduced in Step (3) of rr(M). Because
the codomain of γ is |J |, from the definition of |J | it follows that I |� dom(xi)γ for all
i ∈ {1, . . . , k}. Together, thus, I |� (B ∧ dom(x1) ∧ · · · ∧ dom(xk))γ . As I is a Herbrand
model of all clauses in rr(M) it follows that I |� Hγ . That is, there is a head atom of the
form P(t1, . . . , tn) ∈ H such that I |� P(t1, . . . , tn)γ . With the clauses added in Steps (4)
and (5) we conclude I |� dom(t jγ), for all j ∈ {1, . . . , n}. From the definition of |J | we
immediately get t jγ ∈ |J |. From Definition 4(iii) J |� P(t1, . . . , tn)γ follows and hence
J |� Hγ , as desired. ��

5 Equality

The following result lays the groundwork the adaptation of the range-restriction transforma-
tion for equality.

Corollary 1 (Completeness of range-restriction wrt. E-interpretations) Let M be any clause
set. If rr(M) is E-satisfiable then M is E-satisfiable. More specifically, assume there is an
E-model I of rr(M). Then there is a Herbrand model J of rr(M) such that J interprets ≈ as
a congruence relation and J |� s ≈ t whenever I (s) = I (t), for all s, t ∈ HU� .

Proof We prove the second claim only, as it entails the first. Let IH be the Herbrand interpre-
tation such that IH |� rr(M)∪ EI ∪EAX(�), where EI = {s ≈ t | s, t ∈ HU� and I (s) =
I (t)}. With I given as an E-model of rr(M) it is clear that indeed IH exists. Let

EAX′(�) = (EAX(�) \ {x ≈ x}) ∪ {t ≈ t | t ∈ HU�}
be the equality axioms with the reflexivity axiom replaced by all its ground instances. Of
course, IH |� rr(M) ∪ EI ∪ EAX′(�) in the Herbrand semantics. One consequence of this
move is that the rr transformation does not act on the clauses in EI ∪ EAX′(�) (this is
straightforward to check).6 Therefore rr(M) ∪ EI ∪ EAX′(�) and rr(M ∪ EI ∪ EAX′(�))

are the same set of clauses and it follows IH |� rr(M ∪ EI ∪ EAX′(�)).
Let J be the quasi-Herbrand interpretation induced by M ∪ EI ∪ EAX′(�) and IH .

Proposition 1 implies that J |� M ∪ EI ∪ EAX′(�). Regarding the domain |J | = {t |
t is a ground term and IH |� dom(t)}, recall that EAX′(�) contains the clause t ≈ t , for
every t ∈ HU� . By the clauses added in Step (4) of the rr transformation (when P is the
equality predicate ≈) and the fact that IH |� rr(M), it follows that IH |� dom(t), for every
t ∈ HU� . In other words, |J | = HU� and so J is (also) a Herbrand interpretation.

As J |� M ∪ EI ∪ EAX′(�) we have in particular that J |� EI ∪ EAX′(�). In other
words, J interprets ≈ as a congruence relation that includes the ground equations in EI , as
claimed in the statement of the result. ��

We emphasize that we do not actually propose to use the equality axioms in conjunction
with a theorem prover (though they can of course). They serve merely as a theoretical tool
to prove completeness of the transformation.

6 The rr transformation is defined on finite clause sets only, but it generalizes in a straightforward way to
infinite clause sets.

123

Blocking and Other Enhancements for Bottom-Up Model Generation Methods 213

In particular, the rr transformed clause set may compute a (finite) quasi-Herbrand inter-
pretation even in the presence of equality. For example, for the clause set M consisting only
of f(b) ≈ f(c), its range-restricted version rr(M) has an E-model I . We get a quasi-Herbrand
interpretation J induced from rr(M) and I with domain |J | = {b, c, f(b), f(c)} such that
f J (f (b)) = c and f J (f (c)) = c. To get an E-interpretation J≈ one first builds the con-
gruence closure of {f(f(b)) ≈ c, f(f(c)) ≈ c} ∪ {f(b) ≈ f(c)}. The first set stems from the
definition of f J and the second set from I |� f(b) ≈ f(c). By means of the first set any
ground term (e.g., f(f(f(b)))) is congruent to a term in |J |, but some terms in |J | may be
congruent as well because of the second set.

In summary, this constructs a Herbrand interpretation where ≈ is interpreted as a con-
gruence relation that mimics the interpretation function f I and satisfies the equations true
in I . Moreover, every ground term is congruent to a term in |J | (which is the extension of
the dom-predicate in the model I). From that, we get an induced E-interpretation J≈ on the
domain |HU� |/≈ whose elements are represented by elements from |J |. In this example
we obtain

|J≈| = {{b}, {c, f(f(b)), f(f(c)), f(f(f(f(b)))), f(f(f(f(c)))), . . .},
{f(b), f(c), f(f(f(b))), f(f(f(c))), . . .}}

and J≈ is an E-model of M .

5.1 Modification: Themyequal Predicate

When using a BUMG theorem prover with built-in equality treatment, it is important to note
that one particular type of clause in the rr transformation should not be treated as a normal
clause. For the equality predicate the rr transformation produces in Step (2) the clauses

x ≈ y → dom(x) x ≈ y → dom(y) . (#)

Any superposition-based theorem prover simplifies these clauses todom(x): applying EqRes
to x ≈ y → dom(x) derives dom(x). Both clauses (#) are now subsumed by the new clause
dom(x) and can be deleted.

As a consequence this can lead to all negative domain literals being resolved away and all
clauses containing a positive domain literal to be subsumed. This means range-restriction is
undone. This is what happens, for example, in SPASS.

Since the clauses added in Step (4) really only need to be added for positively occurring
predicate symbols, an easy solution involves replacing any positive occurrence of the equality
predicate by a predicate symbol myequal (say), which is fresh in the signature, and adding
the clauses

myequal(x, y) → dom(x) myequal(x, y) → dom(y)

rather than (#). In addition, the clause set needs to be extended by this ‘definition’ ofmyequal.

myequal(x, y) → x ≈ y

This solution has the intended effect of adding terms occurring in positive equality literals to
the domain (by Step (4) of the rr transformation), and prevents other inferences or reductions
on myequal.

In other words, instead of directly deriving a unit s ≈ t the above solution first derives
myequal(s, t) as an intermediate conclusion, and then s ≈ t from that. With myequal(s, t)
derived, dom(s) and dom(t) follow.

123

214 P. Baumgartner, R. A. Schmidt

It is not difficult to prove that E-satisfiability is preserved in both directions:

Proposition 2 Let M be a clause set and suppose M ′ is obtained from M by replacing in every
clause B → H ∈ M every equation s ≈ t ∈ H by myequal(s, t). Then M is E-satisfiable
iff M ′ ∪ {myequal(x, y) → x ≈ y} is E-satisfiable.
Proof (⇐) Assume M ′ ∪ {myequal(x, y) → x ≈ y} is satisfied by an E-interpretation I .
Take arbitrarily any clause B → H ′ ∈ M ′ and let B → H ∈ M be the clause from
which B → H ′ was obtained. The clause B → H is a logical consequence of B → H ′
and myequal(x, y) → x ≈ y. From I |� M ′ ∪ {myequal(x, y) → x ≈ y} it follows
I |� B → H . As B → H ′ ∈ M ′ was chosen arbitrarily it follows that I |� M .

(⇒) Assume M is true in an E-interpretation I . Define the E-interpretation I ′ to be the
same as I , but extended for the new predicate symbol myequal by myequalI

′
(d1, d2) :=

d1 ≈I d2, for every d1, d2 ∈ |I |. Trivially, I ′ |� M (as myequal is a fresh symbol) and
I ′ |� myequal(x, y) → x ≈ y (by definition of myequalI

′
). Take arbitrarily any clause

B → H ∈ M and let B → H ′ ∈ M ′ be the clause after the described replacement. From
I ′ |� B → H it follows I ′ |� B → H ′ by the semantics of first-order logic.AsB → H ∈ M
was chosen arbitrarily it follows that I |� M ′ ∪ {myequal(x, y) → x ≈ y}. ��

Proposition 2 ensures that the myequal predicate is semantically harmless. We should
mention though an operational drawback, if superposition-style inference rules are used.
Letting � denote a suitable term ordering, the ParaUnitPos inference rule then becomes
the rule that from v[s] ≈ u (left premise) and s ≈ t (right premise) derive v[t] ≈ u,
only if v[s] � u and s � t . Now, the first restriction is lost if the left premise becomes
myequal(v[t], u) instead. This is a drawback. A better alternative to using the myequal
predicate is an inference rule that derives dom(s) from s ≈ t .

5.2 Modification: Range-Restriction

We need one more modification to use the rr transformation with BUMGmethods with built-
in equality inference rules. The EqRes inference rule (see Sect. 3) can break the invariant
that all positive clauses derivable from a rr transformed clause set are ground. Consider, for
example, the clause x ≈ f(y) → P(x) ∨ Q(x). While range-restricted, applying EqRes to it
yields P(f(y)) ∨ Q(f(y)), which is no longer range-restricted. Indeed, this clause cannot be
split and processed further as intended.

The easiest fix of this problem is to replace line 17 in the rr transformation by the line

let {x1, . . . , xk} = var(H) .

That is, all variables in the headmust be subject to thedom-predicate. As a result, the example
clause is rr transformed into dom(x) ∧ x ≈ f(y) → P(x) ∨ Q(x) and EqRes instead derives
the range-restricted clause dom(f(y)) → P(f(y)) ∨ Q(f(y)).

Semantically this change does not make any difference, as Corollary 1 applies without
modification. Moreover, the change does not cause any operational penalties either. Consider
that a (ground) unit clause H is pairedwith a body atom B in a clausedom(x)∧B[x]∧B → H
in a HRes or ParaNeg inference (for simplicity we consider only one variable x to make the
argument). By the clauses added in Steps (4) and (5) of the rr transformation, all subterms
in H are in the domain as well, by derived dom-facts. This entails that x , if assigned to a
subterm of H , is in the domain. The additional body atomdom(x), hence, is satisfied anyway.

Notice that the classical range-restriction transformation crr needs an analogous modifi-
cation.

123

Blocking and Other Enhancements for Bottom-Up Model Generation Methods 215

6 Shifting Transformation

The clauses introduced in Step (2) of the new rr transformation to range-restricted form
use abstraction and insert (possibly a large number of) instantiations of terms occurring in
the clause bodies into the domain. These are sometimes unnecessary and can lead to non-
termination of BUMG procedures.

To explain by means of an example consider the singleton clause set comprised of

Q(x) ∧ P(f(x)) → R(x) . (∗)
Step (2) in the rr transformation applied to the body atom Q(x) does not lead to a new
clause and is unproblematic. Step (2) applied to the other body atom P(f(x)) adds to the set
variable N a new clause of the form P(x1) → dom(f(x)), whose range-restricted version

dom(x) ∧ P(x1) → dom(f(x)) (♠)

is added in Step (3) to the final result.
This is already an improvement over the classical range-restriction crr which includes the

less constraining clause dom(x) → dom(f(x)). Together with the clause, say, dom(b) of
Step (1) a derivation from that clause set contains dom(f(b)), dom(f(f(b))), etc, and does
not terminate; the derivation from the rr transformed clause set does terminate quickly.

However, the advantage of the rr transformation is lost as soon as a clause P(t), for any
ground term t , is present or has been derived. For instance, if we extend the above example (∗)
with the clause P(b) we obtain the clause set

P(b) Q(x) ∧ P(f(x)) → R(x) .

BUMG methods now also derive dom(f(b)), dom(f(f(b))), etc, from the rr transformation
of this clause set by means of the clause (♠).

The shifting transformation introduced in this section can address this problem (and so
can the blocking transformation in Sect. 7 below). It consists of two sub-transformations,
basic shifting and partial flattening.

6.1 Basic Shifting

If A is an atom P(t1, . . . , tn) then letnot_A denote the atomnot_P(t1, . . . , tn), wherenot_P
is a fresh predicate symbol which is uniquely associated with the predicate symbol P . If P
is the equality symbol ≈ we write not_P as �≈ and use infix notation.

Now, the basic shifting transformation of a clause set M is the clause set bs(M) obtained
from M by the following algorithm.

1 Algorithm bs(M)
2 // Input: a clause set M
3 // Output: a clause set with basic shifting applied to M
4 // Step (1): initialization
5 var res := ∅ // initialized result clause set
6 var �+

P := ∅ // new predicate symbols extending �P

7 // Step (2): shifting deep atoms
8 foreach (B → H) ∈ M do
9 let {B1, . . . , Bm} = {B ∈ B | some top-level term of B is a compound term}

123

216 P. Baumgartner, R. A. Schmidt

10 �+
P := �+

P ∪ {P | P is the predicate symbol of some atom in {B1, . . . , Bm} }
11 res := res ∪ {(B \ {B1, . . . , Bm}) → H ∨ not_B1 ∨ · · · ∨ not_Bm}
12 // Step (3): shifted atoms consistency
13 foreach P ∈ �+

P where n is the arity of P do
14 res := res ∪ {P(x1, . . . , xn) ∧ not_P(x1, . . . , xn) → ⊥}
15 return res

In line 9 of Step (2) every atom Bi identified in a run of bs, is called a shifted atom. Notice
that we do not add clauses complementary to the ‘shifted atoms consistency’ clauses, that is,
P(x1, . . . , xn) ∨ not_P(x1, . . . , xn). They could be included but are superfluous.

As a side effect, the clause set bs(M) has implicitly assumed the signature �P ∪ �+
P as

needed for a subsequent rr transformation.
Let us consider as an example these clauses.

P(b) Q(x) Q(x) ∧ P(f(x)) → R(x) (∗∗)

Basic shifting moves the negative occurrences of functional terms into heads for the last
clause and we get

P(b) Q(x) Q(x) → R(x) ∨ not_P(f(x))

not_P(x) ∧ P(x) → ⊥ .

Applying the rr transformation we obtain the following set.

dom(b) P(b) R(x) → dom(x)

P(x) → dom(x) dom(x) → Q(x) dom(f(x)) → dom(x)

Q(x) → dom(x) Q(x) → R(x) ∨ not_P(f(x))

not_P(x) → dom(x) not_P(x) ∧ P(x) → ⊥
The clauses in column one are added in Steps (1) and (2), the clauses in columns one and two
are present after Step (3), and the clauses in the third column are added by Step (4) and (5).

Even on this clause set termination of BUMG can be achieved. For instance, in a
hyperresolution-like mode of operation and with splitting enabled, the SPASS prover [93,94]
splits the derived clause R(b) ∨ not_P(f(b)), considers the case with the literal R(b) first
and terminates with a model. This is because a finite completion (model) is found without
considering the case of the bigger literal not_P(f(b)), which would have added the term f(b)

to the domain. The same behaviour can be achieved, for example, with the KRHyper BUMG
prover, a hypertableaux theorem prover [95].

6.2 Partial Flattening

Ascanbe seen in the previous example, the basic shifting transformation avoids the generation
of new domain elements by removing literals from a clause body. Of course, a smaller
clause body affects the search space, as then the clause can be used as a premise more
often. To (partially) avoid this effect, we propose an additional transformation, called partial
flattening, to be performed prior to the basic shifting transformation. It consists of replacing
all compound terms in non-equational body atoms and replacing them by equations with
these variables.

123

Blocking and Other Enhancements for Bottom-Up Model Generation Methods 217

We need some preliminaries before defining partial flattening formally. Let unif be a fresh
binary predicate symbol and assume �P has already been extended by unif. (Intuitively,
unif stands for ‘unifiability’ and is defined by the clause unif(x, x).)

Definition 5 (Target term) Let P(t1, . . . , tn) be an atom. For all i ∈ {1, . . . , n}, ti is a target
term in P(t1, . . . , tn) iff P /∈ {≈, unif} and ti is a compound term. For any variable x , define
P(t1, . . . , tn)[ti �→ x] = P(t1, . . . , ti−1, x, ti+1, . . . , tn). ��
For a clause set M , the partial flattening transformation is the clause set pf(M) obtained
from M by applying the following algorithm.

1 Algorithm pf(M)
2 // Input: a clause set M
3 // Output: a clause set with partial flattening applied to M
4 // Step (1): initialization
5 var res := {unif(x, x)} // initialized result clause set
6 // Step (2): partial flattening
7 foreach (B1 ∧ · · · ∧ Bk → H) ∈ M do
8 var B := {B1, . . . , Bk}
9 while there is a B ∈ B and a target term t in B do

10 let x be a fresh variable
11 B := (B \ {B}) ∪ {B[t �→ x], unif(x, t)}
12 res := res ∪ {B → H}
13 return res

Applied to our running example consisting of the clauses (∗∗) we get as a result of the pf
transformation the clauses

unif(x, x) P(b) Q(x) Q(x) ∧ P(u) ∧ unif(u, f(x)) → R(x) .

Altogether, applying the transformations pf, bs and rr, in this order, yields the following
clauses (among other clauses, which are omitted because they are not relevant to the current
discussion).7

Q(x) ∧ P(u) → R(x) ∨ not_unif(u, f(x)) not_unif(x, y) → dom(x)

dom(x) → unif(x, x)

not_unif(x, y) ∧ unif(x, y) → ⊥ not_unif(x, y) → dom(y)

unif(x, y) → dom(x)

unif(x, y) → dom(y)

Observe that the clause Q(x) ∧ P(u) → R(x) ∨ not_unif(u, f(x)) is more restricted than the
above clause Q(x) → R(x) ∨ not_P(f(x)) because of the additional body literal P(u).

The reason for not extracting constants during partial flattening is that adding them to the
domain does not cause non-termination of BUMG methods. It is preferable to leave them in
place in the body literals because they have a stronger constraining effect than the variables
introduced otherwise.

An immediate improvement of the combined pf, bs and rr transformations comes to mind.
The pf transformation introduces in its Step (2) unif-body atoms that are, by design, all

7 The clause dom(x) → unif(x, x) is the result of range-restriction on the clause unif(x, x).

123

218 P. Baumgartner, R. A. Schmidt

shifted into corresponding not_unif-head atoms. The only unif-atoms that remain in the end
are those four clauses in the above example. We can hence eliminate the unif predicate from
the set by applying resolution inferences exhaustively among them. After deleting tautologies
we obtain a simplified, equi-satisfiable clause set.8 In the example it looks as follows:

Q(x) ∧ P(u) → R(x) ∨ not_unif(f(x), u) not_unif(x, y) → dom(x)

not_unif(x, x) ∧ dom(x) → ⊥ not_unif(x, y) → dom(y) .

As for rr, the pf and bs transformations can be used with respect to equality as well.
However, extracting top-level terms from equations has no effect at all, and this is why
they are excluded from pf. Consider the unit clause f(a) ≈ b → ⊥, and its (otherwise)
partial flattening x ≈ b ∧ unif(x, f(a)) → ⊥. Applying basic shifting yields x ≈ b →
not_unif(x, f(a)), and, hyperresolution with a derivable instance b ≈ b (or the EqRes rule))
gives not_unif(b, f(a)). In terms of derivable dom-clauses this is equivalent to b �≈ f(a) as
obtained by the bs transformation applied to f (a) ≈ b → ⊥ without doing partial flattening
first. This explains why top-level terms of equational literals are excluded from the definition.
(One could consider using standard flattening, that is, recursively extracting terms, but this
does not lead to any improvements over the defined transformations.)

Finally,we combine basic shifting and partial flattening to give the shifting transformation:

Definition 6 (Shifting) The shifting transformation is defined as sh := pf◦bs, that is, sh(M) =
bs(pf(M)), for any clause set M .

Proposition 3 (Completeness of shifting) Let M be any clause set. Then M is satisfiable iff
sh(M) is satisfiable.

Proof Not difficult, since bs (basic shifting) can be seen to be a structural transformation
and pf (partial flattening) is a form of term abstraction. The formal argumentation is similar
to the proof of Proposition 2. In particular, the interpretation function for the predicates
not_P is the negation of P . ��
Corollary 2 (Completeness of shifting with respect to E-interpretations) Let M be any clause
set. Then M is E-satisfiable iff sh(M) is E-satisfiable.

Proof Using the same line of argument as in the proof of Corollary 1, proving preservation of
E-satisfiability canbe reduced to provingpreservation of satisfiability bymeans of the equality
axioms (observe that the shifting transformation does not modify the equality axioms). ��

7 Blocking

The final transformation introduced in this paper is called blocking and provides a mech-
anism for detecting recurrence in the derived models. The blocking transformation is
designed to realize a ‘loop-check’ for the construction of a domain, by capitalizing on avail-
able, powerful equality reasoning technology and redundancy criteria from saturation-based
theorem proving. To be suitable, a resolution-based prover, for instance, should support
hyperresolution-style inference, strong equality inference (for example, superposition or
rewriting), splitting, the possibility to search for split-off positive equations first (explained
below), and standard redundancy elimination techniques.

8 This essentially uses predicate elimination [38].

123

Blocking and Other Enhancements for Bottom-Up Model Generation Methods 219

The basic idea behind blocking is to add clauses that cause a case analysis of the form
s ≈ t versus s �≈ t , for (ground) terms s and t . Although such a case analysis apparently
leads to a bigger search space, it provides a powerful technique to detect finite models with
a BUMG prover and in practice actually leads to satisfiability being detected more quickly.
This is because in the case that s ≈ t is assumed, this new equation leads to rewriting
and representing otherwise infinitely many terms as one single term. To make this possible,
the prover must support the above features, including notably splitting. Among resolution
theorem provers splitting has become standard. Splitting was first available in the saturation-
based prover SPASS [93,94], but is also part of VAMPIRE [73,74] and E [83]. Splitting is
an integral part of the hypertableau prover E-KRHyper [13,72].

In the following we introduce four different, but closely related, blocking transformations,
called subterm domain blocking, subterm predicate blocking, unrestricted domain blocking
and unrestricted predicate blocking. Subterm domain blocking was introduced in the short
version of this paper under the name blocking [16]. Subterm predicate blocking is inspired by
and related to the blocking technique described in [50]. Unrestricted domain blocking is the
first-order version of the unrestricted blocking rule introduced in [79] and used for developing
terminating tableau calculi for logics with the effective finite model property [80,81]. A
logic L (or fragment F of first-order logic) has the effective finite model property if there a
computable model bounding function μ : N → N such that the following holds. For every
formula φ, if φ is satisfiable in an L-model (F -model) then φ has a finite L-model (F -model)
with domain size not exceeding μ(n), where n is the length of φ.

7.1 Subterm Domain Blocking

Let sub be a fresh binary predicate symbol not in�P . For a clause setM , the subterm domain
blocking transformation is the clause set sdb(M) obtained from M by applying the following
algorithm.

1 Algorithm sdb(M)
2 // Input: a clause set M
3 // Output: a clause set with subterm domain blocking applied to M
4 // Step (1): initialization
5 var res := M ∪ {dom(x) → sub(x, x)} // initialized result clause set
6 // Step (2): axioms describing the subterm relationship
7 foreach f ∈ � f do
8 for i ∈ {1, . . . , n}, where n is the arity of f do
9 res := res ∪

10 {sub(x, xi) ∧ dom(x) ∧ dom(f (x1, . . . , xn)) → sub(x, f (x1, . . . , xn))}
11 // Step (3): subterm equality case analysis and axiom for �≈
12 res := res ∪ {sub(x, y) → x ≈ y ∨ x �≈ y, x ≈ y ∧ x �≈ y → ⊥}
13 return res

Regarding Step (3), recall from Sect. 6.1 that �≈ is suggestive notation for the introduced
predicate symbol not_≈. The subterm domain blocking transformation allows to consider
whether two domain elements that are in a subterm relationship should be identified and
merged, or not.

123

220 P. Baumgartner, R. A. Schmidt

This blocking transformation preserves range-restrictedness. In fact, because the dom
predicate symbol is mentioned in the definition, the blocking transformation can be applied
meaningfully only in combination with a range-restricting transformation.

Reading sub(s, t) as ‘s is a subterm of t’, Step (2) in the blocking transformation might
seem overly involved, because an apparently simpler specification of the subterm relationship
for the terms of the signature � f can be given. Namely:

dom(x) → sub(x, x) sub(x, xi) → sub(x, f (x1, x2 . . . , xn))

for every n-ary function symbol f ∈ � f and all i ∈ {1, . . . , n}. Yet, this specification, even
if range-restricted, is not suitable for our purposes. The problem is that the second clause
introduces compound terms.

For example, for a given constant a and a unary function symbol f, when just dom(a)
alone has been derived, a BUMG procedure derives an infinite sequence of clauses:

sub(a, a), sub(a, f(a)), sub(a, f(f(a))),

This does not happen with the specification in Step (2). It ensures that conclusions of BUMG
inferences involving sub are about terms currently in the domain, without unforcedly extend-
ing it.

To justify the clauses added in Step (3) we continue this example and suppose an inter-
pretation that contains dom(a) and dom(f(a)). These might have been derived earlier in the
run of a BUMG prover. Then, from the clauses added by blocking, the (necessarily ground)
disjunction

f(a) ≈ a ∨ f(a) �≈ a

is derivable.
Now, it is important to use a BUMG prover with support for splitting and to equip it

with an appropriate search strategy. In particular, when deriving a disjunction such as the
one derived above, the ≈-literal should be split off and the clause set obtained in this case
should be searched first. The reason is that inference with a positive (ground) equational unit
is simplifying. For example, should dom(f(f(a))) be derivable now (in the current branch),
then any prover featuring rewriting and a complete simplification ordering is able to prove
it redundant from f(a) ≈ a and dom(a). Consequently, the domain is not to be extended
explicitly. The information that dom(f(f(a))) is in the domain is nevertheless implicit via the
theory of equality.

7.2 Subterm Predicate Blocking

Subterm domain blocking defined in the previous section applies blocking to domain terms
where one is a proper subterm of the other. The idea of the subterm (unary) predicate blocking
transformation is similar, but it merges only the (sub)terms in the extension of unary predicate
symbols different from dom in the current interpretation.

Subterm predicate blocking is defined as follows:

1 Algorithm spb(M)
2 // Input: a clause set M
3 // Output: a clause set with subterm predicate blocking applied to M
4 // Step (1): initialization
5 var res := M ∪ {dom(x) → sub(x, x)} // initialized result clause set

123

Blocking and Other Enhancements for Bottom-Up Model Generation Methods 221

6 // Step (2): axioms describing the subterm relationship; same as Step (2) in sdb
7 foreach f ∈ � f do
8 for i ∈ {1, . . . , n}, where n is the arity of f do
9 res := res ∪

10 {sub(x, xi) ∧ dom(x) ∧ dom(f (x1, . . . , xn)) → sub(x, f (x1, . . . , xn))}
11 // Step (3): subterm equality case analysis
12 foreach unary P ∈ �P do
13 res := res ∪ {sub(x, y) ∧ P(x) ∧ P(y) → x ≈ y ∨ x �≈ y}
14 // Step (4): axiom for �≈
15 res := res ∪ {x ≈ y ∧ x �≈ y → ⊥}
16 return res

Observe that the only difference between this transformation and the subterm domain
blocking transformation lies in Step (3). The clauses

sub(x, y) ∧ P(x) ∧ P(y) → x ≈ y ∨ x �≈ y

added here are obviously more restricted than their counterpart sub(x, y) → x ≈ y∨ x �≈ y
in the definition of the subterm domain blocking transformation sdb.

That subterm predicate blocking is strictly more restricted can be seen from the following
example, which also helps to explain the rationale behind this transformation.

P(a) P(x) → Q(f(x))

Any BUMG prover can be expected to terminate on the range-restricted version of the trans-
formed clause set and returns the model

{dom(a), dom(f(a)), P(a), Q(f(a)), sub(a, a), sub(a, f(a))}.

Notice that the subterm predicate blocking transformation includes the clauses

sub(x, y) ∧ P(x) ∧ P(y) → x ≈ y ∨ x �≈ y

sub(x, y) ∧ Q(x) ∧ Q(y) → x ≈ y ∨ x �≈ y

but all BUMG inferences between these clauses and the above model lead to redundant
ground conclusions t ≈ t ∨ t �≈ t (in this example where t ∈ {a, f(a)}). The motivation
behind these clauses is to equate the arguments of two P-literals (say) only when there are
two literals P(s) and P(t) where s is a subterm of t . Conversely, if no such recurrence comes
up, as in the above example, there is no reason for blocking. By contrast, the subterm domain
blocking transformation sdb with its clause sub(x, y) → x ≈ y∨x �≈ y would be applicable
even to distinct terms, leading to the (unnecessary) split into the cases a ≈ f(a) and a �≈ f(a).

From amore general perspective, the spb transformation is motivated by the application to
description logic knowledge bases [2,50]. Often, such knowledge bases do not contain cyclic
definitions, or only few definitions are cyclic. The subterm predicate transformation aims to
apply blocking only to concepts (unary predicates) with cyclic definitions. In Sect. 7.5, we
discuss a description logic example to highlight the differences between the various blocking
transformations.

123

222 P. Baumgartner, R. A. Schmidt

7.3 Unrestricted Domain Blocking

The two previous ‘subterm’ variants of the blocking transformation allow to speculatively
identify terms and their subterms. The ‘unrestricted’ variants introduced next differ from
both by allowing speculative identifications of any two terms.

For the ‘domain’ variant, called unrestricted domain blocking transformation, the defini-
tion is as follows.

1 Algorithm udb(M)
2 // Input: a clause set M
3 // Output: a clause set with unrestricted domain blocking applied to M
4 // Step (1): initialization
5 var res := M // initialized result clause set
6 // Step (2): equality case analysis and axiom for �≈
7 res := res ∪ {dom(x) ∧ dom(y) → x ≈ y ∨ x �≈ y, x ≈ y ∧ x �≈ y → ⊥}
8 return res

There is a clear trade-off between this transformation and the subterm domain blocking
transformation sdb.On theonehand, the unrestricteddomainblocking transformation induces
a larger search space, as the bodies of the clauses dom(x) ∧ dom(y) → x ≈ y ∨ x �≈ y are
less constrained than their counterparts in the subterm domain blocking transformation.With
this clause BUMG derives the clauses s ≈ t ∨ s �≈ t , for every s, t in the derivable domain.
In contrast, the clause sub(x, y) → x ≈ y ∨ x �≈ y from the sdb transformation derives
s ≈ t ∨ s �≈ t only if additionally s is a subterm of t . On the other hand, the unrestricted
domain blocking transformation can enable finding models with smaller domains because of
the additionally derivable equations. This means fewer congruence classes on the Herbrand
terms are induced by the equality relation ≈ and, as our evaluation shows, actually reduces
effort and memory consumption as models are found quicker (if there are any), even for the
crr transformation.

We claim that the termination proof in [82] for semantic ground tableau with unrestricted
domain blocking for the description logicALBOid with the expressive power similar to the
two-variable fragment of first-order logic can be adapted to show BUMG with unrestricted
domain blocking can return finite models, when they exist, i.e., decide finite satisfiability. For
this it is essential that blocking is applied eagerly and a breadth-first or iterative deepening
search strategy is used to avoid getting ‘lost’ in a branch of the derivation where only infinite
models exist. Carrying over the results in [80] implies unrestricted domain blocking can be
used in BUMGmethods to return domain minimal models for logics with the effective finite
model property.

7.4 Unrestricted Predicate Blocking

The definition of the last variant of blocking, the unrestricted (unary) predicate blocking
transformation, is as follows.

1 Algorithm upb(M)
2 // Input: a clause set M
3 // Output: a clause set with unrestricted predicate blocking applied to M
4 // Step (1): initialization
5 var res := M // initialized result clause set

123

Blocking and Other Enhancements for Bottom-Up Model Generation Methods 223

6 // Step (2): equality case analysis
7 foreach unary P ∈ �P do
8 res := res ∪ {P(x) ∧ P(y) → x ≈ y ∨ x �≈ y}
9 // Step (3): axiom for �≈

10 res := res ∪ {x ≈ y ∧ x �≈ y → ⊥}
11 return res

This transformation allows to equate any two (distinct) terms in a P-relation, if there
are any. The motivation is a combination of the above, to attempt to block recurrence on
P-literals if they arise, and to compute models with small domains.

7.5 Comparison on an Example

It is instructive to compare the effects on the returned models of the four blocking transfor-
mations on an example from description logics. To this end, consider the description logic
knowledge base (left) and its translation into clause logic (right) in Table 1.

Notice that the cycle in the dependency graph in the TBox (for P1 and P2) means that
some form of blocking is needed for decidability in tableau-based description logic systems.
Likewise, blocking is needed to force BUMG methods to terminate on the translated clause
form. Any of the four blocking transformations defined above suffice. Table 2 summarizes the
behaviour of these transformations, in terms of interesting relations in the computed model.

When comparing in detail the blocking techniques developed for description logics it
becomes clear that

the transformations rr ◦ τ and sh ◦ rr ◦ τ, for τ ∈ {sdb, spb, udb, upb},

Table 1 Sample description logic knowledge base and clausal form

Table 2 Partial truth assignments in models computed for the sample knowledge base

Blocking dom ≈ P1 P2 Q

sdb a,b f(a) ≈ a, f(b) ≈ b,

g(a) ≈ a,g(b) ≈ b,

h(a) ≈ a, h(b) ≈ b

a,b a,b a,b

spb a,b f(a) ≈ a, f(b) ≈ b,

g(a) ≈ a,g(b) ≈ b,

h(a) ≈ a, h(b) ≈ b

a,b a,b a,b

udb b a ≈ b, f(b) ≈ b,

g(b) ≈ b, h(b) ≈ b
b b b

upb b, f(b), h(b) a ≈ b,

g(h(b)) ≈ b
b h(b) f(b)

The transformation applied is rr ◦ τ where τ is the blocking transformation in the left column. Notice that the
shifting transformation sh does not have any effect in this example

123

224 P. Baumgartner, R. A. Schmidt

when applied to a knowledge base with finite models, in conjunction with a suitable BUMG
method (see above, at the end of Sect. 7.1), can be refined to simulate various forms of standard
blocking techniques used in description logic systems, including subset ancestor blocking
and equality ancestor blocking (cf. [50,56,82]). Because standard loop-checkingmechanisms
used in description logic systems do not require backtracking, appropriate search strategies
and restrictions for performing inferences and applying blocking need to be used.

An advantage of our approach to blocking as opposed to loop-checking used inmainstream
description logic systems [2] (i.e., blockingwithout equality reasoning) is that it applies to any
first-order clause set, not only to clauses from the translation of description logic problems.
This makes the approach very general and widely applicable.

For instance, our approach makes it possible to extend description logics with arbi-
trary (first-order expressible) ‘rule’ languages. ‘Rules’ provide a connection to (deductive)
databases and are being used to represent information that is currently not expressible in the
description logics associated with OWLDL [1]. The specification of many natural properties
of binary relations and complex statements involving binary relations are outside the scope
of most current description logic systems. An example is the statement: individuals who
live and work at the same location are home workers. This can be expressed as a Horn rule
(clause) work(x, y) ∧ loc(y) ∧ live(x, z) ∧ loc(z) ∧ y ≈ z → homeWorker(x), but, with
some exceptions [54,94], is not expressible in current description logic systems.

8 Soundness and Completeness of the Transformations

Each of the blocking transformations is complete:

Proposition 4 (Completeness of blocking with respect to E-interpretations) Let M be any
clause set. For all τ ∈ {sdb, spb, udb, upb}, if τ(M) is E-satisfiable then M is E-satisfiable.

Proof Not difficult, as M ⊆ τ(M) by definition. ��
The converse, that is, soundness of the transformation, is easy to prove. One basically needs
to observe that the clauses added in respectively steps of the blocking transformations, realize
a case distinction over whether two terms are equal or not. Trivially, one of the two cases
always holds.

Putting all the transformations and the corresponding results together we can state the
main theoretical result of the paper.

Theorem 1 (Completeness of the combined transformations wrt. E-interpretations) Let M
be a clause set and suppose tr is any of the transformations in

{rr, sh ◦ rr} ∪ {rr ◦ τ, sh ◦ rr ◦ τ | τ ∈ {sdb, spb, udb, upb}} or

{crr, sh ◦ crr} ∪ {crr ◦ τ, sh ◦ crr ◦ τ | τ ∈ {sdb, spb, udb, upb}} .

Then:

(i) tr(M) is range-restricted.
(ii) tr(M) can be computed in quadratic time.
(iii) If tr(M) is E-satisfiable then M is E-satisfiable.

The reverse directions of (iii), that is, soundness of the respective transformations, hold as
well. The proofs are either easy or completely standard. Also, item (iii) can be made more
specific in the same way as Corollary 1.

123

Blocking and Other Enhancements for Bottom-Up Model Generation Methods 225

By carefully modifying the definition of rr (by essentially structure sharing to optimize
the size of the transformation and avoid unneeded duplication) it is possible to compute the
reductions in linear time.

Proposition 5 Let M and tr be as in the previous result. Then:

(i) The size of tr(M) is bounded by a linear function in the size of M.
(ii) tr(M) can be computed in linear time.

9 Decidability of BS Classes

Formulae in the Bernays–Schönfinkel class are conjunctions of function-free formulae of the
form ∃∗∀∗ψ , where ψ is free of quantifiers. A clause is a BS clause iff all functional terms
occurring in it are constants.

From [60, §5.3] it is known that hyperresolution does not decide the Bernays–Schönfinkel
class without equality directly, and neither do any of the standard refinements of resolution.
However it has been shown that hyperresolution and any refinements can decide the class of
range-restricted BS clauses without equality [77]. Here we assume that the language includes
equality.

Theorem 2 The class of range-restricted BS clauses (with equality), is decidable by
unordered hyperresolution, or unordered resolution with selection of at least one nega-
tive literal (and paramodulation). It is also decidable by all refinements using a complete
simplification ordering (and superposition).

This means all refinements of hyperresolution (and some form of equality reasoning) com-
bined with any translation into range-restricted clauses is a decision procedure for the BS
class. Therefore:

Corollary 3 Let M be any set of BS clauses, and suppose tr is a transformation in{
rr, sh ◦ rr

} ∪ {
rr ◦ τ, sh ◦ rr ◦ τ | τ ∈ {sdb, spb, udb, upb}} and{

crr, sh ◦ crr
} ∪ {

crr ◦ τ, sh ◦ rr ◦ τ | τ ∈ {sdb, spb, udb, upb}}.
Then:

(i) Hyperresolution (or resolution with selection of at least one negative literal) with
paramodulation and all refinements using a superposition-based equality reasoning
decide tr(M).

(ii) All BUMG methods decide M.

Since there are linear transformations of first-order formulae into clausal form, and since
all the tr transformations are effective reductions of first-order clauses into range-restricted
clauses, we obtain the following result.

Theorem 3 (i) There is a quadratic (linear), satisfiability equivalence preserving transfor-
mation of any formula in the Bernays–Schönfinkel class, and any set of BS clauses, into
a set of range-restricted BS clauses.

(ii) All procedures based on hyperresolution or BUMG using a suitable form of equality
handling decide the class of BS formulae and the class of BS clauses.

In [77] a similar but different transformation is used to prove this result for hyperresolu-
tion and BS without equality. In fact, what is crucial for deciding the BS class is a grounding

123

226 P. Baumgartner, R. A. Schmidt

method. This can be achieved by any form of range-restriction and hyperresolution-like infer-
ences. Theorem 3(ii) can therefore be strengthened to include also any instantiation-based
method [22,39,40], in particular also methods using on-the-fly instantiation such as seman-
tic Smullyan-type tableau systems, where instantiation of universally quantified variables is
realized by the γ -rule.

10 Experimental Evaluation

We have implemented the transformations described in the previous sections and carried out
experiments on problems from the TPTP library, Version 6.0.0 [89]. The implementation, in
SWI-Prolog, is called Yarralumla (Yet another range-restriction avoiding loops under much
less assumptions). Since the transformations introduced in this paper are defined for clausal
problems we have selected for the experiments all the CNF problems from the TPTP suite.

In our initial research [16] we used Yarralumla with the MSPASS theorem prover, Ver-
sion 2.0g.1.4 [52]. As the extra features of MSPASS have in the mean time been integrated
into the SPASS theorem prover [94] and SPASS has significantly evolved since Version 2.0,
for the present paper we combined Yarralumla with SPASS Version 3.8d.

For that purpose we modified the code of SPASS in a number of ways. We added one new
flag to activate splitting on positive ground equality literals in positive non-Horn clauses.
The main inference loop was adapted so that finding a splitting clause and applying splitting
has highest priority (unchanged) followed immediately by picking a non-positive blocking
clause, that is, a clause of the form B1 ∧ · · · ∧ Bk → s ≈ t ∨ H1 ∨ · · · ∨ Hm for m ≥ 0 and
k > 0, and performing inferences with it. The selection of splitting clauses was adapted so
that positive ground clauses of the form s ≈ t ∨ H1 ∨ · · · ∨ Hm , where m ≥ 1, are always
selected, when there are any. Moreover, the first equality literal is split upon. This adaptation
ensures blocking is performed eagerly to keep the set of ground terms small. The tests with
Yarralumla were performed using ordered resolution and superposition with selection of at
least one negative literal, forward and backward rewriting, unlimited splitting (as described
above),9 matching replacement resolution,10 subsumption and various other simplification
rules. Thismeans the inferences are performed in an ordered hyperresolution-style with eager
splitting and forward and backward ground rewriting. The derivations constructed are thus
BUMG tree derivations, the proofs produced are BUMG refutation proofs, and the models
returned are BUMG models.

We also tested SPASS Version 3.8d in auto mode on the sample. In auto mode SPASS
used ordered resolution with dynamic selection of negative literals (an option in SPASS).
SPASS automatically turned off splitting for non-Horn clauses. Dynamic selection means
typically literals were only selected if multiple maximal literals occur in a clause. This means
the behaviour of SPASS in auto mode was very different to that of SPASS-Yarralumla, which
always selected a literal in clauses with non-empty negative part. The changes to SPASS in
SPASS-Yarralumla meant that splitting was performed eagerly and blocking clauses were
targeted, which was not the case with SPASS in auto mode. We tested SPASS in auto mode
only on the original files (translated from TPTP syntax to SPASS syntax).

9 The splitting options in SPASS are: no splitting, unlimited splitting and a strategy performing splitting on
‘optimal’ literals only, but this was not used.
10 Matching replacement resolution is also known as subsumption resolution, see [92] for a definition.

123

Blocking and Other Enhancements for Bottom-Up Model Generation Methods 227

The experiments were run on a cluster of 128 Dell PowerEdge M610 Blade Servers each
with two Intel Xeon E5620 2.4 GHz processors and 48 GiB main memory each. The time
limit was 10min (CPU time).

SPASS-Yarralumla is available from http://www.cs.man.ac.uk/~schmidt/spass-yarr
alumla/.

10.1 Results

Tables 3 and 4 summarize the results for satisfiable clausal problems in the TPTP library,
measuring the number of problems solved within the time limit. The columns with the
heading ‘#’ give the number of problems in the TPTP categories and the different TPTP
rating ranges. The subsequent columns give the number of problems solved within the time
limit. The results are presented for the different BUMGmethods that were used. For example,
sh ◦ rr ◦ sdb refers to the method based on the transformation defined by the new range-
restriction transformation, shifting and subterm domain blocking. To evaluate the effect of
the different forms of blocking the results are grouped into groups of four: new range-
restriction rr, new range-restriction with shifting sh ◦ rr, classical range-restriction crr and
classical range-restriction with shifting sh ◦ crr. (The groups are separated by larger gaps
in the tables.) In each group the first column provides the baseline for that group. The last
columnwith the heading ‘auto’ gives the results for runs of SPASSVersion 3.8d in auto mode
on the original input files. The runtimes for the problems solved spanned the whole range,
from less than one second to all of the time allowed.

The best results in each group in each row are highlighted in bold font. The underlined
values are the best results for all methods including SPASS in auto mode. As expected the
worst results in each group were obtained for the baseline transformations without blocking.
This confirms the expectation that blocking is an essential technique for BUMG methods.
Among the different blocking techniques the best results were obtained with unrestricted
domain blocking in all four groups. Overall, the best result was obtained for the combination
with rr and shifting, i.e., sh ◦ rr ◦ udb, solving 6.0% more problems than the second best
method, crr ◦ udb using the classical range-restriction transformation without shifting, and
nearly 11% more problems than the transformations rr ◦ udb and sh ◦ crr ◦ udb. This means
shifting had a significant positive effect in combination with the new range-restriction trans-
formation, but less so in combination with classical range-restriction. The positive effect of
shifting could also be seen for the number of problems solved without blocking for rr and
sh ◦ rr (34% improvement).11

The good results for crr ◦ udb show the value of classical range-restriction. In the LAT
category, crr ◦ udb solved 32 problems, whereas sh ◦ rr ◦ udb solved only 5 problems. In
this category the problems are from the domain of lattice theory and contain predominantly
equational axioms (i.e., non-ground equational unit clauses) and one ground inequality (for
the axiom to be refuted). On such problems it can be seen that crr produces instantiations
of the axioms very quickly, whereas the rr favours producing clauses involving themyequal
predicate and the blocking splitting decisions are less systematic because domain elements
are identified on a by-need basis during the inference process,whereas for crr, all constants are
in the domain from the outset, leading to blocking being performed with these immediately.
On these problems crr has the advantage that blocking leads to a reduction of the size of the

11 Since there are so many parameters interacting with each other and no categorization of the problems
according to syntactic properties of the problems, it is not easy and perhaps not possible to give a precise
explanation.

123

http://www.cs.man.ac.uk/~schmidt/spass-yarralumla/
http://www.cs.man.ac.uk/~schmidt/spass-yarralumla/

228 P. Baumgartner, R. A. Schmidt

Ta
bl
e
3

N
um

be
r
of

pr
ob
le
m
s
so
lv
ed

on
sa
tis
fia
bl
e
pr
ob
le
m
s,
by

T
PT

P
ca
te
go
ri
es

C
at
eg
or
y

#
rr

rr
◦s

db
rr

◦u
db

rr
◦s

pb
rr

◦u
pb

sh
◦r

r
sh

◦r
r◦

sd
b

sh
◦r

r◦
ud
b

sh
◦r

r◦
sp
b

sh
◦r

r◦
up

b

A
L
G

37
–

–
–

–
–

–
–

–
–

–

A
N
A

2
–

–
–

–
–

–
–

–
–

–

B
O
O

17
–

5
5

–
–

–
4

5
–

–

C
A
T

10
2

6
4

4
2

2
4

4
4

2

C
O
L

6
–

–
–

–
–

–
–

–
–

–

G
E
O

17
–

–
–

–
–

–
–

1
–

–

G
R
P

85
49

55
60

49
50

50
53

57
50

51

H
E
N

3
–

–
–

–
–

–
–

–
–

–

H
W
C

2
–

–
–

–
–

–
–

–
–

–

H
W
V

39
2

2
2

2
2

2
2

2
2

2

K
R
S

13
1

8
8

7
5

7
8

8
8

8

L
A
T

62
–

10
4

–
–

–
6

5
–

–

L
C
L

44
1

4
1

2
1

2
4

3
2

2

L
D
A

26
–

–
–

–
–

–
–

–
–

–

M
G
T

11
1

6
9

6
1

4
7

7
8

4

M
SC

2
1

1
1

1
1

1
1

1
1

1

N
L
P

23
6

52
13

0
13

7
12

8
63

99
19

1
19

5
18

8
11

0

N
U
M

8
1

1
1

1
1

1
1

1
1

1

PL
A

6
–

–
–

–
–

–
–

–
–

–

PU
Z

27
7

8
8

7
7

7
8

8
7

7

R
E
L

1
–

1
1

–
–

–
1

1
–

–

R
N
G

14
1

1
1

1
1

1
1

1
1

1

R
O
B

5
–

–
–

–
–

–
–

–
–

–

SC
T

3
2

3
2

3
3

2
2

3
2

3

SE
T

12
–

–
–

–
–

–
–

–
–

–

123

Blocking and Other Enhancements for Bottom-Up Model Generation Methods 229

Ta
bl
e
3

co
nt
in
ue
d

C
at
eg
or
y

#
rr

rr
◦s

db
rr

◦u
db

rr
◦s

pb
rr

◦u
pb

sh
◦r

r
sh

◦r
r◦

sd
b

sh
◦r

r◦
ud
b

sh
◦r

r◦
sp
b

sh
◦r

r◦
up

b

SW
C

1
–

–
–

–
–

–
–

–
–

–

SW
V

14
7

2
6

8
7

2
2

2
7

2
2

SW
W

39
–

7
8

–
–

–
2

1
1

–

SY
N

22
3

54
13

2
14

7
12

6
11

7
56

13
2

14
5

12
5

11
7

SY
O

9
–

–
–

–
–

–
–

–
–

–

T
O
P

19
–

2
3

1
–

–
1

1
–

–

To
ta
l

11
26

17
6

38
8

41
0

34
5

25
6

23
6

43
0

45
6

40
2

31
1

C
at
eg
or
y

cr
r

cr
r◦

sd
b

cr
r◦

ud
b

cr
r◦

sp
b

cr
r◦

up
b

sh
◦c

rr
sh

◦c
rr

◦s
db

sh
◦c

rr
◦u

db
sh

◦c
rr

◦s
pb

sh
◦c

rr
◦u

pb
au
to

A
L
G

–
1

1
–

–
–

–
–

–
–

3

A
N
A

–
–

–
–

–
–

–
–

–
–

–

B
O
O

–
3

6
–

–
–

3
6

–
–

2

C
A
T

2
3

4
2

2
2

3
4

3
2

2

C
O
L

–
1

3
–

–
–

1
3

–
–

–

G
E
O

–
1

–
–

–
–

–
–

–
–

–

G
R
P

49
55

61
49

50
49

52
56

49
50

–

H
E
N

–
–

–
–

–
–

–
–

–
–

–

H
W
C

–
–

–
–

–
–

–
–

–
–

–

H
W
V

2
3

3
2

2
2

2
3

2
2

–

K
R
S

–
7

8
7

5
–

7
7

7
5

8

L
A
T

–
25

32
–

–
–

24
30

–
–

–

L
C
L

–
2

5
–

–
1

2
5

1
1

–

L
D
A

–
–

–
–

–
–

–
–

–
–

–

M
G
T

–
7

5
5

–
–

4
5

4
–

8

M
SC

–
1

1
1

1
–

1
1

1
1

1

123

230 P. Baumgartner, R. A. Schmidt

Ta
bl
e
3

co
nt
in
ue
d

C
at
eg
or
y

cr
r

cr
r◦

sd
b

cr
r◦

ud
b

cr
r◦

sp
b

cr
r◦

up
b

sh
◦c

rr
sh

◦c
rr

◦s
db

sh
◦c

rr
◦u

db
sh

◦c
rr

◦s
pb

sh
◦c

rr
◦u

pb
au
to

N
L
P

22
12

5
12

5
11

4
33

22
11

8
12

5
10

4
33

19
8

N
U
M

1
1

1
1

1
1

1
1

1
1

1

PL
A

–
–

–
–

–
–

–
–

–
–

–

PU
Z

7
8

8
7

7
7

8
8

7
7

7

R
E
L

–
1

1
–

–
–

1
1

–
–

–

R
N
G

1
1

2
1

1
1

3
1

1
1

–

R
O
B

–
–

–
–

–
–

–
–

–
–

–

SC
T

2
3

3
3

3
2

2
3

2
2

3

SE
T

–
–

–
–

–
–

–
–

–
–

–

SW
C

–
–

–
–

–
–

–
–

–
–

–

SW
V

–
5

7
5

–
–

4
6

4
–

79

SW
W

–
–

4
–

–
–

–
–

–
–

–

SY
N

54
13

4
14

8
12

6
11

0
55

13
1

14
3

12
4

11
1

99

SY
O

–
–

–
–

–
–

–
–

–
–

–

T
O
P

–
2

2
1

–
–

1
3

–
–

6

To
ta
l

14
0

38
9

43
0

32
4

21
5

14
2

36
8

41
1

31
0

21
6

41
7

123

Blocking and Other Enhancements for Bottom-Up Model Generation Methods 231

Ta
bl
e
4

N
um

be
r
of

pr
ob
le
m
s
so
lv
ed

on
sa
tis
fia
bl
e
pr
ob
le
m
s,
by

T
PT

P
pr
ob
le
m

ra
tin

g

C
at
eg
or
y

#
rr

rr
◦s

db
rr

◦u
db

rr
◦s

pb
rr

◦u
pb

sh
◦r

r
sh

◦r
r◦

sd
b

sh
◦r

r◦
ud
b

sh
◦r

r◦
sp
b

sh
◦r

r◦
up

b

0.
00

37
1

11
2

26
8

28
6

25
6

18
4

15
4

27
9

29
3

26
7

22
3

(0
.0
0,

0.
10

]
–

–
–

–
–

–
–

–
–

–
–

(0
.1
0,

0.
20

]
32

1
20

21
20

2
6

26
27

27
7

(0
.2
0,

0.
30

]
13

2
57

66
65

59
59

59
88

88
81

59

(0
.3
0,

0.
40

]
52

4
6

6
4

4
13

21
22

20
13

(0
.4
0,

0.
50

]
12

5
2

21
23

6
7

3
14

22
5

8

(0
.5
0,

0.
60

]
27

–
6

7
–

–
1

1
2

2
1

(0
.6
0,

0.
70

]
76

–
1

2
–

–
–

1
2

-
–

(0
.7
0,

0.
80

]
83

–
–

1
–

–
–

1
1

-
–

(0
.8
0,

0.
90

]
78

–
1

–
–

–
–

–
–

–
–

(0
.9
0,

1.
00

]
–

–
–

–
–

–
–

–
–

–
–

1.
00

10
17

†
–

–
–

–
–

–
–

–
–

–

To
ta
l

–
17

6
38

8
41

0
34

5
25

6
23

6
43

0
45

6
40

2
31

1

123

232 P. Baumgartner, R. A. Schmidt

Ta
bl
e
4

co
nt
in
ue
d cr
r

cr
r◦

sd
b

cr
r◦

ud
b

cr
r◦

sp
b

cr
r◦

up
b

sh
◦c

rr
sh

◦c
rr

◦s
db

sh
◦c

rr
◦u

db
sh

◦c
rr

◦s
pb

sh
◦c

rr
◦u

pb
au
to

0.
00

80
26

4
27

6
24

1
15

0
80

25
0

27
0

22
7

15
0

23
1

(0
.0
0,

0.
10

]
–

–
–

–
–

–
–

–
–

–
–

(0
.1
0,

0.
20

]
–

21
19

20
1

–
18

19
18

–
29

(0
.2
0,

0.
30

]
54

64
66

56
54

55
65

66
57

56
39

(0
.3
0,

0.
40

]
4

5
6

4
4

4
4

6
4

4
20

(0
.4
0,

0.
50

]
2

26
42

3
6

3
23

40
4

6
18

(0
.5
0,

0.
60

]
–

3
7

–
–

–
–

1
–

–
6

(0
.6
0,

0.
70

]
–

5
8

–
–

–
6

6
–

–
–

(0
.7
0,

0.
80

]
–

–
–

–
–

–
–

–
–

–
59

(0
.8
0,

0.
90

]
–

–
4

–
–

–
1

2
–

–
15

(0
.9
0,

1.
00

]
–

–
–

–
–

–
–

–
–

–
–

1.
00

–
–

1
–

–
–

–
–

–
–

–

To
ta
l

14
0

38
9

43
0

32
4

21
5

14
2

36
8

41
1

31
0

21
6

41
7

123

Blocking and Other Enhancements for Bottom-Up Model Generation Methods 233

Table 5 Evaluation of blocking techniques

Baseline sdb udb spb upb

Satisfiable

rr −0 / +212 −4 /+238 −0 / +169 −1 /+81

sh ◦ rr −1 / +195 −5 / +225 −2 / +168 −2/+77

crr −0 /+249 −4 /+294 −0 /+184 −3 /+78

sh ◦ crr −0 /+226 −5 /+274 −0 /+168 −3 /+77

Unsatisfiable

rr −211 /+78 −315 /+83 −100 /+61 −77 /+37

sh ◦ rr −188 /+106 −225 /+126 −81 /+87 −34 /+52

crr −65 /+170 −105 /+242 −32 /+78 −26 /+24

sh ◦ crr −52 /+163 −98 /+190 −30 /+57 −16 /+15

domain more quickly. This shows there is a trade-off between using the crr transformation
and the rr transformation. The results however also showed the virtues of unrestricted domain
blocking as a universal technique forBUMG.SPASS in automode fared verywell in the SWV
category, where 79 problems were solved compared to 7–8 problems for the best BUMG
methods. Overall SPASS in auto mode solved 9% fewer problems than the best BUMG
method sh ◦ rr ◦ udb.

Looking at the top half of Table 4 (up to difficulty rating of 0.40), the BUMG method
based on sh ◦ rr ◦ udb fared best, but for problems more difficult (up to a rating of 0.70) the
performance deteriorated and the method crr ◦ udb solved the highest number of problems.
For problems with ratings higher than 0.70 SPASS in auto mode solved significantly more
problems than the BUMGmethods. One problemwith rating 1.00 was solved by the crr◦udb
method (namely, GRP741-1 in 121.86 s). Problems in the TPTP library with rating 1.00 have
not yet been solved by any other prover.

Table 5 presents an evaluation of the different blocking techniques, listing the number
of problems lost and the number of problems gained against the baseline methods in each
group. The best results in each row of the first table (for satisfiable problems lost and gained)
are highlighted in bold font. The results confirm the significant positive effect of unrestricted
domain blocking for satisfiable problems. The results for unsatisfiable problems are discussed
at the end of the section.

Analysis of the gain and loss of the method based on sh ◦ rr ◦ udb against the other
methods gave these results: Against rr ◦ udb 66 problems were gained and 20 problems
lost; against sh ◦ crr ◦ udb the gain/loss was +90/-45 and against crr ◦ udb it was +85/-59.
This non-uniformity suggests each variation of range-restriction had the potential to solve
some problems not solvable within the time limit by sh ◦ rr with unrestricted blocking. The
biggest variation was against SPASS in auto mode, where 169 problems were gained and
130 problems were lost.

Table 6 displays how many problems were uniquely solved. We focus here only on the
results for the satisfiable problems in the table and postpone the discussion for unsatisfiable
problems to the end of the section. The first row lists how many problems were uniquely
solved over all methods including SPASS in automode. Although two of the BUMGmethods
with unrestricted domain blocking fared better than SPASS in auto mode, the latter solved a
significant number of problems that none of the BUMG could solve (namely, 115 problems,
or 27.5%of the problems solved bySPASS in automode, or 10.2%of all satisfiable problems).

123

234 P. Baumgartner, R. A. Schmidt

Ta
bl
e
6

U
ni
qu
el
y
so
lv
ed

pr
ob
le
m
s

rr
rr

◦s
db

rr
◦u

db
rr

◦s
pb

rr
◦u

pb
To

ta
l

sh
◦r

r
sh

◦r
r◦

sd
b

sh
◦r

r◦
ud
b

sh
◦r

r◦
sp
b

sh
◦r

r◦
up

b
To

ta
l

cr
r

Sa
ti
sfi
ab

le

A
ll
m
et
ho

ds
–

1
–

–
–

–
–

4
–

–
–

A
ll
B
U
M
G
m
et
ho
ds

–
1

2
–

–
–

–
6

–
–

–

A
ll
B
U
M
G
,b

y
gr
ou
p

–
12

28
–

–
40

–
4

25
1

2
32

–

U
ns
at
is
fia
bl
e

A
ll
m
et
ho

ds
–

–
1

–
–

–
–

–
–

–
–

A
ll
B
U
M
G
m
et
ho
ds

17
4

5
2

2
3

5
3

–
3

–

A
ll
B
U
M
G
,b

y
gr
ou
p

32
15

18
23

4
92

16
24

41
29

14
12

4
4

cr
r◦

sd
b

cr
r◦

ud
b

cr
r◦

sp
b

cr
r◦

up
b

To
ta
l

sh
◦c

rr
sh

◦c
rr

◦s
db

sh
◦c

rr
◦u

db
sh

◦c
rr

◦s
pb

sh
◦c

rr
◦u

pb
To

ta
l

au
to

To
ta
l

Sa
ti
sfi
ab

le

A
ll
m
et
ho

ds
–

11
–

–
–

4
1

–
–

11
5

13
6

A
ll
B
U
M
G
m
et
ho
ds

–
11

–
–

–
4

1
–

–
25

A
ll
B
U
M
G
,b

y
gr
ou

p
10

57
–

–
67

–
12

60
–

1
73

U
ns
at
is
fia
bl
e

A
ll
m
et
ho

ds
–

–
–

–
–

–
–

–
–

17
79

17
80

A
ll
B
U
M
G
m
et
ho
ds

3
3

2
–

–
1

3
–

–
56

A
ll
B
U
M
G
,b

y
gr
ou

p
23

90
10

3
13

0
8

31
71

6
2

11
8

‘b
y
gr
ou

p’
m
ea
ns

un
iq
ue
ly

so
lv
ed

pr
ob

le
m
s
w
ith

in
ea
ch

of
th
e
fo
ur

gr
ou

ps
of

di
ff
er
en
tv

ar
ia
tio

ns
of

ra
ng

e-
re
st
ri
ct
io
n:

rr
,s
h

◦r
r,
cr
r
an
d
sh

◦c
rr

123

Blocking and Other Enhancements for Bottom-Up Model Generation Methods 235

Table 7 Average increase in the
size of input files

Method Avg Method Avg Method Avg

rr 1.8 crr 1.1 auto 0

rr ◦ sdb 2.4 crr ◦ sdb 1.7

rr ◦ udb 1.9 crr ◦ udb 1.2

rr ◦ spb 2.4 crr ◦ spb 1.7

rr ◦ upb 1.9 crr ◦ upb 1.2

sh ◦ rr 1.7 sh ◦ crr 1.2

sh ◦ rr ◦ sdb 2.3 sh ◦ crr ◦ sdb 1.9

sh ◦ rr ◦ udb 1.8 sh ◦ crr ◦ udb 1.3

sh ◦ rr ◦ spb 2.3 sh ◦ crr ◦ spb 1.8

sh ◦ rr ◦ upb 1.7 sh ◦ crr ◦ upb 1.3

This reflected the orthogonality of the underlying methods. Analogously, the relatively low
number of problems uniquely solved by the BUMG methods (21 problems, i.e., 1.9% of all
satisfiable problems), which is also apparent from the number of problems solved uniquely
among the BUMGmethods in the second row (25 or 2.2% of all satisfiable problems) can be
attributed to the similarity of the underlying methods. An analysis of the number of uniquely
solved problems per group of BUMGmethods12 in the third row of the table highlighted the
importance of unrestricted domain blocking. While overall no problems were only solved
with unary predicate blocking techniques, within the groups there were four problems solved
only with unary predicate blocking.

Table 7 gives an impression of the increase in the size of the input files caused by the
transformations. Although the file sizes were measured after all comments and white space
were removed, variations in name lengths distort the values slightly (which can be seen in
the values for shifting). The results therefore need to be interpreted cautiously. The average
increase in file size does show a significant effect on the size of the problem for the new
range-restriction transformations and also subterm blocking (both subterm domain blocking
and subterm predicate blocking). The largest increase in size was observed for the problem
SYO600-1 (13.7 fold increase), which contained 380 predicate symbols with arity up to 64,
2 constants and no non-constant function symbols. The main cause for this increase was
the large number of clauses added in Step (4) of the rr transformation. For each of the 284
predicate symbols with arity 64 in the problem, 64 clauses were added in Step (4). This is a
large number. In contrast for the crr transformations the increase in size was negligible, and
also, generally, it was significantly lower. Despite its positive virtues this shows a downside
of the rr transformation. For problems containing a large number of function symbols with
high arity, Step (5) similarly adds many clauses, even though the transformation overall is
still effective.

Analysis of the problems solved without any form of blocking revealed a large number
belonged to the Bernays–Schönfinkel class: 131/176 (74%) for rr, 132/236 (56%) for sh ◦ rr,
133/140 (95%) for crr, and 134/142 (94%) for sh ◦ rr. Since without blocking no terms are
(hypothetically) merged, these results confirm the expectation that more problems can be
solved with the rr transformation than the crr transformation, due to the reduction of the
number of terms added to the domain.

12 Using variations of rr, sh ◦ rr, crr or sh ◦ crr.

123

236 P. Baumgartner, R. A. Schmidt

Although the main purpose of BUMG methods is disproving theorems and generating
models for satisfiable problems, for completeness we report in Tables 8 and 9 the results
for unsatisfiable clausal TPTP problems. Results of gains and losses for different blocking
techniques and uniquely solved for unsatisfiable problems are included in Tables 5 and 6.
Overall, the results were not as uniform as for satisfiable problems. However some general
observations can be made. SPASS in auto mode fared best overall, and did so in all TPTP cat-
egories and each problem rating category. For unsatisfiable problems the drawback of BUMG
methods is that clauses need to be exhaustively grounded and each branch in the derivation
tree needs to be closed. The dominance of SPASS in auto mode is thus not surprising.

For the BUMG methods, a general deterioration in performance could be observed for
shifting, when comparing the results for the groups with baselines sh ◦ rr and sh ◦ crr to the
respective groups without shifting. This is plausible because shifting leads to fewer negative
literals in clauses and more positive literals thus reducing the constraining effect and leading
to more splitting. For problems with higher rating, shifting did seem to have a positive effect;
for instance, in the (0.40, 0.50] range, sh ◦ rr solved 70 problems whereas rr solved 32
problems.

Within the BUMG groups we expected best performance for the baseline transforma-
tions, because these do not involve blocking and performing many blocking steps lead to a
significant overhead. However only for the first group the rr transformation fared best. In
combination with classical range-restriction crr, somewhat surprisingly, the best results were
obtained with unrestricted domain blocking, the most expensive form of blocking, because
it is applicable to any terms. Among the blocking techniques in each case the highest gain
was obtained for unrestricted domain blocking (see Table 5). However also the greatest loss
was observed for this blocking technique. The smallest loss and lowest gain was obtained
for upb blocking. The high loss for udb could be a reflection of the high increase in split-
ting steps preventing quicker detection of contradictions. Analogously the small loss for upb
could be attributable to the smallest number of additional splitting steps among the blocking
techniques. The high gain for udb blocking suggests the inference process panned out sig-
nificantly differently leading to solutions not found with the other techniques. This seems to
be supported by the results in the third row of Table 6 according to which, with one excep-
tion, the largest number of uniquely solved problems in each group was obtained with udb
blocking. The exception was the first group, where rr led to the largest number of uniquely
solved problems. Among all the BUMG methods, rr solved the largest number of problems
not solved by any of the other methods. However, these results pale against the number of
uniquely solved problems by SPASS in automode. Only one problemwas solved by aBUMG
method which was not solved by SPASS in auto mode.

10.2 Findings of the Experimental Evaluation

Several findings can be drawn from the results. The results have confirmed our expectation
that unrestricted domain blocking is a powerful technique, which helps discover finite mod-
els more often than with the other blocking techniques. The results suggest the technique
is indispensable for bottom-up model generation. Both in combination with the new range-
restricting transformation, and the classical range-restricting transformation, good results
have been obtained. Overall, the method based on new range-restriction, shifting and unre-
stricted domain blocking performed best on the sample. On satisfiable problems with higher
difficulty rating this method was however gradually edged out by the method based on clas-
sical range-restriction and unrestricted domain blocking. This suggests there is a trade-off

123

Blocking and Other Enhancements for Bottom-Up Model Generation Methods 237

Ta
bl
e
8

N
um

be
r
of

pr
ob
le
m
s
so
lv
ed

on
un
sa
tis
fia
bl
e
cl
au
sa
lT

PT
P
pr
ob
le
m
s

C
at
eg
or
y

#
rr

rr
◦s

db
rr

◦u
db

rr
◦s

pb
rr

◦u
pb

sh
◦r

r
sh

◦r
r◦

sd
b

sh
◦r

r◦
ud
b

sh
◦r

r◦
sp
b

sh
◦r

r◦
up

b

A
L
G

13
3

13
10

11
10

12
7

6
7

6
6

A
N
A

83
7

11
11

10
7

6
7

7
6

6

B
O
O

74
38

32
28

43
38

38
31

26
42

37

C
A
T

52
38

33
33

34
38

29
31

32
29

28

C
O
L

22
5

32
23

22
25

28
19

18
16

17
19

C
O
M

14
6

6
6

6
6

6
6

5
6

6

FL
D

17
5

24
39

44
38

48
19

38
45

38
43

G
E
O

18
7

68
68

67
67

66
71

74
66

72
71

G
R
A

1
1

1
1

1
1

1
1

1
1

1

G
R
P

79
8

23
3

18
3

17
1

24
0

22
5

30
7

23
1

26
0

29
1

29
8

H
E
N

64
41

41
34

40
41

34
37

32
34

34

H
W
C

4
1

1
1

1
1

1
1

1
1

1

H
W
V

11
6

44
39

34
40

35
21

21
21

23
20

K
R
S

17
9

9
9

9
9

9
9

9
9

9

L
A
T

25
0

39
33

29
40

39
39

25
24

43
37

L
C
L

62
5

44
40

35
39

45
19

19
17

19
19

L
D
A

23
3

2
2

3
3

3
3

2
3

3

M
G
T

67
41

38
35

37
42

52
40

29
40

46

M
SC

20
9

11
9

10
9

8
10

7
9

7

N
L
P

22
17

18
18

18
17

20
19

18
18

20

N
U
M

86
15

10
10

13
13

10
8

9
9

11

PL
A

51
4

5
4

4
5

3
4

3
3

4

PU
Z

72
46

45
37

45
45

38
37

36
37

38

R
E
L

10
7

4
3

2
4

4
3

2
2

4
3

123

238 P. Baumgartner, R. A. Schmidt

Ta
bl
e
8

co
nt
in
ue
d

C
at
eg
or
y

#
rr

rr
◦s

db
rr

◦u
db

rr
◦s

pb
rr

◦u
pb

sh
◦r

r
sh

◦r
r◦

sd
b

sh
◦r

r◦
ud
b

sh
◦r

r◦
sp
b

sh
◦r

r◦
up

b

R
N
G

83
20

11
8

23
19

19
10

9
22

19

R
O
B

31
4

3
2

4
4

5
3

1
5

5

SC
T

98
8

8
8

8
8

2
2

2
2

2

SE
T

45
0

68
63

57
58

66
46

50
52

47
45

SW
C

38
3

12
0

10
7

76
10

0
81

75
74

75
74

89

SW
V

85
5

10
0

72
70

92
10

4
43

45
38

48
45

SW
W

33
–

-
-

-
-

-
-

-
-

-

SY
N

62
1

33
0

32
9

32
1

32
6

32
8

31
8

32
6

31
8

31
9

31
7

SY
O

17
1

1
1

1
1

1
1

1
1

1

T
O
P

5
3

3
3

3
3

1
2

3
1

1

To
ta
l

58
42

14
31

12
98

11
99

13
92

13
91

12
73

11
91

11
74

12
79

12
91

C
at
eg
or
y

cr
r

cr
r◦

sd
b

cr
r◦

ud
b

cr
r◦

sp
b

cr
r◦

up
b

sh
◦c

rr
sh

◦c
rr

◦s
db

sh
◦c

rr
◦u

db
sh

◦c
rr

◦s
pb

sh
◦c

rr
◦u

pb
au
to

A
L
G

18
18

20
19

19
5

5
4

6
4

62

A
N
A

4
7

10
6

4
3

4
5

3
3

40

B
O
O

33
36

38
33

33
33

36
34

33
33

62

C
A
T

34
36

35
35

34
27

30
30

30
28

51

C
O
L

32
31

25
32

31
8

15
15

8
8

14
9

C
O
M

5
5

5
5

5
4

4
4

4
4

12

FL
D

23
32

36
35

19
17

29
37

29
17

99

G
E
O

45
43

53
45

42
45

46
47

44
44

12
1

G
R
A

1
1

1
1

1
1

1
1

1
1

1

G
R
P

31
9

37
8

42
4

33
7

32
2

35
8

38
5

40
6

35
3

35
7

67
3

123

Blocking and Other Enhancements for Bottom-Up Model Generation Methods 239

Ta
bl
e
8

co
nt
in
ue
d

C
at
eg
or
y

cr
r

cr
r◦

sd
b

cr
r◦

ud
b

cr
r◦

sp
b

cr
r◦

up
b

sh
◦c

rr
sh

◦c
rr

◦s
db

sh
◦c

rr
◦u

db
sh

◦c
rr

◦s
pb

sh
◦c

rr
◦u

pb
au
to

H
E
N

31
42

40
31

29
36

43
33

35
36

62

H
W
C

2
2

2
2

2
1

1
1

1
1

2

H
W
V

18
18

20
18

19
15

14
10

13
12

72

K
R
S

7
9

9
9

9
5

8
9

8
8

9

L
A
T

56
56

64
57

56
70

65
56

71
70

91

L
C
L

43
44

44
44

43
21

24
26

23
21

33
6

L
D
A

5
5

5
5

5
5

6
5

5
5

6

M
G
T

18
30

25
21

20
12

23
17

13
12

61

M
SC

8
10

10
9

8
7

10
8

7
7

14

N
L
P

9
18

14
18

9
9

18
14

18
9

22

N
U
M

10
9

8
10

11
8

7
8

8
8

36

PL
A

3
4

2
4

3
2

3
1

3
3

31

PU
Z

44
43

35
43

41
34

34
30

33
33

55

R
E
L

5
7

6
5

5
5

6
6

5
5

37

R
N
G

10
14

14
11

10
10

14
14

11
11

48

R
O
B

3
5

3
3

3
3

6
4

5
3

14

SC
T

11
11

11
11

11
2

2
2

2
2

27

SE
T

53
50

51
54

53
29

36
40

29
28

29
0

SW
C

11
1

10
6

10
0

10
5

11
0

99
10

0
89

99
97

28
1

SW
V

77
72

71
77

77
29

31
33

29
28

37
3

SW
W

1
1

1
1

1
–

–
–

–
–

12

SY
N

32
1

32
1

31
4

31
9

32
2

30
0

30
7

30
6

30
0

30
3

50
8

SY
O

1
1

1
1

1
–

1
–

1
1

3

T
O
P

2
3

3
3

3
1

1
1

1
1

5

To
ta
l

13
63

14
68

15
00

14
09

13
61

12
04

13
15

12
96

12
31

12
03

36
65

123

240 P. Baumgartner, R. A. Schmidt

Ta
bl
e
9

R
es
ul
ts
um

m
ar
y
w
rt
.p

ro
bl
em

ra
tin

g
on

un
sa
tis
fia
bl
e
cl
au
sa
lT

PT
P
pr
ob
le
m
s

C
at
eg
or
y

#
rr

rr
◦s

db
rr

◦u
db

rr
◦s

pb
rr

◦u
pb

sh
◦r

r
sh

◦r
r◦

sd
b

sh
◦r

r◦
ud
b

sh
◦r

r◦
sp
b

sh
◦r

r◦
up

b

0.
00

14
09

87
1

83
0

79
6

86
0

88
5

73
4

74
5

72
2

74
4

74
6

(0
.0
0,

0.
10

]
48

0
24

4
20

3
18

7
23

6
23

9
21

0
18

4
16

7
21

6
21

0

(0
.1
0,

0.
20

]
59

4
15

1
14

5
11

8
14

8
13

7
13

3
12

3
11

2
14

0
14

1

(0
.2
0,

0.
30

]
50

7
98

85
72

87
79

70
61

63
65

72

(0
.3
0,

0.
40

]
25

8
30

24
18

30
24

38
30

40
35

36

(0
.4
0,

0.
50

]
51

3
32

11
6

24
22

70
45

53
62

69

(0
.5
0,

0.
60

]
20

7
3

–
1

4
2

13
2

14
9

13

(0
.6
0,

0.
70

]
29

8
2

–
1

3
3

4
1

3
6

4

(0
.7
0,

0.
80

]
32

4
–

–
–

–
–

1
–

–
2

–

(0
.8
0,

0.
90

]
34

4
–

–
–

–
–

–
–

–
–

–

(0
.9
0,

1.
00

]
25

9
–

–
–

–
–

–
–

–
–

–

1.
00

15
16

–
–

–
–

–
–

–
–

–
-

To
ta
l

–
14

31
12

98
11

99
13

92
13

91
12

73
11

91
11

74
12

79
12

91

123

Blocking and Other Enhancements for Bottom-Up Model Generation Methods 241

Ta
bl
e
9

co
nt
in
ue
d

C
at
eg
or
y

cr
r

cr
r◦

sd
b

cr
r◦

ud
b

cr
r◦

sp
b

cr
r◦

up
b

sh
◦c

rr
sh

◦c
rr

◦s
db

sh
◦c

rr
◦u

db
sh

◦c
rr

◦s
pb

sh
◦c

rr
◦u

pb
au
to

0.
00

73
9

76
9

74
7

75
6

73
7

59
0

65
4

64
7

61
4

59
7

13
60

(0
.0
0,

0.
10

]
23

6
23

9
24

5
23

7
23

4
20

4
21

3
21

2
20

2
20

1
47

7

(0
.1
0,

0.
20

]
15

1
16

5
16

2
16

4
15

0
14

5
15

7
14

4
15

7
14

4
52

9

(0
.2
0,

0.
30

]
85

89
94

85
83

67
70

71
66

64
38

2

(0
.3
0,

0.
40

]
42

55
61

51
44

51
53

46
49

51
22

6

(0
.4
0,

0.
50

]
75

11
6

13
9

86
76

89
11

2
12

5
89

88
34

4

(0
.5
0,

0.
60

]
22

23
30

20
23

27
30

30
26

27
12

2

(0
.6
0,

0.
70

]
12

11
13

9
12

19
14

11
16

19
11

0

(0
.7
0,

0.
80

]
1

1
6

1
2

4
4

4
4

4
85

(0
.8
0,

0.
90

]
–

–
1

–
–

1
1

1
1

1
25

(0
.9
0,

1.
00

]
–

2
–

–
–

7
7

5
7

7
5

1.
00

–
–

–
–

–
–

–
–

–
–

–

To
ta
l

13
63

14
68

15
00

14
09

13
61

12
04

13
15

12
96

12
31

12
03

36
65

123

242 P. Baumgartner, R. A. Schmidt

between the rr transformation, which is based on a non-trivial transformation but does restrict
the creation of terms, and the simpler crr transformation, which has to rely on blocking to
restrict the creation of terms.

The results for subterm domain blocking were good and often not far behind unrestricted
domain blocking for satisfiable problems. In contrast, predicate blocking seems not to be
effective on many problems. We attribute this to the nature of the problems in the TPTP
library.

An investigation with SPASS-Yarralumla on translations of modal logic problems has
revealed a different picture [78]. There, the best performance was obtained with subterm
domain blocking for both satisfiable and unsatisfiable problems. Better results than for unre-
stricted domain blockingwere also obtainedwith subtermpredicate blocking and unrestricted
predicate blocking. Better performances for subterm and predicate blocking are also expected
on problems stemming from (cyclic) description logic knowledge bases. Experiments with
blocking restricted by excluding a finite subset of the domain have shown better results than
for unrestricted domain blocking for consistency testing on a large corpus of ontologies [56].
The better performance for restricted forms of blocking on modal and description logic prob-
lems can be attributed to mainstream modal and description logics having the finite tree
model property. This means every satisfiable formula holds in a model based on a finite tree,
which is not a property of first-order formulae.

The results showed BUMG methods were good for disproving theorems and generating
models for satisfiable problems. For unsatisfiable problems BUMG methods were signifi-
cantly less efficient than SPASS in auto mode. For theorem proving purposes a limitation of
BUMG methods is that they require full grounding. It can be seen already from very small
unsatisfiable examples that a complete BUMG derivation tree can be very large, whereas
resolution proofs are significantly shorter.

Compared to ordered resolution (and appropriate equality reasoning) without splitting, an
advantage of BUMGmethods for satisfiable problems is the division of the search space into
branches which are individually constructed and individually processed. As a consequence,
if the right decisions are made at branching points models can be found more quickly. When
the branching point decisions are less optimal the performance can deteriorate dramatically,
particularly if the search is trapped in a branch with only infinite models. This could be
another explanation for the lower success rate of the BUMG methods observed for more
difficult satisfiable problems. For problems where only infinite models exist, clearly other
methods are better. Methods that can compute representations of infinite models include
the method of [33] computing atom representations and the method of [27] using a hybrid
approach based on careful enumeration and deduction on constrained clauses.

11 Discussion and RelatedWork

Formodal, description or hybrid logics characterized by finite tree models, blocking is imple-
mented as a loop-checking mechanism which involves the comparison of sets of formulae in
order to detect periodicity in the (implicitly) constructed model. The idea is that (implicit)
objects (or possible worlds) are reused when the set of formulae associated with the current
(implicit) object is the same as (or a subset of) the formulae associated with another previ-
ously created (implicit) object, because the inference steps would be repetitions of inference
steps previously performed for the other object [19,25,28,35,47,49,58,64]. Variations of this
form of loop-checking can be found in description logic tableaux systems, referred to as

123

Blocking and Other Enhancements for Bottom-Up Model Generation Methods 243

predecessor equality (or subset) blocking, ancestor equality (or subset) blocking and any-
where equality (or subset) blocking [2,25,47] as well as pattern-based blocking [55]. These
loop-checking techniques are sound for modal and description logics with some form of tree
model property, provided the inference rules and the inference strategy ensures that objects
are maximally expanded at the point that the loop-check is performed (e.g., S4 and ALC
with TBox axioms belong to this class). For other logics, it must be possible to undo previous
merges of objects when no models can be found, and to try other merges. Examples of this
form of blocking are dynamic anywhere blocking and pair-wise blocking which have been
introduced for logics with inverse and functional relations [2,45,46]. Often these tableau
systems do not require explicit presence of objects (or worlds) in the formulae of the tableau
system and tightly integrate loop-checking into the rules and how they can be used. As a con-
sequence the definitions of these tableau systems and the soundness and completeness proofs
are very particular. How far this style of system and loop-checking can be pushed toward the
boundary of undecidable modal, description and hybrid logics is open. It is also unclear if
the approach can be extended beyond logics with some form of tree-model property, see the
discussion in [82].

The work of [50,51,53] presents the relationship between tableau-based description logic
systems and first-order resolution. In [50] it was shown how tableau decision procedures for
ALC with TBox axioms can be step-wise simulated using a positive BUMG refinement of
resolution (a negative selection refinement augmented with splitting and one-step rewriting).
This requires a special encoding of the semantics of the logic and the blocking rule

M

M, s ≈ t

with the side-condition that s and t (representing two objects) are maximally expanded and
indistinguishable with respect to the properties that hold for them (this exploits the Leibniz
principle for all positive units with a unary predicate symbol, which suffices for ALC and
also S4). This achieves the same behaviour as loop-checking based on subset (or equality)
blocking, which is sufficient to decide these logics. In [31,53] the relationship is extended to
a large class of modal logics (including the standard ones between multi-modal versions of
modal logic K and S5), and used as a common setting for an empirical evaluation of ordered
resolution refinements and BUMG-based refinements. The link is also used to define tableau
systems for novel extended modal logics defined over Kripke frames closed under relational
intersection, union and converse of relations.

Blocking as introduced in this paper and previously in [16], is achieved by transforming
the input clause set and extending it with blocking clauses. In semantic tableau systems
unrestricted blocking can be formulated as an analytic cut rule

M

M, s ≈ t | M, s �≈ t

expanded using a left-to-right strategy [79,82].13 The rule asserts the equality s ≈ t of two
objects (labels) and if this does not lead to finding a model (e.g., all the branches from this
point onwards can be closed), then s �≈ t must hold, which is achieved by normal disjunctive
backtracking. Adding this rule to any sound and complete inference system preserves sound-
ness and completeness. The same is true for restricted versions of the rule [56]. It has been

13 For description or hybrid logics without an explicit equality predicate or identity relation, the rule can be
appropriately reformulated using nominals, or the language of the tableau system can be extended to include
the equality predicate.

123

244 P. Baumgartner, R. A. Schmidt

shown that if a logic admits finite filtration or has the (effective) finite model property any
semantic tableau system extended with this mechanism provides a decision procedure for the
logic [80,82]. These results provide the theoretical foundation for a generic platform in which
tableau decision procedures can be built in a systematic and uniform way and other loop-
checking mechanisms can be simulated [56,76,81]. The unrestricted blocking mechanism
has been implemented in MetTeL tableau prover generator [90,91].

We argue the key principles and ideas of this platform extend to most, if not all, methods
in the BUMG paradigm. Using unrestricted blocking, either as a transformation into clausal
form, or as an inference rules as given above, and small adjustments to the tableau generation
methodologies [76,80,81], the effort to develop terminating BUMG methods for decidable,
first-order representable logics should not be considerable.

Unrestricted blocking has been used to define ground semantic tableau systems for vari-
ous concrete cases of deciding: the description logics ALCO, ALCO with transitive roles,
ALBO [79,80] and ALBOid [82], intuitionistic logic [81], interrogative epistemic log-
ics [67], modal logics with counting quantifiers [97], the description logic SHOI [56], a
bi-intuitionistic logic [87] and a related multi-modal logic [78]. The evaluations in [56,78,87]
of different variations of unrestricted blocking ondescription logic ontologies andmodal logic
problems complement those in the present paper.

Reuse of domain terms in the handling of existentially quantified formulae is common in
automated model building systems for enumerating finite models. In tableau systems it can
be found in the form of an adapted and extended δ-rule (i.e., a δ∗-rule) [23,44,61,70]. The
δ∗-rule has the property that it avoids the use of non-constant Skolem functions and does not
require the inclusion of equality in a BUMG system. The effect of δ∗-rule can be achieved
with (equality-based) unrestricted blocking, but the reverse does not hold.

The nineties sawpresentations of hyperresolution decision procedures (without splitting or
backtracking) for various classes, which can be used for automating model building [26,33].
This work developed ways of representing models in compact form as atom representations
and sometimes allows infinite models to be presented finitely. Completeness for finite model
generation is achieved through enhancing the approachwith an enumeration technique where
the idea is reminiscent of the δ∗-rule, but splitting is not necessarily performed [71]. A more
powerful method with the functionality to compute finite representations of infinite models
is described in [27].

Methods such as the extended PUHR tableau method [23], and the method for geometric
logic [17] directly search for a finite model. They can be seen as BUMG methods presented
as tableau calculi with a sophisticated inference rule for existential quantification. Whenever
a witness term (technically, a constant) for an existentially quantified variable is sought, the
idea is to attempt to re-use an existing one, to keep the domain small (and where possibly
finite).

Othermethods formodel computation search for small finitemodels, by essentially search-
ing the space of interpretations with increasing domain sizes 1, 2, . . ., in increasing order,
until a model is found. The SEM-family [66,85,98] of procedures do that by essentially built-
in exhaustive search over the interpretations for a fixed domain size. Model builders such as
ANL-DP in the old style of MACE [65], including for example the method of [29], reduce
model search to testing of propositional satisfiability. The approach of [10] is conceptually
similar but translates into the Bernays–Schönfinkel fragment of first-order logic instead. The
satisfiability test is delegated to an instance-based method (see e.g. [8,57]), which generally
decide satisfiability of that class.

Being based on a translation, the MACE-style approach is conceptually related, but dif-
ferent to our approach, as the translation to propositional logic is parameterized by a domain

123

Blocking and Other Enhancements for Bottom-Up Model Generation Methods 245

size. In our approach there is no a priori requirement for iterative deepening over the domain
size, and the search for finite models works differently, by making terms equal as needed or
as specified by the blocking strategy.14

This way, we can address a problem often found with models computed by these methods:
from a pragmatic perspective, they tend to identify too many terms. For instance, for the two
unit clauses P(a) and Q(b) there is a model that identifies a and bwith the same object. Such
models can be counter-intuitive, for instance, in a description logic setting where unique
names are not necessarily specified or formally assumed, but it would be unnatural to equate a
and b, if a represents a person, Alice say, and b represents an illness, bronchitis say.15

Furthermore, logic programs are typically understood with respect to Herbrand semantics,
and it is desirable to develop compatible model building techniques. Our transformations are
more careful at identifying objects than the methods mentioned and thus work closer to a
Herbrand semantics.

Winker [96] is the first work that we are aware of, which uses hyperresolution in com-
bination with the classical range-restriction transformation to generate ground instantiations
of sets of equations (in this case). As an extra ‘trick’ the user is allowed to successively
add equations s ≈ t considered suitable to limit the number of instantiations and find small
models by adding clauses of the form

dom(x1) ∧ · · · ∧ dom(xn) → s ≈ t,

where x1, . . . , xn are the variables occurring in s ≈ t , to the problem set. Using these
tricks [96] shows that first-order theorem provers can be used to solve open problems of
axiom independence of ternary Boolean algebras.

Tammet [34, Ch. 7] found a special condition and automated method of extending clause
sets with equations between terms of the Herbrand universe (i.e., ground terms) to decide the
union of the Ackermann class and the monadic class using resolution and narrowing without
backtracking.

Blocking has the same goal as the speculative inference method described in [62] and [21]
(with improvements). The idea of allowing the speculative addition of clauses (which are not
consequences) is incorporated into a DPLL(
+T) framework combining superposition and
SMT solving [21]. Is is shown that two type systems relevant for software engineering (given
by range-restricted theories) can be decided in this framework, when negative selection is
used for resolution and superposition. Instances exemplified in [62] include replacing a clause
by one that subsumes it, and adding equations for joining equivalence classes in the abstract
congruence closure framework. A crucial difference in [21] to [62] is the ability to remove
a speculatively added clause via native backtracking of DPLL, when this clause leads to the
derivation of a contradiction. This variation means the approach of [21] is a sound blocking
mechanism, just like our blocking mechanism.16 A small difference is that our blocking
mechanism replaces the speculated clause by its negation (in general, some caution is needed
to avoid unneeded overhead, but if the case analysis is over ground clauses there is not an
issue). In our setting, the kind of blocking behaviour as in [21] can be achieved with a small

14 Finding models with a given cardinality can be done with BUMG and unrestricted blocking, but this
requires breadth-first search or an iterative deepening approach.
15 Using superposition it is possible to get decision procedures for the unique name assumption [84].
16 No separate proofs of soundness are needed unlike for loop-checking in modal or description logic tableau
systems (cf. [56]) or the approach of Tammet [34, Ch. 7]. On the side we remark that it may be worth exploring
if the subset blocking version of the PropagateEq-rule ismore effective because it is can be expected to produce
smaller models more quickly.

123

246 P. Baumgartner, R. A. Schmidt

adjustment in the definition of the blocking transformations. In particular, only this clause is
used in the respective ‘equality case analysis’ steps:

B → x ≈ y ∨ nonequal(x, y),

whereB is the appropriate constraint (cf. Sect. 7). That is, a newpredicate symbolnonequal is
used instead of the predicate symbol �≈ and no definitional clause is included.By not including
a definition for nonequal(x, y) essentially the same effect is achieved: an equation s ≈ t is
asserted and if this does not lead to finding a model the right branch is created containing the
unit nonequal(s, t).17 These clauses prevent blocking to s and t being applied again and they
record the unsuccessful blocking attempts between terms undertaken during the derivation.
The essence of what is exploited here is that the negated formula in an (analytic) cut rule
does not need to be expanded if the cut rule is not essential for completeness.

12 Concluding Remarks

We have presented and tested a number of enhancements for BUMGmethods. An important
aspect is that our enhancements exploit the strengths of readily available BUMG systems
with only modest modifications. Our range-restriction technique is a refinement of existing
transformations to range-restricted clauses in that terms are added to the domain of inter-
pretation on a by-need basis. Moreover, we have presented methods that allow us to extend
BUMG methods with blocking techniques related to loop-checking techniques with a long
history in the more specialized setting of modal and description logics.

The experimental evaluation has shown blocking techniques are indispensable in BUMG
methods for satisfiable problems. In particular, unrestricted domain blocking turned out to
be the most powerful technique on problems from the TPTP library. Limiting the creation
of terms during the inference process by using the new range-restricting transformation paid
off, leading to better results. It showed best results together with the shifting transformation.
The experimental results however also show that classical range restriction together with
unrestricted blocking is a good complementary method. Because model generation methods
are not just aimed at showing the existence of models but are built to construct and return
models, when no models exist the entire search space must be traversed, which has led to
inferior performance compared to saturation-based resolution.

Our bottom-up model generation approach is especially suitable for generating small
models and we claim it is possible to show the approach using unrestricted domain blocking
allows us to compute finitemodelswhen they exist (by adapting the proof of [81]). Themodels
produced by subterm blocking and predicate blocking are not as small as those produced by
unrestricted domain blocking. The generated models do not need to be Herbrand models. It
follows from how the transformations work that the generated models are quasi-Herbrand
models, in the following sense. Whenever dom(s) and dom(t) hold in the (Herbrand) model
constructed by the BUMG method, then (as in Herbrand interpretations) the terms s and t
are mapped to themselves in the associated (possibly non-Herbrand) model. Using subterm
blocking or predicate blocking for the two unit clauses P(a) and Q(b), the associated model
maps a and b to themselves (without merging them). More informative models are produced
than those computed by unrestricted domain blocking and, for example, MACE- and SEM-

17 This method is a slight improvement over [21] because the instance of the asserted clause that is responsible
for the contradiction in the left branch is recorded, whereas [21] would only return a propositional symbol
�nonequal(x, y)�.

123

Blocking and Other Enhancements for Bottom-Up Model Generation Methods 247

style finite model searchers. From an applications perspective, this can be an advantage
because larger models are more likely to be helpful to a user debugging mistakes in the
formal specification of a program or protocol, or an ontology engineer trying to discover
why an expected entailment does not follow from an ontology.

Research on developing resolution decision procedures has concentrated on develop-
ing ordering refinements of resolution for deciding solvable fragments of first-order logic.
Fragments decidable with ordered resolution are complementary to the fragments that can be
decidedby refinements using the techniques presented in this paper.Wehave thus extended the
set of techniques available for resolutionmethods to turn them intomore effective and efficient
(terminating) automated reasoning methods. In particular, we have shown that all procedures
based on hyperresolution, or BUMGmethods, can decide the Bernays–Schönfinkel class and
the class of BS clauses with equality.

Studying how well the ideas and techniques discussed in this paper can be exploited
and behave in dedicated BUMG provers, tableau-based provers and other provers (including
resolution-based provers) is very important but is beyond the scope of the present paper. Our
experience with another prover, Darwin [11], was encouraging. An in-depth comparison and
analysis ofBUMGapproacheswith our techniques andMACE-style orSEM-stylemodel gen-
eration would also be of interest. Another source for future work is to combine the presented
transformations with other BUMG techniques, such as magic sets transformations [43,88], a
typed version of range-restriction [15], and minimal model computation [23,24,69]. Having
been designed to be generic, we believe that our transformations carry over to formalisms
with default negation, which could provide a possible basis for enhancements to answer-set
programming systems.

Acknowledgements The second author is very grateful to Christoph Weidenbach and Uwe Waldmann for
hosting her during 2010 and 2013–2014. In this time the implementation of SPASS-Yarralumla was completed
and the experimental evaluation undertaken on the cluster of the Max-Planck-Institut für Informatik, Saar-
brücken. We thank Uli Furbach, Dmitry Tishkovsky, Uwe Waldmann and Christoph Weidenbach for useful
discussions and comments on this research, and extend our thanks to the anonymous reviewers for useful
comments on the submission. Financial support through research Grants EP/F068530/1 and EP/H043748/1
of the UK Engineering and Physical Sciences Research Council (EPSRC) is gratefully acknowledged.

OpenAccess This article is distributed under the terms of the Creative Commons Attribution 4.0 International
License (http://creativecommons.org/licenses/by/4.0/),which permits unrestricted use, distribution, and repro-
duction in any medium, provided you give appropriate credit to the original author(s) and the source, provide
a link to the Creative Commons license, and indicate if changes were made.

References

1. Baader, F., Calvanese, D., McGuinness, D.L., Nardi, D., Patel-Schneider, P.F.: Description Logic Hand-
book. Cambridge University Press, Cambridge (2003)

2. Baader, F., Sattler, U.: An overview of tableau algorithms for description logics. Stud. Log. 69, 5–40
(2001)

3. Bachmair, L., Dershowitz, N.: Critical pair criteria for completion. J. Symb. Comput. 6(1), 1–18 (1988)
4. Bachmair, L., Ganzinger, H.: Rewrite-based equational theorem provingwith selection and simplification.

J. Log. Comput. 4(3), 217–247 (1994)
5. Bachmair, L., Ganzinger, H.: Equational reasoning in saturation-based theorem proving. In: Bibel, W.,

Schmitt, P.H. (eds.) Automated Deduction–A Basis for Applications, pp. 353–397. Kluwer, Alphen aan
den Rijn (1998)

6. Bachmair, L.,Ganzinger,H.:Resolution theoremproving. In:Robinson,A.,Voronkov,A. (eds.)Handbook
of Automated Reasoning. North Holland, Amsterdam (2001)

7. Bachmair, L.,Ganzinger,H.:Resolution theoremproving. In:Robinson,A.,Voronkov,A. (eds.)Handbook
of Automated Reasoning, pp. 19–99. Elsevier, Amsterdam (2001)

123

http://creativecommons.org/licenses/by/4.0/

248 P. Baumgartner, R. A. Schmidt

8. Baumgartner, P.: Logical engineering with instance-based methods. In: Pfenning, F. (ed.) Automated
Deduction: CADE-21, volume 4603 of Lecture Notes in Artificial Intelligence, pp. 404–409. Springer,
Berlin (2007)

9. Baumgartner, P., Fröhlich, P., Furbach, U., Nejdl, W.: Semantically guided theorem proving for diagnosis
applications. In: Pollack,M. (ed.), Proceedings of the Fifteenth International Joint Conference onArtificial
Intelligence: IJCAI 1997, pp 460–465. Morgan Kaufmann, Burlington (1997)

10. Baumgartner, P., Fuchs, A., de Nivelle, H., Tinelli, C.: Computing finite models by reduction to function-
free clause logic. J. Appl. Log. 7(1), 58–74 (2009)

11. Baumgartner, P., Fuchs, A., Tinelli, C.: Implementing the model evolution calculus. Int. J. Artif. Intell.
Tools 15(1), 21–52 (2006)

12. Baumgartner, P., Furbach, U., Niemelä, I.: Hyper tableaux. In: Alferes, J.J., Pereira, L.M., Orlowska, E.
(eds.) Logics in Artificial Intelligence: JELIA 1996, volume 1126 of Lecture Notes in Computer Science,
pp. 1–17. Springer, Berlin (1996)

13. Baumgartner, P., Furbach, U., Pelzer, B.: Hyper tableaux with equality. In: Pfenning, F. (ed.) Automated
Deduction: CADE-21, volume 4603 of Lecture Notes in Artificial Intelligence, pp. 492–507. Springer,
Berlin (2007)

14. Baumgartner, P., Furbach, U., Pelzer, B.: The hyper tableaux calculus with equality and an application to
finite model computation. J. Log. Comput. 20(1), 77–109 (2010)

15. Baumgartner, P., Furbach, U., Stolzenburg, F.: Computing answers with model elimination. Artif. Intell.
90(1–2), 135–176 (1997)

16. Baumgartner, P., Schmidt, R. A.: Blocking and other enhancements for bottom-up model generation
methods. In: Furbach, U., Shankar, N. (eds.),Automated Reasoning: IJCAR 2006, volume 4130 of Lecture
Notes in Artificial Intelligence, pp. 125–139. Springer, Berlin (2006)

17. Bezem, M.: Disproving distributivity in lattices using geometry logic. In: Proceedings of CADE-20
Workshop on Disproving (2005)

18. Blanchette, J.C., Nipkow, T.: Nitpick: a counterexample generator for higher-order logic based on a
relational model finder. In: Kaufmann, M., Paulson, L.C. (eds.) Interactive Theorem Proving: ITP 2010,
volume 6172 of Lecture Notes in Computer Science, pp. 131–146. Springer, Berlin (2010)

19. Bolander, T., Bräuner, T.: Tableau-based decision procedures for hybrid logic. J. Log. Comput. 16(6),
737–763 (2006)

20. Bonacina, M.P., Hsiang, J.: On the modelling of search in theorem proving: towards a theory of strategy
analysis. Inf. Comput. 147, 171–208 (1998)

21. Bonacina,M.P., Lynch, C., deMoura, L.M.:On deciding satisfiability by theoremprovingwith speculative
inferences. J. Autom. Reason. 47(2), 161–189 (2011)

22. Bonacina,M.P., Plaisted, D.A.: Semantically-guided goal-sensitive reasoning: Inference system and com-
pleteness. J. Autom. Reason. 59(2), 165–218 (2017)

23. Bry, F., Torge, S.: A deduction method complete for refutation and finite satisfiability. In: Dix, J., del
Cerro, L.F., Furbach, U. (eds.) Logics in Artificial Intelligence: JELIA 1998, volume 1489 of Lecture
Notes in Computer Science, pp. 1–17. Springer, Berlin (1998)

24. Bry, F.,Yahya,A.: Positive unit hyperresolution tableaux forminimalmodel generation. J.Autom.Reason.
25(1), 35–82 (2000)

25. Buchheit, M., Donini, F.M., Schaerf, A.: Decidable reasoning in terminological knowledge representation
systems. J. Artif. Intell. Res. 1, 109–138 (1993)

26. Caferra, R., Leitsch, A., Peltier, N.: Automated Model Building, Volume 31 of Applied Logic. Springer,
Berlin (2004)

27. Caferra, R., Peltier, N.: Combining enumeration and deductive techniques in order to increase the class
of constructible infinite models. J. Symb. Comput. 29(2), 177–211 (2000)

28. Cialdea Mayer, M., Cerrito, S.: Nominal substitution at work with the global and converse modalities. In:
Beklemishev, L., Goranko, V., Shehtman, V. (eds.) Advances in Modal Logic, vol. 8, pp. 57–74. College
Publications (2010)

29. Claessen, K., Sörensson, N.: New techniques that improve MACE-style finite model building. In: Baum-
gartner, P., Fermüller, C.G. (eds.), Proceedings of CADE-19 Workshop on Model Computation (2003)

30. deMoura, L.M., Bjørner,N.: Bugs,moles and skeletons: symbolic reasoning for software development. In:
Automated Reasoning: IJCAR 2010, volume 6173 of Lecture Notes in Computer Science, pp. 400–411.
Springer, Berlin (2010)

31. De Nivelle, H., Schmidt, R.A., Hustadt, U.: Resolution-based methods for modal logics. Log. J. IGPL
8(3), 265–292 (2000)

32. Dershowitz, N.: A maximal-literal unit strategy for Horn clauses. In: Kaplan, S., Okada, M. (eds.),
Proceedings of the 2nd Workshop on Conditional and Typed Rewriting Systems (CTRS), Volume 516 of
Lecture Notes in Computer Science, pp. 14–25. Springer, Berlin (1991)

123

Blocking and Other Enhancements for Bottom-Up Model Generation Methods 249

33. Fermüller, C.G., Leitsch, A.: Hyperresolution and automated model building. J. Log. Comput. 6(2),
173–203 (1996)

34. Fermüller, C.G., Leitsch, A., Tammet, T., Zamov, N.: Resolution Method for the Decision Problem,
volume 679 of Lecture Notes in Computer Science. Springer, Berlin (1993)

35. Fitting, M.: Proof Methods for Modal and Intuitionistic Logics, volume 169 of Synthese Library. Reidel,
Kufstein (1983)

36. Fitting, M.: First-Order Logic and Automated Reasoning. Graduate Texts in Computer Science. Springer,
Berlin (1996)

37. Fujita, M., Slaney, J., Bennett, F.: Automatic generation of some results in finite algebra. In: Proceedings
of the Thirteenth International Joint Conference onArtificial Intelligence: IJCAI 1995, pp. 52–57.Morgan
Kaufmann, Burlington (1995)

38. Gabbay, D.M., Ohlbach, H.J.: Quantifier elimination in second-order predicate logic. S. Afr. Comput.
J. 7, 35–43, 1992. Also published in Nebel, B., Rich, C., Swartout, W. R. (eds.), Proceedings of the
Third International Conference on Principles of Knowledge Representation and Reasoning: KR 1992,
pp. 425–436. Morgan Kaufmann, Burlington (1992)

39. Ganzinger, H., Korovin, K.: New directions in instantiation-based theorem proving. In: Proceedings of the
18th IEEE Symposium on Logic in Computer Science: LICS 2003, pp. 55–64. IEEE Computer Society
Press, Washington (2003)

40. Ganzinger, H., Korovin, K.: Integrating equational reasoning into instantiation-based theorem proving.
In: Computer Science Logic: CSL 2004, Volume 3210 of Lecture Notes in Computer Science, pp. 71–84.
Springer, Berlin (2004)

41. Geisler, T., Panne, S., Schütz, H.: Satchmo: the compiling and functional variants. J. Autom. Reason.
18(2), 227–236 (1997)

42. Georgieva, L., Hustadt, U., Schmidt, R.A.: Hyperresolution for guarded formulae. J. Symb. Comput.
36(1–2), 163–192 (2003)

43. Hasegawa,R., Inoue,K.,Ohta,Y.,Koshimura,M.:Non-Hornmagic sets to incorporate top-down inference
into bottom-up theorem proving. In: Automated Deduction: CADE-14, volume 1249 of Lecture Notes in
Computer Science, pp. 176–190. Springer, Berlin (1997)

44. Hintikka, J.: Model minimization: an alternative to circumscription. J. Autom. Reason. 4(1), 1–13 (1988)
45. Horrocks, I., Sattler, U.: A description logic with transitive and inverse roles and role hierarchies. J. Log.

Comput. 9(3), 385–410 (1999)
46. Horrocks, I., Sattler, U.: A tableau decision procedure for SHOIQ. J. Autom. Reason. 39(3), 249–276

(2007)
47. Horrocks, I., Sattler, U., Tobies, S.: Practical reasoning for very expressive description logics. Log. J.

IGPL 8(3), 239–263 (2000)
48. Hsiang, J., Rusinowitch, M.: Proving refutational completeness of theorem proving strategies: the trans-

finite semantic tree method. J. ACM 38(3), 559–587 (1991)
49. Hughes, G.E., Cresswell, M.J.: An Introduction to Modal Logic. Routledge, Abingdon (1968)
50. Hustadt, U., Schmidt, R.A.: On the relation of resolution and tableaux proof systems for description logics.

In: Dean, T. (ed.) Proceedings of the Sixteenth International Joint Conference on Artificial Intelligence:
IJCAI 1999, pp. 110–115. Morgan Kaufmann, Burlington (1999)

51. Hustadt, U., Schmidt, R.A.: Issues of decidability for description logics in the framework of resolution.
In: Caferra, R., Salzer, G. (eds.) Automated Deduction in Classical and Non-Classical Logics, Volume
1761 of Lecture Notes in Artificial Intelligence, pp. 191–205. Springer, Berlin (2000)

52. Hustadt, U., Schmidt, R.A.: MSPASS: Modal reasoning by translation and first-order resolution. In:
Dyckhoff, R. (ed.), Automated Reasoning with Analytic Tableaux and Related Methods: TABLEAUX
2000, Volume 1847 of Lecture Notes in Artificial Intelligence, pp. 67–71. Springer, Berlin (2000)

53. Hustadt, U., Schmidt, R.A.: Using resolution for testing modal satisfiability and building models. J.
Autom. Reason. 28(2), 205–232 (2002)

54. Hustadt, U., Schmidt, R.A.,Weidenbach, C.:MSPASS: Subsumption testingwith SPASS. In: Lambrix, P.,
Borgida, A., Lenzerini, M., Möller, R., Patel-Schneider, P. (eds.) Proceedings of International Workshop
on Description Logics: DL 1999, pp. 136–137. Linköping University, Linköping (1999)

55. Kaminski, M., Smolka, G.: Terminating tableau systems for hybrid logic with difference and converse.
J. Log. Lang. Inf. 18(4), 437–464 (2009)

56. Khodadadi, M., Schmidt, R.A., Tishkovsky, D.: A refined tableau calculus with controlled blocking for
the description logic SHOI. In: Galmiche, D., Larchey-Wendling, D. (eds.) Automated Reasoning with
Analytic Tableaux and RelatedMethods: TABLEAUX 2013, Volume 8123 of Lecture Notes in Computer
Science, pp. 188–202. Springer, Berlin (2013)

123

250 P. Baumgartner, R. A. Schmidt

57. Korovin, K.: Instantiation-based automated reasoning: From theory to practice. In: Schmidt, R.A. (ed.)
Automated Deduction: CADE-22, Volume 5663 of Lecture Notes in Computer Science, pp. 163–166.
Springer, Berlin (2009)

58. Kripke, S.: Semantical considerations of modal logic I: normal modal propositional calculi. Zeitschrift
für mathematische Logik und Grundlagen der Mathematik 9, 67–96 (1963)

59. Leino, K.R.M., Milicevic, A.: Program extrapolation with Jennisys. In: Proceedings of the 27th Annual
ACM SIGPLAN Conference on Object-Oriented Programming, Systems, Languages, and Applications:
OOPSLA 2012, pp. 411–430. ACM, New York (2012)

60. Leitsch, A.: The Resolution Calculus. EATCS Texts in Theoretical Computer Science. Springer, Berlin
(1997)

61. Lorenz, S.: A tableaux prover for domain minimization. J. Autom. Reason. 13(3), 375–390 (1994)
62. Lynch, C.: Unsound theorem proving. In: Computer Science Logic: CSL 2004, Volume 3210 of Lecture

Notes in Computer Science, pp. 473–487. Springer, Berlin (2004)
63. Manthey, R., Bry, F.: SATCHMO: a theorem prover implemented in Prolog. In: Lusk, E., Overbeek, R.

(eds.) Automated Deduction: CADE-9, Volume 310 of Lecture Notes in Computer Science, pp. 415–434.
Springer, Berlin (1988)

64. Massacci, F.: Single step tableaux for modal logics: computational properties, complexity and method-
ology. J. Autom. Reason. 24(3), 319–364 (2000)

65. McCune, W.: A Davis–Putnam program and its application to finite first-order model search: Quasigroup
existence problems. Technical Report MCS-TM-194, ANL (1994)

66. McCune, W.: Mace4 reference manual and guide. Technical Memorandum 264, Argonne National Lab-
oratory (2003)

67. Minica, S., Khodadadi, M., Tishkovsky, D., Schmidt, R.A.: Synthesising and implementing tableau cal-
culi for interrogative epistemic logics. In: Fontaine, P., Schmidt, R.A., Schulz, S. (eds.) PAAR-2012:
Proceedings of the Third Workshop on Practical Aspects of Automated Reasoning, Volume 21 of EPiC
Series, pp. 109–123. EasyChair, Manchester (2013)

68. Nieuwenhuis, R., Rubio, A.: Paramodulation-based theorem proving. In: Robinson, A., Voronkov, A.
(eds.) Handbook of Automated Reasoning, pp. 371–443. Elsevier, Amsterdam (2001)

69. Papacchini, F., Schmidt, R.A.: A tableau calculus for minimal modal model generation. Electron. Notes
Theor. Comput. Sci. 278(3), 159–172 (2011)

70. Papacchini, F., Schmidt, R.A.: Computing minimal models modulo subset-simulation for propositional
modal logics. In: Fontaine, P., Ringeissen, C., Schmidt, R.A. (eds.) Proceedings of the 9th International
SymposiumonFrontiers ofCombiningSystems: FroCoS2013,Volume8152 ofLectureNotes inArtificial
Intelligence, pp. 279–294. Springer, Berlin (2013)

71. Peltier, N.: A calculus combining resolution and enumeration for building finitemodels. J. Symb. Comput.
36(1–2), 49–77 (2003)

72. Pelzer, B., Wernhard, C.: System description: E-KRHyper. In: Pfenning, F. (ed.) Automated Deduction:
CADE-21, Volume 4603 of Lecture Notes in Artificial Intelligence, pp. 508–513. Springer, Berlin (2007)

73. Riazanov, A.: Implementing an Efficient Theorem Prover. PhD thesis, Department of Computer Science,
The University of Manchester, UK (2003)

74. Riazanov, A., Voronkov, A.: The design and implementation of VAMPIRE. AI Commun. 15(2–3), 91–110
(2002)

75. Robinson, J.A.: Automatic deduction with hyper-resolution. Int. J. Comput. Math. 1(3), 227–234 (1965)
76. Schmidt, R.A.: A newmethodology for developing deduction methods. Ann. Math. Artif. Intell. 55(1–2),

155–187 (2009)
77. Schmidt, R.A., Hustadt, U.: Solvability with resolution of problems in the Bernays–Schönfinkel class.

Presented at Dagstuhl Seminar 05431, 2006, and ARW 2006 in Bristol (2005)
78. Schmidt, R.A., Stell, J.G., Rydeheard, D.: Axiomatic and tableau-based reasoning for Kt(H, R). In: Goré,

R., Kurucz, A. (eds.) Advances in Modal Logic, vol. 10, pp. 478–497. College Publications (2014)
79. Schmidt, R. A., Tishkovsky, D.: Using tableau to decide expressive description logics with role negation.

In: Aberer, K., Choi, K.-S., Fridman Noy, N., Allemang, D., Lee, K.-I., Nixon, L.J.B., Golbeck, J., Mika,
P., Maynard, D., Mizoguchi, R., Schreiber, G., Cudré-Mauroux, P. (eds.) The Semantic Web: ISWC 2007
+ASWC2007, Volume 4825 of Lecture Notes in Computer Science, pp. 438–451. Springer, Berlin (2007)

80. Schmidt, R.A., Tishkovsky,D.:A general tableaumethod for deciding description logics,modal logics and
related first-order fragments. In: Armando, A., Baumgartner, P., Dowek, G. (eds.) Automated Reasoning:
IJCAR 2008, Volume 5195 of Lecture Notes in Computer Science, pp 194–209. Springer, Berlin (2008)

81. Schmidt, R.A., Tishkovsky, D.: Automated synthesis of tableau calculi. Log. Methods Comput. Sci. 7(2),
1–32 (2011)

82. Schmidt, R.A., Tishkovsky, D.: Using tableau to decide description logics with full role negation and
identity. ACM Trans. Comput. Log. 15(1), 7 (2014)

123

Blocking and Other Enhancements for Bottom-Up Model Generation Methods 251

83. Schulz, S.: System description: E 1.8. In: McMillan, K., Middeldorp, A., Voronkov, A. (eds.) Logic for
Programming, Artificial Intelligence, and Reasoning: LPAR 2013, Volume 8312 of LNCS, pp. 735–743.
Springer, Berlin (2013)

84. Schulz, S., Bonacina, M.P.: On handling distinct objects in the superposition calculus. In: Konev, B.,
Schulz, S. (eds.) Proceedings of the 5th International Workshop on the Implementation of Logics: IWIL
(2005). http://www4.in.tum.de/~schulz/PAPERS/SB-IWIL-2005.ps.gz

85. Slaney, J.: FINDER (finite domain enumerator): Notes and guide. Technical Report TR-ARP-1/92, Aus-
tralian National University (1992)

86. Smullyan, R.M.: First Order Logic. Springer, Berlin (1971)
87. Stell, J.G., Schmidt, R.A., Rydeheard, D.: A bi-intuitionistic modal logic: Foundations and automation.

J. Log. Algebraic Methods Programm. 85(4), 500–519 (2016)
88. Stickel, M.E.: Upside-down meta-interpretation of the model elimination theorem-proving procedure for

deduction and abduction. J. Autom. Reason. 13(2), 189–210 (1994)
89. Sutcliffe, G.: The TPTP problem library and associated infrastructure. J. Autom. Reason. 43(4), 337–362

(2009)
90. Tishkovsky, D., Schmidt, R.A., Khodadadi, M.: MetTeL2: Towards a tableau prover generation platform.

In: Fontaine, P., Schmidt, R.A., Schulz, S. (eds.) PAAR-2012: Proceedings of the Third Workshop on
Practical Aspects of Automated Reasoning, Volume 21 of EPiC Series, pp. 149–162. EasyChair (2012)

91. Tishkovsky, D., Schmidt, R.A., Khodadadi, M.: The tableau prover generator MetTeL2. In: del Cerro,
L.F., Herzig, A., Mengin, J. (eds.) Proceedings of the 13th European Conference on Logics in Artificial
Intelligence: JELIA 2012, Volume 7519 of Lecture Notes in Computer Science, pp. 492–495. Springer,
Berlin (2012)

92. Weidenbach, C.: Combining superposition, sorts and splitting. In: Robinson, A., Voronkov, A. (eds.)
Handbook of Automated Reasoning, pp. 1965–2013. North Holland, Amsterdam (2001)

93. Weidenbach, C., Dimova, D., Fietzke, A., Kumar, R., Suda, M., Wischnewski, P.: SPASS version 3.5.
In: Schmidt, R.A. (ed.) Automated Deduction: CADE-22, Volume 5663 of Lecture Notes in Computer
Science, pp. 140–145. Springer, Berlin (2009)

94. Weidenbach, C., Schmidt, R. A., Hillenbrand, T., Rusev, R., Topic, D.: System description: SPASS version
3.0. In: Pfenning, F. (ed.) Automated Deduction: CADE-21, Volume 4603 of Lecture Notes in Artificial
Intelligence, pp. 514–520. Springer, Berlin (2007)

95. Wernhard, C.: System description: KRHyper. In: Proceedings of CADE-19 Workshop on Model Com-
putation (2003)

96. Winker, S.: Generation and verification of finite models and counterexamples using an automated theorem
prover answering two open questions. J. ACM 29(2), 273–284 (1982)

97. Zawidzki, M.: Deductive systems and decidability problem for hybrid logics. PhD thesis, Faculty of
Philosophy and History, University of Lodz (2013)

98. Zhang, H.: SEM: A system for enumerating models. In: Proceedings of the Thirteenth International Joint
Conference on Artificial Intelligence: IJCAI 1995, pp. 298–303. Morgan Kaufmann, Burlington (1995)

99. Zhang, H., Zhang, J.: Mace4 and SEM: A comparison of finite model generators. In: Bonacina, M.P.,
Stickel, M.E. (eds.) Automated Reasoning and Mathematics: Essays in Memory of WilliamW. McCune,
Volume 7788 of Lecture Notes in Artificial Intelligence, pp. 102–131. Springer, Berlin (2013)

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

123

http://www4.in.tum.de/~schulz/PAPERS/SB-IWIL-2005.ps.gz

	Blocking and Other Enhancements for Bottom-Up Model Generation Methods
	Abstract
	1 Introduction
	2 Basic Definitions
	3 BUMG Methods
	4 Range-Restricting Transformations
	5 Equality
	5.1 Modification: The myequal Predicate
	5.2 Modification: Range-Restriction

	6 Shifting Transformation
	6.1 Basic Shifting
	6.2 Partial Flattening

	7 Blocking
	7.1 Subterm Domain Blocking
	7.2 Subterm Predicate Blocking
	7.3 Unrestricted Domain Blocking
	7.4 Unrestricted Predicate Blocking
	7.5 Comparison on an Example

	8 Soundness and Completeness of the Transformations
	9 Decidability of BS Classes
	10 Experimental Evaluation
	10.1 Results
	10.2 Findings of the Experimental Evaluation

	11 Discussion and Related Work
	12 Concluding Remarks
	Acknowledgements
	References

