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Abstract

Deep learning has had a profound impact on computer science in recent years, with applica-
tions to image recognition, language processing, bioinformatics, and more. Recently, Cohen
et al. provided theoretical evidence for the superiority of deep learning over shallow learning.
We formalized their mathematical proof using Isabelle/HOL. The Isabelle development sim-
plifies and generalizes the original proof, while working around the limitations of the HOL
type system. To support the formalization, we developed reusable libraries of formalized
mathematics, including results about the matrix rank, the Borel measure, and multivariate
polynomials as well as a library for tensor analysis.

Keywords Isabelle/HOL - Deep learning - Machine learning - Convolutional arithmetic
circuits - Formalization - Tensors

1 Introduction

Deep learning algorithms enable computers to perform tasks that seem beyond what we
can program them to do using traditional techniques. In recent years, we have seen the
emergence of unbeatable computer go players, practical speech recognition systems, and self-
driving cars. These algorithms also have applications to image recognition, bioinformatics,
and many other domains. Yet, on the theoretical side, we are only starting to understand
why deep learning works so well. Recently, Cohen et al. [16] used tensor theory to explain
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the superiority of deep learning over shallow learning for one specific learning architecture
called convolutional arithmetic circuits (CACs).

Machine learning algorithms attempt to model abstractions of their input data. A typical
application is image recognition—i.e., classifying a given image in one of several categories,
depending on what the image depicts. The algorithms usually learn from a set of data points,
each specifying an input (the image) and a desired output (the category). This learning process
is called training. The algorithms generalize the sample data, allowing them to imitate the
learned output on previously unseen input data.

CACs are based on sum—product networks, also called arithmetic circuits [37]. Such a
network is a rooted directed acyclic graph with input variables as leaf nodes and two types
of inner nodes: sums and products. The incoming edges of sum nodes are labeled with
real-valued weights, which are learned by training.

CACs impose the structure of the popular convolutional neural networks (CNNs) onto
sum—product networks, using alternating convolutional and pooling layers, which are realized
as collections of sum nodes and product nodes, respectively. These networks can be shallower
or deeper—i.e., consist of few or many layers—and each layer can be arbitrarily small or
large, with low- or high-arity sum nodes. CACs are equivalent to similarity networks, which
have been demonstrated to perform at least as well as CNNs [15].

Cohen et al. prove two main theorems about CACs: the “fundamental” and the generalized
theorem of network capacity (Sect. 4). The generalized theorem states that CAC networks
enjoy complete depth efficiency: in general, to express a function captured by a deeper
network using a shallower network, the shallower network must be exponentially larger than
the deeper network. By “in general”, we mean that the statement holds for all CACs except
for a Lebesgue null set S in the weight space of the deeper network. The fundamental theorem
is a special case of the generalized theorem where the expressiveness of the deepest possible
network is compared with the shallowest network. Cohen et al. present each theorem in a
variant where weights are shared across the networks and a more flexible variant where they
are not.

As an exercise in mechanizing modern research in machine learning, we developed
a formal proof of the fundamental theorem with and without weight sharing using the
Isabelle/HOL proof assistant [33,34]. To simplify our work, we recast the original proof
into a more modular version (Sect. 5), which generalizes the result as follows: S is not only
a Lebesgue null set, but also a subset of the zero set of a nonzero multivariate polynomial.
This stronger theorem gives a clearer picture of the expressiveness of deep CACs.

The formal proof builds on general libraries that we either developed or enriched (Sect. 6).
We created a library for tensors and their operations, including product, CP-rank, and matri-
cization. We added the matrix rank and its properties to Thiemann and Yamada’s matrix
library [41], generalized the definition of the Borel measure by Holzl and Himmelmann [25],
and extended Lochbihler and Haftmann’s polynomial library [22] with various lemmas,
including the theorem stating that zero sets of nonzero multivariate polynomials are Lebesgue
null sets. For matrices and the Lebesgue measure, an issue we faced was that the definitions
in the standard Isabelle libraries have too restrictive types: the dimensionality of the matrices
and of the measure space is parameterized by types that encode numbers, whereas we needed
them to be terms.

Building on these libraries, we formalized both variants of the fundamental theorem
(Sect. 7). CACs are represented using a datatype that is flexible enough to capture networks
with and without concrete weights. We defined tensors and polynomials to describe these
networks, and used the datatype’s induction principle to show their properties and deduce
the fundamental theorem.

@ Springer



A Formal Proof of the Expressiveness of Deep Learning 349

Our formalization is part of the Archive of Formal Proofs [2] and is described in more
detail in Bentkamp’s M.Sc. thesis [3]. It comprises about 7000 lines of Isabelle proofs, mostly
in the declarative Isar style [43], and relies only on the standard axioms of higher-order logic.

An earlier version of this work was presented at ITP 2017 [4]. This article extends the
conference paper with a more in-depth explanation of CACs and the fundamental theorem
of network capacity, more details on the generalization obtained as a result of restructuring
the proof, and an outline of the original proof by Cohen et al. Moreover, we extended the
formalization to cover the theorem variant with shared weights. To make the paper more
accessible, we added an introduction to Isabelle/HOL (Sect. 2).

2 Isabelle/HOL

Isabelle [33,34] is a generic proof assistant that supports many object logics. The metalogic
is based on an intuitionistic fragment of Church’s simple type theory [14]. The types are built
from type variables «, 8, ... and n-ary type constructors, normally written in postfix notation
(e.g., o list). The infix type constructor « = f is interpreted as the (total) function space
from « to B. Function applications are written in a curried style (e.g., f x y). Anonymous
functions x +— y, are written Ax. y,. The notation ¢ :: T indicates that term ¢ has type t.

Isabelle/HOL is an instance of Isabelle. Its object logic is classical higher-order logic
supplemented with rank-1 polymorphism and Haskell-style type classes. The distinction
between the metalogic and the object logic is important operationally but not semantically.

Isabelle’s architecture follows the tradition of the theorem prover LCF [21] in imple-
menting a small inference kernel that verifies the proofs. Trusting an Isabelle proof involves
trusting this kernel, the formulation of the main theorems, the assumed axioms, the compiler
and runtime system of Standard ML, the operating system, and the hardware. Specifica-
tion mechanisms help us define important classes of types and functions, such as inductive
datatypes and recursive functions, without introducing axioms. Since additional axioms can
lead to inconsistencies, it is generally good style to use these mechanisms.

Our formalization is mostly written in Isar [43], a proof language designed to facilitate the
development of structured, human-readable proofs. Isar proofs allow us to state intermediate
proof steps and to nest proofs. This makes them more maintainable than unstructured tactic
scripts, and hence more appropriate for substantial formalizations.

Isabelle locales are a convenient mechanism for structuring large proofs. A locale fixes
types, constants, and assumptions within a specified scope. For example, an informal math-
ematical text stating “in this section, let A be a set of natural numbers and B a subset of A”
could be formalized by introducing a locale AB_subset as follows:

locale AB_subset = fixes A B::nat set assumes B C A

Definitions made within the locale may depend on A and B, and lemmas proved within
the locale may use the assumption that B € A. A single locale can introduce arbitrarily
many types, constants, and assumptions. Seen from the outside, the lemmas proved in a
locale are polymorphic in the fixed type variables, universally quantified over the fixed
constants, and conditional on the locale’s assumptions. It is good practice to provide at least
one interpretation after defining a locale to show that the assumptions are consistent. For
example, we can interpret the above locale using the empty set for both A and B by proving
that ¥ C ¢:

interpretation AB_subset_empty: AB_subset ) ()
using AB_subset_def by simp
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Types can be grouped in type classes. Similarly to locales, type classes fix constants
and assumptions, but they must have exactly one type parameter. Type classes are used to
formalize the hierarchy of algebraic structures, such as semigroups, monoids, and groups.

The Sledgehammer tool [35] is useful to discharge proof obligations. It heuristically selects
a few hundred lemmas from the thousands available (using machine learning [9]); translates
the proof obligation and the selected lemmas to first-order logic; invokes external automatic
theorem provers on the translated problem; and translates any proofs found by the external
provers to Isar proof texts that can be inserted in the formalization.

3 Mathematical Preliminaries

We provide a short introduction to tensors and the Lebesgue measure. We expect familiarity
with basic matrix and polynomial theory.

3.1 Tensors

Tensors can be understood as multidimensional arrays, with vectors and matrices as the one-
and two-dimensional cases. Each index corresponds to a mode of the tensor. For matrices,
the modes are called “row” and “column”. The number of modes is the order of the tensor.
The number of values an index can take in a particular mode is the dimension in that mode.
Thus, a real-valued tensor &7 € RM1* XMy of grder N and dimension M; in mode i contains
values .7y, 4y € Rford; e {1,..., M;}.

Like for vectors and matrices, addition + is defined as componentwise addition for tensors
of identical dimensions. The product ® : RM1>x XMy o RMyrpxxMy_y RMixxMy jg
a binary operation that generalizes the outer vector product. For real tensors, it is associative
and distributes over addition. The canonical polyadic rank, or CP-rank, associates a natural
number with a tensor, generalizing the matrix rank. The matricization [.2/] of a tensor ¢/ is a
matrix obtained by rearranging <7’s entries using a bijection between the tensor and matrix
entries. It has the following property:

Lemma 1 Given a tensor </, we have rank [.«/] < CP-rank <.

3.2 Lebesgue Measure

The Lebesgue measure is a mathematical description of the intuitive concept of length,
surface, or volume. It extends this concept from simple geometrical shapes to a large amount
of subsets of R", including all closed and open sets, although it is impossible to design a
measure that caters for all subsets of R” while maintaining intuitive properties. The sets to
which the Lebesgue measure can assign a volume are called measurable. The volume that
is assigned to a measurable set can be a nonnegative real number or co. A set of Lebesgue
measure 0 is called a null set. If a property holds for all points in R” except for a null set, the
property is said to hold almost everywhere.

The following lemma [13] about polynomials will be useful for the proof of the funda-
mental theorem of network capacity.

Lemma2 If p 0 is a polynomial in d variables, the set of points x € R with p(x) = 0 is
a Lebesgue null set.
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Fig. 1 Definition and hierarchical structure of a CAC with d layers

4 The Theorems of Network Capacity

A CAC is defined by the following parameters: the number of input vectors N, the depth d,
and the dimensions of the weight matrices r_1, ..., r4. The number N must be a power of 2
and d can be any number between 1 and log, N. The size of the input vectors is M = r_;
and the size of the output vector is ¥ = ry.

The evaluation of a CAC—i.e., the calculation of its output vector given the input vectors—
depends on learned weights. The results by Cohen et al. are concerned only with the
expressiveness of these networks and are applicable regardless of the training algorithm.
The weights are organized as entries of a collection of real matrices W; ; of dimension
r; X rj—1, where [ is the index of the layer and j is the position in that layer where the
matrix is used. A CAC has shared weights if the same weight matrix is applied within each
layer [—i.e., Wy, = -+ = W, y/»r. The weight space of a CAC is the space of all possible
weight configurations.

Figure 1 gives the formulas for evaluating a CAC and relates them to the network’s
hierarchical structure. The inputs are denoted by xp, ..., Xy € R and the output is denoted
byy € RY. The vectors w; ; and v, ; are intermediate results of the calculation, where
ug,; = X; are the inputs and v4 | = Yy is the output. For a given weight configuration,
the network expresses the function (X1, ..., Xy) + y. The network consists of alternating
convolutional and pooling layers. The convolutional layers yield v; ; by multiplication of W} ;
and w; ;. The pooling layers yield u;4,; by componentwise multiplication of two or more
of the previous layer’s v; ; vectors. The % operator denotes componentwise multiplication.
The first d — 1 pooling layers consist of binary nodes, which merge two vectors v; ; into one
vector uy4 1, ;. The last pooling layer consists of a single node with an arity of N/2¢-1 > 2,
which merges all vectors v4_1; of the (d — 1)th layer into one uy ;.

Figure 2 presents a CAC with parameters N = 4,d = 2, r_1 =2, r9 = 2,1 = 3,
and rp = 2. The weights are not shared, resulting in a total of 34 weights. Therefore, the
network’s weight space is R3*. The figure shows a concrete weight configuration from this
space. Given this configuration, the network evaluates the inputs (1, 0), (0, 2), (1, —1), (2, 1)
to the output (2, 4).
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Fig.2 A CAC with concrete weights evaluated on concrete input vectors

Theorem 3 (Fundamental theorem of network capacity) We consider two CACs with identical
N, M, and Y parameters: a deep network of depth d = log, N with weight matrix dimensions
r1,1 and a shallow network of depth d = 1 with weight matrix dimensions ry ;. Let r =
min(ry,0, M) and assume ry o < rN2. Let S be the set of configurations in the weight space
of the deep network that express functions also expressible by the shallow network. Then S
is a Lebesgue null set. This result holds for networks with and without shared weights.

The fundamental theorem compares the extreme cases d = 1 and d = log, N. This is the
theorem we formalized. Figure 3 shows the shallow network, which is the extreme case of

uo,| Uo N
Uy =X; cRM
Vo = Wo,j w0, ER™O VO;LJ__‘_J_JN
up =vo*---xvoy €R20 up
y=vii=Wii-u, eRrRY \
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Fig.3 Evaluation formulas and hierarchical structure of a shallow CAC
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a CAC with d = 1. Intuitively, to express the same functions as the deep network, almost
everywhere in the weight space of the deep network, 2,9 must be at least »"/?, which means
the shallow network needs exponentially larger weight matrices than the deep network.
The generalized theorem compares CACs of any depths 1 < d, < d; < log, N. The
fundamental theorem corresponds to the special case where d; = log, N and d» = 1.

Theorem 4 (Generalized theorem of network capacity) Consider two CACs with identical
N, M, and Y parameters: a deeper network of depth dy with weight matrix dimensions
r1,1 and a shallower network of depth d, < dy with weight matrix dimensions ry. Let
r=min{M, r1, ..., r1,d,—1} and assume

rady1 < rM"

Let S be the set of configurations in the weight space of the deeper network that express
Sunctions also expressible by the shallower network. Then S is a Lebesgue null set. This
result holds for networks with and without shared weights.

Intuitively, to express the same functions as the deeper network, almost everywhere in the
weight space of the deeper network, 15 4,1 must be at least N2 , which means the shallower
network needs exponentially larger weight matrices in its last two layers than the deeper
network in its first d 4 1 layers. Cohen et al. further extended both theorems to CACs with
an initial representational layer that applies a collection of nonlinearities to the inputs before
the rest of the network is evaluated.

The proof of either theorem depends on a connection between CACs and measure theory,
using tensors, matrices, and polynomials. Briefly, the CACs and the functions they express
can be described using tensors. Via matricization, these tensors can be analyzed as matrices.
Polynomials bridge the gap between matrices and measure theory, since the matrix determi-
nant is a polynomial, and zero sets of polynomials are Lebesgue null sets (Lemma 2).

Cohen et al. proceed as follows to prove Theorem 4:

i. They describe the function expressed by a CAC and its sub-CACs for a fixed weight
configuration using tensors. Given a weight configuration w, let /¢ (w) be the tensor
representing the function mapping inputs to the ith entry of v; ; in the deeper network.

ii. They define a function ¢ that reduces the order of a tensor. The CP-rank of ¢ (<) indicates
how large the shallower network must be to express a function represented by a tensor
o7 . More precisely, if the function expressed by the shallower network is represented by
o, then r.dy—1 = CP-rank (p(«7)).

iii. They prove by induction that almost everywhere in the weight space of the deeper net-
work, rank [go(le’/'i)] > rzlﬂj2 forall j,iandalll =dj,...,d; — 1.

(a) Base case: They construct a polynomial mapping the weights of the deeper network
to a real number. Whenever this polynomial is nonzero, rank [go((bdz’j ok )] > r for
that weight configuration. They show that it is not the zero polynomial. By Lemma 2,
it follows that rank [(®%-/+/)] > r almost everywhere.

(b) Induction step: They show that the tensors associated with a layer can be obtained
via the tensor product from the tensors of the previous layer. By constructing another
nonzero polynomial and using Lemma 2, they show that hence the rank of ¢ (d% /%)
increases quadratically almost everywhere.

iv. Given step iii, they show that for all i, almost everywhere rank [p(®d1:1:1)] > V2%

They employ a similar argument as in step iiib.
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By step i, the tensors ®¢1-1# represent the function expressed by the deeper network. In
conjunction with Lemma 1, step iv implies that the inequation CP-rank (¢ (®%-17)) > "/ 22
holds almost everywhere. By step ii, we need 2 4,—1 > P22 almost everywhere for the
shallower network to express functions the deeper network expresses.

The core of this proof—steps iii and iv—is structured as a monolithic induction over the
deeper network structure, which interleaves tensors, matrices, and polynomials. The induction
is complicated because the chosen induction hypothesis is weak. It is easier to show that the

1 ol—dy . . .
set where rank [p(®"/-")] < r is not only a null set but contained in the zero set of a
nonzero polynomial, which is a stronger statement by Lemma 2. As a result, measure theory
can be kept isolated from the rest, and we can avoid the repetitions in steps iii and iv.

5 Restructured Proof of the Theorems

Before launching Isabelle, we restructured the proof into a more modular version that cleanly
separates the mathematical theories involved, resulting in the following sketch:

I. We describe the function expressed by a CAC for a fixed weight configuration using
tensors. We focus on an arbitrary entry y; of the output vector y. If the shallower network
cannot express the output component y;, it cannot represent the entire output either. Let
< (w) be the tensor that represents the function (xy, ..., Xy) > y; expressed by the
deeper network with a weight configuration w.

II. We define a function ¢ that reduces the order of a tensor. The CP-rank of ¢ () indi-
cates how large the shallower network must be to express a function represented by a
tensor 7 if the function expressed by the shallower network is represented by <7, then
r2.d,—1 = CP-rank (¢(#)).

III. We construct a multivariate polynomial p that maps the weights configurations w of the
deeper network to a real number p(w). It has the following properties:

(a) If p(w) # 0, then rank [¢(% (w))] > 7N Hence CP-rank (o( (w))) > N2
by Lemma 1.

(b) The polynomial p is not the zero polynomial. Hence its zero set is a Lebesgue null
set by Lemma 2.

By properties IIla and IIIb, the inequation CP-rank (¢ (<7 (w))) > r holds almost
.. N/ad2
everywhere. By stepii, weneedrp 4,—1 > r /22 almost everywhere for the shallower network
to express functions the deeper network expresses.

Step I corresponds to step i of the original proof. The tensor 7 (w) corresponds to &9 17
The new proof still needs the tensors ®"/-¥ (w) representing the functions expressed by the
sub-CACs to complete step I1Ib, but they no longer clutter the proof outline. Steps II and ii
are identical. The main change is the restructuring of steps iii and iv into step III.

The monolithic induction over the deep network structure in steps iii and iv is replaced by
two smaller inductions. The first one uses the evaluation formulas of CACs and some matrix
and tensor theory to construct the polynomial p. The second induction employs the tensor
representations of expressed functions and some matrix theory to prove IIIb. The measure
theory in the restructured proof is restricted to the final application of Lemma 2, outside of
the induction argument.

The restructuring helps keep the induction simple, and we can avoid formalizing some
lemmas of the original proof. Moreover, the restructured proof allows us to state a stronger
property, which Cohen et al. independently discovered later [18]: the set S in Theorem 4 is
not only a Lebesgue null set, but also a subset of the zero set of the polynomial p. This can be

Nj2d2

@ Springer



A Formal Proof of the Expressiveness of Deep Learning 355

weight
space of

the deeper
network

(a) (b) (c)

Fig. 4 Two-dimensional slice of the weight space of the deeper network. a The set S in Euclidean space, b
discrete counterpart of S and ¢ the e-neighborhood of §

used to derive further properties of S. Zero sets of polynomials are well studied in algebraic
geometry, where they are known as algebraic varieties.

This generalization partially addresses an issue that arises when applying the theorem to
actual implementations of CACs. To help visualize this issue, Fig. 4a depicts a hypothetical
two-dimensional slice of the weight space of the deeper network and its intersection with S,
which will typically have a one-dimensional shape, since S is the zero set of a polynomial.
Cohen et al. assume that the weight space of the deeper network is a Euclidean space, but in
practice it will always be discrete, as displayed in Fig. 4b, since a computer can only store
finitely many different values. They also show that S is a closed null set, but since these can
be arbitrarily dense, this gives no information about the discrete counterpart of S.

We can estimate the size of this discrete counterpart of S using our generalization in
conjunction with a result from algebraic geometry [12,31] that allows us to estimate the
size of the e-neighborhood of the zero set of a polynomial. The e-neighborhood of S is a
good approximation of the discrete counterpart of S if ¢ corresponds to the precision of
computer arithmetic, as displayed in Fig. 4c. Unfortunately, the estimate is trivial, unless
we assume ¢ to be unreasonably small. For instance, under the realistic assumption that
N =65,536andr;; = 100fori € {—1, ..., d}, we can derive nontrivial estimates only for
g < 27170.000 which greatly exceeds the precision of modern computers (of roughly 2764).
Thus, if we take into account that calculations are performed using floating-point arithmetic
and therefore discretized, the gap in expressiveness between shallow and deep networks may
not be as dramatic as suggested by Theorem 4. On the other hand, our analysis is built upon
inequalities, which only provide an upper bound. A mathematical result estimating the size
of S with a lower bound would call for an entirely different approach.

6 Formal Libraries

Our proof requires basic results in matrix, tensor, polynomial, and measure theory. For matri-
ces and polynomials, Isabelle offers several libraries, and we chose those that seemed the
most suitable. We adapted the measure theory from Isabelle’s analysis library and developed
a new tensor library.
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356 A.Bentkamp et al.

6.1 Matrices

We had several options for the choice of a matrix library, of which the most relevant were
Isabelle’s analysis library and Thiemann and Yamada’s matrix library [41]. The analysis
library fixes the matrix dimensions using type parameters, a technique introduced by Harri-
son [24]. The advantage of this approach is that the dimensions are part of the type and need
not be stated as conditions. Moreover, it makes it possible to instantiate type classes depend-
ing on the type arguments. However, this approach is not practical when the dimensions are
specified by terms. Therefore, we chose Thiemann and Yamada’s library, which uses a single
type for matrices of all dimensions and includes a rich collection of lemmas.

We extended the library in a few ways. We contributed a definition of the matrix rank, as
the dimension of the space spanned by the matrix columns:

definition (in vec_space) rank::« mat = nat where
rank A = vectorspace.dim F (span_vs (set (cols A)))

Moreover, we defined submatrices and proved that the rank of a matrix is at least the size
of any submatrix with nonzero determinant, and that the rank is the maximum amount of
linearly independent columns of the matrix.

6.2 Tensors

The Tensor entry [38] of the Archive of Formal Proofs might seem to be a good starting point
for a formalization of tensors. However, despite its name, this library does not contain a type
for tensors. It introduces the Kronecker product, which is equivalent to the tensor product
but operates on the matricizations of tensors.

The Group-Ring-Module entry [29] of the Archive of Formal Proofs could have been
another potential basis for our work. Unfortunately, it introduces the tensor product in a very
abstract fashion and does not integrate well with other Isabelle libraries.

Instead, we introduced our own type for tensors, based on a list that specifies the dimension
in each mode and a list containing all of its entries:

typedef « tensor = {(ds::nat list, as :: « list). length as = [] ds}

We formalized addition, multiplication by scalars, product, matricization, and the CP-
rank. We instantiated addition as a semigroup (semigroup_add) and tensor product as a
monoid (monoid_mult). Stronger type classes cannot be instantiated: their axioms do not
hold collectively for tensors of all sizes, even though they hold for fixed tensor sizes. For
example, it is impossible to define addition for tensors of different sizes while satisfying the
cancellation property a + ¢ = b+ ¢ — a = b. We left addition of tensors of different sizes
underspecified.

For proving properties of addition, scalar multiplication, and product, we devised a
powerful induction principle on tensors, which relies on tensor slices. The induction step
amounts to showing a property for a tensor &/ € RM1X XMy assuming it holds for all slices
o, € RM2XxMy " which are obtained by fixing the first index i € {1, ..., M}}.

Matricization rearranges the entries of a tensor &/ € RMixxMN into a matrix [«/] €
R/ for some suitable 7 and J. This rearrangement can be described as a bijection between
{0,.... My — 1} x---x{0,...,My — 1}and {0, ..., I — 1} x {0, ..., J — 1}, assuming
that indices start at 0. The operation is parameterized by a partition of the tensor modes into
twosets {r; < --- <rg}W{c <--- <cr}=1{1,..., N}. The proof of Theorem 4 uses
only standard matricization, which partitions the indices into odd and even numbers, but we
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A Formal Proof of the Expressiveness of Deep Learning 357

formalized the more general formulation [1]. The matrix [</] has I = ]_[lK: 1 i rows and
J = ]_[JL»=l ¢j columns. The rearrangement function is

K k—1 L -1
o) (z ( T M> 5 ( T M))
k=1 k'=1 =1 I'=1
The indices i,,,...,i and ic,...,I., serve as digits in a mixed-base numeral system

to specify the row and the column in the matricization, respectively. This is perhaps more
obvious if we expand the sum and product operators and factor out the bases M;:

(i1soerin) = (i + My Gy + Myy oo Gy + Mig_y i) -20)),
iey+ My Giey + My - oo iy 4+ Mey_, i) ...)

To formalize the matricization operation, we defined a function that calculates the digits of
a number 7 in a given mixed-based numeral system:

fun encode :: nat list = nat = nat list where
encode [ n =]
| encode (b # bs) n = (n mod b) # encode bs (n div b)

where # is the “cons” list-building operator, which adds an element b to the front of an
existing list bs. We then defined matricization as

definition matricize :: nat set = « tensor = o mat where
matricize R &/ = mat (]| nths (dims /) R) (]| nths (dims /) (—R))
(A(r, ¢). lookup &
(weave R (encode (nths (dims <7) R) r) (encode (nths (dims &) (—R)) ¢)))

The matrix constructor mat takes as arguments the matrix dimensions and a function that
computes each matrix entry from the indices r and c. Defining this function amounts to finding
the corresponding indices of the tensor, which are essentially the mixed-base encoding of
r and c, but the digits of these two encoded numbers must be interleaved in an order specified
by the set R = {ry, ..., rx}.

To merge two lists of digits in the correct way, we defined a function weave. This function
is the counterpart of nths:

lemma weave_nths:
weave I (nths as I) (nths as (—=1I)) = as

The function nths reduces a list to those entries whose indices belong to a set I (e.g.,
nths [a, b, c,d] {0,2} = [a, c]). The function weave merges two lists xs and ys given a
set I that indicates at what positions the entries of xs should appear in the resulting list
(e.g., weave [a, c] [b,d] {0,2} = [a, b, c, d]). The main concern when defining weave is
to determine how it should behave in corner cases—in our scenario, when I = {} and xs
is nonempty. We settled on a definition such that the property length (weave I xs ys) =
length xs + length ys holds unconditionally:

definition weave :: nat set = « list = « list = « list where
weave [ xs ys =map (Ai.if ielthenxs ! |[{ael.a <i}| elseys! |[{ae —I.a < i}|)
[0 ..< length xs + length ys]

where the ! operator returns the list element at a given index. This definition allows us to
prove lemmas about weave [ xs ys ! a and length (weave I xs ys) easily. Other properties,
such as the weave_nths lemma above, are justified using an induction over the length of a
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list, with a case distinction in the induction step on whether the new list element is taken
from xs or ys.

Another difficulty arises with the rule rank [.&/ ® %] = rank [«/] - rank [#] for standard
matricization and tensors of even order, which seemed tedious to formalize. Restructuring
the proof eliminated one of its two occurrences (Sect. 5). The remaining occurrence is used
to show that rank [a] ® --- ® ay] = 1, where aj, ..., ay are vectors and N is even. A
simpler proof relies on the observation that the entries of the matrix [a] ® - - - ® ay] can be
written as f (i) - g(j), where f depends only on the row index i, and g depends only on the
column index j. Using this argument, we can show rank [a; ® - - - ® ay] = 1 for generalized
matricization and an arbitrary N, which we used to prove Lemma 1:

lemma matrix_rank_le_cp_rank:
fixes A :: (« ::field) tensor
shows mrank (matricize R A) < cprank A

6.3 Lebesgue Measure

At the time of our formalization work, Isabelle’s analysis library defined only the Borel
measure on R” but not the closely related Lebesgue measure. The Lebesgue measure is the
completion of the Borel measure. The two measures are identical on all sets that are Borel
measurable, but the Lebesgue measure can measure more sets. Following the proof by Cohen
et al., we can show that the set S defined in Theorem 4 is a subset of a Borel null set. It follows
that S is a Lebesgue null set, but not necessarily a Borel null set.

To resolve this mismatch, we considered three options:

1. Prove that S is a Borel null set, which we believe is the case, although it does not follow
trivially from S’s being a subset of a Borel null set.

2. Define the Lebesgue measure, using the already formalized Borel measure and measure
completion.

3. Use the Borel measure whenever possible and use the almost-everywhere quantifier (V)
otherwise.

We chose the third approach, which seemed simpler. Theorem 4, as expressed in Sect. 4,
defines S as the set of configurations in the weight space of the deeper network that express
functions also expressible by the shallower network, and then asserts that S is a null set. In the
formalization, we state this as follows: almost everywhere in the weight space of the deeper
network, the deeper network expresses functions not expressible by the shallower network.
This formulation is equivalent to asserting that S is a subset of a null set, which we can easily
prove for the Borel measure as well.

There is, however, another issue with the definition of the Borel measure from Isabelle’s
analysis library:

definition |borel :: (« :: euclidean_space) measure where
Iborel = distr (] ]y, & € Basis. interval_measure (Ax. x)) borel
(Af. Y_beBasis. f b =g b)

The type « specifies the number of dimensions of the measure space. In our proof, the measure
space is the weight space of the deeper network, and its dimension depends on the number
N of inputs and the size r; of the weight matrices. The number of dimensions is a term in
our proof. We described a similar issue with Isabelle’s matrix library already.
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The solution is to introduce a new notion of the Borel measure whose type does not fix the
number of dimensions. This multidimensional Borel measure is the product measure (] [y;)
of the one-dimensional Borel measure (Iborel :: real measure) with itself:

definition |borels:: nat = (nat = real) measure where
Iborelf n = ([ b € {..< n}. Iborel)

The argument n specifies the dimension of the measure space. Unlike with Iborel, the measure
space of Iborels n is not the entire universe of the type: only functions of type nat = real that
map to a default value for numbers greater than or equal to n are contained in the measure
space, which is available as space (Iborels ). With the above definition, we could prove the
main lemmas about |borels from the corresponding lemmas about Iborel with little effort.

6.4 Multivariate Polynomials

Several multivariate polynomial libraries have been developed to support other formaliza-
tion projects in Isabelle. Sternagel and Thiemann [40] formalized multivariate polynomials
designed for execution, but the equality of polynomials is a custom predicate, which means
that we cannot use Isabelle’s simplifier to rewrite polynomial expressions. Immler and
Maletzky [26] formalized an axiomatic approach to multivariate polynomials using type
classes, but their focus is not on the evaluation homomorphism, which we need. Instead, we
chose to extend a previously unpublished multivariate polynomial library by Lochbihler and
Haftmann [22]. We derived induction principles and properties of the evaluation homomor-
phism and of nested multivariate polynomials. These were useful to formalize Lemma 2:

lemma lebesgue_mpoly_zero_set:
fixes p :: real mpoly
assumes p # 0 and vars p C {..< n}
shows {x € space (Iborel¢ n). insertion x p = 0} € null_sets (Iborels n)

The variables of polynomials are represented by natural numbers. The function insertion is
the evaluation homomorphism. Its first argument is a function x :: nat = real that represents
the values of the variables; its second argument is the polynomial to be evaluated.

7 Formalization of the Fundamental Theorem

With the necessary libraries in place, we undertook the formal proof of the fundamental
theorem of network capacity, starting with the CACs. A recursive datatype is appropriate to
capture the hierarchical structure of these networks:

datatype o cac =

|

| ’ Pool (« cac) (a cac) ‘

To simplify the proofs, Pool nodes are always binary. Pooling layers that merge more than
two branches are represented by nesting Pool nodes to the right.

The type variable o can be used to store weights. For networks without weights, it is
set to nat x nat, which associates only the matrix dimension with each Conv node. For
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networks with weights, « is real mat, an actual matrix. These two network types are con-
nected by insert_weights, which inserts weights into a weightless network, and its inverse
extract_weights :: bool = real mat cac = nat = real, which retrieves the weights from a
network containing weights.
fun insert_weights :: bool = (nat x nat) cac = (nat = real) = real mat cac where
insert_weights shared (Input M) w = Input M
| insert_weights shared (Conv (r,c) m) w =
Conv (extract_matrix w r ¢) (insert_weights shared m (Ai. w (i + r * ¢)))
| insert_weights shared (Pool mj my) w =
Pool (insert_weights shared m; w) (insert_weights shared m)
(if shared then w else (Ai. w (i + count_weights shared my))))

fun extract_weights:: bool = real mat convnet = nat = real where
extract_weights shared (Input M) i =0

| extract_weights shared (Conv A m) i =
if i < dim; A x dim¢ A then flatten_matrix A i
else extract_weights shared m (i — dim; A % dim¢ A)

| extract_weights shared (Pool m; my) i =
if i < count_weights shared m; then extract_weights shared m; i
else extract_weights shared m, (i — count_weights shared my)

The first argument of these two functions specifies whether the weights should be shared

among the Conv nodes of the same layer. The weights are represented by a function w, of

which only the first k values w0, w1, ..., w(k—1) are used. Given a matrix, flatten_matrix

creates such a function representing the matrix entries. Sets over nat = real can be measured

using Iborels. The count_weights function returns the number of weights in a network.
The next function describes how the networks are evaluated:

fun evaluate_net :: real mat cac = real vec list = real vec where
evaluate_net (Input M) is = hd is
| evaluate_net (Conv A m) is = A ®my evaluate_net m is
| evaluate_net (Pool m| my) is = component_mult
(evaluate_net m; (take (length (input_sizes m))) is))
(evaluate_net my (drop (length (input_sizes my)) is))

where ®my multiplies a matrix with a vector, and component_mult multiplies vectors com-
ponentwise.

The cac type can represent networks with arbitrary nesting of Conv and Pool nodes, going
beyond the definition of CACs. Moreover, since we focus on the fundamental theorem, it
suffices to consider a deep model with d; = log, N and a shallow model with d» = 1. These
are specified by generating functions:

fun
deep_modely :: nat = nat list = (nat x nat) cac and

deep_model :: nat = nat = nat list = (nat x nat) cac
where

deep_model, Y [] = Input Y
| deep_modely Y (r # rs) = Pool (deep_model Y r rs) (deep_model Y r rs)
| deep_model Y r rs = Conv (Y, r) (deep_model r rs)

fun shallow_model :: nat = nat = nat = (nat x nat) cac where
shallow_modely Z M 0 = Conv (Z, M) (Input M)
| shallow_modely Z M (Suc N) = Pool (shallow_modely Z M 0) (shallow_modelo Z M N)
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‘InputM‘ ‘InputM‘ ‘InputM‘ ‘InputM‘
l l l l

‘ Conv (ro,M) H Conv (ro,M) H Conv (ro,M) H Conv (ro,M) ‘ ‘ InputM‘ ‘ Conv (Z,M) H Conv (Z,M) ‘
Pool ‘ InputM‘ ‘ Conv (Z,M) ‘ ‘ Pool ‘
Conv (r1,r9) ‘ Conv (r1,r9) ‘ ‘ Conv (Z,M) ‘ ‘ Pool ‘

(a) (b)

Fig.5 A deep and a shallow network represented using the cac datatype. a deep_model Y ry [rg, M] and b
shallow_model Y Z M 3

definition shallow_model:: nat = nat = nat = nat = (nat x nat) cac where
shallow_model Y Z M N = Conv (Y, Z) (shallow_modely Z M N)

Two examples are given in Fig. 5. For the deep model, the arguments Y # r # rs correspond
to the weight matrix sizes [r1 4 (=Y), r1,4-1, ..., 1,0, '1,—1 (= M)]. For the shallow
model, the arguments Y, Z, M correspond to the parameters r21 (=Y), 12,0, 12,—1 (= M),
and N gives the number of inputs minus 1.

The rest of the formalization follows the proof sketch presented in Sect. 5.

Step I The following operation computes a list, or vector, of tensors representing a net-
work’s function, each tensor standing for one component of the output vector:

fun tensors_from_net :: real mat cac = real tensor vec where
tensors_from_net (Input M) = Matrix.vec M (Ai. unit_vec M i)

| tensors_from_net (Conv A m) =
mat_tensorlist_mult A (tensors_from_net m) (input_sizes m)

| tensors_from_net (Pool m; my) =
component_mult (tensors_from_net m;) (tensors_from_net my)

For an Input node, we return the list of unit vectors of length M. For a Conv node, we multiply
the weight matrix A with the tensor list computed for the subnetwork mz, using matrix—vector
multiplication. For a Pool node, we compute, elementwise, the tensor products of the two
tensor lists associated with the subnetworks m and m». If two networks express the same
function, the representing tensors are the same:

lemma tensors_from_net_eql:
assumes valid_net’ m; and valid_net’ m> and input_sizes m; = input_sizes m»
and Vis. input_correct is — evaluate_net m is = evaluate_net m; is
shows tensors_from_net m; = tensors_from_net m,

The fundamental theorem is a general statement about deep networks. It is useful to fix
the deep network parameters in a locale:

locale deep_model_correct_params =
fixes rs::nat list and shared :: bool
assumes length rs > 3 and Vr esetrs.r > 0
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The list rs completely specifies one specific deep network model:

abbreviation deep_net:: (nat x nat) cac where
deep_net = deep_model (rs ! 0) (rs ! 1) (tl (tl rs))

The parameter shared specifies whether weights are shared across Conv nodes within the
same layer. The other parameters of the deep network can be defined based on rs and shared:

definition r::nat where r = min (last rs) (last (butlast rs))

definition N_half:: nar where N_half = 2'engthrs =3

definition weight_space_dim :: nar where
weight_space_dim = count_weights shared deep_net

The shallow network must have the same input and output sizes as the deep network to
express the same function as the deep network. This leaves only the parameter Z = r g,
which specifies the weight matrix sizes in the Conv nodes and the size of the vectors multiplied
in the Pool nodes of the shallow network:

abbreviation shallow_net:: nat = (nat x nat) cac where
shallow_net Z = shallow_model (rs ! 0) Z (last rs) (2 x N_half — 1)

Following the proof sketch, we consider a single output component y;. We rely on a
second locale that introduces a constant i for the index of the considered output component.
We provide interpretations for both locales.

locale deep_model_correct_params_output_index = deep_model_correct_params +
fixes i:: nat
assumes i <rs!0

Then we can define the tensor <%, which describes the behavior of the function expressed
by the deep network at the output component y;, depending on the weight configuration w
of the deep network:

definition .o7; :: (nat = real) = real tensor where
/i w = tensors_from_net (insert_weights shared deep_net w) !i

We want to determine for which w the shallow network can express the same function, and
is hence represented by the same tensor.

Step IT We must show that if a tensor .27 represents the function expressed by the shallow
network, then 3 4,1 > CP-rank (¢()). For the fundamental theorem, ¢ is the identity and
d» = 1. Hence, it suffices to prove that Z = r, ¢ > CP-rank (&/):

lemma cprank_shallow_model:
cprank (tensors_from_net (insert_weights shared w (shallow_net Z2)) i) < Z

This lemma can be proved easily from the definition of the CP-rank.
Step IIT We define the polynomial p and prove that it has properties IIIa and ITIb. Defining
p as a function is simple:

definition pg. :: (nat = real) = real where
Pfunc W = det (submatrix [.«7; w] rows_with_1 rows_with_1)

where [« w] abbreviates the standard matricization matricize {n. even n} (<7 w), and
rows_with_1 is the set of row indices with Is in the main diagonal for a specific weight
configuration w defined in step IIIb. Our aim is to make the submatrix as large as possible
while maintaining the property that p is not the zero polynomial. The bound on Z in the
statement of the final theorem is derived from the size of this submatrix.

The function pg,,c must be shown to be a polynomial function. We introduce a predicate
polyfun that determines whether a function is a polynomial function:
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definition polyfun ::nat set = ((nat = real) = real) = bool where
polyfun N f <> Jp.varsp C N A Vx. insertionx p =f x

This predicate is preserved from constant and linear functions through the tensor represen-
tation of the CAC, matricization, choice of submatrix, and determinant:

lemma polyfun_p:
polyfun {..< weight_space_dim} psync

Step ITIa We must show that if p(w) # 0, then CP-rank (< (w)) > rV/2. The Isar proof
is sketched below:

lemma if polynomial_0_rank:
assumes P, W 7 0
shows rN-half < cprank (o7} w)
proof —
have rN-half — dim, (submatrix [« w] rows_with_1 rows_with_1)
by calculating the size of the submatrix
also have --- < mrank [« w]
using the assumption and the fact that the rank is at least the size of a submatrix with
nonzero determinant
also have --- < cprank (&} w)
using Lemma 1
finally show ’thesis .
qed

Step IITb To prove that p is not the zero polynomial, we must exhibit a witness weight
configuration where p is nonzero. Since weights are arranged in matrices, we define concrete
matrix types: matrices with 1s on their diagonal and Os elsewhere (id_matrix), matrices with
1s everywhere (all1_matrix), and matrices with s in the first column and Os elsewhere
(copy_first_matrix). For example, the last matrix type is defined as follows:

definition copy_first_matrix :: nar = nat = real mat where
copy_first_matrix nr nc = mat nr nc (A(r, ¢). if ¢ = 0 then 1 else 0)

For each matrix type, we show how it behaves under multiplication with a vector:

lemma mult_copy_first_matrix:
assumes i < nr and dimy v > 0
shows (copy_first_matrix nr (dimy v) my v) li=v !0

Using these matrices, we can define the deep network containing the witness weights:

fun

witnessg :: nat = nat list = real mat cac and

witness :: nat = nat = nat list = real mat cac
where

witnessg Y [] = Input Y
| witnessg Y (r # rs) = Pool (witness Y r rs) (witness Y r rs)
| witness Y r [] = Conv (id_matrix Y r) (witnessg r [])
| witness Y r [r1] = Conv (all1_matrix Y r) (witnessg r [r1])
| witness Y r (r; # 1, #rs) =

Conv (copy_first_matrix Y r) (witnessy r (r; # rp # rs))
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The network’s structure is identical to deep_model. For each Conv node, we carefully choose
one of the three matrix types we defined, so that the representing tensor of this network has
as many 1s as possible on the main diagonal and Os elsewhere. This in turn ensures that
its matricization has as many 1s as possible on its main diagonal and Os elsewhere. The
rows_with_1 constant specifies the row indices that contain the 1s.

We extract the weights from the witness network using the function extract_weights:

definition witness_weights :: nat = real where
witness_weights = extract_weights shared deep_net

We prove that the representing tensor of the witness network, which is equal to the tensor
of; witness_weights, has the desired form. This step is rather involved: we show how the
defined matrices act in the network and perform a tedious induction over the witness network.
Then we can show that the submatrix characterized by rows_with_1 of the matricization of
this tensor is the identity matrix of size rN-alf;

lemma witness_submatrix:

submatrix [ .7 witness_weights] rows_with_1 rows_with_1 = id_matrix rN-half (N_half

As a consequence of this lemma, the determinant of this submatrix, which is the definition
of Prync» 18 nonzero. Therefore, p is not the zero polynomial:

lemma polynomial_not_zero:
Pfunc Witness_weights £ 0

Fundamental Theorem The results of steps II and III can be used to establish the funda-
mental theorem:

theorem fundamental_theorem_of network_capacity:
V.e wa W.r.t. Iborelf weight_space_dim. Fws Z.
7 < (N_half |
Vis. input_correct is —
evaluate_net (insert_weights shared deep_net wq) is =
evaluate_net (insert_weights shared (shallow_net Z) wy) is

Here, Vg x w.r.t. m. P,’ means that the property P, holds almost everywhere with respect
to the measure m. The rN-P2f bound corresponds to the size of the identity matrix in the
witness_submatrix lemma above.

8 Discussion

We formalized the fundamental theorem of network capacity. Our theorem statement is inde-
pendent of the tensor library (and hence its correctness is independent of whether the library
faithfully captures tensor-related notions). The generalized theorem is mostly a straightfor-
ward generalization. To formalize it, we would need to define CACs for arbitrary depths,
which our datatype allows. Moreover, we would need to define the function ¢ and prove
some of its properties. Then, we would generalize the existing lemmas. We focused on the
fundamental theorem because it contains all the essential ideas.

The original proof is about eight pages long, including the definitions of the networks.
This corresponds to about 2000 lines of Isabelle formalization. A larger part of our effort
went into creating and extending mathematical libraries, amounting to about 5000 lines.
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We often encountered proof obligations that Sledgehammer could solve only using the
smt proof method [11], especially in contexts with sums and products of reals, existential
quantifiers, and A-expressions. The smt method relies on the SMT solver Z3 [20] to find a
proof, which it then replays using Isabelle’s inference kernel. Relying on a highly heuristic
third-party prover is fragile; some proofs that are fast with a given version of the prover
might time out with a different version, or be unreplayable due to some incompleteness in
smt. For this reason, until recently it has been a policy of the Archive of Formal Proofs to
refuse entries containing smt proofs. Sledgehammer resorts to smt proofs only if it fails to
produce one-line proofs using the metis proof method [36] or structured Isar proofs [8]. We
ended up with over 60 invocations of sm¢, which we later replaced one by one with structured
Isar proofs, a tedious process. The following equation on reals is an example that can only
be proved by smt, with suitable lemmas:

YD a-b-fli)-g() = (Za : f(i)> D bgl
iel jelJ iel jelJ
We could not solve it with other proof methods without engaging in a detailed proof involving

multiple steps. This particular example relies on smt#’s partial support for A-expressions
through A-lifting, an instance of what we would call “easy higher-order”.

9 Related Work

CACs are relatively easy to analyze but little used in practice. In a follow-up paper [19],
Cohen et al. used tensor theory to analyze dilated convolutional networks and in another
paper [17], they connected their tensor analysis of CACs to the frequently used CNNs with
rectified linear unit (ReLU) activation. Unlike CACs, ReLU CNNs with average pooling are
not universal—that is, even shallow networks of arbitrary size cannot express all functions a
deeper network can express. Moreover, ReLU CNNs do not enjoy complete depth efficiency;
the analogue of the set S for those networks has a Lebesgue measure greater than zero.
This leads Cohen et al. to conjecture that CACs could become a leading approach for deep
learning, once suitable training algorithms have been developed.

Kawaguchi [28] uses linear deep networks, which resemble CACs, to analyze network
training of linear and nonlinear networks. Hardt et al. [23] show theoretically why the stochas-
tic gradient descent training method is efficient in practice. Tishby and Zaslavsky [42] employ
information theory to explain the power of deep learning.

We are aware of a few other formalizations of machine learning algorithms, including
hidden Markov models [30], perceptrons [32], expectation maximization, and support vector
machines [7]. Selsam et al. [39] propose a methodology to verify practical machine learning
systems in proof assistants.

Some of the mathematical libraries underlying our formalizations have counterparts in
other systems, notably Coq. For example, the Mathematical Components include compre-
hensive matrix theories [6], which are naturally expressed using dependent types. The tensor
formalization by Boender [10] restricts itself to the Kronecker product on matrices. Bernard
et al. [5] formalized multivariate polynomials and used them to show the transcendence of
e and . Kam formalized the Lebesgue integral, which is closely related to the Lebesgue
measure, to state and prove Markov’s inequality [27].
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10 Conclusion

We applied a proof assistant to formalize a recent result in a field where they have been little
used before, namely machine learning. We found that the functionality and libraries of a
modern proof assistant such as Isabelle/HOL were mostly up to the task. Beyond the formal
proof of the fundamental theorem of network capacity, our main contribution is a general
library of tensors.

Admittedly, even the formalization of fairly short pen-and-paper proofs can require a lot
of work, partly because of the need to develop and extend libraries. On the other hand, not
only does the process lead to a computer verification of the result, but it can also reveal
new ideas and results. The generalization and simplifications we discovered illustrate how
formal proof development can be beneficial to research outside the small world of interactive
theorem proving.
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