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Abstract In this note we show that Voevodsky’s univalence axiom holds in themodel of type
theory based on cubical sets as described in Bezem et al. (in: Matthes and Schubert (eds.)
19th international conference on types for proofs and programs (TYPES 2013), Leibniz
international proceedings in informatics (LIPIcs), Schloss Dagstuhl-Leibniz-Zentrum für
Informatik, Dagstuhl, Germany, vol 26, pp 107–128, 2014. https://doi.org/10.4230/LIPIcs.
TYPES.2013.107. http://drops.dagstuhl.de/opus/volltexte/2014/4628) and Huber (A model
of type theory in cubical sets. Licentiate thesis, University of Gothenburg, 2015). We will
also discuss Swan’s construction of the identity type in this variation of cubical sets. This
proves that we have a model of type theory supporting dependent products, dependent sums,
univalent universes, and identity types with the usual judgmental equality, and this model is
formulated in a constructive metatheory.

Keywords Dependent type theory · Univalence axiom · Cubical sets

1 Review of the Cubical Set Model

We give a brief overview of the cubical set model, introducing some different notations, but
will otherwise assume the reader is familiar with [2,6].
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160 M. Bezem et al.

As opposed to [2,6] let us define cubical sets as contravariant presheaves on the opposite
of the category used there, that is, the category of cubes C contains as objects finite sets
I = {i1, . . . , in} (n ≥ 0) of names and a morphism f : J → I is given by a set-theoretic
map I → J ∪ {0, 1} which is injective when restricted to the preimage of J ; we will write
compositions in applicative order. The category of cubical sets is the category [C op,Set] of
presheaves on C . A morphism f : J → I in C can be viewed as a substitution. If f (i) ∈ J ,
we call f defined on i . For i /∈ I , the face morphisms are denoted by (i/0), (i/1) : I → I, i
and are induced by setting i to 0 and 1, respectively; degenerating along i /∈ I is denoted by
si : I, i → I and is induced by the inclusion I ⊆ I, i .

If Γ is a cubical set, we write Ty(Γ ) for the collection/class of presheaves on the category
of elements of Γ [2,6]. Such a presheaf A ∈ Ty(Γ ) is given by a family of sets A(I, ρ)

for I ∈ C and ρ ∈ Γ (I ) together with restriction functions. As ρ ∈ Γ (I ) determines I we
simply write Aρ for A(I, ρ). Given A ∈ Ty(Γ ) and a natural transformation (substitution)
σ : Δ → Γ we get Aσ ∈ Ty(Δ) defined as (Aσ)ρ = A(σρ) which extends canonically
to the restrictions. For A ∈ Ty(Γ ) we denote the set of sections of A by Ter(Γ, A); so
a ∈ Ter(Γ, A) is given by a family aρ ∈ Aρ for ρ ∈ Γ (I ) such that (aρ) f = a(ρ f ) for
f : J → I . Substitution also extends to terms via (aσ)ρ = a(σρ).
Let us recall the construction of Π-types: Π A B ∈ Ty(Γ ) for A ∈ Ty(Γ ) and B ∈

Ty(Γ.A) is given by letting each element w of (Π A B)ρ (with ρ ∈ Γ (I )) be a family of
w f a ∈ B(ρ f, a) for f : J → I and a ∈ Aρ satisfying (w f a)g = w f g (ag); the restriction
of such a w is given by (w f )g = w f g . In the sequel we will however only have to refer to
w f when f is the identity, and will thus simply write w a for wid a. We also occasionally
switch between sections in Ter(Γ.A, B) and Ter(Γ,Π AB) without warning the reader.

Let A ∈ Ty(Γ ), ρ ∈ Γ (I ), and J ⊆ I . A J -tube in A over ρ is given by a family
u of elements u jc ∈ Aρ( j/c) for ( j, c) ∈ J × {0, 1} which is adjacent compatible, that
is, u jc(k/d) = ukd( j/c) for ( j, c), (k, d) ∈ J × {0, 1}. For (i, a) ∈ (I − J ) × {0, 1} we
say that an element uia ∈ Aρ(i/a) is a lid of such a tube u if u jc(i/a) = uia( j/c) for all
( j, c) ∈ J × {0, 1}. In this situation we call the pair [J �→ u; (i, a) �→ uia] an open box in
A over ρ. A filler for such an open box is an element u ∈ Aρ such that u( j/c) = u jc for
( j, c) ∈ {(i, a)} ∪ (J × {0, 1}). In case J is empty, we simply write [(i, a) �→ uia].

Given f : K → I and an open box m = [J �→ u; (i, a) �→ uia] in A over ρ we call f
allowed form if f is defined on J, i . In this case we define the open boxm f in A in ρ f to be
[J f �→ u f ; ( f (i), a) �→ uia( f − i)] where u f is given by (u f ) f ( j) c = u jc( f − j) with
f − i : K − f (i) → I − i being like f but skipping i , and J f is the image of J under f .
Recall from [2, Section 4] that a (uniform) Kan structure for a type A ∈ Ty(Γ ) is given

by an operation κ which (uniformly) fills open boxes: for any ρ ∈ Γ (I ) and open box m in
A over ρ we get a filler κ ρ m of m subject to the uniformity condition

(κ ρ m) f = κ (ρ f ) (m f )

for all f : K → I allowed for m.
Any Kan structure κ defines a composition operation κ̄ which provides the missing lid of

the open box, given by:

κ̄ ρ [J �→ u; (i, 0) �→ ui0] = (κ ρ [J �→ u; (i, 0) �→ ui0])(i/1)
κ̄ ρ [J �→ u; (i, 1) �→ ui1] = (κ ρ [J �→ u; (i, 1) �→ ui1])(i/0)

We denote the set of all Kan structures on A ∈ Ty(Γ ) as Fill(Γ, A). If σ : Δ → Γ and κ is
an element in Fill(Γ, A), we get an element κσ in Fill(Δ, Aσ) defined by (κσ ) ρ = κ (σρ).
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The Univalence Axiom in Cubical Sets 161

Given a cubical set Γ a Kan type is a pair (A, κ) where A ∈ Ty(Γ ) and κ ∈ Fill(Γ, A).
We denote the collection of all such Kan types by KTy(Γ ). In [2] we showed that Kan types
are closed under dependent products and sums constituting a model of type theory.

2 Path Types

In [2] we introduced identity types which were however only “weak”, e.g., transport along
reflexivity is only propositionally equal to the identity function but not necessarily judgmen-
tally equal. For this reason we will call these types path types and reserve IdA for the identity
type with the usual judgmental equality defined in Sect. 4.

Recall that the path type PathA u v ∈ Ty(Γ ) for A ∈ Ty(Γ ) and u, v ∈ Ter(Γ, A)

is defined by the sets (PathA u v)ρ containing equivalence classes 〈i〉w where i /∈ I and
w ∈ Aρsi with w(i/0) = uρ and w(i/1) = vρ. Restrictions are defined as expected, and we
showed that Kan types are closed under forming path types [2].

It will be convenient below to introduce paths using separated products.

Definition 1 Given cubical sets Γ andΔ, we say that u ∈ Γ (I ) and v ∈ Δ(I ) are separated,
denoted by u # v, if they come through degeneration from cubes with disjoint sets of
directions. More precisely, if there are J ⊆ I , K ⊆ I with J ∩ K = ∅ and u′ ∈ Γ (J ), v′ ∈
Δ(K ) such that u = u′s and v = v′s′ with s and s′ induced by the inclusion J ⊆ I and
K ⊆ I , respectively.

The separated product Γ ∗ Δ of Γ and Δ is the cubical set defined by

(Γ ∗ Δ)(I ) = {(u, v) ∈ Γ (I ) × Δ(I ) | u # v} ⊆ (Γ × Δ)(I ).

The restrictions are inherited from Γ × Δ, that is, they are defined component wise. It
can be shown that − ∗ − extends to a functor, and that − ∗ Δ has a right adjoint.

Of particular interest is Γ ∗ I where I is the interval defined by I(J ) = J ∪ {0, 1} (see [2,
Section 6.1]). Then

(Γ ∗ I)(I ) = (Γ (I ) × {0, 1}) ∪ {(ρsi , i) | i ∈ I ∧ ρ ∈ Γ (I − i)}.
If (ρ, i) ∈ (Γ ∗ I)(I ) with i ∈ I , then ρ = ρ′si for a uniquely determined ρ′ which we
denote by ρ − i .

We can use Γ ∗ I to formulate the following introduction rule for path types

where [0], [1] : Γ → Γ ∗ I are induced by the global elements 0 and 1 of I, respectively,
and p : Γ ∗ I → Γ is the first projection. The binding operation is interpreted by (〈〉w)ρ =
〈i〉w(ρsi , i) with i a fresh name (see [2, Section 8.2]).

Given an element 〈i〉w ∈ (PathA u v)ρ with ρ ∈ Γ (I ), we set (〈i〉w)@ a = w(i/a)

where a is 0, 1, or a fresh name.

3 Equivalences and Univalence

We will now recall the definition of an equivalence as a map having contractible fibers and
then derive an operation for contractible and Kan types. To enhance readability we define
the following types using variable names:
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162 M. Bezem et al.

isContr A = Σ(x : A)Π(y : A)PathA x y

fib t v = Σ(x : A)PathB (t x) v

isEquiv t = Π(y : B) isContr(fib t y)

Equiv A B = Σ(t : A → B) isEquiv t

where A and B are types, t : A → B, and v : B (all in an ambient context Γ ). This can
of course also be formally written name-free: for example, the first type can be written as
Σ AΠ Ap (PathAppqp q) ∈ Ty(Γ ) and the second one asΣ Ap (PathBpp app(tpp,q)qp) ∈
Ty(Γ.B).

Definition 2 A (uniform) acyclic-fibration structure on a type A ∈ Ty(Γ ) is given by an
operation ext uniformly filling any tube, that is, given ρ ∈ Γ (I ), J ⊆ I , a J -tube u in Aρ,
we have

ext ρ [J �→ u] ∈ Aρ

extending u (so (ext ρ [J �→ u])(i/a) = uia for (i, a) ∈ J × {0, 1}) and for f : K → I
defined on J we have

(ext ρ [J �→ u]) f = ext (ρ f ) [J f �→ u f ].
We denote the set of acyclic-fibration structures on A ∈ Ty(Γ ) by Contr(Γ, A).

Note that given ext ∈ Contr(Γ, A) and σ : Δ → Γ we obtain ext σ ∈ Contr(Δ, Aσ) via
(ext σ) ρ = ext (σρ).

Lemma 1 Given a type A in Ty(Γ ) we have maps

with ϕ 〈ψ0, ψ1〉 = id. Moreover, these maps are natural: if σ : Δ → Γ , then (ϕ κ p)σ =
ϕ (κσ) (pσ), (ψ0 ext)σ = ψ0 (ext σ), and (ψ1 ext)σ = ψ1 (ext σ).

Proof Let κ ∈ Fill(Γ, A) and p ∈ Ter(Γ, isContr A). To define ϕ κ p ∈ Contr(Γ, A), let
ρ ∈ Γ (I ) and u a J -tube in A over ρ. We take a fresh dimension i and form an open box
with the center of contraction pρ.1 at the closed end and u at the open end, connected by
pρ.2; filling this gives us an extension of u. Formally:

ϕ κ p ρ [J �→ u] = κ̄ (ρsi ) [J �→ (pρ.2 u)@ i; (i, 0) �→ pρ.1]
where (pρ.2 u)@ i is the J -tube given by (p(ρ( j/c)).2 u jc)@ i at side ( j, c) ∈ J × {0, 1}.

Conversely, let ext ∈ Contr(Γ, A). To get a Kan structure we first fill the missing lid and
then the interior, that is, we set

ψ0 ext ρ [J �→ u; (i, 0) �→ ui0]
= ext ρ [J �→ u, (i, 0) �→ ui0, (i, 1) �→ ext ρ(i/1) [J �→ u(i/1)]],

and likewise for the other filling.Todefineψ1 ext ρwechooseext ρ [] as center of contraction,
which is connected to any a ∈ Aρ by the path

〈i〉ext (ρsi ) [(i, 0) �→ ext ρ [], (i, 1) �→ a].
One can show uniformity, naturality, and that 〈ψ0, ψ1〉 is a section of ϕ. ��
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The Univalence Axiom in Cubical Sets 163

Next we will define an operation G which allows us to transform an equivalence into a
“path”.1 This operation was introduced in [4] and motivated the “glueing” operation of [3].
Wewill define it in such a way that the associated transport of this path is given by underlying
map of the equivalence.

A useful analogy is provided by the notion of pathover, a heterogeneous path lying over
another path. We shortly review this notion from type theory with inductive equality. Given
a type family P : T → U and a path p : x =T y with its transport function p∗ : Px → Py.
If Px and Py are different types, there is no ordinary path connecting u : Px and v : Py.
Therefore the pathovers connecting u and v are taken to be the paths of type p∗u =Py v (in
the fiber Py).

We apply the same idea toG t , which should be a path from A to B inU such that transport
along this path is t : A → B. For the type family P we take idU such that A and B indeed are
fibers of P . Intuitively, a path from A to B is a set of heterogeneous paths between elements
a of A and b of B. We want t to be the transport function along the path from A to B. By
analogy we would take G t to be the set of pathovers connecting a : A and b : B defined as
the set of paths in B connecting t a and b. However, since we must be able to recover the
startpoint a, we define G t to be the set of pairs consisting of a : A and a path connecting
t a and b. (Unlike a, the endpoint b can be recovered from the pathover and need not be
remembered.)

With the above informal explanation in mind, we define the operation G first on cubical
sets and then explain how it lifts to Kan structures. It satisfies the rules:

(1)

(2)

The latter rule expresses stability under substitutions. Here and belowG (and ug below) have
A and B as implicit arguments.

Definition 3 Assume the premiss of (1) and define for every ρ ∈ Γ (I ):

(G t)(ρ, 0) = Aρ, with restrictions as in A,

(G t)(ρ, 1) = Bρ, with restrictions as in B, and

(G t)(ρ, i) = {(u, v) | u ∈ A(ρ − i) ∧ v ∈ Bρ ∧ v(i/0) = t (ρ − i) u}.
(3)

In the last case ρ # i , so ρ = (ρ − i)si . The restrictions in the latter case are a little involved.
We need (u, v) f ∈ (G t)(ρ f, f (i)) for f : J → I . If f (i) = 0, we take (u, v) f = usi f ,
indeed in Aρ f . If f (i) = 1, we take (u, v) f = v f , indeed in Bρ f . Finally, if f is defined
on i , we have f − i : J − f (i) → I − i and we define (u, v) f = (u( f − i), v f ), which is
indeed correct as (ρ − i)( f − i) = ρ f − f (i) under the given assumptions. It can then be
checked that the restrictions satisfy the presheaf requirements. This concludes the definition
of G t .

We have a map ug ∈ Ter(Γ ∗ I.G t, Bp) given by:

1 We will see later that this indeed induces a path in a universe whenever both types A and B are small.
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164 M. Bezem et al.

The fact that amap t ∈ Ter(Γ, A → B) is an equivalence can be represented as an element
of Contr(Γ.B, fib t). By Lemma 1 this is the case whenever A and B have Kan structures
and the fibers of t are contractible.

Theorem 1 The operationG can be lifted to Kan structures provided t is an equivalence, i.e.,
there is an operationGwhich given the premiss of (1) and κA ∈ Fill(Γ, A), κB ∈ Fill(Γ, B),
and ext ∈ Contr(Γ.B, fib t) returns G κA κB ext ∈ Fill(Γ ∗ I,G t). This operation satisfies

(G κA κB ext)[0] = κA

(G κA κB ext)[1] = κB

(G κA κB ext)(σ ∗ id) = G (κAσ) (κBσ) (ext (σp,q))

where σ : Δ → Γ .

Proof To define (G κA κB ext)(ρ, r) for (ρ, r) ∈ (Γ ∗ I)(I ) we argue by cases. For r = 0, 1
we take:

(G κA κB ext)(ρ, 0) = κA ρ

(G κA κB ext)(ρ, 1) = κB ρ

Let us nowconsider themain casewhere r = i ∈ I is a name and thusρ # i ,ρ = (ρ−i)si .We
are given j (the name along which we fill), w a J -tube in (G t) over (ρ, i) (with J ⊆ I − j),
and w ja ∈ (G t)(ρ, i)( j/a) for a = 0 or 1, which fits w. We want to define

w := (G κA κB ext) (ρ, i) [J �→ w; ( j, a) �→ w ja]
in (G t)(ρ, i). For this we have to construct w = (u, v) with u ∈ A(ρ − i) and v ∈ Bρ such
that v(i/0) = t (ρ − i) u.

We can map w ja,w using ug and obtain an open box v ja, v in B over ρ given by

vkb := ug((ρ, i)(k/b), wkb) ∈ Bρ(k/b).

There are four cases to consider depending on how the open box relates to the direction i .
Each case will be illustrated afterwards with simplified J . Note that in all these pictures the
part in A is mapped by t to the left face of the part in B. Here are the four cases:

Case i �= j and i /∈ J . We extend the J -tube w to J, i-tube by constructing wi0 and wi1

and then proceed as in the next case with the tube w, wi0, wi1. Note that we want

wi0 ∈ (G t)(ρ, i)(i/0) = A(ρ − i), and

wi1 ∈ (G t)(ρ, i)(i/1) = B(ρ − i),

so we can take

wi0 = κA (ρ − i) [J �→ w(i/0); ( j, a) �→ w ja(i/0)], and (4)

wi1 = κB (ρ − i) [J �→ w(i/1); ( j, a) �→ w ja(i/1)]. (5)

The resulting open box is compatible by construction. Note that this (together with the cases
for r = 0 and r = 1) also ensures that the Kan structure satisfies the equations in (1).

We illustrate this case in the picture below. Here and below the left part is in A and on the
right we have the open box v in B. For simplicity we also omit ρ. We construct wi0 and wi1

by filling the open boxes indicated by thicker lines on the left and on the right, respectively.
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The Univalence Axiom in Cubical Sets 165

Case i �= j and i ∈ J . In this case vi0 = ug((ρ(i/0), 0), wi0) = tρ(i/0) wi0 =
t (ρ − i)wi0 since ρ # i . We can therefore take w = (wi0, v) ∈ (G t)(ρ, i) where v =
κB (ρ − i) [J �→ v; ( j, a) �→ v ja]. This can be illustrated by:

Case j = i and a = 0. Like in the previous case we can take w = (wi0, v) ∈ (Gw)(ρ, i)
where v = κB (ρ − i) [J �→ v; ( j, a) �→ v ja]. This case is illustrated as follows:

Cases j = i and a = 1. In this case the direction of the filling is opposite to t , and
therefore we have to use ext which expresses that fib t is contractible. The familym defined
by

mkb := (wkb, 〈i〉 vkb) ∈ (fib t)((ρ − i)(k/b), wi1(k/b))

for (k, b) ∈ J × {0, 1} constitutes a J -tube over (ρ − i, wi1) in the contractible type fib t ∈
Ty(Γ.B).

So we can extend this tube to obtain

(u, ω) = ext (ρ − i, wi1) [J �→ m] ∈ (fib t)(ρ − i, wi1)

and we can take w := (u, ω@ i) ∈ (G t)(ρ, i).
Let us illustrate this case: we are given the two dots on the left and the solid lines on

the right in the picture below, and we want to construct the dashed line and a square on the
right such that the dashed line is mapped to the dotted line via t , that is, we basically want to
construct an element in the fiber of wi1 under t .

This concludes the definition of the filling operations of G t .
To see that this filling operation is uniform, note that for an f : K → I defined on j, J

and on i the case which defines the filling of [J �→ w; ( j, a) �→ w ja] f coincides with
the case used to defined [J �→ w; ( j, a) �→ w ja] by the injectivity requirement on f—
uniformity then follows for each case separately since we only used operations that suitably
commutewith f in the definition of the filling. If f is only defined on j, J but not on i ,
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166 M. Bezem et al.

the first case has to apply—to simplify notation assume f is (i/c)—then by construction
(Eqs. 4, 5)

(
(G κA κB ext) (ρ, i) [J �→ w; ( j, a) �→ w ja]

)
(i/c)

= (G κA κB ext) (ρ − i, c) [J �→ w(i/c); ( j, a) �→ (w ja(i/c))],
concluding the proof. ��
Theorem 2 We can refine the Kan structure G κA κB ext given in Theorem 1 such that it
satisfies

(G κA κB ext) (ρ, i) [(i, 0) �→ u] = tρ u.

Proof We modify the Kan structure given in the proof of Theorem 1 to obtain the above
equations. The last two cases in the proof above where i = j are modified by an additional
case distinction on whether J is empty or not. If J is not empty or a = 1, proceed as before.
In case J is empty and a = 0, then we are given ui0 ∈ A(ρ − i) and an empty tube and
can define (G κA κB ext) (ρ, i) [(i, 0) �→ ui0] = (ui0, tρ ui0). That this definition remains
uniform is proved as in Theorem 1 using the observation that |J | = |J f | for f defined on
J . In addition we retain stability under substitution. ��
Remark 1 It is also possible to change the Kan structure such that it satisfies

(G κA κB ext) (ρ, i) [(i, 1) �→ u] = t−1ρ u,

where t−1 is the inverse of t which can be constructed from ext. For this one also has to
modify the case where J is empty and a = 1 from the definition ofG using t−1 and that t−1

is a (point-wise) right inverse of t (in the sense of path types). The latter is also definable
using ext.

Let us recall the definition of a universe U of small Kan types (assuming a Grothendieck
universe of small sets in the ambient set theory). A type A ∈ Ty(Γ ) is small if all the sets
Aρ for ρ ∈ Γ (I ) are so. A Kan type (A, κ) ∈ KTy(Γ ) is small if A ∈ Ty(Γ ) is small. We
denote the set of all such small types and Kan types by Ty0(Γ ) and KTy0(Γ ), respectively.
Substitution makes both Ty0 and KTy0 into presheaves on the category of cubical sets. The
universe U is now given as U = KTy0 ◦ y where y denotes the Yoneda embedding. For an
I -cube (A, κ) ∈ U(I ) = KTy0(y I ) we have that A is a presheaf on the category of elements
of y I , and A(J, f ) is a small set for every element (J, f : J → I ). Moreover, κ(J, f )
is a filler function for open boxes in A over (J, f ). Of particular interest are the small set
A(I, id I ) and filler function κ(I, id I ).

Given a ∈ Ter(Γ,U)we can associate a small typeEl a in Ty0(Γ ) by (El a)ρ = A(I, idI )
where aρ = (A, κ). We equip El a with the Kan structure El a defined by (El a)ρ =
κ(I, id I ). This results in an isomorphism which is natural in Γ :

where �X�ρ = X ρ̂ ∈ U(I ) for X ∈ KTy0(Γ ). Here ρ̂ : y I → Γ is the associated
substitution of ρ ∈ Γ (I ), that is, ρ̂ f = ρ f ∈ Γ (J ) for any f : J → I . Since moreover
Hom(Γ,U) ∼= Ter(Γ,U), we get that KTy0 is representable.

Theorem 3 U has a Kan structure.

Proof [6, Theorem 4.2]. ��

123



The Univalence Axiom in Cubical Sets 167

We are now ready for the first main result of this paper.

Theorem 4 (Univalence) The type

Π(a : U) isContr
(
Σ(b : U)Equiv (El a) (El b)

)

in Ty(1) has a section, where 1 denotes the empty context.

Proof Because our operationG preserves smallness we obtain an operation turning an equiv-
alence between small Kan types into a path in U: given a ∈ Ter(Γ,U) and b ∈ Ter(Γ,U)

with t ∈ Ter(Γ,Equiv (El a) (El b)) we get a small typeG(t.1) ∈ Ty0(Γ ∗ I) which has the
Kan structure κ = G (El a) (El b)ext by Theorem 1 where ext is constructed from El a, El b,
and t using Lemma 1. Hence �(G(t.1), κ)� ∈ Ter(Γ ∗ I,U) with

�(G(t.1), κ)�[0] = �(G(t.1)[0], κ[0])� = �(El a,El a)� = a

and likewise�(G(t.1), κ)�[1]=b. Finally,we get a path 〈〉�(G(t.1), κ)�∈Ter(Γ,PathU a b).
Choosing a : U, b : U, t : Equiv (El a) (El b) as the context Γ above we get using

currying

ua ∈ Ter
(
1,Π(a b : U)(Equiv (El a) (El b) → PathU a b)

)
.

Observe that we didn’t use thatG and its Kan structure commute with substitutions to derive
ua.

In addition to ua we obtain a section uaβ of

Π(a b : U)Π(t : Equiv (El a) (El b)) PathEl a→El b (TEl (ua t)) (t.1)

where TEl : PathU a b → El a → El b is the transport operation for paths for (El q,El q) in
KTy0(U) (see the operation T in [2, Section 8.2]). Indeed, the path to justify uaβ is given by
reflexivity using our refined Kan structure from Theorem 2 plus that TEl is given in terms of
composition with an empty tube.

The transport operation TEl can easily be extended to an operation

TEquiv
El : PathU a b → Equiv (El a) (El b)

which goes in the opposite direction as ua. Actually, ua and TEquiv
El constitute a section-

retraction pair because of uaβ and the fact that isEquiv t.1 is a proposition, that is, all
its inhabitants are path-equal. Hence Σ(b : U)Equiv (El a) (El b) is a retract of Σ(b :
U)PathU a b. Since U has a Kan structure by Theorem 3, the latter type is contractible (see
[2, Section 8.2]) and thus so is the former, concluding the proof. ��

4 Identity Types

We will now describe the identity type which justifies the usual judgmental equality for its
eliminator following Swan [7].

Let Γ be a cubical set and A, B ∈ Ty(Γ ), i.e., A and B are presheaves on the category of
elements ofΓ . For natural transformations2 α : A → B we are going to define a factorization
as α = pα iα with iα : A → Mα and pα : Mα → B. Furthermore, iα will be a cofibration

2 Natural transformations α : A → B correspond to sections in Ter(Γ, A → B), and also to maps between
the projections Γ.A → Γ and Γ.B → Γ in the slice over Γ . To simplify notation, we will write α for either
of these.
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(i.e., has the lifting property w.r.t. any acyclic fibration as formulated in Corollary 2) and
pα will be equipped with an acyclic-fibration structure. This factorization corresponds to
Garner’s factorization using the refined small object argument [5] specialized to cubical sets.

For ρ in Γ (I ) we will define the sets Mαρ together with the restriction maps Mαρ →
Mα(ρ f ) (for f : J → I ) and the components Mαρ → Bρ of the natural transformation pα

by an inductive process (see Remark 2 below). The elements of Mαρ are either of the form
i u with u in Aρ (and i considered as a constructor) and we set in this case (i u) f = i(u f ) and
pα(i u) = α u. Or the elements are of the form (v, [J �→ u]) where v ∈ Bρ, J ⊆ I , and u is
a J -tube in Mαρ over v (meaning pα u jb = v( j/b)). In the latter case we set pα(v, [J �→
u]) = v and for the restrictions (v, [J �→ u]) f = u jb( f − j) if f ( j) = b ∈ {0, 1} for some
j ∈ J , and (v, [J �→ u]) f = (v f, [J f �→ u f ]) if f is defined on J . Note that restrictions
do not increase the syntactic complexity of an element m ∈ Mαρ. This defines Mα ∈ Ty(Γ )

and we set iα u = i u.

Remark 2 This construction is rather subtle in a set-theoretic framework. One possible way
to define this factorization is to first inductively define larger sets M ′

αρ containing all formal
elements i u with u ∈ Aρ, and (v, [J �→ u]) with v ∈ Bρ and where u is represented by a
family of elements u f ∈ M ′

α(ρ f ) indexed by all f : K → I with f j = 0 or 1 for some j ∈ J ,
but without requiring compatibility. On these sets one can then definemapsM ′

αρ → M ′
α(ρ f )

and M ′
αρ → Bρ. Given these maps, we can single out the sets Mαρ ⊆ M ′

αρ of the well-
formed elements as in the definition above, on which the corresponding maps then induce
restriction operations (satisfying the required equations) and the natural transformation pα .

We use Mα, iα, pα in the following way. Let A be a Kan type and let B = PathA be the
Kan type of paths over A without specified endpoints. (The Kan structure on A induces the
Kan structure on B, much in the sameway as shown in [2] for typesPathA a b.) Asmentioned
in Sect. 2, transport along reflexivity paths is not necessarily the identity function. One could
solve this problem if one could recognize the reflexivity paths, which is not possible inPathA.
Swan’s [7] solution to this problem is to define a type equivalent to PathA in which one can
recognize (representations of) reflexivity paths. This is the type Mα with α : A → PathA

mapping each a in A to its reflexivity path. The representation of the reflexivity path of a
in Mα is i a, with i a constructor of the inductively defined type Mα , and recognizing i a is
done through pattern matching. All the rest of the complicated definition above is to make
sure that Mα has the right Kan structure (Lemma 2), and that elimination generally has the
right properties (Corollary 1).

Constructors of the form (v, [J �→ u]) equip pα : Mα → B with an acyclic-fibration
structure which (uniformly) fills tubes [J �→ u] in Mαρ over a filled cube v in Bρ. Thus
to, say, construct a path between specified endpoints in Mα it is enough to give a path in B
between the images of the endpoints under pα .

There are two important observations to make at this point: First, this construction
preserves smallness, i.e., Mα ∈ Ty0(Γ ) whenever A, B ∈ Ty0(Γ ). And, second, this con-
struction is stable under substitution: given σ : Δ → Γ we have Mασ = Mασ , iασ = iασ ,
and pασ = pασ . Neither of these properties holds for the corresponding factorization into
an acyclic cofibration followed by a fibration (sketched in [6, Section 3.5] for a special case).

Lemma 2 Given κ ∈ Fill(Γ, B) there is Mακ ∈ Fill(Γ, Mα). Moreover, this assignment is
stable under substitution, i.e., (Mακ)σ = Mασ (κσ ) for σ : Δ → Γ .

Proof Let ρ ∈ Γ (I ) and, say, m = [J �→ m; (i, 0) �→ mi0] be an open box in Mα over ρ.
We get an open box v = [J �→ v; (i, 0) �→ vi0] in B over ρ by setting v jb = pα m jb. We
define
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Mα κ ρ m = (κ ρ v, [J, i �→ m,mi0,mi1])
with mi1 = (κ̄ ρ v, [J �→ m(i/1)]). ��
Lemma 3 Given a Kan type (D, κD) ∈ KTy(Γ.Mα) and sections s ∈ Ter(Γ.A, Diα) and
s′ ∈ Ter(Γ.Mα, D) together with a homotopy

e ∈ Ter
(
Γ,Π(a : A)PathD(iα a) (s′(iα a)) (s a)

)
,

it is possible to find a section s̃ ∈ Ter(Γ.Mα, D) such that s̃iα = s ∈ Ter(Γ.A, Diα). Or
stated as a diagram, we are given a commuting square

where the upper left triangle only commutes up to the homotopy e and the lower triangle
commutes strictly, and we get a new diagonal lift where both triangles commute strictly.
Moreover, this assignment is stable under substitutions, i.e., given σ : Δ → Γ , substituting
the chosen diagonal lift s̃ (for the data α, D, κD, s, s′, e) along (σp,q) : Δ.Mασ → Γ.Mα

results in the chosen diagonal lift for the substituted data (where σ is weakened appropriately
if needed).

Proof Forρ ∈ Γ (I ) andm ∈ Mαρwedefine s̃(ρ,m) ∈ D(ρ,m) and a path ẽ(ρ,m)between
s′(ρ,m) and s̃(ρ,m) in D(ρ,m) by induction on the syntactic complexity ofm ∈ Mαρ such
that (s̃(ρ,m)) f = s̃(ρ f,m f ) and (ẽ(ρ,m)) f = ẽ(ρ f,m f ). In case m = i u for u ∈ Aρ, we
set s̃(ρ, i u) = s(ρ, u) and ẽ(ρ, i u) = e(ρ, u). In case m = (v, [J �→ m]), we set

ẽ(ρ,m) = 〈i〉 κD (ρsi ) [J �→ w; (i, 0) �→ s′(ρ,m)]
where w jb = ẽ(ρ( j/b),m jb)@ i , and correspondingly s̃(ρ,m) = ẽ(ρ,m)@ 1. ��

If the Kan structure is an acyclic-fibration structure as in Definition 2, that is, if we can
fill tubes without a closing lid, the above proof can be carried out without s′. This implies
the following result, which expresses that iα : A → Mα is a cofibration.

Corollary 1 Given D ∈ Ty(Γ.Mα) equipped with an acyclic-fibration structure and a sec-
tion s ∈ Ter(Γ.A, Diα) it is possible to define a section s̃ ∈ Ter(Γ.Mα, D) such that
s̃iα = s ∈ Ter(Γ.A, Diα). That is, there is a diagonal lift in the diagram:

Moreover, this assignment is stable under substitution.

Proof By Lemma 1 we know that D has a Kan structure and is contractible. From the
contractibility we get a section s′ ∈ Ter(Γ.Mα, D) and a homotopy between s′ iα and s, and
can thus apply Lemma 3 to get a strict diagonal filler. ��

This also implies the following result, which expresses that iα : A → Mα is a acyclic
cofibration as soon as α has a well-behaved homotopy inverse. Recall that application
apα p ∈ Ter(Γ,PathB (α u) (α v)) of α : A → B to a path p ∈ Ter(Γ,PathA u v) is
given by (apα p)ρ = 〈i〉 α(pρ @ i) (see [6, Section 3.3.2]).
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Corollary 2 Let α : A → B and assume we are given β : B → A and sections

η ∈ Ter
(
Γ,Π(a : A)PathA (β(α a)) a

)
,

ε ∈ Ter
(
Γ,Π(b : B)PathB (α(β b)) b

)
, and

τ ∈ Ter
(
Γ,Π(a : A)Path (ε(α a)) (apα (η a))

)
,

where the omitted subscript of the path-type in τ is PathB (α (β(α a))) (α a). Then given
D ∈ Ty(Γ.Mα) with Kan structure κD we can extend any section s ∈ Ter(Γ.A, Diα) to a
section s̃ ∈ Ter(Γ.Mα, D) satisfying s̃ iα = s. Moreover, this assignment is stable under
substitution.

Proof It is sufficient to construct s′ and e as in Lemma 3. To enhance readability we omit
the arguments from Γ .

First, given m ∈ Mα we have a path m∗ connecting iα(β(pαm)) to m, since the images
of the endpoints under pα are α(β(pα m)) and pα m which are connected by ε(pα m). Thus
the acyclic-fibration structure on pα gives us a desired path m∗, which moreover lies over
ε(pα m), i.e.,

pα(m∗ @ j) = ε(pα m)@ j for fresh j . (6)

Next, we have s(β(pα m)) ∈ D(iα(β(pα m))) which we then can transport to Dm using
the Kan structure and the path m∗. Thus we set

s′m := κ̄D (m∗ @ j) [( j, 0) �→ s(β(pα m))]. (7)

It remains to give a path e a connecting s′(iα a) to s a in D(iα a) for a ∈ A. We have the
two horizontal lines (in direction j) in

(8)

where the top line is given by s(η a@ j) in D(iα(η a@ j)) and the bottom line is given
by a filling in D((iα a)∗ @ j) following the construction (7) of s′. We want to construct the
vertical dashed line in D(iα a). We can define this line using a composition on the open box
specified in (8) as soon as we can provide an interior of the following square in Mα over
which (8) is an open box:

But by (6), mapping this square to B using pα has a filler given by τ a@ k@ j (where k
extends vertically), and thus also a filler in Mα since pα has an acyclic-fibration structure,
concluding the proof. ��

The representation of the identity typewith the usual judgmental equality for its eliminator
follows from these results by considering the case where B is the type of paths without
specified endpointsPathA over a type A and α a is the constant path a. We get a factorization
with IdA := Mα , refl := iα , and where the right vertical map is given by taking endpoints:
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This α satisfies the hypothesis of Corollary 2 using the properties of path-types from [2,
Section 8.2], and hence refl : A → IdA has diagonal lifts against types with Kan structure.
These diagonal lifts serve as the interpretation of the eliminator (cf. [1, p. 52]) and their
choice is stable under substitution, allowing us thus to interpret identity types.

One can also explain IdA with fixed endpoints as Kan type in context Γ.A.Ap and then
show that IdA u v is Path-equivalent to PathA u v. It follows that a type is Path-contractible
if, and only if, it is Id-contractible. The univalence axiom for Path-types (Theorem 4) hence
also holds formulated with Id-types.

We can summarize the results of this section as:

Theorem 5 The cubical set model of [2,6] supports identity types and validates the univa-
lence axiom.
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