
J Autom Reasoning (2019) 63:173–210
https://doi.org/10.1007/s10817-018-9469-1

Canonicity for Cubical Type Theory

Simon Huber1

Received: 28 May 2018 / Accepted: 31 May 2018 / Published online: 13 June 2018
© The Author(s) 2018

Abstract Cubical type theory is an extension of Martin-Löf type theory recently proposed
by Cohen, Coquand, Mörtberg, and the author which allows for direct manipulation of n-
dimensional cubes and where Voevodsky’s Univalence Axiom is provable. In this paper we
prove canonicity for cubical type theory: any natural number in a context build from only
name variables is judgmentally equal to a numeral. To achieve this we formulate a typed
and deterministic operational semantics and employ a computability argument adapted to a
presheaf-like setting.

Keywords Cubical type theory · Dependent type theory · Canonicity

1 Introduction

Cubical type theory as presented in [7] is a dependent type theorywhich allows one to directly
argue about n-dimensional cubes, and in which function extensionality and Voevodsky’s
Univalence Axiom [15] are provable. Cubical type theory is inspired by a constructive model
of dependent type theory in cubical sets [7] and a previous variation thereof [6,10]. One of
its important ingredients is that expressions can depend on names to be thought of as ranging
over a formal unit interval I.

Even though the consistency of the calculus already follows from its model in cubical sets,
desired—and expected—properties like normalization and decidability of type checking are
not yet established. This note presents a first step in this direction by proving canonicity for
natural numbers in the following form: given a context I of the form i1 : I, . . . , ik : I, k ≥ 0,
and a derivation of I � u : N, there is a unique n ∈ N with I � u = Sn 0 : N. This n can
moreover be effectively calculated. Canonicity in this form also gives an alternative proof of
the consistency of cubical type theory (see Corollary 2).

B Simon Huber
simon.huber@cse.gu.se

1 Department of Computer Science and Engineering, University of Gothenburg, 412 96 Göteborg,
Sweden

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10817-018-9469-1&domain=pdf
http://orcid.org/0000-0003-2953-8894


174 S. Huber

The main idea to prove canonicity is as follows. First, we devise an operational semantics
given by a typed and deterministic weak-head reduction included in the judgmental equality
of cubical type theory. This is given for general contexts although we later on will only use
it on terms whose only free variables are name variables, i.e., variables of type I. One result
we obtain is that our reduction relation is “complete” in the sense that any term in a name
context whose type is the natural numbers can be reduced to one in weak-head normal form
(so to zero or a successor). Second, we will follow Tait’s computability method [12,13] and
devise computability predicates on typed expressions in name contexts and corresponding
computability relations (to interpret judgmental equality). These computability predicates are
indexed by the list of free name variables of the involved expressions and should be such that
substitution induces a cubical set structure on them.This poses amajor difficulty given that the
reduction relation is in general not closed under name substitutions. A solution is to require
for computability that reduction should behave “coherently” with substitution: simplified,
reducing an expression and then substituting should be related, by the computability relation,
to first substituting and then reducing. A similar condition appeared independently in the
Computational Higher Type Theory of Angiuli et al. [4,5] and Angiuli and Harper [3] who
work in an untyped setting; they achieve similar results but for a theory not encompassing
the Univalence Axiom.

In a way, our technique can be considered as a presheaf extension of the computability
argument given in [1,2]; the latter being an adaption of the former using a typed reduction
relation instead. A similar extension of this technique has been used to show the independence
of Markov’s principle in type theory [8].

The rest of the paper is organized as follows. In Sect. 2 we introduce the typed reduction
relation. Section 3 defines the computability predicates and relations and shows their impor-
tant properties. In Sect. 4 we show that cubical type theory is sound w.r.t. the computability
predicates; this entails canonicity. Section 5 sketches how to adapt the computability argu-
ment for the system extended with the circle and propositional truncation, and we deduce an
existence property for existentials defined as truncated Σ-types. We conclude by summariz-
ing and listing further work in the last section. We assume that the reader is familiar with
cubical type theory as given in [7]. The present paper is part of the author’s PhD thesis [11].

2 Reduction

In this section we give an operational semantics for cubical type theory in the form of a typed
and deterministic weak-head reduction. Below we will introduce the relations Γ � A � B
and Γ � u � v : A. These relations are deterministic in the following sense: if Γ � A � B
and Γ � A � C , then B and C are equal as expressions (i.e., up to α-equivalence); and, if
Γ � u � v : A and Γ � u � w : B, then v and w are equal as expressions. Moreover,
these relations entail judgmental equality, i.e., if Γ � A � B, then Γ � A = B, and if
Γ � u � v : A, then Γ � u = v : A.

For a context Γ �, a Γ -introduced expression is an expression whose outer form is an
introduction, so one of the form

0,S u,N, λx : A.u, (x : A) → B, (u, v), (x : A) × B,U, 〈i〉u,Path A u v,

[ϕ1 t1, . . . , ϕn tn],glue [ϕ 	→ t] a,Glue [ϕ 	→ (T, w)] A,

where we require ϕ 
= 1 mod Γ (which we from now on write as Γ � ϕ 
= 1 : F) for the
latter two cases, and in the case of a system (third to last) we requireΓ � ϕ1∨· · ·∨ϕn = 1 : F

123



Canonicity for Cubical Type Theory 175

but Γ � ϕk 
= 1 : F for each k. In case Γ only contains object and interval variable
declarations (and no restrictions Δ,ψ) we simply refer to Γ -introduced as introduced. In
such a context, Γ � ϕ = ψ : F iff ϕ = ψ as elements of the face lattice F; since F satisfies
the disjunction property, i.e.,

ϕ ∨ ψ = 1 ⇒ ϕ = 1 or ψ = 1,

a system as above will never be introduced in such a context without restrictions. We call an
expression non-introduced if it is not introduced and abbreviate this as “n.i.” (often this is
referred to as neutral or non-canonical). AΓ -introduced expression is normal w.r.t.Γ � · � ·
and Γ � · � · : A.

We will now give the definition of the reduction relation starting with the rules concerning
basic type theory.

Γ � u � v : A Γ � A = B

Γ � u � v : B

Γ, x : N � C Γ � z : C(x/0) Γ � s : (x : N) → C → C(x/S x)

Γ � natrec 0 z s � z : C(x/0)

Γ � t : N
Γ, x : N � C Γ � z : C(x/0) Γ � s : (x : N) → C → C(x/S x)

Γ � natrec (S t) z s � s t (natrec t z s) : C(x/S t)

Γ � t � t ′ : N
Γ, x : N � C Γ � z : C(x/0) Γ � s : (x : N) → C → C(x/S x)

Γ � natrec t z s � natrec t ′ z s : C(x/t ′)

Γ, x : A � t : B Γ � u : A

Γ � (λx : A.t) u � t (x/u) : B(x/u)

Γ � t � t ′ : (x : A) → B Γ � u : A

Γ � t u � t ′u : B(x/u)

Γ, x : A � B Γ � u : A Γ � v : B(x/u)

Γ � (u, v).1 � u : A

Γ � t � t ′ : (x : A) × B

Γ � t.1 � t ′.1 : A

Γ, x : A � B Γ � u : A Γ � v : B(x/u)

Γ � (u, v).2 � v : B(x/u)

Γ � t � t ′ : (x : A) × B

Γ � t.2 � t ′.2 : B(x/t ′.1)

Note, natrec t z s is not considered as an application (opposed to the presentation in [7]);
also the order of the arguments is different to have the main premise as first argument.

Next, we give the reduction rules for Path-types. Note, that like for Π-types, there is no
η-reduction or expansion, and also there is no reduction for the end-points of a path.

Γ � A Γ, i : I � t : A Γ � r : I
Γ � (〈i〉t) r � t (i/r) : A

Γ � t � t ′ : Path A u v Γ � r : I
Γ � t r � t ′r : A

The next rules concern reductions for Glue.

123



176 S. Huber

Γ � A Γ, ϕ � T Γ, ϕ � w : Equiv T A Γ � ϕ = 1 : F
Γ � Glue [ϕ 	→ (T, w)] A � T

Γ, ϕ � w : Equiv T A Γ, ϕ � t : T Γ � a : A[ϕ 	→ w.1 t] Γ � ϕ = 1 : F
Γ � glue [ϕ 	→ t] a � t : T

Γ, ϕ � w : Equiv T A Γ, ϕ � t : T Γ � a : A[ϕ 	→ w.1 t] Γ � ϕ 
= 1 : F
Γ � unglue [ϕ 	→ w] (glue [ϕ 	→ t] a) � a : A

Γ, ϕ � w : Equiv T A Γ � u : Glue [ϕ 	→ (T, w)] A Γ � ϕ = 1 : F
Γ � unglue [ϕ 	→ w] u � w.1 u : A

Γ � u � u′ : Glue [ϕ 	→ (T, w)] A Γ � ϕ 
= 1 : F
Γ � unglue [ϕ 	→ w] u � unglue [ϕ 	→ w] u′ : A

Note that in [7] the annotation [ϕ 	→ w] of unglue was left implicit. The rules for systems
are given by:

Γ � ϕ1 ∨ · · · ∨ ϕn = 1 : F Γ, ϕi � Ai (1 ≤ i ≤ n)

Γ, ϕi ∧ ϕ j � Ai = A j (1 ≤ i, j ≤ n) k minimal with Γ � ϕk = 1 : F
Γ � [ϕ1 A1, . . . , ϕn An] � Ak

Γ � ϕ1 ∨ · · · ∨ ϕn = 1 : F Γ � A Γ, ϕi � ti : A (1 ≤ i ≤ n)

Γ, ϕi ∧ ϕ j � ti = t j : A (1 ≤ i, j ≤ n) k minimal with Γ � ϕk = 1 : F
Γ � [ϕ1 t1, . . . , ϕn tn] � tk : A

The reduction rules for the universe are:

Γ � A � B : U
Γ � A � B

Γ � A : U Γ, ϕ � T : U Γ, ϕ � w : Equiv T A Γ � ϕ = 1 : F
Γ � Glue [ϕ 	→ (T, w)] A � T : U

Finally, the reduction rules for compositions are given as follows.

Γ, i : I � A � B Γ � ϕ : F Γ, ϕ, i : I � u : A Γ � u0 : A(i0)[ϕ 	→ u(i0)]
Γ � compi A [ϕ 	→ u] u0 � compi B [ϕ 	→ u] u0 : B(i1)

Γ � ϕ : F Γ, ϕ, i : I � u : N Γ, ϕ, i : I � u = 0 : N
Γ � compi N [ϕ 	→ u] 0 � 0 : N

Γ � ϕ : F Γ, ϕ, i : I � u : N Γ, ϕ, i : I � w : N
Γ, ϕ, i : I � u = Sw : N Γ � u0 : N Γ, ϕ � u(i0) = S u0 : N
Γ � compi N [ϕ 	→ u] (S u0) � S(compi N [ϕ 	→ pred u] u0) : N

123



Canonicity for Cubical Type Theory 177

Here pred is the usual predecessor function defined using natrec.1

Γ � ϕ : F Γ, ϕ, i : I � u : N Γ � u0 : N[ϕ 	→ u(i0)] Γ � u0 � v0 : N
Γ � compi N [ϕ 	→ u] u0 � compi N [ϕ 	→ u] v0 : N

Γ � ϕ : F Γ, i : I � A Γ, i : I, x : A � B
Γ, ϕ, i : I � u : (x : A) → B Γ � u0 : ((x : A) → B)(i0)[ϕ 	→ u(i0)]

Γ � compi ((x : A) → B) [ϕ 	→ u] u0 �
λy : A(i1).compi B(x/ȳ) [ϕ 	→ u ȳ] (u0 ȳ(i0)) : (x : A(i1)) → B(i1)

where y′ = filli A(i/1 − i) [] y and ȳ = y′(i/1 − i)

Γ � ϕ : F Γ, i : I � A Γ, i : I, x : A � B
Γ, ϕ, i : I � u : (x : A) × B Γ � u0 : ((x : A) × B)(i0)[ϕ 	→ u(i0)]

Γ � compi ((x : A) × B) [ϕ 	→ u] u0 �
(v(i1), compi B(x/v) [ϕ 	→ u.2] (u0.2)) : (x : A(i1)) × B(i1)

where v = filli A [ϕ 	→ u.1] (u0.1)

Γ � ϕ : F Γ, i : I � A Γ, i : I � v : A Γ, i : I � w : A
Γ, ϕ, i : I � u : Path A v w Γ � u0 : Path A(i0) v(i0)w(i0)[ϕ 	→ u(i0)]

Γ � compi (Path A v w) [ϕ 	→ u] u0 �
〈 j〉 compi A [( j = 0) 	→ v, ( j = 1) 	→ w, ϕ 	→ u j] (u0 j) : Path A(i1) v(i1)w(i1)

Γ, i : I � A Γ, i : I � ϕ : F Γ, i : I � ϕ 
= 1 : F Γ, i : I, ϕ � T
Γ, i : I, ϕ � w : Equiv T A Γ � ψ : F Γ,ψ, i : I � u : Glue [ϕ 	→ (T, w)] A

Γ � u0 : (Glue [ϕ 	→ (T, w)] A)(i0)[ψ 	→ u(i0)]
Γ � compi (Glue [ϕ 	→ (T, w)] A) [ψ 	→ u] u0 �
glue [ϕ(i1) 	→ t1] a1 : (Glue [ϕ 	→ (T, w)] A)(i1)

Here a1 and t1 are defined like in [7], i.e., given by

a = unglue [ϕ 	→ w] u Γ, i : I, ψ
a0 = unglue [ϕ(i0) 	→ w(i0)] u0 Γ

δ = ∀i.ϕ Γ

a′
1 = compi A [ψ 	→ a] a0 Γ

t ′1 = compi T [ψ 	→ u] u0 Γ, δ

ω = presi w [ψ 	→ u] u0 Γ, δ

(t1, α) = equivw(i1) [δ 	→ (t ′1, ω), ψ 	→ (u(i1), 〈 j〉a′
1)] a′

1 Γ, ϕ(i1)

a1 = comp j A(i1) [ϕ(i1) 	→ α j, ψ 	→ a(i1)] a′
1 Γ

where we indicated the intended context on the right.

Γ � ϕ : F Γ, ϕ, i : I � u : U Γ � u0 : U[ϕ 	→ u(i0)]
Γ � compi U [ϕ 	→ u] u0 � Glue [ϕ 	→ (u(i1),equivi u(i/1 − i))] u0 : U

1 This trick allows us that we never have to reduce in the system of a composition when defining composition
for natural numbers, which also gives that reduction over Γ never refers to reduction in a restricted context
Γ, ϕ (given that Γ is not restricted). If we would instead directly require u above to be of the form S u′, we
would have to explain reductions for systems like [(i = 0) (S t), (i = 1) (S t ′)] and more generally how
reduction and systems interact.

123



178 S. Huber

Here equivi is defined as in [7]. This concludes the definition of the reduction relation.
For Γ � A we write A!Γ if there is B such that Γ � A � B; in this case B is uniquely

determined by A and we denote B by A↓Γ ; if A is normal we set A↓Γ to be A. Similarly
for Γ � u : A, u!A

Γ and u↓A
Γ . Note that if a term or type has a reduct it is non-introduced.

We usually drop the subscripts and sometimes also superscripts since they can be inferred.
From now on we will mainly consider contexts I, J, K , . . . only built from dimension

name declarations; so such a context is of the form i1 : I, . . . , in : I for n ≥ 0. We sometimes
write I, i for I, i : I. Substitutions between such contexts will be denoted by f, g, h, . . . .
The resulting category with such name contexts I as objects and substitutions f : J → I is
reminiscent of the category of cubes as defined in [7, Section 8.1] with the difference that the
names in a contexts I are ordered and not sets. This difference is not crucial for the definition
of computability predicates in the next section but it simplifies notations. (Note that if I ′ is a
permutation of I , then the substitution assigning to each name in I itself is an isomorphism
I ′ → I .) We write r ∈ I(I ) if I � r : I, and ϕ ∈ F(I ) if I � ϕ : F.

Note that in general reductions I � A � B or I � u � v : A are not closed under
substitutions f : J → I . For example, if u is a system [(i = 0) u1, 1 u2], then i � u � u2 : A
(assuming everything iswell typed), but� u(i0) � u1(i0) : A(i0) andu1, u2 might be chosen
that u1(i0) and u2(i0) are judgmentally equal but not syntactically (and even normal by
considering two λ-abstractions where the body is not syntactically but judgmentally equal).
Another example is when u is unglue [ϕ 	→ w] (glue [ϕ 	→ t] a) with ϕ 
= 1 and with
f : J → I such that ϕ f = 1; then u reduces to a, but u f reduces to w f.1 (glue [ϕ f 	→
t f ] a f ) which is in general not syntactically equal to a f .

Wewrite I � A �s B and I � u �s v : A if the respective reduction is closed under name
substitutions. That is, I � A �s B whenever J � A f � B f for all f : J → I . Note that in
the above definition, all the rules which do not have a premise with a negated equation in F

and which do not have a premise referring to another reduction are closed under substitution.

3 Computability Predicates

In this section we define computability predicates and establish the properties we need for
the proof of Soundness in the next section. We will define when a type is computable or
forced, written I �
 A, when two types are forced equal, I �
 A = B, when an element is
computable or forced, I �
 u : A, and when two elements are forced equal, I �
 u = v : A.
Here 
 is the level which is either 0 or 1, the former indicating smallness.

The definition is given as follows: by main recursion on 
 (that is, we define “�0” before
“�1”) we define by induction–recursion [9]

I �
 A

I �
 A = B

I �
 u : A by recursion on I �
 A

I �
 u = v : A by recursion on I �
 A

where the former two are mutually defined by induction, and the latter two mutually by
recursion on the derivation of I �
 A. Formally, I �
 A and I �
 A = B are witnessed
by derivations for which we don’t introduce notations since the definitions of I �
 u : A
and I �
 u = v : A don’t depend on the derivation of I �
 A. Each such derivation has a
height as an ordinal, and often we will employ induction not only on the structure of such a
derivation but on its height.

123



Canonicity for Cubical Type Theory 179

Note that the arguments and definitions can be adapted to a hierarchy of universes by
allowing 
 to range over a (strict) well-founded poset.

We write I �
 A � B for the conjunction of I �
 A, I �
 B, and I �
 A = B. For
ϕ ∈ F(I ) we write f : J → I, ϕ for f : J → I with ϕ f = 1; furthermore we write

I, ϕ �
 A for ∀ f : J → I, ϕ (J �
 A f )& I, ϕ � A,

I, ϕ �
 A = B for ∀ f : J → I, ϕ (J �
 A f = B f )& I, ϕ � A = B,

I, ϕ �
 u : A for ∀ f : J → I, ϕ (J �
 u f : A f )& I, ϕ � u : A,

I, ϕ �
 u = v : A for ∀ f : J → I, ϕ (J �
 u f = v f : A f )& I, ϕ � u = v : A

Where the last two abbreviations need suitable premises tomake sense. Note that I, 1 �
 A is
a priori stronger than I �
 A; that these notions are equivalent follows from theMonotonicity
Lemma below. Moreover, the definition is such that I � J whenever I �
 J (whereJ is
any judgment form); it is shown in Remark 4 that the condition I, ϕ � J in the definition
of I, ϕ �
 J is actually not needed and follows from the other.

I �
 A assuming I � A (i.e., the rules below all have a suppressed premise I � A).

I �
 N
N-C

I, 1 �
 A I, x : A � B ∀ f : J → I∀u(J �
 u : A f ⇒ J �
 B( f, x/u))

∀ f : J → I∀u, v(J �
 u = v : A f ⇒ J �
 B( f, x/u) � B( f, x/v))

I �
 (x : A) → B
Pi-C

I, 1 �
 A I, x : A � B ∀ f : J → I∀u(J �
 u : A f ⇒ J �
 B( f, x/u))

∀ f : J → I∀u, v(J �
 u = v : A f ⇒ J �
 B( f, x/u) � B( f, x/v))

I �
 (x : A) × B
Si-C

I, 1 �
 A I �
 a0 : A I �
 a1 : A

I �
 Path A a0 a1
Pa-C

1 
= ϕ ∈ F(I ) I, 1 �
 A
I, ϕ �
 Equiv T A I, ϕ �
 w : Equiv T A I, ϕ �
 Glue [ϕ 	→ (T, w)] A

I �
 Glue [ϕ 	→ (T, w)] A
Gl-C

I �1 U
U-C

A n.i. ∀ f : J → I (A f !& J �
 A f ↓)

∀ f : J → I∀g : K → J (K �
 A f ↓g = A f g↓)

I �
 A
Ni-C

Note, that the rule Gl-C above is not circular, as for any f : J → I, ϕ we have ϕ f = 1
and so (Glue [ϕ 	→ (T, w)] A) f is non-introduced.
I �
 A = B assuming I �
 A, I �
 B, and I � A = B (i.e., each rule below has the
suppressed premises I �
 A, I �
 B, and I � A = B).

123



180 S. Huber

I �
 N = N
N-E

I, 1 �
 A = A′
I, x : A � B = B ′ ∀ f : J → I∀u(J �
 u : A f ⇒ J �
 B( f, x/u) = B ′( f, x/u))

I �
 (x : A) → B = (x : A′) → B ′ Pi-E

I, 1 �
 A = A′
I, x : A � B = B ′ ∀ f : J → I∀u(J �
 u : A f ⇒ J �
 B( f, x/u) = B ′( f, x/u))

I �
 (x : A) × B = (x : A′) × B ′ Si-E

I, 1 �
 A = B I �
 a0 = b0 : A I �
 a1 = b1 : A

I �
 Path A a0 a1 = Path B b0 b1
Pa-E

1 
= ϕ ∈ F(I )I, 1 �
 A = A′ I, ϕ �
 Equiv T A = Equiv T ′ A′
I, ϕ �
 w = w′ : Equiv T A I, ϕ �
 Glue [ϕ 	→ (T, w)] A = Glue [ϕ 	→ (T ′, w′)] A′

I �
 Glue [ϕ 	→ (T, w)] A = Glue [ϕ 	→ (T ′, w′)] A′ Gl-E

I �1 U = U
U-E

A or B n.i. ∀ f : J → I (J �
 A f ↓ = B f ↓)

I �
 A = B
Ni-E

I �
 u : A by induction on I �
 A assuming I � u : A. We distinguish cases on the
derivation of I �
 A.

Case N-C

I �
 0 : N
I �
 u : N

I �
 S u : N

u n.i. ∀ f : J → I (u f !N& J �
 u f ↓N : N)

∀ f : J → I∀g : K → J (K �
 u f ↓Ng = u f g↓N : N)

I �
 u : N

Case Pi-C

∀ f : J → I∀u(J �
 u : A f ⇒ J �
 w f u : B( f, x/u))

∀ f : J → I∀u, v(J �
 u = v : A f ⇒ J �
 w f u = w f v : B( f, x/u))

I �
 w : (x : A) → B

Case Si-C

I �
 u.1 : A I �
 u.2 : B(x/u.1)

I �
 u : (x : A) × B

Case Pa-C

∀ f : J → I∀r ∈ I(J )(J �
 u f r : A f ) I �
 u 0 = a0 : A I �
 u 1 = a1 : A

I �
 u : Path A a0 a1

123



Canonicity for Cubical Type Theory 181

Case Gl-C

I, ϕ �
 u : Glue [ϕ 	→ (T, w)] A
∀ f : J → I∀w′(J, ϕ f � w′ = w f : Equiv T f A f ⇒

J � unglue [ϕ f 	→ w′] u f = unglue [ϕ f 	→ w f ] u f : A f )

I �
 u : Glue [ϕ 	→ (T, w)] A

Later we will see that from the premises of Gl-C we get I � w = w : Equiv T A, and the
second premise above implies in particular I � unglue [ϕ 	→ w] u : A; the quantification
over other possible equivalences is there to ensure invariance for the annotation.

Case U-C

I �0 A

I �1 A : U

Case Ni-C

∀ f : J → I (J �
 u f : A f ↓)

I �
 u : A

I �
 u = v : A by induction on I �
 A assuming I �
 u : A, I �
 v : A, and I � u =
v : A. (I.e., each of the rules below has the suppressed premises I �
 u : A, I �
 v : A, and
I � u = v : A, but they are not arguments to the definition of the predicate. This is subtle
since in, e.g., the rule for pairs we only know I �
 v.2 : B(x/v.1) not I �
 v.2 : B(x/u.1).)
We distinguish cases on the derivation of I �
 A.

Case N-C

I �
 0 = 0 : N
I �
 u = v : N

I �
 S u = S v : N
u or v n.i. ∀ f (J �
 u f ↓N = v f ↓N : N)

I �
 u = v : N

Case Pi-C

∀ f : J → I∀u(J �
 u : A f ⇒ J �
 w f u = w′ f u : B( f, x/u))

I �
 w = w′ : (x : A) → B

Case Si-C

I �
 u.1 = v.1 : A I �
 u.2 = v.2 : B(x/u.1)

I �
 u = v : (x : A) × B

Case Pa-C

∀ f : J → I∀r ∈ I(J )(J �
 u f r = v f r : A f )

I �
 u = v : Path A a0 a1

Case Gl-C

I, ϕ �
 u = v : Glue [ϕ 	→ (T, w)] A
I, 1 �
 unglue [ϕ 	→ w] u = unglue [ϕ 	→ w] v : A

I �
 u = v : Glue [ϕ 	→ (T, w)] A

123



182 S. Huber

Case U-C

I �0 A = B

I �1 A = B : U

Case Ni-C

∀ f : J → I (J �
 u f = v f : A f ↓)

I �
 u = v : A

Note that the definition is such that I �
 A = B implies I �
 A and I �
 B; and,
likewise, I �
 u = v : A gives I �
 u : A and I �
 v : A.

Remark 1 1. In the rule Ni-E and the rule for I �
 u = v : N in case u or v are non-
introduced we suppressed the premise that the reference to “↓” is actually well defined;
it is easily seen that if I �
 A, then A↓ is well defined, and similarly for I �
 u : N,
u↓N is well defined.

2. It follows from the substitution lemma below that I �
 A whenever A is non-introduced
and I � A �s B with I �
 B. (Cf. also the Expansion Lemma below.)

3. Note that once we also have proven transitivity, symmetry, and monotonicity, the last
premise of Ni-C in the definition of I �
 A (and similarly in the rule for non-introduced
naturals) can be restated as J �
 A f ↓ = A↓ f for all f : J → I .

Lemma 1 The computability predicates are independent of the derivation, i.e., if we have
two derivations trees d1 and d2 of I �
 A, then

I �d1

 u : A ⇔ I �d2


 u : A, and

I �d1

 u = v : A ⇔ I �d2


 u = v : A

where �di

 refers to the predicate induced by di .

Proof By main induction on 
 and a side induction on the derivations d1 and d2. Since the
definition of I �
 A is syntax directed both d1 and d2 are derived by the same rule. The
claim thus follows from the IH. ��
Lemma 2 1. If I �
 A, then I � A and:

(a) I �
 u : A ⇒ I � u : A,
(b) I �
 u = v : A ⇒ I � u = v : A.

2. If I �
 A = B, then I � A = B.

Lemma 3 1. If I �0 A, then:

(a) I �1 A
(b) I �0 u : A ⇔ I �1 u : A
(c) I �0 u = v : A ⇔ I �1 u = v : A

2. If I �0 A = B, then I �1 A = B.

Proof By simultaneous induction on I �0 A and I �0 A = B. ��
Wewill write I � A if there is a derivation of I �
 A for some 
; etc. Such derivations will

be ordered lexicographically, i.e., I �0 A derivations are ordered before I �1 A derivations.

123



Canonicity for Cubical Type Theory 183

Lemma 4 1. I �
 A ⇒ I �
 A = A
2. I �
 A& I �
 u : A ⇒ I �
 u = u : A

Proof Simultaneously, by induction on 
 and side induction on I �
 A. In the case Gl-C,
to see (2), note that from the assumption I � u : B with B being Glue [ϕ 	→ (T, w)] A we
get in particular

I, ϕ � w = w : Equiv T A ⇒ I � unglue [ϕ 	→ w] u = unglue [ϕ 	→ w] u : A.

But by IH, the premise follows from I, ϕ � w : Equiv T A; moreover, I, ϕ � u = u : B is
immediate by IH, showing I � u = u : B. ��
Lemma 5 (Monotonicity/Substitution) For f : J → I we have

1. I �
 A ⇒ J �
 A f ,
2. I �
 A = B ⇒ J �
 A f = B f ,
3. I �
 A& I �
 u : A ⇒ J �
 u f : A f ,
4. I �
 A& I �
 u = v : A ⇒ J �
 u f = v f : A f .

Moreover, the respective heights of the derivations don’t increase.

Proof By induction on 
 and side induction on I �
 A and I �
 A = B. The definition of
computability predicates and relations is lead such that this proof is immediate. For instance,
note for (1) in the case Gl-C, i.e.,

1 
= ϕ ∈ F(I ) I, 1 �
 A
I, ϕ �
 Equiv T A I, ϕ �
 w : Equiv T A I, ϕ �
 Glue [ϕ 	→ (T, w)] A

I �
 Glue [ϕ 	→ (T, w)] A
Gl-C

we distinguish cases: if ϕ f = 1, then J �
 Glue [ϕ f 	→ (T f, w f )] A f by the premise
I, ϕ �
 Glue [ϕ 	→ (T, w)] A; in case ϕ f 
= 1 we can use the same rule again. ��
Lemma 6 1. I � A ⇒ I � A↓
2. I � A = B ⇒ I � A↓ = B↓
3. I � A& I � u : A ⇒ I � u : A↓
4. I � A& I � u = v : A ⇒ I � u = v : A↓
5. I � u : N ⇒ I � u↓ : N
6. I � u = v : N ⇒ I � u↓ = v↓ : N

Moreover, the respective heights of the derivations don’t increase.

Proof (1) By induction on I � A. All cases were A is an introduction are immediate since
then A↓ is A. It only remains the case Ni-C:

A n.i.
∀ f : J → I (A f !& J � A f ↓) ∀ f : J → I∀g : K → J (K � A f ↓g = A f g↓)

I � A
Ni-C

We have I � A↓ as this is one of the premises.
(5) By induction on I � u : N similarly to the last paragraph.
(2) By induction on I � A = B. The only case where a reduct may happen is Ni-E, in

which I � A↓ = B↓ is a premise. Similar for (6).
(3) and (4): By induction on I � A, where the only interesting case is Ni-C, in which

what we have to show holds by definition. ��

123



184 S. Huber

Lemma 7 1. If I � A = B, then

(a) I � u : A ⇔ I � u : B, and
(b) I � u = v : A ⇔ I � u = v : B.

2. I � A = B & I � B = C ⇒ I � A = C
3. Given I � A we get

I � u = v : A& I � v = w : A ⇒ I � u = w : A.

4. I � A = B ⇒ I � B = A
5. I � A& I � u = v : A ⇒ I � v = u : A

Proof We prove the statement for “�
” instead of “�” by main induction on 
 (i.e., we prove
the statement for “�0” before the statement for “�1”); the statement for “�” follows then
from Lemma 3.

Simultaneously by threefold induction on I �
 A, I �
 B, and I �
 C . (Alternatively
by induction on the (natural) sum of the heights of I �
 A, I �
 B, and I �
 C ; we only
need to be able to apply the IH if the complexity of at least one derivation decreases and the
others won’t increase.) In the proof below we will omit 
 to simplify notation, except in cases
where the level matters.

(1) By distinguishing cases on I � A = B. We only give the argument for (1a) as (1b) is
very similar except in case Gl-E. The cases N-E and U-E are trivial.

Case Pi-E Let I � w : (x : A) → B and we show I � w : (x : A′) → B ′. For
f : J → I let J � u : A′ f ; then by IH (since J � A f = A′ f ) we get J � u : A f , and
thus J � w f u : B( f, x/u); again by IH we obtain J � w f u : B ′( f, x/u). Now assume
J � u = v : A′ f ; so by IH, J � u = v : A f , and thus J � w f u = w f v : B( f, x/u).
Again by IH, we conclude J � w f u = w f v : B ′( f, x/u). Thus we have proved I � w :
(x : A′) → B ′.

Case Si-E Let I � w : (x : A) × B and we show I � w : (x : A′) × B ′. We have
I � w.1 : A and I � w.2 : B(x/w.1). So by IH, I � w.1 : A′; moreover, we have
I � B(x/w.1) = B ′(x/w.1); so, again by IH, we conclude with I � w.2 : B ′(x/w.1).

CasePa-E Let I � u : Path A a0 a1 andwe show I � u : Path B b0 b1.Given f : J → I
and r ∈ F(J ) we have J � u f r : A f and thus J � u f r : B f by IH. We have to check that
the endpoints match: I � u 0 = a0 : A by assumption; moreover, I � a0 = b0 : A, so by
IH (3), I � u 0 = b0 : A, thus again using the IH, I � u 0 = b0 : B.

Case Gl-E Abbreviate Glue [ϕ 	→ (T, w)] A by D, and Glue [ϕ 	→ (T ′, w′)] A′ by D′.
(1a) Let I � u : D, i.e., I, ϕ � u : D and

J � unglue [ϕ f 	→ w′′] u f = unglue [ϕ f 	→ w f ] u f : A f (1)

whenever f : J → I and J, ϕ f � w′′ = w f : Equiv T f A f . Directly by IH we obtain
I, ϕ � u : D′. Now let f : J → I and J, ϕ f � w′′ = w′ f : Equiv T ′ f A′ f ; by IH,
also J, ϕ f � w′′ = w′ f : Equiv T f A f . Moreover, we have J, ϕ f � w f = w′ f :
Equiv T f A f , hence (1) gives (together with symmetry and transitivity, applicable by IH)

J � unglue [ϕ f 	→ w′′] u f = unglue [ϕ f 	→ w f ] u f : A f, and

J � unglue [ϕ f 	→ w′ f ] u f = unglue [ϕ f 	→ w f ] u f : A f.

Hence, transitivity and symmetry (which we can apply by IH) give that the above left-hand
sides are forced equal of type A f , applying the IH(1b) gives that they are forced equal of
type A′ f , and thus I � u : D′.

123



Canonicity for Cubical Type Theory 185

(1b) Let I � u = v : D, so we have I, ϕ � u = v : D and

I � unglue [ϕ 	→ w] u = unglue [ϕ 	→ w] v : A (2)

By IH, we get I, ϕ � u = v : D′ from I, ϕ � u = v : D. Note that we also have I � u : D
and I � v : D, and thus

I � unglue [ϕ 	→ w] u = unglue [ϕ 	→ w′] u : A, and

I � unglue [ϕ 	→ w] v = unglue [ϕ 	→ w′] v : A

and thus with (2) and transitivity and symmetry (which we can apply by IH) we obtain
I � unglue [ϕ 	→ w′] u = unglue [ϕ 	→ w′] v : A, hence also at type A′ by IH. Therefore
we proved I � u = v : D′.

Case Ni-E Let I � u : A; we have to show I � u : B.
Subcase B is non-introduced. Then we have to show J � u f : B f ↓ for f : J → I . We

have J � A f ↓ = B f ↓ and since I � B is non-introduced, the derivation J � B f ↓ is
shorter than I � B, and the derivation J � A f ↓ is not higher than I � A by Lemma 6.
Moreover, also J � u f : A f so by Lemma 6 (3) we get J � u f : A f ↓, and hence by IH,
J � u f : B f ↓.

Subcase B is introduced. We have I � u : A↓ and I � A↓ = B↓ but B↓ is B, and
I � A↓ has a shorter derivation than I � A, so I � u : B by IH.

(2) Let us first handle the cases where A, B, or C is non-introduced. It is enough to show
J � A f ↓ = C f ↓ (if A andC are both introduced, this entails I � A = C for f the identity).
We have J � A f ↓ = B f ↓ and J � B f ↓ = C f ↓. None of the respective derivations get
higher (by Lemma 6) but one gets shorter since one of the types is non-introduced. Thus the
claim follows by IH.

It remains to look at the cases where all are introduced; in this case both equalities have
to be derived by the same rule. We distinguish cases on the rule.

Case N-E Trivial. Case Si-E. Similar to Pi-E below. Case Pa-E and Gl-E. Use the IH.
Case U-E. Trivial.

Case Pi-E Let use write A as (x : A′) → A′′ and similar for B and C . We have I � A′ =
B ′ and I � B ′ = C ′, and so by IH, we get I � A′ = C ′; for J � u : A′ f where f : J → I it
remains to be shown that J � A′′( f, x/u) = C ′′( f, x/u). By IH, we also have J � u : B ′ f ,
so we have

J � A′′( f, x/u) = B ′′( f, x/u) and J � B ′′( f, x/u) = C ′′( f, x/u)

and can conclude by the IH.
(3) By cases on I � A. All cases follow immediately using the IH, except for N-C and

U-C. In case N-C, we show transitivity by a side induction on the (natural) sum of the height
of the derivations I � u = v : N and I � v = w : N. If one of u,v, or w is non-introduced,
we get that one of the derivations J � u f ↓ = v f ↓ : N and J � v f ↓ = w f ↓ : N is
shorter (and the other doesn’t get higher), so by SIH, J � u f ↓ = w f ↓ : N which entails
I � u = w : N. Otherwise, I � u = v : N and I � v = w : N have to be derived with the
same rule and I � u = w : N easily follows (using the SIH in the successor case).

In case U-C, we have I �1 u = v : U and I �1 v = w : U, i.e., I �0 u = v and
I �0 v = w. We want to show I �1 u = w : U, i.e., I �0 u = w. But by IH(
), we
can already assume the lemma is proven for 
 = 0, hence can use transitivity and deduce
I �0 u = w.

The proofs of (4) and (5) are by distinguishing cases and are straightforward. ��

123



186 S. Huber

Remark 2 Now that we have established transitivity, proving computability for Π-types can
also be achieved as follows. Given we have I � (x : A) → B and derivations I � w :
(x : A) → B, I � w′ : (x : A) → B, and I � w = w′ : (x : A) → B, then
I � w = w′ : (x : A) → B whenever we have

∀ f : J → I∀u, v(J � u = v : A f ⇒ J � w f u = w′ f v : B( f, x/u)).

(In particular, this gives I � w : (x : A) → B and I � w′ : (x : A) → B.)
Likewise, given I � (x : A) → B, I � (x : A′) → B ′, and I � (x : A) → B = (x :

A′) → B ′, we get I � (x : A) → B = (x : A′) → B ′ whenever I � A = A′ and

∀ f : J → I∀u, v(J � u = v : A f ⇒ J � B( f, x/u) = B ′( f, x/v)).

Lemma 8 1. I � A ⇒ I � A = A↓
2. I � u : N ⇒ I � u = u↓ : N

Proof (1) We already proved I � A↓ in Lemma 6 (1). By induction on I � A. All cases
where A is an introduction are immediate since then A↓ is A. It only remains the case Ni-C:

A n.i.
∀ f : J → I (A f !& J � A f ↓) ∀ f : J → I∀g : K → J (K � A f ↓g = A f g↓)

I � A
Ni-C

Wenow show I � A = A↓; since A is non-introducedwe have to show J � A f ↓ = (A↓ f )↓
for f : J → I . I � A↓ has a shorter derivation than I � A, thus so has J � A↓ f ; hence by
IH, J � A↓ f = (A↓ f )↓. We also have J � A↓ f = A f ↓ by definition of I � A, and thus
we obtain J � A f ↓ = (A↓ f )↓ using symmetry and transitivity.

(2) Similar, by induction on I � u : N. ��
Lemma 9 (Expansion Lemma) Let I �
 A and I � u : A; then:

∀ f : J → I (u f !A f & J �
 u f ↓A f : A f ) ∀ f : J → I (J �
 u f ↓ = u↓ f : A f )

I �
 u : A& I �
 u = u↓ : A

In particular, if I � u �s v : A and I �
 v : A, then I �
 u : A and I �
 u = v : A.

Proof By induction on I � A. We will omit the level annotation 
 whenever it is inessential.
Case N-C. We have to show K � u f ↓g = u f g↓ : N for f : J → I and g : K → J ; we

have J � u f ↓ = u↓ f : N, thus K � u f ↓g = u↓ f g : N. Moreover, K � u↓ f g = u f g↓ :
N by assumption, and thus by transitivity K � u f ↓g = u↓ f g = u f g↓ : N. (Likewise one
shows that the data in the premise of the lemma is closed under substitution.)

I � u = u↓ : N holds by Lemma 6 (2).
Case Pi-C. First, let J � a : A f for f : J → I . We have

K � (u f a)g � (u f g)↓ (ag) : B( f g, x/ag)

for g : K → J , and also K � (u f g)↓ (ag) : B( f g, x/ag) and we have the compatibility
condition

K � (u f a)g↓ = ((u f g)↓) (ag) = (u f ↓g) (ag)

= (u f ↓ a)g = (u f a)↓g : B( f g, x/ag),

so by IH, J � u f a : B( f, x/a) and J � u f a = u f ↓ a : B( f, x/a). Since also J � u f ↓ =
u↓ f : ((x : A) → B) f we also get J � u f a = u↓ f a : B( f, x/a).

123



Canonicity for Cubical Type Theory 187

Now if J � a = b : A f , we also have J � a : A f and J � b : A f , so like above
we get J � u f a = u f ↓ a : B( f, x/a) and J � u f b = u f ↓ b : B( f, x/b) (and thus also
J � u f b = u f ↓ b : B( f, x/a)). Moreover, J � u f ↓ a = u f ↓ b : B( f, x/a) and hence we
can conclude J � u f a = u f b : B( f, x/a) by transitivity and symmetry. Thus we showed
both I � u : (x : A) → B and I � u = u↓ : (x : A) → B.

Case Si-C. Clearly we have (u.1 f )↓ = (u f ↓).1, J � (u f ↓).1 : A f , and

J � (u.1 f )↓ = (u f ↓).1 = (u↓ f ).1 = (u↓.1) f = (u.1)↓ f : A f

so the IH gives I � u.1 : A and I � u.1 = (u↓).1 : A. Likewise (u.2 f )↓ = (u f ↓).2
and J � (u f ↓).2 : B( f, x/u f ↓.1), hence also J � (u f ↓).2 : B( f, x/u f.1); as above
one shows J � (u.2 f )↓ = u.2↓ f : B( f, x/u f.1), applying the IH once more to obtain
I � u.2 = u↓.2 : B(x/u.1)) which was what remained to be proven.

Case Pa-C. Let us write Path A v w for the type and let f : J → I , r ∈ I(J ), and
g : K → J . We have

K � (u f r)g � (u f g)↓ (rg) : A f g

and K � (u f g)↓ (rg) : A f g; moreover,

K � (u f r)g↓ = (u f g)↓ (rg) = (u f ↓g) (rg) = (u f ↓ r)g = (u f r)↓g : A f g.

Thus by IH, J � u f r : A f and

J � u f r = u f ↓ r = u↓ f r : A f. (3)

So we obtain I � u 0 = u↓ 0 = v : A and I � u 1 = u↓ 1 = w : A, and hence
I � u : Path A v w; I � u = u↓ : Path A v w follows from (3).

Case Gl-C. Abbreviate Glue [ϕ 	→ (T, w)] A by B. Note that we have ϕ 
= 1. First, we
claim that for any f : J → I , J � b : B f , and J, ϕ f � w′ = w f : Equiv T f A f ,

J, ϕ f � unglue [ϕ f 	→ w′] b = w′.1 b : A f. (4)

(In particular both sides are computable.) Indeed, for g : K → J with ϕ f g = 1 we have that

K � (unglue [ϕ f 	→ w′] b)g �s w′g.1 (bg) : A f g

and K � w′g.1 (bg) : A f g since I, ϕ � B = T (which follows from Lemma 8 (1)). Thus
by IH (J � A f has a shorter derivation than I � B), K � (unglue [ϕ f 	→ w′] b)g =
(w′.1 b)g : A f g as claimed.

Next, let f : J → I such that ϕ f = 1; then using the IH (J � B f has a shorter
derivation than I � B), we get J � u f : B f and J � u f = u f ↓ : B f , and hence also
J � u f = u↓ f : B f (since J � u f ↓ = u↓ f : B f ). That is, we proved

I, ϕ � u : B and I, ϕ � u = u↓ : B. (5)

We will now first show

J � unglue [ϕ f 	→ w′] u f = (unglue [ϕ f 	→ w′] u f )↓ : A f (6)

for and f : J → I and J, ϕ f � w′ = w f : Equiv T f A f . We can assume that w.l.o.g.
ϕ f 
= 1, since if ϕ f = 1, J � u f : B f by (5), and (6) follows from (4) noting that its
right-hand side is the reduct. We will use the IH to show (6), so let us analyze the reduct:

(unglue [ϕ f 	→ w′] u f )g↓ =
{

(w′g.1) (u f g) if ϕ f g = 1,

unglue [ϕ f 	→ w′g] (u f g↓) otherwise.
(7)

123



188 S. Huber

where g : K → J . In either case, the reduct is computable: in the first case, use (5) and
J � w′.1 : T → A together with the observation I, ϕ � B = T ; in the second case this
follows from J � u f g↓ : B f g. In order to apply the IH, it remains to verify

K � (unglue [ϕ f 	→ w′] u f )g↓ = (unglue [ϕ f 	→ w′] u f )↓g : A f g.

In case ϕ f g 
= 1, we have

K � unglue [ϕ f g 	→ w′g] (u f g↓)

= unglue [ϕ f g 	→ w f g] (u f g↓) since K � u f g↓ : B f g

= unglue [ϕ f g 	→ w f g] (u f ↓g) since K � u f g↓ = u f ↓g : B f g

= unglue [ϕ f g 	→ w′g] (u f ↓g) : A f g since K � u f ↓g : B f g

which is what we had to show in this case. In case ϕ f g = 1, we have to prove

K � (w′g.1) (u f g) = unglue [ϕ f 	→ w′g] (u f ↓g) : A f g. (8)

But by (5) we have K � u f g = u f g↓ = u f ↓g : B f g, so also

K � (w′g.1) (u f g) = (w′g.1) (u f ↓g) : A f g,

so (8) follows from (4) using J � u f ↓ : B f . This concludes the proof of (6).
As w′ could have been w f we also get

J � unglue [ϕ f 	→ w f ] u f = (unglue [ϕ f 	→ w f ] u f )↓ : A f. (9)

In order to prove I � u : B it remains to check that the left-hand side of (6) is forced
equal to the left-hand side of (9); so we can simply check this for the respective right-hand
sides: in case ϕ f = 1, these are w′.1 u f and w f.1 u f , respectively, and hence forced equal
since J � w′ = w f : Equiv T f A f ; in case ϕ f 
= 1, we have to show

J � unglue [ϕ f 	→ w′] (u f ↓) = unglue [ϕ f 	→ w f ] (u f ↓) : A f

which simply follows since J � u f ↓ : B f .
In order to prove I � u = u↓ : B it remains to check

I � unglue [ϕ 	→ w] u = unglue [ϕ 	→ w] (u↓) : A,

but this is (9) in the special case where f is the identity.
Case U-C. Let us write B for u. We have to prove I �1 B : U and I �1 B = B↓ : U, i.e.,

I �0 B and I �0 B = B↓. By Lemma 8 (1), it suffices to prove the former. For f : J → I
we have

J � B f � B f ↓U : U
and hence also

J � B f � B f ↓U

i.e., B f !, and B f ↓ is B f ↓U ; since J �1 B f ↓ : U we have J �0 B f ↓, and likewise
J �0 B f ↓ = B↓ f . Moreover, if also g : K → J , we obtain K �0 B f g↓ = B↓ f g from
the assumption. Hence K �0 B f ↓g = B↓ f g = B f g↓, therefore I �0 B what we had to
show.

Case Ni-C. Then I � A↓ has a shorter derivation than I � A; moreover, for f : J → I
we have J � u f � u f ↓A f : A f so also J � u f � u f ↓A f : A↓ f since J � A f = A↓ f .
By Lemma 6 (1), I � A = A↓ so also J � u f ↓ : A↓ f and J � u f ↓ = u↓ f : A↓ f , and

123



Canonicity for Cubical Type Theory 189

hence by IH, I � u : A↓ and I � u = u↓ : A↓, so also I � u : A and I � u = u↓ : A
using I � A = A↓ again. ��

4 Soundness

The aim of this section is to prove canonicity as stated in the introduction. We will do so
by showing that each computable instance of a judgment derived in cubical type theory is
computable (allowing free name variables)—this is the content of the Soundness Theorem
below.

We first extend the computability predicates to contexts and substitutions.
� Γ assuming Γ � .

� �
� � i /∈ dom(�)

� �, i : I
� � � � ϕ : F

� �, ϕ

� �

∀I∀σ(I � σ : � ⇒ I � Aσ) ∀I∀σ, τ(I � σ =τ : � ⇒ I � Aσ = Aτ) x /∈ dom(�)

� �, x : A

I � σ : Γ by induction on � Γ assuming I � σ : Γ .

I � () : �
I � σ : Γ r ∈ I(I )

I � (σ, i/r) : Γ, i : I
I � σ : Γ ϕσ = 1

I � σ : Γ, ϕ

I � σ : Γ I � u : Aσ

I � (σ, x/u) : Γ, x : A

I � σ = τ : Γ by induction on � Γ , assuming I � σ : Γ , I � τ : Γ , and I � σ = τ : Γ .

I � () = () : �
I � σ = τ : Γ r ∈ I(I )

I � (σ, i/r) = (τ, i/r) : Γ, i : I
I � σ = τ : Γ ϕσ = ϕτ = 1

I � σ = τ : Γ, ϕ

I � σ = τ : Γ I � u = v : Aσ

I � (σ, x/u) = (τ, x/v) : Γ, x : A

We write I � r : I for r ∈ I(I ), I � r = s : I for r = s ∈ I(I ), and likewise I � ϕ : F
for ϕ ∈ F(I ), I � ϕ = ψ : F for ϕ = ψ ∈ F(I ). In the next definition we allow A to be F
or I, and also correspondingly for a and b to range over interval and face lattice elements.

123



190 S. Huber

Definition 1

Γ |� :⇔ � Γ

Γ |� A = B :⇔ Γ � A = B &Γ |� &

∀I, σ, τ (I � σ = τ : Γ ⇒ I � Aσ = Bτ)

Γ |� A :⇔ Γ � A&Γ |� A = A

Γ |� a = b : A :⇔ Γ � a = b : A&Γ |� A&

∀I, σ, τ (I � σ = τ : Γ ⇒ I � aσ = bτ : Aσ)

Γ |� a : A :⇔ Γ � a : A&Γ |� a = a : A

Γ |� σ = τ : Δ :⇔ Γ � σ = τ : Δ&Γ |� &Δ |� &

∀I, δ, γ (I � δ = γ : Γ ⇒ I � σδ = τγ : Δ)

Γ |� σ : Δ :⇔ Γ � σ : Δ&Γ |� σ = σ : Δ

Remark 3 1. For each I we have � I , and J � σ : I iff σ : J → I ; likewise, J � σ =
τ : I iff σ = τ .

2. For computability of contexts and substitutions monotonicity and partial equivalence
properties hold analogous to computability of types and terms.

3. Given � Γ and I � σ = τ : Γ , then for any Γ � ϕ : F we get ϕσ = ϕτ ∈ F(I ) since
ϕσ and ϕτ only depend on the name assignments of σ and τ which have to agree by
I � σ = τ : Γ . Similarly for Γ � r : I.

4. The definition of “|�” slightly deviates from the approach we had in the definition of
“�” as, say, Γ |� A is defined in terms of Γ |� A = A. Note that by the properties we
already established about “�” we get that Γ |� A = B implies Γ |� A and Γ |� B
(given we know Γ � A and Γ � B, respectively); and, likewise, Γ |� a = b : A entails
Γ |� a : A and Γ |� b : A (given Γ � a : A and Γ � b : A, respectively). Also, note
that in the definition of, say, Γ |� A, the condition

∀I, σ, τ (I � σ = τ : Γ ⇒ I � Aσ = Aτ)

implies

∀I, σ (I � σ : Γ ⇒ I � Aσ).

In fact, we will often have to establish the latter condition first when showing the former.
5. I |� A = B iff I � A = B, and I |� a = b : A iff I � A and I � a = b : A; moreover,

given I |� A and I, x : A � B, then I, x : A |� B iff

∀ f : J → I∀u(J � u : A f ⇒ J � B( f, x/u)) &

∀ f : J → I∀u, v(J � u = v : A f ⇒ J � B( f, x/u) = B( f, x/v))

(Note that the second formula in the above display implies the first.) Thus the premises
of Pi-C and Si-C are simply I |� A and I, x : A |� B. Also, I, ϕ � A = B iff
I, ϕ |� A = B; and I, ϕ |� a = b : A iff I, ϕ � A and I, ϕ � a = b : A.

6. By Lemma 7 we get that Γ |� · = ·, Γ |� · = · : A, and Γ |� · = · : Δ are partial
equivalence relations.

Theorem 1 (Soundness) Γ � J ⇒ Γ |� J

The proof of the Soundness Theorem spans the rest of this section. We will mainly state and
prove congruence rules as the proof of the other rules are special cases.

123



Canonicity for Cubical Type Theory 191

Lemma 10 The context formation rules are sound:

� |�
Γ |� i /∈ dom(Γ )

Γ, i : I |�
Γ |� ϕ : F
Γ, ϕ |�

Γ |� A x /∈ dom(Γ )

Γ, x : A |�
Proof Immediately by definition. ��
Lemma 11 Given Γ |�, Γ � r : I, Γ � s : I, Γ � ϕ : F, and Γ � ψ : F we have:

1. Γ � r = s : I ⇒ Γ |� r = s : I
2. Γ � ϕ = ψ : F ⇒ Γ |� ϕ = ψ : F

Proof (1) By virtue of Remark 3 (3) it is enough to show rσ = sσ ∈ I(I ) for I � σ : Γ . But
then by applying the substitution I � σ : Γ weget I � rσ = sσ : I, and thus rσ = sσ ∈ I(I )
since the context I does not contain restrictions. The proof of (2) is analogous. ��
Lemma 12 The rule for type conversion is sound:

Γ |� a = b : A Γ |� A = B

Γ |� a = b : B

Proof Suppose I � σ = τ : Γ . By assumption we have I � aσ = bτ : Aσ . Moreover also
I � σ = σ : Γ , so I � Aσ = Bσ , and hence I � aσ = bτ : Bσ by Lemma 7 which was
what we had to prove. ��
Lemma 13

Γ |� σ = τ : Δ Δ |� A = B

Γ |� Aσ = Bτ

Γ |� σ = τ : Δ Δ |� a = b : A

Γ |� aσ = bτ : Aσ

Γ |� σ = τ : Δ Δ |� δ = γ : Ξ

Γ |� δσ = γ τ : Ξ

Proof Immediate by definition. ��
Lemma 14 The rules for Π-types are sound:

1.
Γ |� A = A′ Γ, x : A |� B = B ′

Γ |� (x : A) → B = (x : A′) → B ′

2.
Γ |� A = A′ Γ, x : A |� t = t ′ : B

Γ |� λx : A.t = λx : A′.t ′ : (x : A) → B

3.
Γ |� w = w′ : (x : A) → B Γ |� u = u′ : A

Γ |� w u = w′ u′ : B(x/u)

4.
Γ, x : A |� t : B Γ |� u : A

Γ |� (λx : A.t) u = t (x/u) : B(x/u)

5.
Γ |� w : (x : A) → B Γ |� w′ : (x : A) → B Γ, x : A |� w x = w′ x : B

Γ |� w = w′ : (x : A) → B

123



192 S. Huber

Proof Abbreviate (x : A) → B by C . We will make use of Remark 2.
(1) It is enough to prove this in the case where Γ is of the form I , in which case this

directly follows by Pi-E.
(2) Suppose Γ |� A = A′ and Γ, x : A |� t = t ′ : B; this entails Γ, x : A |� B.

For I � σ = τ : Γ we show I � (λx : A.t)σ = (λx : A′.t ′)τ : Cσ . For this let
J � u = v : Aσ f where f : J → I . Then also J � u = v : A′τ f ,

J � (λx : A.t)σ f u �s t (σ f, x/u) : B(σ f, x/u), and

J � (λx : A′.t ′)τ f v �s t ′(τ f, x/v) : B(τ f, x/v).

Moreover, J � (σ f, x/u) = (τ f, x/v) : Γ, x : A, and so J � B(σ f, x/u) = B(τ f, x/v)

and

J � t (σ f, x/u) = t ′(τ f, x/v) : B(σ f, x/u)

which gives

J � (λx : A.t)σ f u = t (σ f, x/u) : B(σ f, x/u), and

J � (λx : A′.t ′)τ f v = t ′(τ f, x/v) : B(τ f, x/v),

by applying the Expansion Lemma twice, and thus also

J � (λx : A.t)σ f u = (λx : A′.t ′)τ f v : B(σ f, x/u)

what we had to show.
(3) For I � σ = τ : Γ we get I � wσ = w′τ : Cσ and I � uσ = u′τ : Aσ ; so also

I � wσ : Cσ , therefore I � (w u)σ = wσ u′τ = (w′ u′)τ : B(σ, x/u).
(4) Given I � σ = τ : Δ we get, like in (2), I � (λx : A.t)σ uσ = t (σ, x/uσ) :

B(σ, x/uσ) using the Expansion Lemma; moreover, I � (σ, x/uσ) = (τ, x/uτ) : Γ, x : A,
hence

I � (λx : A.t)σ uσ = t (σ, x/uσ) = t (τ, x/uτ) : B(σ, x/uσ).

(5) Suppose I � σ = τ : Γ and J � u : Aσ f for f : J → I . We have to show
J � wσ f u = w′τ f u : B(σ f, x/u). We have

J � (σ f, x/u) = (τ f, x/u) : Γ, x : A

and thus, by the assumption Γ, x : A |� w x = w′ x : B, we get

J � (w x)(σ f, x/u) = (w′ x)(τ f, x/u) : B(σ f, x/u).

Since x does neither appear in w nor in w′ this was what we had to prove. ��
Lemma 15 The rules for Σ-types are sound:

1.
Γ |� A = A′ Γ, x : A |� B = B ′

Γ |� (x : A) × B = (x : A′) × B ′

2.
Γ, x : A |� B Γ |� u = u′ : A Γ |� v = v′ : B(x/u)

Γ |� (u, v) = (u′, v′) : (x : A) × B

3.
Γ, x : A |� B Γ |� w = w′ : (x : A) × B

Γ |� w.1 = w′.1 : A
Γ |� w.2 = w′.2 : B(x/w.1)

123



Canonicity for Cubical Type Theory 193

4.
Γ, x : A |� B Γ |� u : A Γ |� v : B(x/u)

Γ |� (u, v).1 = u : A
Γ |� (u, v).2 = v : B(x/u)

5.

Γ, x : A |� B Γ |� w : (x : A) × B
Γ |� w′ : (x : A) × B Γ |� w.1 = w′.1 : A Γ |� w.2 = w′.2 : B(x/w.1)

Γ |� w = w′ : (x : A) × B

Lemma 16 Given I, x : N |� C we have:

1.
I � u : N I � z : C(x/0) I � s : (x : N) → C → C(x/S x)

I � natrec u z s : C(x/u)

I � natrec u z s = (natrec u z s)↓ : C(x/u)

2.

I � u = u′ : N
I � z = z′ : C(x/0) I � s = s′ : (x : N) → C → C(x/S x)

I � natrec u z s = natrec u′ z′ s′ : C(x/u)

Proof By simultaneous induction on I � u : N and I � u = u′ : N.
Case I � 0 : N. We have I � natrec 0 z s �s z : C(x/0) so (1) follows from the

Expansion Lemma.
Case I � 0 = 0 : N. (2) immediately follows from (1) and I � z = z′ : C(x/0).
Case I � S u : N from I � u : N. We have

I � natrec (S u) z s �s s u (natrec u z s) : C(x/S u)

and I � s u (natrec u z s) : C(x/S u) by IH, and using that u and s are computable. Hence
we are done by the Expansion Lemma.

Case I � S u = S u′ : N from I � u = u′ : N. (2) follows from (1) and I � s = s′ : (x :
N) → C → C(x/S x), I � u = u′ : N, and the IH.

Case I � u : N for u non-introduced. For f : J → I we have

J � (natrec u z s) f � natrec (u f ↓) z f s f : C( f, x/u f ↓).

Moreover, we have I � u f ↓ and I � u f ↓ = u↓ f : N with a shorter derivation (and thus
also J � C( f, x/u f ↓) = C(x/u↓) f ), hence by IH

J � natrec (u f ↓) z f s f : C(x/u↓) f, and

J � natrec (u f ↓) z f s f = (natrec (u↓) z s) f : C(x/u↓) f,

which yields the claim by the Expansion Lemma.
Case I � u = u′ : N for u or u′ non-introduced. We have

I � natrec u z s = natrec (u↓) z s : C(x/u)

by either (1) (if u is non-introduced) or by reflexivity (if u is an introduction); likewise for
u′. So with the IH for I � u↓ = u′↓ : N we obtain

I � natrec u z s = natrec (u↓) z s = natrec (u′↓) z′ s′ = natrec u′ z′ s′ : C(x/u)

what we had to show. ��
We write n for the numeral Sn 0 where n ∈ N.

123



194 S. Huber

Lemma 17 If I � u : N, then I � u = n : N (and hence also I � u = n : N) for some
n ∈ N.

Proof By induction on I � u : N. The cases for zero and successor are immediate. In case u
is non-introduced, then I � u↓ = n for some n ∈ N by IH. By Lemma 8 (2) and transitivity
we conclude I � u = n : N. ��
Lemma 18 I � · = · : N is discrete, i.e., if I � u : N, I � v : N, and J � u f = vg : N for
some f, g : J → I , then I � u = v : N.

Proof By Lemma 17, we have I � u = n : N and I � v = m : N for some n, m ∈ N,
and thus J � n = u f = vg = m : N, i.e., J � n = m : N and hence n = m which yields
I � u = v : N. ��
Lemma 19 The rules for Path-types are sound:

1.
Γ |� A = A′ Γ |� u = u′ : A Γ |� v = v′ : A

Γ |� Path A u v = Path A′ u′ v′

2.
Γ |� A Γ, i : I |� t = t ′ : A

Γ |� 〈i〉t = 〈i〉t ′ : Path A t (i0) t (i1)

3.
Γ |� w = w′ : Path A u v Γ |� r = r ′ : I

Γ |� w r = w′ r ′ : A

4.
Γ |� w : Path A u v

Γ |� w 0 = u : A Γ |� w 1 = v : A

5.
Γ |� A Γ, i : I |� t : A Γ |� r : I

Γ |� (〈i〉t) r = t (i/r) : A

6.
Γ |� w : Path A u v Γ |� w′ : Path A u v Γ, i : I |� w i = w′ i : A

Γ |� w = w′ : Path A u v

Proof (1) Follows easily by definition.
(2) For I � σ = σ ′ : Γ we have to show

I � (〈i〉t)σ = (〈i〉t ′)σ ′ : Path Aσ t (σ, i/0) t (σ, i/1). (10)

For f : J → I and r ∈ I(J ) we have J � (σ f, i/r) = (σ ′ f, i/r) : Γ, i : I and
J � (〈i〉t)(σ f ) r �s t (σ f, i/r) : Aσ f, and

J � (〈i〉t ′)(σ ′ f ) r �s t ′(σ ′ f, i/r) : Aσ ′ f,

and moreover J � t (σ f, i/r) = t ′(σ ′ f, i/r) : Aσ f and J � Aσ f = Aσ ′ f by assumption.
Hence the Expansion Lemma yields

J � (〈i〉t)(σ f ) r = t (σ f, i/r) : Aσ f, and

J � (〈i〉t ′)(σ ′ f ) r = t ′(σ ′ f, i/r) : Aσ f,

in particular also, say J � (〈i〉t)σ 0 = t (σ, i/0) : Aσ and J � (〈i〉t ′)σ ′ 0 = t ′(σ ′, i/0) =
t (σ, i/0) : Aσ . And hence (10) follows.

123



Canonicity for Cubical Type Theory 195

(3) Supposing I � σ = σ ′ : Γ we have to show I � (wσ) (rσ) = (w′σ ′) (r ′σ) : Aσ .
We have I � wσ = w′σ ′ : Path Aσ uσ vσ and rσ = r ′σ ′, hence the claim follows by
definition.

(4) Let I � σ = σ ′ : Γ ; we have to show, say, I � wσ 0 = uσ ′ : Aσ . First, we get
I � wσ : Path Aσ uσ vσ . Since Γ |� w : Path A u v we also have Γ |� Path A u v, hence

I � Path Aσ uσ vσ = Path Aσ ′ uσ ′ vσ ′. (11)

Hencewe also obtain I � wσ : Path Aσ ′ uσ ′ vσ ′, and thus I � wσ 0 = uσ ′ : Aσ ′. But (11)
also yields I � Aσ = Aσ ′ by definition, so I � wσ 0 = uσ ′ : Aσ what we had to show.

(5) Similar to (2) using the Expansion Lemma.
(6) For I � σ = σ ′ : Γ , f : J → I , and r ∈ I(J ), we have J � (σ f, i/r) = (σ ′ f, i/r) :

Γ, i : I, and thus
J � (w i)(σ f, i/r) = (w′ i)(σ ′ f, i/r) : Aσ f. (12)

But (w i)(σ f, i/r) iswσ f r , and (w′ i)(σ ′ f, i/r) isw′σ ′ f r , so (12) is what we had to show.
��

Lemma 20 Let ϕi ∈ F(I ) and ϕ1 ∨ · · · ∨ ϕn = 1.

1. Let I, ϕi �
 Ai and I, ϕi ∧ ϕ j �
 Ai = A j for all i, j ; then

(a) I �
 [ϕ1 A1, . . . , ϕn An], and
(b) I �
 [ϕ1 A1, . . . , ϕn An] = Ak whenever ϕk = 1.

2. Let I �
 A, I, ϕi �
 ti : A, and I, ϕi ∧ ϕ j �
 ti = t j : A for all i, j ; then

(a) I �
 [ϕ1 t1, . . . , ϕn tn] : A, and
(b) I �
 [ϕ1 t1, . . . , ϕn tn] = tk : A whenever ϕk = 1.

Proof (1) Let us abbreviate [ϕ1 A1, . . . , ϕn An] by A. Since A is non-introduced, we have
to show J � A f ↓ and J � A f ↓ = A↓ f . For the former observe that A f ↓ is Ak f with k
minimal such that ϕk f = 1. For the latter use that J � Ak f = Al f if ϕk f = 1 and ϕl = 1,
since I, ϕk ∧ ϕl � Ak = Al .

(2) Let us write t for [ϕ1 t1, . . . , ϕn tn]. By virtue of the Expansion Lemma, it suffices to
show J � t f ↓ : A f and K � t f ↓ = t↓ f : A f . The proof is just like the proof for types
given above. ��
Lemma 21 Given Γ |� ϕ1 ∨ · · · ∨ ϕn = 1 : F, then:

Γ, ϕ1 |� J . . . Γ, ϕn |� J

Γ |� J

Proof Let ϕ = ϕ1∨· · ·∨ϕn . Say ifJ is a typing judgment of the form A. For I � σ : Γ we
have ϕσ = 1, so ϕkσ = 1 for some k, hence I � Aσ by Γ, ϕk |� A. Now let I � σ = τ : Γ ;
then ϕiσ = ϕiτ (σ and τ assign the same elements to the interval variables), so ϕσ = ϕτ = 1
yields ϕkσ = ϕkτ = 1 for some common k and thus I � Aσ = Aτ follows fromΓ, ϕk |� A.
The other judgment forms are similar. ��

For I � A and I, ϕ � v : A we write I � u : A[ϕ 	→ v] for I � u : A and
I, ϕ � u = v : A. And likewise I � u = w : A[ϕ 	→ v] means I � u = w : A and
I, ϕ � u = v : A (in this case also I, ϕ � w = v : A follows). We use similar notations for
for “|�”.

123



196 S. Huber

Lemma 22 Given ϕ ∈ F(I ) and I �
 A, I, ϕ �
 T , and I, ϕ �
 w : Equiv T A, and write
B for Glue [ϕ 	→ (T, w)] A. Then:

1. I �
 B and I, ϕ �
 B = T .
2. If I �
 A = A′, I, ϕ �
 T = T ′, I, ϕ �
 w = w′ : Equiv T A, then I �
 B =

Glue [ϕ 	→ (T ′, w′)] A′.
3. If I �
 u : B and I, ϕ �
 w = w′ : Equiv T A, then I �
 unglue [ϕ 	→ w′] u : A[ϕ 	→

w′.1 u] and I �
 unglue [ϕ 	→ w] u = unglue [ϕ 	→ w′] u : A.
4. If I �
 u = u′ : B, then

I �
 unglue [ϕ 	→ w] u = unglue [ϕ 	→ w] u′ : A.

5. If I, ϕ �
 t = t ′ : T and I �
 a = a′ : A[ϕ 	→ w.1 t], then

(a) I �
 glue [ϕ 	→ t] a = glue [ϕ 	→ t ′] a′ : B,
(b) I, ϕ �
 glue [ϕ 	→ t] a = t : T , and
(c) I �
 unglue [ϕ 	→ w] (glue [ϕ 	→ t] a) = a : A.

6. If I �
 u : B, then I �
 u = glue [ϕ 	→ u](unglue [ϕ 	→ w] u) : B.

Proof (1) Let us first prove I, ϕ � B and I, ϕ � B = T ; but in I, ϕ, ϕ becomes 1 so w.l.o.g.
let us assume ϕ = 1; then B is non-introduced and I � B �s T so I � B from I � T . For
I � B = T we have to show J � B f ↓ = T f ↓ for f : J → I . But B f ↓ is T f so this is an
instance of Lemma 8.

It remains to prove I � B in case where ϕ 
= 1; for this use Gl-Cwith the already proven
I, ϕ � B.

(2) In case ϕ 
= 1 we only have to show I, ϕ � B = B ′ and can applyGl-E. But restricted
to I, ϕ, ϕ becomes 1 and hence we only have to prove the statement for ϕ = 1. But then by
(1) we have I � B = T = T ′ = B ′.

(3) In case ϕ 
= 1, I � unglue [ϕ 	→ w′] u : A and

I �
 unglue [ϕ 	→ w] u = unglue [ϕ 	→ w′] u : A (13)

are immediate by definition. Using the Expansion Lemma (and I � unglue [ϕ 	→ w′] u �s
w′.1 u : A for ϕ = 1) we obtain I, ϕ � unglue [ϕ 	→ w′] u = w′.1 u : A, which also shows
I � unglue [ϕ 	→ w′] u : A as well as (13) in case ϕ = 1.

(4) In case ϕ 
= 1, this is by definition. For ϕ = 1 we have

I � unglue [ϕ 	→ w] u = w.1 u = w.1 u′ = unglue [ϕ 	→ w] u′ : A.

(5) Let us write b for glue [ϕ 	→ t] a, and b′ for glue [ϕ 	→ t ′] a′. We first show I � b : B
and I, ϕ � b = t : B (similarly for b′).

In case ϕ = 1, I � b �s t : T so by the Expansion Lemma I � b : T and I � b = t : T ,
and hence also I � b : B and I � b = t : B by (1). This also proves (5b).

Let now ϕ be arbitrary; we claim

I � unglue [ϕ 	→ w] b : A and I � unglue [ϕ 	→ w] b = a : A

[and thus proving (5c)]. We will apply the Expansion Lemma to do so; for f : J → I let us
analyze the reduct of (unglue [ϕ 	→ w] b) f :

(unglue [ϕ 	→ w] b) f ↓ =
{

w f.1 b f if ϕ f = 1,

a f otherwise.

123



Canonicity for Cubical Type Theory 197

Note that, if ϕ f = 1, we have as in the case for ϕ = 1, J � b f = t f : B f and hence
J � w f.1 b f = w f.1 t f = a f : A f . This ensures J � (unglue [ϕ 	→ w] b) f ↓ =
(unglue [ϕ 	→ w] b)↓ f : A, and thus the Expansion Lemma applies and we obtain I �
unglue [ϕ 	→ w] b = (unglue [ϕ 	→ w] b)↓ : A; but as we have seen in either case, ϕ = 1
or not, I � (unglue [ϕ 	→ w] b)↓ = a : A proving the claim.

Let now be ϕ 
= 1, f : J → I , and J � w′ = w f : Equiv T f A f . We can use the claim
for B f andGlue [ϕ f 	→ (T f, w′)] A f (which is forced equal to B f by (2)) and obtain both

J � unglue [ϕ f 	→ w f ] b f = a f : A f and J � unglue [ϕ f 	→ w′] b f = a f : A f,

so the left-hand sides are equal; moreover, I, ϕ � b : B (as in the case ϕ = 1), and hence
I � b : B. Likewise one shows I � b′ : B.

It remains to show I � b = b′ : B. If ϕ = 1, we already showed I � b = t : T and
I � b′ = t ′ : T , so the claim follows from I � t = t ′ : T and I � T = B. Let us now
assume ϕ 
= 1. We immediately get I, ϕ � b = t = t ′ = b′ : B as for ϕ = 1. Moreover, we
showed above that I � unglue [ϕ 	→ w] b = a : A and I � unglue [ϕ 	→ w] b′ = a′ : A.
Hence we obtain

I � unglue [ϕ 	→ w] b = unglue [ϕ 	→ w] b′ : A

from I � a = a′ : A.
(6) In case ϕ = 1, this follows from (5b). In case ϕ 
= 1, we have to show

I � unglue [ϕ 	→ w] u = unglue [ϕ 	→ w] (glue [ϕ 	→ u](unglue [ϕ 	→ w] u)) : A and

I, ϕ � u = glue [ϕ 	→ u](unglue [ϕ 	→ w] u) : T .

The former is an instance of (5c); the latter follows from (5b). ��
Lemma 23 Let B be Glue [ϕ 	→ (T, w)] A and suppose I � B is derived via Gl-C, then
also I, ϕ � T and the derivations of I, ϕ � T are all proper sub-derivations of I � B (and
hence shorter).

Proof We have the proper sub-derivations I, ϕ � B. For each f : J → I with ϕ f = 1, we
have that B f is non-introduced with reduct T f so the derivation of J � B f has a derivation
of J � T f as sub-derivation according to Ni-C. ��

For the next proof we need a small syntactic observation. Given Γ � α : F irreducible,
there is an associated substitution ᾱ : Γα → Γ where Γα skips the names of α and applies
a corresponding ᾱ to the types and restrictions (e.g., if Γ is i : I, x : A, j : I, ϕ and α is
(i = 0), then Γα is x : A(i0), j : I, ϕ(i0)). Since αᾱ = 1 we even have ᾱ : Γα → Γ, α. The
latter has an inverse (w.r.t. judgmental equality) given by the projection p : Γ, α → Γα (i.e.,
p assigns each variable in Γα to itself): in the context Γ, α, ᾱp is the identity, and pᾱ is the
identity since the variables in Γα are not changed by ᾱ.

Remark 4 We can use the above observation to show that the condition I, ϕ � J in the
definition of I, ϕ �
 J (in Sect. 3) already follows from the other, i.e., J �
 J f for
all f : J → I, ϕ: We have to show I, α � J for each irreducible α ≤ ϕ. But we have
Iα �
 J ᾱ by the assumption and ᾱ : Iα → I, ϕ, and hence Iα � J ᾱ. Substituting along
p : I, α → Iα yields I, α � J .

Theorem 2 Compositions are computable, i.e., for ϕ ∈ F(I ) and i /∈ dom(I ):

123



198 S. Huber

1.
I, i � A I, i, ϕ � u : A I � u0 : A(i0)[ϕ 	→ u(i0)]

I � compi A [ϕ 	→ u] u0 : A(i1)[ϕ 	→ u(i1)]
I � compi A [ϕ 	→ u] u0 = (compi A [ϕ 	→ u] u0)↓ : A(i1)

2.
I, i � A I, i, ϕ � u = v : A I � u0 = v0 : A(i0)[ϕ 	→ u(i0)]

I � compi A [ϕ 	→ u] u0 = compi A [ϕ 	→ v] v0 : A(i1)

3.
I, i � A = B I, i, ϕ � u : A I � u0 : A(i0)[ϕ 	→ u(i0)]

I � compi A [ϕ 	→ u] u0 = compi B [ϕ 	→ u] u0 : A(i1)

Proof By simultaneous induction on I, i � A and I, i � A = B. Let us abbreviate
compi A [ϕ 	→ u] u0 by u1, and compi A [ϕ 	→ v] v0 by v1. The second conclusion of (1)
holds since in each case we will use the Expansion Lemma and in particular also prove
I � u1↓ : A(i1).

Let us first make some preliminary remarks. Given the induction hypothesis holds for
I, i � A we also know that filling operations are admissible for I, i � A, i.e.:

I, i � A I, i, ϕ � u : A I � u0 : A(i0)[ϕ 	→ u(i0)]
I, i � filli A [ϕ 	→ u] u0 : A[ϕ 	→ u, (i = 1) 	→ u1]

(14)

To see this, recall the explicit definition of filling

filli A [ϕ 	→ u] u0 = comp j A(i/ i ∧ j) [ϕ 	→ u(i/ i ∧ j), (i = 0) 	→ u0] u0

where j is fresh. The derivation of I, i, j � A(i/ i ∧ j) isn’t higher than the derivation of
I, i � A so we have to check, with u′ = [ϕ u(i/ i ∧ j), (i = 0) u0] and A′ = A(i/ i ∧ j),

I, i, j, ϕ ∨ (i = 0) � u′ : A′ and I, i, ϕ ∨ (i = 0) � u′( j0) = u0 : A(i0). (15)

To check the former, we have to show

I, i, j, ϕ ∧ (i = 0) � u(i/ i ∧ j) = u0 : A′

in order to apply Lemma 20. So let f : J → I, i, j with ϕ f = 1 and f (i) = 0; then as
ϕ doesn’t contain i and j , also ϕ( f − i, j) = 1 for f − i, j : J → I being the restriction
of f , so by assumption J � u(i0)( f − i, j) = u0( f − i, j) : A(i0)( f − i, j). Clearly,
(i0)( f − i, j) = (i/ i ∧ j) f so the claim follows.

Let us now check the right-hand side equation of (15): by virtue of Lemma 21 we have
to check the equation in the contexts I, i, ϕ and I, i, (i = 0); but I, i, ϕ � u′( j0) = u(i0) =
u0 : A(i0) and I, i, (i = 0) � u′( j0) = u0 : A(i0) by Lemma 20.

And likewise the filling operation preserves equality.
Case N-C. First, we prove that

I, ϕ, i : I � u = u0 : N. (16)

To show this, it is enough to prove I, α, i : I � u = u0 : N for each α ≤ ϕ irreducible.
Let ᾱ : Iα → I be the associated face substitution. We have Iα, i � u(ᾱ, i/ i) : N and also
Iα � u(ᾱ, i/0) = u0ᾱ : N since ϕᾱ = 1. By discreteness of N (Lemma 18),

Iα, i � u(ᾱ, i/ i) = u0ᾱ : N,

therefore Iα, i � u(ᾱ, i/ i) = u0ᾱ : N, i.e., Iα, i � uᾱ = u0ᾱ : N with ᾱ considered as
substitution Iα, i → I, i and u0 weakened to I, i . Hence I, α, i : I � u = u0 : N by the
observation preceding the statement of the theorem.

123



Canonicity for Cubical Type Theory 199

Second, we prove that
I, ϕ � u(i1) = u0 : N. (17)

I, ϕ � u(i1) = u0 : N immediately follows from (16). For f : J → I with ϕ f = 1 we
have to show J � u(i1) f = u0 f : N; since ϕ f = 1 we get J � u(i0) f = u0 f : N by
assumption, i.e., J � u( f, i/j)( j0) = u0( f, i/j)( j0) : N (where u0 is weakened to I, j
and j fresh). By discreteness of N, we obtain J, j � u( f, i/j) = u0( f, i/j) : N and hence
J � u( f, i/1) = u0( f, i/1) : N, i.e., J � u(i1) f = u0 f : N.

We now prove the statements simultaneously by a side induction on I � u0 : N and
I � u0 = v0 : N.

Subcase I � 0 : N. By (16) it follows that I � u1 �s 0 : N, and hence I � u1 : N and
I � u1 = 0 : N by the Expansion Lemma. Thus also I, ϕ � u1 = u(i1) : N by (17).

Subcase I � S u′
0 : N from I � u′

0 : N with u0 = S u′
0. By (16) it follows that

I � u1 �s S(compi N [ϕ 	→ pred u] u′
0) : N.

From I, ϕ � S u′
0 = u(i0) : N we get I, ϕ � u′

0 = pred(S u′
0) = pred u(i0) : N by

Lemma 16 and thus by SIH, I � compi N [ϕ 	→ pred u] u′
0 : N[ϕ 	→ (pred u)(i1)]; hence

I � u1 : N and I � u1 = S(compi N [ϕ 	→ pred u] u′
0) : N by the Expansion Lemma.

Thus also

I, ϕ � u1 = S(pred u(i1)) = S(pred(S u′
0)) = S u′

0 = u(i1) : N
using (17).

Subcase u0 is non-introduced. We use the Expansion Lemma: for each f : J → I

u1 f ↓ = comp j N [ϕ f 	→ u( f, i/j)] (u0 f ↓)

the right-hand side is computable by SIH, and this results in a compatible family of reducts
by SIH, since we have K � u0 f ↓g = u0 f g↓ : N. Thus we get I � u1 : N and I � u1 =
u1↓ : N. By SIH, I, ϕ � u1↓ = u(i1) : N and thus also I, ϕ � u1 = u(i1) : N.

Subcase I � 0 = 0 : N. Like above we get that I � u1 = 0 = v1 : N.
Subcase I � Su′

0 = Sv′
0 : N from I � u′

0 = v′
0 : N. Follows from the SIH I �

compi N [ϕ 	→ pred u] u′
0 = compi N [ϕ 	→ pred v] v′

0 : N like above.
Subcase I � u0 = v0 : N and u0 or v0 is non-introduced. We have to show J � u1 f ↓ =

v1 f ↓ : N for f : J → I . We have J � u0 f ↓ = v0 f ↓ : N with a shorter derivation, thus by
SIH

J � comp j N [ϕ f 	→ u( f, i/j)] (u0 f ↓) = comp j N [ϕ f 	→ v( f, i/j)] (v0 f ↓) : N
which is what we had to show.

Case Pi-C. Let us write (x : A) → B for the type under consideration. (1) In view of
the Expansion Lemma, the reduction rule for composition at Π-types (which is closed under
substitution), and Lemma 14 (2) and (5), it suffices to show

I, x : A(i1) |� compi B(x/x̄) [ϕ 	→ u x̄] (u0 x̄(i0)) : B(i1), and (18)

I, x : A(i1), ϕ |� compi B(x/x̄) [ϕ 	→ u x̄] (u0 x̄(i0)) = u(i1) x : B(i1), (19)

where x ′ = filli A(i/1− i) [] x and x̄ = x ′(i/1− i). By IH, we get I, x : A(i1), i : I |� x̄ : A
and I, x : A(i1) |� x̄(i1) = x : A(i1), i.e.,

I, x : A(i1), i : I |� filli A(i/1 − i) [] x : A(i/1 − i), and (20)

I, x : A(i1) |� (filli A(i/1 − i) [] x)(i0) = x : A(i1). (21)

123



200 S. Huber

To see (20), let J � ( f, x/a) = ( f, x/b) : I, x : A(i1), i.e., f : J → I and J � a = b :
A(i1) f ; for j fresh, we have J, j � A( f, i/1− j) (note that (i1) f = ( f, i/1− j)( j0)) and
we get

J, j � fill j A( f, i/1 − j) [] a = fill j A( f, i/1 − j) [] b : A( f, i/1 − j)

by IH, i.e., J, j � x ′( f, x/a, i/j) = x ′( f, x/a, i/j) : A( f, i/1− j), and hence for r ∈ I(J )

J � x ′( f, x/a, i/r) = x ′( f, x/b, i/r) : (A(i/1 − i))( f, x/a, i/r).

Thus we get I, x : A(i1) |� u0 x̄(i0) : B(i0)(x/x̄(i0)), I, x : A(i1), ϕ, i : I |� u x̄ :
B(x/x̄), and

I, x :: A(i1), ϕ |� u0 x̄(i0) = u(i0) x̄(i0) = (u x̄)(i0) : B(i0)(x/x̄(i0)).

And hence again by IH, we obtain (18) and (19).
(2) Let f : J → I and J � a : A( f, i/1). Then J, j � ā : A( f, i/j) as above and we

have to show

J � comp j B( f, x/ā, i/j) [ϕ f 	→ u( f, i/j) ā] (u0 f ā)

= comp j B( f, x/ā, i/j) [ϕ f 	→ v( f, i/j) ā] (v0 f ā) :
B( f, x/ā(i1), i/1). (22)

But this follows directly from the IH for J, j � B( f, x/ā, i/j).
Case Si-C. Let us write (x : A) × B for the type under consideration. (1) We have

I, i, ϕ � u.1 : A and I � u0.1 : A[ϕ 	→ u.1]
so by IH,

I, i � filli A [ϕ 	→ u.1] (u0.1) : A[ϕ 	→ u.1, (i = 0) 	→ u0.1].
Let us call the above filler w. Thus we get I, i � B(x/w),

I, i, ϕ � B(x/u.1) = B(x/w) and I � B(x/u0.1) = (B(x/w))(i0)

and hence

I, i, ϕ � u.2 : B(x/w) and I � u0.1 : (B(x/w))(i0)[ϕ 	→ u.2].
The IH yields

I � compi B(x/w) [ϕ 	→ u.2] (u0.2) : (B(x/w))(i1)[ϕ 	→ u.2(i1)];
let us write w′ for the above. By the reduction rules for composition in Σ-types we get
I � u1 �s (w(i1), w′) : (x : A(i1)) × B(i1) and hence the Expansion Lemma yields

I � u1 = (w(i1), w′) : (x : A(i1)) × B(i1).

Which in turn implies the equality

I, ϕ � u1 = (w(i1), w′) = (u.1(i1), u.2(i1)) = u(i1) : (x : A(i1)) × B(i1).

The proof of (2) uses that all notions defining w and w′ preserve equality (by IH), and
thus I � u1↓ = v1↓ : (x : A(i1)) × B(i1).

123



Canonicity for Cubical Type Theory 201

Case Pa-C. Let us write Path A a0 a1 for the type under consideration. We obtain (for j
fresh)

I, j � compi A [( j = 0) 	→ a0, ( j = 1) 	→ a1, ϕ 	→ u j] (u0 j) :
A(i1)[( j = 0) 	→ a0(i1), ( j = 1) 	→ a1(i1), ϕ 	→ u(i1) j] (23)

by the IH. Using the Expansion Lemma, the reduction rule for composition at Path-types,
and Lemma 19 (2) this yields

I � u1 : Path A(i1) ũ( j0) ũ( j1)[ϕ 	→ 〈 j〉(u(i1) j)]
where ũ is the element in (23) and u1 is 〈 j〉ũ. But I � ũ( jb) = ab(i1) : A(i1), so I � u1 :
Path A(i1) a0(i1) a1(i1). Moreover,

I, ϕ � u1 = 〈 j〉(u(i1) j) = u(i1) : Path A(i1) a0(i1) a1(i1)

by the correctness of the η-rule for paths (Lemma 19 (6)).
Case Gl-C. To not confuse with our previous notations, we write ψ for the face formula

of u, and write B for Glue [ϕ 	→ (T, w)] A.
Thus we are given:

1 
= ϕ ∈ F(I, i) I, i � A I, i, ϕ � w : Equiv T A I, i, ϕ � B

I, i � B
Gl-C

and also I, i, ψ � u : B and I � u0 : B(i0)[ψ 	→ u(i0)]. Moreover we have I, i, ϕ � T
with shorter derivations by Lemma 23. We have to show

(i) I � u1 : B(i1), and
(ii) I, ψ � u1 = u(i1) : B(i1).

We will be using the Expansion Lemma: let f : J → I and consider the reducts of u1 f :

u1 f ↓ =
{
comp j T f ′ [ψ f 	→ u f ′] (u0 f ) if ϕ f ′ = 1,

glue [ϕ(i1) f 	→ t1 f ] (a1 f ) otherwise,

with f ′ = ( f, i/j), and t1 and a1 as in the corresponding reduction rule, i.e.:

a = unglue [ϕ 	→ w] u I, i, ψ

a0 = unglue [ϕ(i0) 	→ w(i0)] u0 I

δ = ∀i.ϕ I

a′
1 = compi A [ψ 	→ a] a0 I

t ′1 = compi T [ψ 	→ u] u0 I, δ

ω = presi w [ψ 	→ u] u0 I, δ

(t1, α) = equivw(i1) [δ 	→ (t ′1, ω), ψ 	→ (u(i1), 〈 j〉a′
1)] a′

1 I, ϕ(i1)

a1 = comp j A(i1) [ϕ(i1) 	→ α j, ψ 	→ a(i1)] a′
1 I

First, we have to check J � u1 f ↓ : B(i1) f . In case ϕ f ′ = 1 this immediately follows
from the IH. In case ϕ f ′ 
= 1, this follows from the IH and the previous lemmas ensuring
that notions involved in the definition of t1 and a1 preserve computability.

Second, we have to check J � u1 f ↓ = u1↓ f : B(i1) f . For this, the only interesting
case is when ϕ f ′ = 1; then we have to check that:

J � comp j T f ′ [ψ f 	→ u f ′] (u0 f ) = glue [ϕ(i1) f 	→ t1 f ] (a1 f ) : B(i1) f (24)

123



202 S. Huber

Since all the involved notions commute with substitutions, we may (temporarily) assume
f = id and ϕ = 1 to simplify notation. Then also δ = 1 = ϕ(i1), and hence (using the IH)

I � t1 = t ′1 = compi T [ψ 	→ u] u0 : T (i1),

so (24) follows from Lemma 22 (5b) and (1).
So the Expansion Lemma yields (i) and I � u1 = glue [ϕ(i1) 	→ t1] a1 : B(i1). (ii) is

checked similarly to what is done in [7, Appendix A] using the IH. This proves (1) in this
case; for (2) one uses that all notions for giving a1 and t1 above preserve equality, and thus
I � u1↓ = v1↓ : B(i1) entailing I � u1 = v1 : B(i1).

Case U-C. We have

I � compi U [ϕ 	→ u] u0 �s Glue [ϕ 	→ (u(i1),equivi u(i/1 − i))] u : U
thus it is sufficient to prove that the right-hand side is computable, i.e.,

I �1 Glue [ϕ 	→ (u(i1),equivi u(i/1 − i))] u0 : U
that is,

I �0 Glue [ϕ 	→ (u(i1),equivi u(i/1 − i))] u0.

We have I �0 u0 so by Lemma 22 (1) it suffices to prove

I �0 equivi u(i/1 − i) : Equiv u(i1) u0.

To see this recall that the definition of equivi u(i/1 − i) is defined from compositions and
filling operations for types I, i �0 u and I, i �0 u(i/1− i) using operations we already have
shown to preserve computability. But in this case we have as IH, that these composition and
filling operations are computable since the derivations of I, i �0 u and I, i �0 u are less
complex than the derivation I �1 U since the level is smaller.

Case Ni-C. So we have J � A f ↓ for each f : J → I, i and J � A↓ f = A f ↓ (all with
a shorter derivation than I, i � A). Note that by Lemma 8 (1), we also have I, i � A = A↓.

(1) We have to show J � u1 f : A(i1) f ↓ for each f : J → I . It is enough to show this
for f being the identity; we do this using the Expansion Lemma. Let f : J → I and j be
fresh, f ′ = ( f, i/j); we first show J � u1 f ↓ : A↓(i1) f . We have

J � u1 f � comp j (A f ′↓) [ϕ f 	→ u f ′] u0 f : A f ′( j1)

hence also at type A f ′( j1)↓, and so, by IH (1) for J, j � A f ′↓, we obtain J � u1 f ↓ :
A f ′( j1)↓. But J � A f ′( j1)↓ = A↓(i1) f , so J � u1 f ↓ : A↓(i1) f .

Next, we have to show J � u1↓ f = u1 f ↓ : A↓(i1) f . Since J, j � A↓ f ′ = A f ′↓
(with a shorter derivation) we get by IH (3), J � u1↓ f = u1 f ↓ : A↓ f ′( j1) what we had
to show.

Thus we can apply the Expansion Lemma and obtain I � u1 : A↓(i1) and I � u1 =
u1↓ : A↓(i1), and hence also I � u1 : A(i1) and I � u1 = u1↓ : A(i1). By IH, we also
have I, ϕ � u1 = u1↓ = u(i1) : A↓(i1) = A(i1).

(2) Like above, we obtain

I � u1 = u1↓ : A↓(i1) and I � v1 = v1↓ : A↓(i1).

But since the derivation of I, i � A↓ is shorter, and u1↓ = compi A↓ [ϕ 	→ u] u0 and
similarly for v1↓, the IH yields I � u1↓ = v1↓ : A↓(i1), thus also I � u1 = v1 : A↓(i1),
that is, I � u1 = v1 : A(i1) since I, i � A = A↓.

It remains to show that composition preserves forced type equality (i.e., (3) holds). The
argument for the different cases is very similar, namely using that the compositions on the

123



Canonicity for Cubical Type Theory 203

left-hand and right-hand side of (3) are equal to their respective reducts [by (1)] and then
applying the IH for the reducts. We will only present the case Ni-E.

Case Ni-E. Then A or B is non-introduced and I, i � A↓ = B↓with a shorter derivation.
Moreover, by (1) (if the type is non-introduced) or reflexivity (if the type is introduced) we
have

I � compi A [ϕ 	→ u] u0 = compi (A↓) [ϕ 	→ u] u0 : A(i1), and

I � compi B [ϕ 	→ u] u0 = compi (B↓) [ϕ 	→ u] u0 : B(i1),

but the right-hand sides are forced equal by IH. ��
Lemma 24 The rules for the universe U are sound:

1. Γ |� A : U ⇒ Γ |� A
2. Γ |� A = B : U ⇒ Γ |� A = B

Moreover, the rules reflecting the type formers in U are sound.

Proof Of the first two statements let us only prove (2): given I � σ = τ : Γ we get
I � Aσ = Bτ : U; this must be a derivation of I �1 Aσ = Bτ : U and hence we also have
I �0 Aσ = Bτ .

The soundness of the rules reflecting the type formers inU is proved very similar to proving
the soundness of the type formers. Let us exemplify this by showing soundness forΠ-types in
U: we are give Γ |� A : U and Γ, x : A |� B : U, and want to show Γ |� (x : A) → B : U.
Let I � σ = τ : Γ , then I � Aσ = Aτ : U, so, as above, I �0 Aσ = Aτ ; it is enough to
show

J �0 B(σ f, x/u) = B(τ f, x/v) (25)

for J � u = v : Aσ f with f : J → I . Then J � (σ f, x/u) = (τ f, x/v) : Γ, x : A, hence
J � B(σ f, x/u) = B(τ f, x/v) : U and hence (25). ��
Proof of Soundness (Theorem 1) By induction on the derivation Γ � J .

We have already seen above that most of the rules are sound. Let us now look at the
missing rules. Concerning basic type theory, the formation and introduction rules for N are
immediate; its elimination rule and definitional equality follow from the “local” soundness
from Lemma 16 as follows. Suppose Γ |� u : N, Γ, x : N |� C , Γ |� z : C(x/0), and
Γ |� s : (x : N) → C → C(x/S x). For I � σ = τ : N we get by Lemma 16 (2)

I � natrec uσ zσ sσ = natrec uτ zτ sτ : C(σ, x/uσ).

(Hence Γ |� natrec u z s : C(x/u).) Concerning, the definitional equality, if, say, u was of
the form S v, then, Lemma 16 (1) gives

I � natrec (S vσ) zσ sσ = natrec (S vτ) zτ sτ = (natrec (S vτ) zτ sτ)↓ : C(σ, x/uσ).

and (natrec (S vτ) zτ sτ)↓ is sτ vτ (natrec vτ zτ sτ), proving

Γ |� natrec (S v) z s = s v (natrec v z s) : C(x/S v);
similarly, the soundness of the other definitional equality is established.

Let us now look at the composition operations: supposeΓ, i : I |� A,Γ |� ϕ : F,Γ, ϕ, i :
I |� u : A, and Γ |� u0 : A(i0)[ϕ 	→ u(i0)]. Further let I � σ = τ : Γ , then for j fresh,
I, j � σ ′ = τ ′ : Γ, i : I where σ ′ = (σ, i/j) and τ ′ = (τ, i/j), hence I, j � Aσ ′ = Aτ ′,

123



204 S. Huber

ϕσ = ϕτ , I, j, ϕσ � uσ ′ = uτ ′ : Aσ ′, and I � u0σ = u0τ : Aσ ′( j0)[ϕσ 	→ uσ ′( j0)].
By Theorem 2,

I � comp j (Aσ ′) [ϕσ 	→ uσ ′] (u0σ) = comp j (Aτ ′) [ϕτ 	→ uτ ′] (u0τ) : Aσ ′( j1)

and

I, ϕσ � comp j (Aσ ′) [ϕσ 	→ uσ ′] (u0σ) = uσ ′( j1) = uτ ′( j1) : Aσ ′( j1)

hence we showed Γ |� compi A [ϕ 	→ u] u0 : A(i1)[ϕ 	→ u(i1)]. Similarly one can justify
the congruence rule for composition.

The definitional equalities which hold for comp follow from the second conclusion of
Theorem 2 (1), i.e., that a composition is forced equal to its reduct.

The remaining rules for systems follow from their “local” analogues (Lemma 20); let us,
say, suppose Γ |� ϕ1 ∨ · · · ∨ ϕn = 1 : F, Γ, ϕi |� Ai , and Γ, ϕi ∧ ϕ j |� Ai = A j . For
I � σ = τ : Γ we get k with ϕkσ = ϕkτ = 1 like in the proof of Lemma 21 so, writing A
for [ϕ1 A1, . . . , ϕn An],

I � Aσ = Akσ = Akτ = Aτ

by Lemma 20 and using Γ, ϕk |� Ak , so Γ |� A. Likewise, if Γ |� ϕl = 1 : F for some l,
then I � Aσ = Alσ = Alτ , showing Γ |� A = Al in this case. The other rules concerning
systems are justified similarly.

The soundness of the remaining rules concerningGlue follow similarly from their “local”
version in Lemma 22. ��

Corollary 1 (Canonicity) If I is a context of the form i1 : I, . . . , ik : I and I � u : N, then
I � u = n : N for a unique n ∈ N.

Proof By Soundness, I |� u : N hence I � u : N, so I � u = n : N for some n ∈ N by
Lemma 17, and thus also I � u = n : N. The uniqueness follows since I � n = m : N
yields I � n = m : N which is only the case for n = m. ��

Corollary 2 (Consistency) Cubical type theory is consistent, i.e., there is a type in the empty
context which is not inhabited.

Proof Consider the type PathN 0 1 and suppose there is a u with � u : PathN 0 1. Hence
we get i : I � u i : N, as well as � u 0 = 0 : N and � u 1 = 1 : N. By Canonicity, we get
n ∈ Nwith i : I � u i = n : N, and hence (by substitution)� u 0 = n : N and� u 1 = n : N,
so � 0 = 1 : N, contradicting the uniqueness in Corollary 1. ��

Remark 5 One could also extend cubical type theory with an empty type N0 whose forcing
relation is empty; consistency for this extension is then an immediate consequence of the
corresponding Soundness Theorem.

Remark 6 Soundness also implies injectivity of Π (and likewise for other type formers)
in name contexts: if I � (x : A) → B = (x : A′) → B ′, then I � A = A′ and
I, x : A � B = B ′. Moreover, we get a canonicity result for the universe U: if I � A : U,
then A is judgmentally equal to an introduced type B with I �0 B.

123



Canonicity for Cubical Type Theory 205

5 Extension with Higher Inductive Types

In this section we discuss two extensions to cubical type theory with two higher inductive
types: the circle and propositional truncation. For both extensions it is suitable to generalize
path types to dependent path types Pathi A u v where i might now appear in A, with u in
A(i0) and v in A(i1). This extension is straightforward, e.g., the β-reduction rule for paths
now reads

Γ, i : I � A Γ, i : I � t : A Γ � r : I
Γ � (〈i〉t) r � t (i/r) : A(i/r)

and likewise the computability predicates and relations are easily adapted.

5.1 The Circle

In this section we sketch how the proof of canonicity can be extended to the system where a
circle S1 is added; the extension with n-spheres is done analogously.

First, we have to extend the reduction relation as follows to incorporate the circle.

Γ �
Γ � loop 0 � base : S1

Γ � loop 1 � base : S1

Γ, i : I � u : S1

Γ � compi S1 [1 	→ u] u(i0) � u(i1) : S1

(For simplicity, we will use compi S1 instead of adding yet another constructor hcompi as
was done in in [7].)

Given Γ, x : S1 � C , Γ � b : C(x/base), and Γ � l : Pathi C(x/ loop i) b b we also
add the reduction rules for the elimination

Γ � S1-elimx .C base b l � b : C(x/base)

Γ � S1-elimx .C (loop r) b l � l r : C(x/ loop r)

where Γ � r 
= 1 : I, and moreover for Γ � ϕ 
= 1 : F,

Γ � S1-elimx .C (compi S1 [ϕ 	→ u] u0) b l

� compi C(x/v) [ϕ 	→ u′] u′
0 : C(x/compi S1 [ϕ 	→ u] u0)

where v = filli S1 [ϕ 	→ u] u0, u′ = S1-elimx .C u b l, u′
0 = S1-elimx .C u0 b l, and we

assumed i /∈ dom Γ (otherwise rename i).
Furthermore, if Γ � t � t ′ : S1, then

Γ � S1-elimx .C t b l � S1-elimx .C t ′ b l : C(x/t ′).

Consequently, we also call expressions introduced if they are of the formS1, base, loop r
with r /∈ {0, 1}, and compi S1 [ϕ 	→ u] u0 with ϕ 
= 1.

Next, the computability predicates and relations are adapted as follows: I �
 S1 and
I �
 S1 = S1. I �
 u : S1 and I � u = v : S1 are defined simultaneously (similarly as
for N):

123



206 S. Huber

I �
 base : S1

r ∈ I(I ) − {0, 1} I �
 loop 0 : S1 I �
 loop 1 : S1

I �
 loop r : S1

1 
= ϕ ∈ F(I ) I, i, ϕ �
 u : S1

I �
 u0 : S1 I, ϕ �
 u0 = u(i0) : S1 I, ϕ �
 compi S1 [ϕ 	→ u] u0 : S1

I �
 compi S1 [ϕ 	→ u] u0 : S1

u n.i. ∀ f : J → I (u f !S1
& J �
 u f ↓S1 : S1)

∀ f : J → I∀g : K → J (K �
 u f ↓g = u f g↓ : S1)

I �
 u : S1

Note, the (admissible) two last premises in the case for loop are there to not increase the
height of the derivation when doing a substitution (Lemma 5); similarly for the last premise
in the rule for composition. The relation I �
 u = v : S1 is defined analogously, that is,
by the usual congruence rules and a clause for when u or v is non-introduced as we have it
for N (see also the next section). To adapt Theorem 2 note that compositions are computable
for ϕ = 1 by using the Expansion Lemma and the reduction rule; using this, compositions
are computable by definition also for ϕ 
= 1.

5.2 Propositional Truncation

Wewill use a slight simplification of propositional truncation as presented in [7, Section 9.2].
Let us thus recall the typing rules (omitting congruence rules): the formation rule is Γ � ‖A‖
whenever Γ � A, and likewise Γ � ‖A‖ : U whenever Γ � A : U. Moreover:

Γ � a : A

Γ � inc a : ‖A‖
Γ � u : ‖A‖ Γ � v : ‖A‖ Γ � r : I

Γ � squash u v r : ‖A‖
Γ � A Γ � ϕ : F Γ, ϕ, i : I � u : ‖A‖ Γ � u0 : ‖A‖[ϕ 	→ u(i/0)]

Γ � hcompi
‖A‖ [ϕ 	→ u] u0 : ‖A‖

with the judgmental equalities (omitting context and type):

squash u v 0 = u squash u v 1 = v hcompi
‖A‖ [1F 	→ u] u0 = u(i/1)

Note that the type in hcompi does not depend on i and we call these homogeneous compo-
sitions. The eliminator, given Γ � A and Γ, z : ‖A‖ � C(z), is given by the rule

Γ � w : ‖A‖ Γ � t : (a : A) → C(inc a)

Γ � p : (u v : ‖A‖)(x : C(u))(y : C(v)) → Pathi (C(squash u v i)) x y

Γ � elimz.C w t p : C(w)

together with judgmental equalities (assuming i fresh):

elimz.C (inc a) t p = t a

elimz.C (squash u v r) t p = p u v (elimz.C u t p) (elimz.C v t p) r

elimz.C (hcompi [ϕ 	→ u] u0) t p = compi C(z/w) [ϕ 	→ elimz.C u t p] (elimz.C u0 t p)

where w = hcomp j [ϕ 	→ u(i/ i ∧ j), (i = 0) 	→ u0] u0.

123



Canonicity for Cubical Type Theory 207

Instead of transp and squeeze in [7] we take the following forward operation:

Γ, i : I � A Γ � r : I Γ � u : ‖A(i/r)‖
Γ � fwdi.A r u : ‖A(i/1)‖

which comes with the judgmental equalities:

fwd 1 u = u

fwd r (inc a) = inc(compi A(i/ i ∨ r) [(r = 1) 	→ a] a) (26)

fwd r (squash u v s) = squash (fwd r u) (fwd r v) s (27)

fwd r (hcomp j
‖A(i/r)‖ [ϕ 	→ u] u0) = hcomp j

‖A(i/1)‖ [ϕ 	→ fwd r u] (fwd r u0) (28)

Composition for ‖A‖ is now explained using fwd and homogeneous composition:

compi ‖A‖ [ϕ 	→ u] u0 = hcompi
‖A(i/1)‖ [ϕ 	→ fwd j.A(i/j) i u] (fwdi.A 0 u0)

Next, we extend the reduction relation by directing the above judgmental equalities from
left to right, but requiring the following extra conditions to guarantee determinism (addition-
ally to the suppressed well-typedness). The directed versions of (26)–(28) require r 
= 1;
(27) and (28) additionally require s 
= 1 and ϕ 
= 1, respectively. Similarly for the reductions
of elim. Additionally, we need congruence rules:

Γ, i : I � A Γ � r 
= 1 : F Γ � u � v : ‖A(i/r)‖
Γ � fwdi.A r u � fwdi.A r v : ‖A(i/1)‖

and a similar such rule for elim. Correspondingly, we also call expressions of the following
form introduced: ‖A‖, inc a, squash u v r with r 
= 1, and hcomp’s with ϕ 
= 1.

To incorporate propositional truncation in the computability predicates we add new the
formation rules:

I, 1 �
 A

I �
 ‖A‖ Pt-C
I �
 A = B

I �
 ‖A‖ = ‖B‖ Pt-E

And in the case I �
 A was derived via Pt-C the definition of I �
 u : A is extended to:

I �
 a : A

I �
 inc a : ‖A‖
0, 1 
= r ∈ I(I ) I �
 squash u v 0 : ‖A‖ I �
 squash u v 1 : ‖A‖

I �
 squash u v r : ‖A‖
1 
= ϕ ∈ F(I ) I, i, ϕ �
 u : ‖A‖

I �
 u0 : ‖A‖ I, ϕ �
 u0 = u(i0) : ‖A‖ I, ϕ �
 hcompi
‖A‖ [ϕ 	→ u] u0 : ‖A‖

I �
 hcompi
‖A‖ [ϕ 	→ u] u0 : ‖A‖

u n.i. ∀ f : J → I (u f !‖A f ‖ & J �
 u f ↓‖A f ‖ : ‖A f ‖)
∀ f : J → I∀g : K → J (K �
 u f ↓g = u f g↓ : ‖A f g‖)

I �
 u : ‖A‖

123



208 S. Huber

As before, the rather unnatural formulation of the rules for squash and hcomp is to ensure
that the height of a derivation is not increased after performing a substitution (Lemma 5).

I �
 a = a′ : A

I �
 inc a = inc a′ : ‖A‖
0, 1 
= r ∈ I(I ) I �
 u = u′ : ‖A‖ I �
 v = v′ : ‖A‖

I �
 squash u v r = squash u′ v′ r : ‖A‖
1 
= ϕ ∈ F(I ) I, i, ϕ �
 u = u′ : ‖A‖

I �
 u0 = u′
0 : ‖A‖ I, ϕ �
 hcompi

‖A‖ [ϕ 	→ u] u0 = hcompi
‖A‖ [ϕ 	→ u′] u′

0 : ‖A‖
I �
 hcompi

‖A‖ [ϕ 	→ u] u0 = hcompi
‖A‖ [ϕ 	→ u′] u′

0 : ‖A‖
u or u′ n.i. ∀ f : J → I (J �
 u f ↓‖A f ‖ = u′ f ↓‖A f ‖ : ‖A f ‖)

I �
 u = u′ : ‖A‖

We now sketch how one can extend the proofs of Sects. 3 and 4. The additional case in
the Expansion Lemma is handled as for natural numbers. Next, one proves the introduction
rules for inc, squash, and hcomp correct. To handle the new case Pt-C for propositional
truncation in Theorem 2 one has to simultaneously prove

I � u : ‖A(i/r)‖ ⇒ I � fwd r u : ‖A(i/1)‖
I � u = v : ‖A(i/r)‖ ⇒ I � fwd r u = fwd r v : ‖A(i/1)‖

by a side induction on the premises. Finally, one can then show soundness of elim.
We not only get the corresponding canonicity result for the extended theory, but we can

also extract witnesses from ‖A‖ as long as we are in a name context:

Theorem 3 If I � A and I � u : ‖A‖, then I � v : A for some v, where I is a context of
the form i1 : I, . . . , in : I with n ≥ 0.

Proof BySoundnesswe get I |� A and I |� u : ‖A‖, and hence also I � A and I � u : ‖A‖.
By induction on I � u : ‖A‖ we show that there is some v such that I � v : A. In the case
for inc this is direct; any other case follows from the IH. Thus also I � v : A as required.

As a direct consequence we get that the logic of mere propositions (cf. [14, Section 3.7])
of cubical type theory satisfies the following existence property. Define ∃(x : A) B as the
truncated Σ-type, i.e., ‖(x : A) × B‖.
Corollary 3 If I � ∃(x : A) B(x) is true (i.e., there is a term inhabiting the type), then
there exists u with I � u : A such that I � B(x/u) is true, where I is a context of the form
i1 : I, . . . , in : I with n ≥ 0.

6 Conclusion

We have shown canonicity for cubical type theory [7] and its extensions with the circle and
propositional truncation. This establishes that the judgmental equalities of the theory are
sufficient to compute closed naturals to numerals; indeed, we have even given a deterministic
reduction relation to do so. It should be noted that we could have also worked with the
corresponding untyped reduction relation A � B and then take I � A � B to mean
I � A = B, I � A, I � B, and A � B etc.

To prove canonicity we devised computability predicates (and relations) which, from a
set-theoretic perspective, are constructed using the least fixpoint of a suitable operator. It

123



Canonicity for Cubical Type Theory 209

is unlikely that this result is optimal in terms of proof-theoretic strength; we conjecture
that it is possible to modify the argument to only require the existence of a fixpoint of a
suitably modified operator (and not necessarily its least fixpoint); this should be related to
how canonicity is established in [3].

We expect that the present work can be extended to get a normalization theorem and
to establish decidability of type checking for cubical type theory (and proving its imple-
mentation2 correct). One new aspect of such an adaption is to generalize the computability
predicates and relations to expressions in any contexts in which we get new introduced
expressions given by systems; moreover, we will have to consider reductions in such general
contexts as well which has to ensure that, say, variables of path-types compute to the right
endpoints.

Another direction of future research is to investigate canonicity of various extensions of
cubical type theory, especially adding resizing rules.

Acknowledgements I thank Carlo Angiuli, Thierry Coquand, Robert Harper, and Bassel Mannaa for discus-
sions about this work, as well as Milly Maietti who also suggested to investigate the existence property. I am
also grateful for the comments by the anonymous reviewer.

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 Interna-
tional License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and
reproduction in any medium, provided you give appropriate credit to the original author(s) and the source,
provide a link to the Creative Commons license, and indicate if changes were made.

References

1. Abel, A., Coquand, T., Mannaa, B.: On the decidability of conversion in type theory (2016). (Abstract
for TYPES (2016))

2. Abel, A., Scherer, G.: On irrelevance and algorithmic equality in predicative type theory. Log. Methods
Comput. Sci. 8(1), 1–36 (2012). (TYPES’10 special issue)

3. Angiuli, C., Harper, R.: Computational higher type theory II: dependent cubical realizability (2016).
Preprint arXiv:1606.09638v1 [cs.LO]

4. Angiuli, C., Harper, R., Wilson, T.: Computational higher type theory I: abstract cubical realizability
(2016). Preprint arXiv:1604.08873v1 [cs.LO]

5. Angiuli, C., Harper, R., Wilson, T.: Computational higher-dimensional type theory. In: Proceedings of the
44th ACM SIGPLAN Symposium on Principles of Programming Languages, POPL 2017, pp. 680–693.
ACM, New York, NY, USA (2017). https://doi.org/10.1145/3009837.3009861

6. Bezem, M., Coquand, T., Huber, S.: A model of type theory in cubical sets. In: Matthes, R., Schubert, A.
(eds.) 19th International Conference on Types for Proofs and Programs (TYPES 2013), Leibniz Interna-
tional Proceedings in Informatics (LIPIcs), vol. 26, pp. 107–128. Schloss Dagstuhl–Leibniz-Zentrum für
Informatik, Dagstuhl (2014). https://doi.org/10.4230/LIPIcs.TYPES.2013.107

7. Cohen, C., Coquand, T., Huber, S., Mörtberg, A.: Cubical type theory: a constructive interpretation
of the univalence axiom. In: Uustalu, T. (ed.) 21st International Conference on Types for Proofs and
Programs (TYPES 2015). Leibniz International Proceedings in Informatics (LIPIcs), vol. 69, pp. 1–
34. Schloss Dagstuhl–Leibniz-Zentrum für Informatik, Dagstuhl (2018). https://doi.org/10.4230/LIPIcs.
TYPES.2015.5

8. Coquand, T., Mannaa, B.: The independence ofMarkov’s principle in type theory. In: Kesner, D., Pientka,
B. (eds.) 1st International Conference on Formal Structures for Computation andDeduction (FSCD2016),
Leibniz International Proceedings in Informatics (LIPIcs), vol. 52, pp. 17:1–17:18. Schloss Dagstuhl–
Leibniz-Zentrum für Informatik, Dagstuhl (2016). https://doi.org/10.4230/LIPIcs.FSCD.2016.17

9. Dybjer, P.: A general formulation of simultaneous inductive-recursive definitions in type theory. J. Symb.
Log. 65(2), 525–549 (2000)

10. Huber, S.: A model of type theory in cubical sets. Licentiate thesis, University of Gothenburg (2015)
11. Huber, S.: Cubical intepretations of type theory. Ph.D. thesis, University of Gothenburg (2016)

2 Available at https://github.com/mortberg/cubicaltt.

123

http://creativecommons.org/licenses/by/4.0/
http://arxiv.org/abs/1606.09638v1
http://arxiv.org/abs/1604.08873v1
https://doi.org/10.1145/3009837.3009861
https://doi.org/10.4230/LIPIcs.TYPES.2013.107
https://doi.org/10.4230/LIPIcs.TYPES.2015.5
https://doi.org/10.4230/LIPIcs.TYPES.2015.5
https://doi.org/10.4230/LIPIcs.FSCD.2016.17
https://github.com/mortberg/cubicaltt


210 S. Huber

12. Martin-Löf, P.: An intuitionistic theory of types. In: Sambin, G., Smith, J.M. (eds.) Twenty-Five Years of
Constructive Type Theory (Venice, 1995), Oxford Logic Guides, vol. 36, pp. 127–172. Oxford University
Press, Oxford (1998)

13. Tait, W.W.: Intensional interpretations of functionals of finite type I. J. Symb. Log. 32(2), 198–212 (1967)
14. The Univalent Foundations Program: Homotopy Type Theory: Univalent Foundations of Mathematics.

Institute for Advanced Study. http://homotopytypetheory.org/book (2013)
15. Voevodsky, V.: The equivalence axiom and univalent models of type theory. (Talk at CMU on February

4, 2010) (2014). Preprint arXiv:1402.5556 [math.LO]

123

http://homotopytypetheory.org/book
http://arxiv.org/abs/1402.5556

	Canonicity for Cubical Type Theory
	Abstract
	1 Introduction
	2 Reduction
	3 Computability Predicates
	4 Soundness
	5 Extension with Higher Inductive Types
	5.1 The Circle
	5.2 Propositional Truncation

	6 Conclusion
	Acknowledgements
	References




