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Abstract We define a new method for proof mining by CERES (cut-elimination by resolu-
tion) that is concerned with the extraction of expansion trees in first-order logic (see Miller
in Stud Log 46(4):347–370, 1987) with equality. In the original CERES method expansion
trees can be extracted from proofs in normal form (proofs without quantified cuts) as a post-
processing of cut-elimination. More precisely they are extracted from an ACNF, a proof with
at most atomic cuts. We define a novel method avoiding proof normalization and show that
expansion trees can be extracted from the resolution refutation and the corresponding proof
projections. We prove that the new method asymptotically outperforms the standard method
(which first computes the ACNF and then extracts an expansion tree). Finally we compare
an implementation of the new method with the old one; it turns out that the new method is
also more efficient in our experiments.

Keywords Cut-elimination · Proof mining · Herbrand sequent · Expansion tree

1 Introduction

Proof analysis and proof mining are central mathematical activities. Extracting additional
mathematical information from existing proofs plays an important role in the process of
proof mining. Mathematical proofs in general are based on the structuring of reasoning by
intermediate statements (lemmas). The drawback of the use of lemmas is that only their truth
but not their proofs are reflected in the derivation of their end-sequents. These proofs, however,
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may contain importantmathematical informationwhich can be extracted only from the proofs
of these lemmas. One of the most important theorems in mathematical logic is Gentzen’s
Hauptsatz [15]. It states that lemmas (cuts) can be eliminated from first-order derivations,
resulting in a lemma-free proof combining all subproofs of the original derivation.

The result of cut-elimination is a purely combinatorial proof. These combinatorial proofs
can be used to extract explicit mathematical information. Proofs can be transformed in a way
such that this information becomes visible. Such a transformation for cut-free LK-proofs
of prenex end-sequents was given by Gentzen [15] in the mid-sequent theorem. It basically
states that a proof ϕ can be transformed into a proof ϕ′ such that ϕ′ contains a so-called mid-
sequent, that splits the proof into a propositional part and a part with quantifier inferences. The
mid-sequent is propositionally valid and contains the instantiations of the quantifiers needed
to prove the end-sequent. These instantiationsmay contain crucial mathematical information.

Cut-elimination plays a key role in the analysis of mathematical proofs. A prominent
example is Girard’s analysis (see in [16]) of Fürstenberg and Weiss’ topological proof [14]
of van der Waerden’s theorem [27] on partitions. After cut-elimination was applied to the
proof of Fürstenberg and Weiss, the result was van der Waerden’s original elementary proof.

Girard’s analysis of the proof of Fürstenberg and Weiss was carried out by hand within
mathematical meta-language. However, in automated proof analysis, formal proofs are vital.
Therefore the first step in automated proof analysis consists in formalizing the mathemat-
ical proofs (typically expressed in traditional mathematical language). The next steps are
algorithmic cut-elimination and, finally, the interpretation of the resulting formal proof.

For automated proof analysis of mathematical proofs, the cut-elimination method CERES
(Cut-Elimination by RESolution) was developed (see [4,5]). CERES substantially differs
from the traditional reductive cut-elimination methods a la Gentzen. In the reductive methods
cuts are eliminated by stepwise reduction of cut-complexity. These methods always identify
the uppermost logical operator in the cut-formula and either eliminate it directly (grade
reduction) or indirectly (rank reduction). It is typical for such a method that the cut formulas
are “peeled” from the outside till only atomic cuts are left. Thesemethods are local in the sense
that only a small part of the whole proof is analyzed, namely the derivation corresponding
to the introduction of the uppermost logical operator. As a consequence, many types of
redundancy in proofs are left undetected in the reductive methods, leading to an unfortunate
computational behavior. In contrast, the method CERES to be presented in Sect. 3 is based
on a structural analysis of the whole proof. Here all cut-derivations in an LK-proof ϕ of a
sequent S are analyzed simultaneously. The interplay of binary rules,which produce ancestors
of cut formulas and those which do not, defines a structure which can be represented as a
set of clauses CL(ϕ). CL(ϕ) is always unsatisfiable and thus admits resolution refutations.
A resolution refutation γ of CL(ϕ) may serve as a skeleton of an LK-proof of S with only
atomic cuts. The proof itself (a CERES normal form) is obtained by replacing clauses in
γ by so-called proof projections of ϕ. To handle predicate logic with equality the calculi
can be extended by equality rules; instead of resolution refutations we obtain refutations
by resolution and paramodulation (for details see [2]). CERES is a semi-semantical method
of cut-elimination (see [7]). A detailed description of CERES, a comparison with reductive
methods, its extensions and a complexity analysis of the method can be found in the book [6].

CERES has been applied to real mathematical proofs. The most interesting application
was the analysis of Fürstenberg’s proof of the infinitude of primes [13] where, as a result of
cut-elimination by CERES, Euclid’s original argument of prime construction was obtained.

The last step in automated proof analysis consists in the interpretation of the result. In this
interpretation it is crucial to obtain compact and meaningful information rather than a full
(and typically very long) formal proof. The relevant information can be bounds for variables
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that are used in the proof or even programs representing its algorithmic content. Actually, it is
possible to extract functionals, based on Gödel’s dialectica interpretation [17], and construct
programs from proofs in Peano arithmetic; see [8,9] for applications to mathematical proofs.

Another structure representing explicit information are mid-sequents (also called Her-
brand sequents). Herbrand’s theorem, [10,18], provides one of the most fundamental insights
of logic and characterizes the validity of a formula in classical first-order logic by the exis-
tence of a propositional tautology composed of instances of that formula. Roughly speaking,
Herbrand sequents are compact structures encoding the essence of proofs with prenex end-
sequents. Hence in mathematical proof analysis it is frequently more important to extract
Herbrand sequents than full formal proofs (which may be too large to be interpreted). There
are efficient algorithms for extracting Herbrand sequents from cut-free proofs, see e.g. [20].
Though every formula (and any sequent) can be transformed to prenex form such a transfor-
mation is unnatural and can have a disastrous impact on proof complexity (see [3]). Thus it
is vital to extend the methods to non-prenex formulas and sequents. Miller [23] developed
the structure of expansion trees (and expansion proofs) generalizing the derivation of end-
sequents from a mid-sequent in the prenex case. The so-called deep function of an expansion
proof generalizes the mid-sequent itself. As expansion proofs abstract from propositional
reasoning they provide compact and explicit information about the mathematical content of
formal cut-free proofs.

The result of themethod CERES is a CERES normal form, which is a (typically very long)
formal proofwith atmost atomic cuts. This proof can then be used for further investigation and
particularly for the extraction of Herbrand sequents and expansion proofs in order to obtain
compact information. In the ordinary CERES-method, expansion proofs can be extracted
from an ACNF. In this paper we show that even the construction of an ACNF can be avoided
in computing the expansion proofs. In particular, we prove that the expansion proof of the
CERES normal form can be constructed from the partial expansion proofs of the projections
obtained by CERES, after deleting the clause parts. A ground refutation of the characteristic
clause set and the projections suffice for the extraction of expansion proofs making the
construction of the CERES normal form itself obsolete. This improvement yields a gain in
asymptotic complexity. In particular we show that the new method outperforms the old one
(quadratic versus cubic) and that the complexity of the new method can never be higher
than that of the old one. Finally we describe an implementation of the new method and the
traditional one (both methods are implemented in the Gapt system [12]) and show how they
can be used to extract expansion proofs from proofs. We compare the implementations of the
two methods and it turns out that even for very small and simple proofs a visible speed-up
in computing time can be obtained.

2 Preliminaries

2.1 Sequents and Sequent Calculus

We define an extended version of Gentzen’s calculus LK in predicate logic with equality and
arbitrary function symbols.

Definition 1 Let Γ and Δ be two multi-sets of formulas and � be a symbol not belonging
to the logical language. Then Γ � Δ is called a sequent.

If S1 : Γ � Δ and S2 : Π � Λ are sequents we define the concatenation of S1 and S2
(notation S1 ◦ S2) as Γ,Π � Δ,Λ.
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Definition 2 Let S : A1, . . . , An � B1, . . . , Bm be a sequent and M be an interpreta-
tion over the signature of {A1, . . . , An, B1, . . . , Bm}. Then S is valid in M if the formula
(A1 ∧ . . . ∧ An) → (B1 ∨ · · · ∨ Bm) is valid in M. S is called valid if S is valid in all
interpretations.

Definition 3 Let S : A1, . . . , An � B1, . . . , Bm be a sequent. S is called a weakly quantified
sequent if there is no ∃ quantifier of positive polarity in some formula Ai (1 ≤ i ≤ n) and
there is no ∀ quantifier of positive polarity in some formula Bj (1 ≤ j ≤ m).

Definition 4 (Calculus LK=) Basically we use Gentzen’s version of LK [15] but extend
it by equality rules as in [2] and call the calculus LK=. Since we consider multi-sets of
formulas, we do not need exchange or permutation rules. There are two groups of rules, the
logical and the structural ones. All rules except the cut have left and right versions, denoted
by l and r , respectively. The binary rules are of multiplicative type, i.e. no auto-contraction
of the context is applied. In the following, A and B denote formulas whereas Γ,Δ,Π,Λ

denote multi-sets of formulas.

The logical rules:

∧-introduction
A, B, Γ � Δ ∧l
A ∧ B, Γ � Δ

Γ1 � Δ1, A Γ2 � Δ2, B ∧r
Γ1, Γ2 � Δ1,Δ2, A ∧ B∨-introduction

Γ � Δ, A, B ∨r
Γ � Δ, A ∨ B

A, Γ1 � Δ1 B, Γ2 � Δ2 ∨l
A ∨ B, Γ1, Γ2 � Δ1,Δ2→-introduction

Γ1 � Δ1, A B, Γ2 � Δ2 →l
A → B, Γ1, Γ2 � Δ1,Δ2

A, Γ � Δ, B →r
Γ � Δ, A → B

¬-introduction
Γ � Δ, A ¬l¬A, Γ � Δ

A, Γ � Δ ¬r
Γ � Δ,¬A∀-introduction

A{x ← t}, Γ � Δ ∀l
(∀x)A(x), Γ � Δ

Γ � Δ, A{x ← α} ∀r
Γ � Δ, (∀x)A(x)

where t is an arbitrary term that does not contain any variables which are bound in A and α

is a free variable which may not occur in Γ,Δ, A. α is called an eigenvariable.

∃-introduction
A{x ← α}, Γ � Δ ∃l
(∃x)A(x), Γ � Δ

Γ � Δ, A{x ← t} ∃r
Γ � Δ, (∃x)A(x)

where the variable conditions for ∃l are the same as those for ∀r and similarly for ∃r and ∀l .
The quantifier-rules ∀l , ∃r are called weak, the rules ∃l ,∀r strong.
The structural rules:

weakening

Γ � Δ wl
A, Γ � Δ

Γ � Δ wr
Γ � Δ, A

contraction
A, A, Γ � Δ cl
A, Γ � Δ

Γ � Δ, A, A cr
Γ � Δ, A
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cut

Γ1 � Δ1, Am An, Γ2 � Δ2 cut (A,m, n)
Γ1, Γ2 � Δ1,Δ2

where m, n ≥ 1.

The equality rules:

Γ1 � Δ1, s = t A[s]Λ, Γ2 � Δ2

A[t]Λ, Γ1, Γ2 � Δ1,Δ2
=l1

Γ1 � Δ1, t = s A[s]Λ, Γ2 � Δ2

A[t]Λ, Γ1, Γ2 � Δ1,Δ2
=l2

for inference on the left and

Γ1 � Δ1, s = t Γ2 � Δ2, A[s]Λ
Γ1, Γ2 � Δ1,Δ2, A[t]Λ =r1

Γ1 � Δ1, t = s Γ2 � Δ2, A[s]Λ
Γ1, Γ2 � Δ1,Δ2, A[t]Λ =r2

on the right, where Λ denotes a position of a subterm where replacement of s by t has to be
performed. We call s = t the active equation of the rules.

Note that, on atomic sequents, the rules coincide with paramodulation—under previous
application of the most general unifier.

Axioms:
Any set of atomic sequents which is closed under substitution and contains the sequent
� x = x (and thus all sequents of the form � t = t for arbitrary terms t) is admitted
as an axiom set. We define the set TAUT = {A � A | A is an atom} and the axiom set
Ax = TAUT ∪ {� t = t | t a term}, which is called the standard axiom set.

An LK=-proof from a set of axioms A is a tree formed according to the rules of LK=
such that all leaves are in A. The formulas in Γ,Δ,Π,Λ are called context formulas. The
formulas in the upper sequents that are not context formulas are called auxiliary formulas and
those in the lower sequents are called main formulas. The auxiliary formulas of a cut-rule are
also called cut-formulas. If S is a set of sequents, then an LK-refutation of S is an LK-tree
π where the end-sequent of π is the empty sequent and the leaves of π are either axioms of
the standard axiom set or sequents in S.

For the proof transformations in this paper we need the concept of ancestors of nodes in
a proof tree and formula occurrences within sequents occurring in proofs.

Definition 5 (Formula ancestor) Let ν be a formula occurrence in a sequent calculus proof
ϕ. Then ν is an ancestor of itself in ϕ (the relation is reflexive). If ν is a principal formula
occurrence of an inference then the occurrences of the auxiliary formula (formulas) in the
premises are formula ancestors of ν. If ν is not a principal occurrence then the corresponding
occurrences in contexts of the (premise) premises are formula ancestors of ν. The formula
ancestor relation is then defined as the transitive closure.

Definition 6 (Sequent ancestor) Let ν be an occurrence of a sequent in a sequent calculus
proof ϕ. Then ν is a sequent ancestor of itself (reflexivity). If ν corresponds to the conclusion
of an inference with premises μ1, μ2 (μ) then μ1, μ2 (μ) are sequent ancestors of ν in ϕ.
The sequent ancestor relation is then defined as the transitive closure.

Definition 7 (Clause) A sequent Γ � Δ is called a clause if Γ andΔ are multisets of atoms.

Definition 8 (PR-calculus) The PR-calculus works on clauses and consists of the following
rules:
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1. the resolution rule:

Γ � Δ, A1, . . . , Am Γ ′, A′
1, . . . , A

′
n � Δ′

Γ σ, Γ ′σ � Δσ,Δ′σ R

Where n,m ≥ 1 and σ is a most general unifier of {A1, . . . , Am, A′
1, . . . , A

′
n}. It is also

required that Γ � Δ, A and Γ ′, A′ � Δ′ are variable disjoint.
2. the paramodulation rules:

We assume that the two clauses in the premises are always variable disjoint and that σ is
a most general unifier of {s, s′}.

Γ1 � Δ1, s = t A[s′]Λ, Γ2 � Δ2

A[t]Λσ, Γ1σ, Γ2σ � Δ1σ,Δ2σ

Γ1 � Δ1, t = s A[s′]Λ, Γ2 � Δ2

A[t]Λσ, Γ1σ, Γ2σ � Δ1σ,Δ2σ

for inference on the left side of the clauses and

Γ1 � Δ1, s = t Γ2 � Δ2, A[s′]Λ
Γ1σ, Γ2σ � Δ1σ,Δ2σ, A[t]Λσ

Γ1 � Δ1, t = s Γ2 � Δ2, A[s′]Λ
Γ1σ, Γ2σ � Δ1σ,Δ2σ, A[t]Λσ

for the right side, where Λ denotes a position of a subterm where s′ is replaced by t . We
call s = t the active equation of the rules.

A PR-derivation from a set of clauses C is a tree derivation based on the rules above where
all clauses in the leaves are variants of clauses in C. A PR-derivation of � from C is called a
PR-refutation of C.
Definition 9 Let ϕ be a proof and η be some arbitrary inference in ϕ. We say that η goes
into the end-sequent of ϕ if the principal formula of η is an ancestor of the end-sequent. In
this case, η cannot be a cut. η goes into a cut otherwise.

2.2 Expansion Trees

Expansion trees, first introduced in [23], are natural structures representing the instantiated
variables for quantified formulas.

These structures record the substitutions for quantifiers in the original formula and the
formulas resulting from instantiations. Expansion trees may contain logical connectives as
well as the new connective +t , where t is a term. Informally, an expression of the kind
Qx A(x) +t1 E1 +t2 · · · +tn En is an expansion tree, where Q ∈ {∀, ∃} and t1, . . . , tn are
terms such that this expansion tree represents the result when instantiating the quantified
expression Qx A(x)with the terms t1, . . . , tn to get the structures Ei . Ei is again an expansion
tree representing A(ti ) for i = 1, . . . , n.

Our definition is amodified one as our proofs are skolemized andwedonot have quantifiers
with eigenvariable conditions. The definition below takes care that only trees with weak
quantifiers are constructed.

Definition 10 Expansion trees, dual expansion trees and a function Sh (shallow) whichmaps
expansion trees to formulas are defined inductively as follows:

1. If A is a quantifier-free formula then A is an expansion tree (and a dual expansion tree)
for A and Sh(A) = A.

2. If E is an expansion tree then ¬E is a dual expansion tree and Sh(¬E) = ¬Sh(E).
3. If E is a dual expansion tree then ¬E is an expansion tree and Sh(¬E) = ¬Sh(E).
4. If E1 and E2 are (dual) expansion trees, then E1 ∧ E2, E1 ∨ E2 are (dual) expansion

trees and Sh(E1 ∧ E2) = Sh(E1) ∧ Sh(E2), the same for ∨.
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5. If E1 is a dual expansion tree and E2 is an expansion tree then E1 → E2 is an expansion
tree and Sh(E1 → E2) = Sh(E1) → Sh(E2).

6. If E1 is an expansion tree and E2 is a dual expansion tree then E1 → E2 is a dual
expansion tree and Sh(E1 → E2) = Sh(E1) → Sh(E2).

7. Let A(x) be a formula and t1, . . . , tn (n ≥ 1) be a list of terms. Let E1, . . . , En be
expansion trees with Sh(Ei ) = A(ti ) for i = 1, . . . , n; then ∃x A(x)+t1 E1+t2 · · ·+tn En

is an expansion tree with Sh(∃x A(x) +t1 E1 +t2 · · · +tn En) = ∃x A(x).
8. Let A(x) be a formula and t1, . . . , tn (n ≥ 1) be a list of terms. Let E1, . . . , En be dual

expansion trees with Sh(Ei ) = A(ti ) for i = 1, . . . , n; then ∀x A(x)+t1 E1+t2 · · ·+tn En

is a dual expansion tree with Sh(∀x A(x) +t1 E1 +t2 · · · +tn En) = ∀x A(x).

Example 1 Let P(x) be an atom. Then P(a) is a dual expansion tree and ∀x .P(x) +a P(a)

is a dual expansion tree. ∃x .P(x) +a P(a) is an expansion tree. So

∀x .P(x) +a P(a) → ∃x .P(x) +a P(a)

is an expansion tree. But note that

∀x .P(x) +a P(a) → ∀x .P(x) +a P(a)

is not an expansion tree according to Definition 10 as ∀x .P(x) +a P(a) is a dual expansion
tree but not an expansion tree. Indeed, having strong quantifiers with the type of expansion
defined above would be unsound.

The functionDp (deep) maps expansion trees (and dual expansion trees) to quantifier-free
formulas, their full expansion.

Definition 11 Dp maps a (dual) expansion tree to a formula as follows:

Dp(E) = E for an atomic expansion tree E,

Dp(¬E) = ¬Dp(E),

Dp(E1 ◦ E2) = Dp(E1) ◦ Dp(E2) for ◦ ∈ {∧,∨,→},
Dp(∃x A +t1 E1 +t2 · · · +tn En) = Dp(E1) ∨ · · · ∨ Dp(En),

Dp(∀x A +t1 E1 +t2 · · · +tn En) = Dp(E1) ∧ · · · ∧ Dp(En).

In [23] a notion of expansion proof was defined from expansion trees using the conditions
acyclicity and tautology. Acyclicity ensures that there are no cycles between the strong
quantifier nodes in the expansion tree. Since our formulas are skolemized and hence do not
contain strong quantifiers, we do not need this condition.

Definition 12 (Expansion proof) Let ET be an expansion tree of a formula Awithout strong
quantifiers. Then ET is called an expansion proof of A from a set of axiomsA if Sh(ET ) = A
and A |� Dp(ET ) (where |� is the consequence relation in predicate logic with equality).

Expansion proofs encode a proof of validity of the formula they represent. They can be
directly translated into sequent calculus, see [23], and the transformation is based on so-called
q-sequents, which we refer to as s-expansion trees (sequent of expansion trees) in this paper.

Definition 13 (S-expansion tree) The structure S : Γ � Δ where Δ : Q1, . . . , Qs is a mul-
tiset of expansion trees, Γ : P1, . . . , Pr is a multiset of dual expansion trees is called an
s-expansion tree. If ¬Γ ∨ Δ (which stands for ¬P1 ∨ · · · ∨ ¬Pr ∨ Q1 ∨ · · · ∨ Qs) is an
expansion proof then S is called an s-expansion proof. This expansion proof is the expansion
proof associated with S; the sequent

Seq(S) : Sh(P1), . . . , Sh(Pr ) → Sh(Q1), . . . , Sh(Qs)
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is the sequent associated with S.

It is also possible to read off expansion proofs from sequent calculus proofs. Note that
the expansion proof of a proof ϕ is a sequent of expansion trees, which are defined to be the
expansion trees of all formulas in the end-sequent of ϕ. An algorithm for the extraction of
expansion proofs from sequent calculus proofs is presented in [23] and modified algorithms
(dealing with cuts and equality) are presented in [21,22]. There exist also algorithms for a
transformation of resolution-trees into expansion-trees, see [24].

Wewill use an algorithm that is briefly described in [21]. In order to showhowan expansion
proof is extracted from a proof in LK=, we first need to define an operation on expansion
trees. The Merge operator on expansion trees is defined in [23]. Intuitively, two expansion
trees T1 and T2 can be merged, if Sh(T1) = Sh(T2). We give a definition adapted to our
concept of expansion tree.

Definition 14 (Merge) Let E1, E2 be (dual) expansion trees such that Sh(E1) = Sh(E2).
We define the merge inductively on the complexity of E1.

– If E1 is an atom then E2 is an atom too and E1 = E2; we define Merget (E1, E2) = E1.

– If E1 = ¬E ′
1. Then E2 = ¬E ′

2 for some E ′
2. Let Merget (E

′
1, E

′
2) = E ′

3, then
Merget (E1, E2) = ¬E ′

3.

– Let E1 = E11 ◦ E12 for ◦ ∈ {∧,∨,→}. Then E2 = E21 ◦ E22 for some E21, E22. Let
E ′
1 = Merget (E11, E21) and E ′

2 = Merget (E21, E22). ThenMerget (E1, E2) = E ′
1◦E ′

2.

– Let E1 = Qx .A(x) +t1 E11 + · · · +tn E1n . Then E2 is of the form Qx .A(x) +s1 E21 +
· · · +sm E2m . Then

Merget (E1, E2) = Qx .A(x) +t1 E11 + · · · +tn E1n +s1 E21 + · · · +sm E2m .

Example 2 Let T1 = ∀x Px +a Pa and T2 = ∀x Px +b Pb be two dual expansion trees then

Merget (T1, T2) = ∀x Px +a Pa +b Pb.

The definition can be easily extended to more than two expansion trees. Let T1, . . . , Tn
(for n ≥ 2) be (dual) expansion trees such that Sh(Ti ) = Sh(Tj ) for all i, j ∈ {1, . . . , n}.
Then we define

merget (T1, T2) = Merget (T1, T2),

merget (T1, . . . , Tn) = Merget (merget (T1, . . . , Tn−1), Tn) for n > 2.

It is also possible tomerge s-expansion trees.As an s-expansion tree is definedviamultisets
of expansion trees, some expansion trees might occur more than once either on the left or on
the right. In such cases merging s-expansion trees might become ambiguous. To avoid this
ambiguity we restrict the merge of s-expansion trees to so-called normalized ones, where the
shallow forms occur only once.

Definition 15 (Normalized sequents) A sequent Γ � Δ is called normalized if the multi-
plicity of all formulas occurring in Γ (Δ) is one, more precisely: if Γ = A1, . . . , An and
Δ = B1, . . . , Bm then Ai �= A j for i �= j (i, j ∈ {1, . . . , n}) and Bl �= Bk for l �= k
(l, k ∈ {1, . . . ,m}). Let S be an s-expansion tree then S is called normalized if Seq(S) is
normalized.

Remark 1 Note that every LK-proof ϕ of S and every s-expansion tree can be easily trans-
formed into a proof (s-expansion tree) of a normalized sequent: just apply the rules cl , cr
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Extraction of Expansion Trees 401

to S. In Sect. 4 we will merge s-expansion trees only if they correspond to end-sequents of
proofs. Therefore restricting the merge to normalized s-expansion proofs does not affect the
generality of our approach.

In normalized sequents themultisets become sets which allows us to define some set-based
operations on sequents:

Definition 16 Let S1, S2 be two normalized sequents such that S1 = Γ1 � Δ1, S2 = Γ2 �
Δ2. Let Γ = Γ1 ∩ Γ2, Δ = Δ1 ∩ Δ2. We define the following operations on S1, S2:

S1 ∩ S2 = Γ � Δ, S1 \ S2 = (Γ1 \ Γ ) � (Δ1 \ Δ), S2 \ S1 = (Γ2 \ Γ ) � (Δ2 \ Δ).

The sequents S1 and S2 are called disjoint if S1 ∩ S2 = �.Then, obviously, S1 ∩ S2, S1 \ S2
and S2 \ S1 are pairwise disjoint and

S1 = (S1 ∩ S2) ◦ (S1 \ S2),

S2 = (S1 ∩ S2) ◦ (S2 \ S1).

Now we are ready to define the merging of normalized s-expansion trees.

Definition 17 (Merge of s-expansion trees) Let S1 and S2 be two normalized s-expansion
trees and S∗

1 = Seq(S1), S∗
2 = Seq(S2). Then, by definition, S∗

1 , S
∗
2 are normalized sequents.

We define Γ ∗ � Δ∗ = S∗
1 ∩ S∗

2 , Π
∗
1 � Λ∗

1 = S∗
1 \ S∗

2 , Π
∗
2 � Λ∗

2 = S∗
2 \ S∗

1 . Then

S∗
1 = (Γ ∗ � Δ∗) ◦ (Π∗

1 � Λ∗
1),

S∗
2 = (Γ ∗ � Δ∗) ◦ (Π∗

2 � Λ∗
2).

Then there exist s-expansion trees Γ � Δ, Γ ′ � Δ′, Π1 � Λ1 and Π2 � Λ2 such that

S1 = (Γ � Δ) ◦ (Π1 � Λ1),

S2 = (Γ ′ � Δ′) ◦ (Π2 � Λ2),

where Seq(Γ � Δ) = Seq(Γ ′ � Δ′) = Γ ∗ � Δ∗, Seq(Π1 � Λ1) = Π∗
1 � Λ∗

1 and
Seq(Π2 � Λ2) = Π∗

2 � Λ∗
2. Note that the concatenation ◦ of sequents can be directly

extended to s-expansion trees.
Then there exist bijective mappings πl : Γ → Γ ′ and πr : Δ → Δ′ with πl(T ) = T ′ iff

Sh(T ) = Sh(T ′) (the same for πr ). So assume

Γ � Δ = T1, . . . , Tn � Tn+1, . . . , Tn+m and therefore

Γ ′ � Δ′ = πl(T1), . . . , πl(Tn) � πr (Tn+1), . . . , πr (Tn+m).

Now let T ∗
i = merget (Ti , πl(Ti )) for i = 1, . . . , n and T ∗

i = merget (Ti , πr (Ti )) for i =
n + 1, . . . , n + m. Then we define

Merges(S1, S2) = (T ∗
1 , . . . , T ∗

n � T ∗
n+1, . . . , T

∗
n+m) ◦ (Π1 � Λ1) ◦ (Π2 � Λ2).

Note that, by construction, Merges(S1, S2) is a normalized s-expansion tree.
We extend themerging of s-sequents tomore than two as follows. Letn ≥ 2 and S1, . . . , Sn

be normalized s-expansion trees. Then

merges(S1, S2) = Merges(S1, S2) for n = 2,

merges(S1, . . . , Sn) = Merges(merges(S1, . . . , Sn−1), Sn) for n > 2.

The s-expansion tree merges(S1, . . . , Sn) is also normal which can be verified by an obvious
inductive argument.
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Frequently we will write merges{Si | i = 1, . . . , n} for merges(S1, . . . , Sn). If no confusion
arises we will frequently write merge instead of merget and merges .

Example 3 Let S1 = ∀x Px +a Pa �, S2 = ∀x Px +b Pb � Qa and S3 = � ∃yQy be
s-expansion trees. Then

merges(S1, S2, S3) = ∀x Px +a Pa +b Pb � Qa, ∃yQy.

The extraction of expansion proofs from LK-proofs requires quantifier-free cuts. Due to
the structure of the CERES-method (which will be used for a efficient method of extracting
expansion proofs) we consider proofs with only atomic cuts.

Definition 18 A proof ϕ in LK= is in the subclass LK0 if

1. ϕ does not contain strong quantifier inferences.
2. All cuts in ϕ are atomic.
3. Equality rules are only applied to atoms.
4. The axiom set contains Ax.

Definition 19 (Extraction of s-expansion trees from proofs in LK0) We define a transfor-
mation ET which maps proofs in LK0 to s-expansion trees. We define the transformation
inductively (on the number of inferences in the proof) but the rules for ¬l ,¬r ,∨l ,

∨r1 ,∨r2 ,=l2,=r2 are omitted, the transformation of the these rules being obvious.

base case: ϕ is an axiom. Then ϕ is of the form A1, . . . , An � B1, . . . , Bm for atoms Ai , Bj

and so ET(ϕ) = ϕ.
If ϕ =

(π)

A, B, Γ � Δ ∧l
A ∧ B, Γ � Δ

and ET(π) = A∗, B∗, Γ ∗ � Δ∗, then ET(ϕ) = A∗ ∧ B∗, Γ ∗ � Δ∗.
If ϕ =

(π1)

Γ1 � Δ1, A
(π2)

Γ2 � Δ2, B ∧r
Γ1, Γ2 � Δ1,Δ2, A ∧ B

and ET(π1) = Γ ∗
1 � Δ∗

1, A
∗ and ET(π2) = Γ ∗

2 � Δ∗
2, B

∗, then ET(ϕ) = Γ ∗
1 , Γ ∗

2 � Δ∗
1,

Δ∗
2, A

∗ ∧ B∗.
If ϕ =

(π1)

Γ1 � Δ1, A
(π1)

B, Γ2 � Δ2 →l
A → B, Γ1, Γ2 � Δ1,Δ2

and ET(π1) = Γ ∗
1 � Δ∗

1, A
∗ and ET(π2) = B∗, Γ ∗

2 � Δ∗
2, then ET(ϕ) = A∗ →

B∗, Γ ∗
1 , Γ ∗

2 � Δ∗
1,Δ

∗
2.

If ϕ =
(π)

A, Γ � Δ, B →r
Γ � Δ, A → B

and ET(π) = A∗, Γ ∗ � Δ∗, B∗, then ET(ϕ) = Γ ∗ � Δ∗, A∗ → B∗.
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If ϕ =
(π)

A{x ← t}, Γ � Δ ∀l
(∀x)A(x), Γ � Δ

and ET(π) = A{x ← t}∗, Γ ∗ � Δ∗, then ET(ϕ) = (∀x)A(x) +t A{x ← t}∗, Γ ∗ � Δ∗.
If ϕ =

(π)

Γ � Δ, A{x ← t} ∃r
Γ � Δ, (∃x)A(x)

and ET(π) = Γ ∗ � Δ∗, A{x ← t}∗, then ET(ϕ) = Γ ∗ � Δ∗, (∃x)A(x) +t A{x ← t}∗.
If ϕ =

(π)

Γ � Δ wl
A, Γ � Δ

and ET(π) = Γ ∗ � Δ∗, then ET(ϕ) = A, Γ ∗ � Δ∗. Similarly for wr .
If ϕ =

(π)

A, A, Γ � Δ cl
A, Γ � Δ

and ET(π) = A∗
1, A

∗
2, Γ

∗ � Δ∗ then ET(ϕ) = merge(A∗
1, A

∗
2), Γ

∗ � Δ∗. Similarly for cr .
Note that, for the rules below, the auxiliary formulas of the rules are atomic.
If ϕ =

(π1)

Γ1 � Δ1, Am

(π2)

An, Γ2 � Δ2 cut (A,m, n)
Γ1, Γ2 � Δ1,Δ2

where ET(π1) = Γ ∗
1 � Δ∗

1, A
m and ET(π1) = An, Γ ∗

2 � Δ∗
2; then ET(ϕ) = Γ ∗

1 , Γ ∗
2 �

Δ∗
1,Δ

∗
2.

If ϕ =
(π1)

Γ1 � Δ1, s = t
(π2)

A[s]Λ, Γ2 � Δ2 =l1
A[t]Λ, Γ1, Γ2 � Δ1,Δ2

and ET(π1) = Γ ∗
1 � Δ∗

1, s = t and ET(π2) = A[s]Λ, Γ ∗
2 � Δ∗

2, then ET(ϕ) =
Γ ∗
1 , Γ ∗

2 , A[t]Λ � Δ∗
1,Δ

∗
2.

If ϕ =
(π1)

Γ1 � Δ1, s = t
(π2)

Γ2 � Δ2, A[s]Λ =r1
Γ1, Γ2 � Δ1,Δ2, A[t]Λ

and ET(π1) = Γ ∗
1 � Δ∗

1, s = t and ET(π1) = Γ ∗
2 � Δ∗

2, A[s]Λ, then ET(ϕ) = Γ ∗
1 , Γ ∗

2 �
Δ∗

1,Δ
∗
2, A[t]Λ.
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Proposition 1 The transformation ET is sound: if ϕ is a proof in LK0 then ET(ϕ) is an
s-expansion proof.

Proof We proceed by induction on the number of inferences in ϕ. We consider the cases of
axioms (represented by an axiom set A), ∧r , cut and =r1 ; the other cases are analogous.

– (axiom) Let S be an axiom sequent inA. Then S = A1, . . . , An � B1, . . . , Bm for atoms
Ai , Bj . Therefore for FS : ¬A1∨· · ·∨¬An ∨ B1∨· · · Bm we have Sh(FS) = Dp(FS) =
FS and A |� Dp(FS).

– (∧r ) ϕ =
(π1)

Γ1 � Δ1, A
(π2)

Γ2 � Δ2, B ∧r
Γ1, Γ2 � Δ1,Δ2, A ∧ B

and ET(π1) = Γ ∗
1 � Δ∗

1, A
∗ and ET(π2) = Γ ∗

2 � Δ∗
2, B

∗ are s-expansion-proofs.
Therefore,¬Γ ∗

1 ∨Δ∗
1∨A∗ and¬Γ ∗

2 ∨Δ∗
2∨B∗ are expansion proofs andA |� Dp(¬Γ ∗

1 ∨
Δ∗

1 ∨ A∗) andA |� Dp(¬Γ ∗
2 ∨ Δ∗

2 ∨ B∗). But thenA |� Dp(¬Γ ∗
1 ∨ Δ∗

1 ∨ ¬Γ ∗
2 ∨ Δ∗

2 ∨
(A∗ ∧ B∗)) and ¬Γ ∗

1 ∨ Δ∗
1 ∨ ¬Γ ∗

2 ∨ Δ∗
2 ∨ (A∗ ∧ B∗) is an expansion proof. Therefore

Γ ∗
1 , Γ ∗

2 � Δ∗
1,Δ

∗
2, A

∗ ∧ B∗ (= ET(ϕ)) is an s-expansion-proof.
– (cut) ϕ =

(π1)

Γ1 � Δ1, Am

(π2)

An, Γ2 � Δ2 cut (A,m, n)
Γ1, Γ2 � Δ1,Δ2

where ET(π1) = Γ ∗
1 � Δ∗

1, A
m and ET(π1) = An, Γ ∗

2 � Δ∗
2 are s-expansion-proofs.

Therefore, ¬Γ ∗
1 ∨ Δ∗

1 ∨ Am and ¬An ∨ ¬Γ ∗
2 ∨ Δ∗

2 are expansion proofs and A |�
Dp(¬Γ ∗

1 ∨Δ∗
1 ∨ Am) andA |� Dp(¬An ∨¬Γ ∗

2 ∨Δ∗
2). But thenA |� Dp(¬Γ ∗

1 ∨Δ∗
1 ∨

¬Γ ∗
2 ∨Δ∗

2) and¬Γ ∗
1 ∨Δ∗

1∨¬Γ ∗
2 ∨Δ∗

2 is an expansion proof. ThereforeΓ ∗
1 , Γ ∗

2 � Δ∗
1,Δ

∗
2

(= ET(ϕ)) is an s-expansion-proof.
– (=r1 ) ϕ =

(π1)

Γ1 � Δ1, s = t
(π2)

Γ2 � Δ2, A[s]Λ =r1
Γ1, Γ2 � Δ1,Δ2, A[t]Λ

and ET(π1) = Γ ∗
1 � Δ∗

1, s = t and ET(π1) = Γ ∗
2 � Δ∗

2, A[s]Λ are s-expansion
proofs. Therefore ¬Γ ∗

1 ∨ Δ∗
1 ∨ s = t and ¬Γ ∗

2 ∨ Δ∗
2 ∨ A[s]Λ are expansion proofs

and hence A |� Dp(¬Γ ∗
1 ∨ Δ∗

1 ∨ s = t) and A |� Dp(¬Γ ∗
2 ∨ Δ∗

2 ∨ A[s]Λ). But then
A |� Dp(¬Γ ∗

1 ∨ Δ∗
1 ∨ ¬Γ ∗

2 ∨ Δ∗
2 ∨ A[t]Λ) and ¬Γ ∗

1 ∨ Δ∗
1 ∨ ¬Γ ∗

2 ∨ Δ∗
2 ∨ A[t]Λ) is

an expansion proof. Therefore, Γ ∗
1 , Γ ∗

2 � Δ∗
1,Δ

∗
2, A[t]Λ (= ET(ϕ)) is an s-expansion-

proof. ��
In case of a prenex end-sequent S an expansion proof corresponds to the derivation of S

from the mid-sequent (Herbrand sequent). The essence of Herbrand’s theorem [18] consists
of the replacement of quantified formulas by instances of these formulas. This results in a
quantifier-free formula which is validity-equivalent to the original formula. Of course, the
function Dp of an expansion proof corresponds to a Herbrand sequent. But if we consider
proofs of prenex end-sequentswe can extractHerbrand sequents directly, instead of extracting
expansion proofs and computing their deep functions. The method for Herbrand sequent
extraction in the prenex case is based on collecting instances, and is described in [6,20].

To illustrate construction of an s-expansion proof from an LK0-proof , consider the fol-
lowing simple example.
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Example 4 We work with Ax ∪ {� a = b}. Let ϕ be the proof of S = P(a) ∧ Q(a, f (a)) �
∃x(P(x) ∧ ∃y.Q(x, y)):

P(a) � P(a)

� a = b Q(a, f (a)) � Q(a, f (a))

Q(a, f (a)) � Q(a, f (b))
=r1

Q(a, f (a)) � ∃y.Q(a, y)
∃r

P(a), Q(a, f (a)) � P(a) ∧ ∃y.Q(a, y)
∧r

P(a) ∧ Q(a, f (a)) � P(a) ∧ ∃y.Q(a, y)
∧l

P(a) ∧ Q(a, f (a)) � ∃x(P(x) ∧ ∃y.Q(x, y))
∃r

Note that S is not in prenex form. Therefore, extracting the Herbrand sequent by collecting
instances is not possible. Instead we compute the expansion proof ET(ϕ).

Belowwe compute the s-expansion proof corresponding to ϕ. First we compute expansion
trees for all formulas F in S and call them ET(F).

ET(P(a) ∧ Q(a, f (a))) = P(a) ∧ Q(a, f (a))

ET(∃x(P(x) ∧ ∃y.Q(x, y))) = ∃x(P(x) ∧ ∃y.Q(x, y))
+a(P(a) ∧ (∃yQ(a, y) + f (b) Q(a, f (b))))

The s-expansion proof ET(ϕ) associated with the end-sequent S is:

ET(P(a) ∧ Q(a, f (a))) � ET(∃x(P(x) ∧ ∃y.Q(x, y)))

The corresponding expansion proof associated with ET(ϕ) is:

¬ET(P(a) ∧ Q(a, f (a))) ∨ ET(∃x(P(x) ∧ ∃y.Q(x, y))).

To obtain the tautologous formula (corresponding to the Herbrand sequent) we construct
the deep function for the expansion proof; we compute Dp(ET(Si )):

Dp(ET(P(a) ∧ Q(a, f (a)))) = Dp(P(a)) ∧ Dp(Q(a, f (a))) = P(a) ∧ Q(a, f (a))

Dp(ET(∃x(P(x) ∧ ∃y.Q(x, y)))) =
Dp(∃x(P(x) ∧ ∃y.Q(x, y)) +a (P(a) ∧ (∃yQ(a, y) + f (b) Q(a, f (b))))) =
Dp(P(a) ∧ (∃yQ(a, y) + f (b) Q(a, f (b)))) =
Dp(P(a)) ∧ Dp(∃yQ(a, y) + f (b) Q(a, f (b))) =
P(a) ∧ Q(a, f (b))

Hence, combining those deep functions we get P(a) ∧ Q(a, f (a)) � P(a) ∧ Q(a, f (b)).
Note that this sequent is valid in Ax ∪ {� a = b} (though it is not tautological).

3 The Method CERES

The method CERES [4,5], is a cut-elimination method that is based on resolution. It differs
from the reductive stepwise methods a la Gentzen [15] by analyzing the whole proof in a
preprocessing step and extracting a formula in clausal form which forms the kernel of the
cut-elimination method.

CERES in predicate logic with equality roughly works as follows: The structure of a proof
ϕ containing cuts is encoded in an unsatisfiable set of clauses CL(ϕ) (the characteristic
clause set of ϕ). A refutation of CL(ϕ) by resolution and paramodulation (abbreviated as
PR-refutation) then serves as a skeleton for an atomic cut normal form, a new proof which
contains at most atomic cuts. The corresponding proof theoretic transformation uses so-
called proof projections ϕ[C] for C ∈ CL(ϕ), which are simple cut-free proofs extracted
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from ϕ (proving the end-sequent S extended by the atomic sequent C). In [5] it was shown
that CERES outperforms reductive methods of cut-elimination (a la Gentzen or Tait) in
computational complexity: there are infinite sequences of proofs where the computing time
of CERES is nonelementarily faster than that of the reductive methods; on the other hand a
nonelementary speed-up of CERES via reductive methods is shown impossible.

In this section we describe the original CERES method which was designed for classical
logic. Given an LK=-proof ϕ of a skolemized sequent Γ � Δ, the main steps of (classical)
CERES are:

1. Extraction of the characteristic clause set CL(ϕ).
2. Construction of a PR-refutation (see Definition 8) of CL(ϕ).
3. Extraction of a set of projections π(C) for every C ∈ CL(ϕ).
4. Merging of refutation and projections into a proof ϕ∗ (a CERES-normal form) with only

atomic cuts.

We will use the following proof as our running example to clarify the definitions below.

Example 5 The set of axioms Axs is defined as Axs = Ax ∪ {� f 2z = gz}.
Let ϕ be a proof of the sequent Pa,∀x(Px → P f x) � ∃zP f 4z.

(ϕ1)

∀x(Px → P f x) � ∀x(Px → Pgx)

(ϕ2)

Pc,∀x(Px → Pgx) � Pg2c
cut

Pc,∀x(Px → P f x) � Pg2c

ϕ1 is

Pz � Pz

P f z � P f z

P f 2z � Pf2z � f2z = gz =r1
P f 2z � Pgz →l

P f z, P f z → P f 2z � Pgz →l
Pz, Pz → P f z, P f z → P f 2z � Pgz

2 × ∀l + cl
Pz,∀x(Px → P f x) � Pgz →r∀x(Px → P f x) � Pz → Pgz ∀r∀x(Px → P f x) � ∀x(Px → Pgx)

ϕ2 is

Pc � Pc

Pgc � Pgc Pg2c � Pg2c →l
Pgc,Pgc → Pg2c � Pg2c →l

Pc,Pc → Pgc,Pgc → Pg2c � Pg2c
2 × ∀l + cl

Pc,∀x(Px → Pgx) � Pg2c

The ancestors of the cut formulas are indicated in bold face.

Intuitively, the clause set extraction consists in collecting all atomic ancestors of the cuts
which occur in the axioms of the proof. The clauses are formed depending on how these
atoms are related via binary inferences in the proof.

Definition 20 (Characteristic clause-set) Let ϕ be a proof of a skolemized sequent. The
characteristic clause set is built recursively from the leaves of the proof to the end-sequent.
Let ν be the occurrence of a sequent in this proof. Then:
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– If ν is an axiom, thenCL(ν) contains the sub-sequent of ν composed only of cut-ancestors.
– If ν is the result of the application of a unary rule on a sequent μ, then CL(ν) = CL(μ)

– If ν is the result of the application of a binary rule on sequents μ1 and μ2, then we
distinguish two cases:

– If the rule is applied to ancestors of the cut formula, then CL(ν) = CL(μ1)∪CL(μ2)

– If the rule is applied to ancestors of the end-sequent, thenCL(ν) = CL(μ1)×CL(μ2)

where

CL(μ1) × CL(μ2) = {C ◦ D | C ∈ CL(μ1), D ∈ CL(μ2)}.
Note that ◦ represents the merging of sequents.
If ν0 is the root node CL(ν0) is called the characteristic clause set of ϕ.

Example 6 The characteristic clause set of our proof ϕ from Example 5 is constructed as
follows:

We consider the following cut-ancestors (in axioms) in ϕ1

{Pz �}; {� P f 2z}; {� f 2z = gz}
=r1 operates on cut-ancestors, therefore we get

S1 = {� P f 2z} ∪ {� f 2z = gz}
→l operates on end-sequent ancestors, hence

S = {Pz �} × S1 = {Pz � P f 2z; Pz � f 2z = gz}
We proceed analogously for the cut-ancestors in ϕ2 and obtain

S′ = {� Pc; Pgc � Pgc; Pg2c �}
The characteristic clause set is S ∪ S′

CL(ϕ) = {Pz � P f 2z; Pz � f 2z = gz; � Pc; Pgc � Pgc; Pg2c �}.
The next step is to obtain a resolution refutation of CL(ϕ). It is thus important to show

that this set is always refutable.

Theorem 1 Let ϕ be a proof of a skolemized end-sequent. Then the characteristic clause set
CL(ϕ) is refutable by resolution and paramodulation.

Proof In [2,6]. ��
Example 7 We give a PR-refutation γ of CL(ϕ) for ϕ in Example 5:

(π)

� Pgc Pz � f 2z = gz
R� f 2gc = g2c

(π)

� Pgc Pz � P f 2z
R� P f 2gc

para
� Pg2c Pg2c �

R�
where π is

� Pc Pz � P f 2z
R� P f 2c

� Pc Pz � f 2z = gz
R� f 2c = gc

para� Pgc
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Definition 21 For a characteristic clause set CL(ϕ) and a ground refutation R of of a PR
refutation ρ of CL(ϕ) we define

CL(ϕ, R) = {Ci |Ci ∈ CL(ϕ) and Ci occurs in R}.
Each clause in the clause set will have a projection associated with it. A projection of a clause
C is a derivation built from ϕ by taking the axioms in which the atoms of C occur and all the
inferences that operate on end-sequent ancestors. As a result, the end-sequent of a projection
will be the end-sequent of ϕ extended by the atoms of C .

Definition 22 (Projections) Let ϕ be a proof of a skolemized end-sequent Γ � Δ in LK=.
For nodes ν in ϕ we define inductively the set of cut-free proofs p(ν). If ν0 is the root node
and ψ ∈ p(ν0) we call ψ a projection. Let ν be a node in ϕ such that S(ν) = Γ � Δ;
then Γ � Δ = Γc, Γe � Δe,Δc where Γc � Δc consists of cut-ancestors and Γe � Δe of
ancestors of the end-sequent.

(a) ν is a leaf in ϕ. Then the sequent at ν is an axiom and we define p(ν) = {ν}. The clause
part of ν is the subsequent CL(ν).

(b) ν is the conclusion of a unary rule ξ with premise μ.

(b1) The principal formula of ξ is an ancestor of a cut. Then ϕ.ν is of the form

(ϕ.μ)
Γc, Γe � Δc,Δe

Γ ′
c , Γe � Δ′

c,Δe
ξ

We define p(ν) = p(μ).
(b2) The principal formula of ξ is an ancestor of the end-sequent. Then ϕ.ν is of the

form

(ϕ.μ)
Γc, Γe � Δc,Δe

Γc, Γ
′
e � Δc,Δ

′
e

ξ

Let ψ ∈ p(μ) be a proof of C, Γe � Δe, D where C � D is the clause part of ψ .
Then ψ ′ ∈ p(ν) for ψ ′ =

(ψ)
C, Γe � Δe, D

C, Γ ′
e � Δ′

e, D
ξ

and C � D is the clause part of ψ ′.

(c) ν is the conclusion of a binary rule ξ with premises μ1, μ2.

(c1) The auxiliary formulas of ξ are ancestors of a cut. Then ϕ.ν is of the form

(ϕ.μ1)

Γc, Γe � Δc,Δe

(ϕ.μ2)

Πc,Πe � Λc,Λe

Γ ′
c ,Π

′
c, Γe,Πe � Δ′

c,Λ
′
c,Δe,Λe

ξ

Letψ ∈ p(μ1) such thatψ is a proof ofC, Γe � Δe, D whereC � D is the clause
part of ψ . Then ψ ′ ∈ p(ν) for ψ ′ =

(ψ)
C, Γe � Δe, D

C, Γe,Πe � Δe,Λe, D
w∗

123



Extraction of Expansion Trees 409

and C � D is the clause part of ψ ′.
Letψ ∈ p(μ2) such thatψ is a proof of E,Πe � Λe, F where E � F is the clause
part of ψ . Then ψ ′ ∈ p(ν) for ψ ′ =

(ψ)
E,Πe � Λe, F

E, Γe,Πe � Δe,Λe, F
w∗

and E � F is the clause part of ψ ′.
(c2) The auxiliary formulas of ξ are ancestors of the end-sequent. Then ϕ.ν is of the

form

(ϕ.μ1)

Γc, Γe � Δc,Δe

(ϕ.μ2)

Πc,Πe � Λc,Λe

Γc,Πc, Γ
′
e ,Π

′
e � Δc,Λc,Δ

′
e,Λ

′
e

ξ

Let ψ1 ∈ p(μ1) such that ψ1 is a proof of C, Γe � Δe, D and C � D is the clause
part of ψ1; likewise let ψ2 ∈ p(μ2) such that ψ2 is a proof of E,Πe � Λe, F and
E � F is the clause part of ψ2. Then ψ ∈ p(ν) for ψ =

(ψ1)
C, Γe � Δe, D

(ψ2)
E,Πe � Λe, F

C, E, Γ ′
e ,Π

′
e � Δ′

e,Λ
′
e, D, F

ξ

and the clause part of ψ is C, E � D, F .

Example 8 We define the projections of ϕ from Example 5 to the clauses Pz � P f 2z,
Pz � f 2z = gz, � Pc and Pg2c �. ϕ[Pz � P f 2z]:

Pz � Pz

P f z � P f z P f 2z � Pf2z →l
P f z, P f z → P f 2z � Pf2z →l

Pz, Pz → P f z, P f z → P f 2z � Pf2z
2 × ∀l + cl

Pz,∀x(Px → P f x) � Pf2z
w : l + w : r

Pz, Pc,∀x(Px → P f x) � Pg2c,Pf2z

ϕ[Pz � f 2z = gz]:

Pz � Pz

P f z � P f z

� f2z = gz
w : l

P f 2z � f2z = gz →l
P f z, P f z → P f 2z � f2z = gz →l

Pz, Pz → P f z, P f z → P f 2z � f2z = gz
2 × ∀l + cl

Pz,∀x(Px → P f x) � f2z = gz
w : l + w : r

Pz, Pc,∀x(Px → P f x) � Pg2c, f2z = gz

ϕ[� Pc]:

Pc � Pc
wl + w : r

Pc,∀x(Px → P f x) � Pg2c,Pc
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ϕ[Pg2c �]:
Pg2c � Pg2c

wl + wr
Pg2c, Pc,∀x(Px → P f x) � Pg2c

Given the projections and a grounded PR refutation, it is possible to build a proof ϕ̂ of
Γ � Δ with only atomic cuts.

If we apply all most general unifiers in the PR proof γ we obtain a proof in LK= (in fact
only contractions, cut and paramodulation remain). If γ σ is such a proof and we apply a
substitution replacing all variables by a constant symbol we obtain a ground PR refutation.
Note that after applying the most general unifiers to γ we obtain a derivation in LK= where
the resolution rule becomes a cut rule. For a formal definition see [6].

Example 9 The ground PR-refutation γ ′ is
(π)

� Pgc Pgc � f 2gc = g2c
cut

� f 2gc = g2c

(π)

� Pgc Pgc � P f 2gc
cut

� P f 2gc
para

� Pg2c Pg2c �
cut�

where π is
� Pc Pc � P f 2c

cut
� P f 2c

� Pc Pc � f 2c = gc
cut

� f 2c = gc
para� Pgc

Note that γ ′ is an LK=-refutation of ground instances of clauses in CL(ϕ).

γ ′ can be used as a skeleton of a proof ϕ∗ with only atomic cuts of the original end-
sequent S. ϕ∗ is called a CERES-normal form of the original proof ϕ. Below we give a
formal definition. First we define a type of top normal form defined by a PR-deduction.

Definition 23 (Top normal form) Let C : {C1 � D1, . . . ,Cn � Dn} be a set of clauses,
Γ � Δ be a skolemized sequent and ϕi cut-free proofs of Ci , Γ � Δ, Di in LK= for
i = 1, . . . , n. Let � = {ϕ1, . . . , ϕn}. Given a PR-deduction � of a clause C � D from C we
define an LK=-proof Θ(�, C,�) of C, Γ � Δ, D inductively on the length of �.

– � = Ci � Di : then Θ(�, C,�) = ϕi and top(Θ(�, C,�)) = {ϕi }.
– The last inference in � is R. Then � is of the form

(�1)

E1 � F1, Am
(�2)

Ak, E2 � F2
E1, E2 � F1, F2

R

Let us assume that

Θ(�1, C,�) =
(ψ1)

E1, Γ � Δ, F1, Am Θ(�2, C,�) =
(ψ2)

Ak, E2, Γ � Δ, F2

Then we define Θ(�, C,�) =
(ψ1)

E1, Γ � Δ, F1, Am
(ψ2)

Ak, E2, Γ � Δ, F2
E1, E2, Γ, Γ � Δ,Δ, F1, F2

cut

E1, E2, Γ � Δ, F1, F2
c∗

and top(Θ(�, C,�)) = top(Θ(�1, C,�)) ∪ top(Θ(�1, C,�)).
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– The last inference in � is a paramodulation rule. We consider only the case =r1; for the
other rules the construction is analogous. Then � is of the form

(�1)
E1 � F1, s = t

(�2)
E2 � F2, A[s]Λ

E1, E2 � F1, F2, A[t]Λ =r1

Let us assume that

Θ(�1, C,�) =
(ψ1)

E1, Γ � Δ, F1, s = t Θ(�2, C,�) =
(ψ2)

E2, Γ � Δ, F2, A[s]Λ
Then we define Θ(�, C,�) =

(ψ1)
E1, Γ � Δ, F1, s = t

(ψ2)
E2, Γ � Δ, F2, A[s]Λ

E1, E2, Γ, Γ � Δ,Δ, F1, F2, A[t]Λ =r1

E1, E2, Γ � Δ, F1, F2, A[t]Λ c∗

and top(Θ(�, C,�)) = top(Θ(�1, C,�)) ∪ top(Θ(�1, C,�)).

A proof ψ is called in top normal form if there are C,� and ρ (defined as above) such that
ψ = Θ(ρ, C,�).

Remark 2 The function top collects all cut-free subproofs in a top normal form which occur
at the top and thus belong to �.

Definition 24 (CERES-normal form) Let ϕ be an LK= proof of a skolemized sequent S.
Let � be a grounded PR-refutation of CL(ϕ), C be the set of all ground instances of clauses
in CL(ϕ) appearing at the leaves of � and � be the set of all grounded projections. Then the
proof Θ(�, C,�) is called a CERES normal form of �. As � is a refutation Θ(�, C,�) is a
proof of S with only atomic cuts.

Remark 3 Note that not all top normal forms are CERES normal forms as the set of cut-free
proofs � need not be projections.

Example 10 We define a CERES normal form for the proof from Example 5 with respect to
the grounded resolution refutation γ ′ of CL(ϕ) (in the following example F = ∀x(Px →
P f x)):

(ϕ1)

Pc, F � Pg2c, f2gc = g2c

(ϕ2)

Pc, F � Pg2c,Pf2gc =r1
Pc, Pc, F, F � Pg2c, Pg2c,Pg2c

cl + cr
Pc, F � Pg2c

ϕ[Pg2c �]
Pg2c, Pc, F � Pg2c

cut
Pc, Pc, F, F � Pg2c, Pg2c

cl + cr
Pc, F � Pg2c

where ϕ1 is

ϕ11

Pc, F � Pg2c,Pgc

ϕ[Pz � f 2z = gz]{z ← gc}
Pgc, Pc, F � Pg2c, f2gc = g2c

cut
Pc, Pc, F, F � Pg2c, Pg2c, f2gc = g2c

cl + cr
Pc, F � Pg2c, f2gc = g2c

ϕ11 is
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π1

Pc, F � Pg2c,Pf2c

π2

Pc, F � Pg2c, f2c = gc =r1
Pc, Pc, F, F � Pg2c, Pg2c,Pgc

cl + cr
Pc, F � Pg2c,Pgc

ϕ2 is
π1

Pc, F � Pg2c,Pf2c

π2

Pc, F � Pg2c, f2c = gc =r1
Pc, Pc, F, F � Pg2c, Pg2c,Pgc

cl + cr
Pc, F � Pg2c,Pgc

ϕ[Pz � P f 2z]{z ← gc}
Pgc, Pc, F � Pg2c,Pf2gc

cut
Pc, Pc, F, F � Pg2c, Pg2c,Pf2gc

cl + cr
Pc, F � Pg2c,Pf2gc

π1 is
ϕ[� Pc]

Pc, F � Pg2c,Pc

ϕ[Pz � P f 2z]{z ← c}
Pc, Pc, F � Pg2c,Pf2c

cut
Pc, F � Pg2c,Pf2c

and π2 is
ϕ[� Pc]

Pc, F � Pg2c,Pc

ϕ[Pz � f 2z = gz]{z ← c}
Pc, Pc, F � Pg2c, f2c = gc

cut
Pc, F � Pg2c, f2c = gc

4 Extraction of Expansion Trees from Projections

The extraction of expansion proofs is usually performed after the construction of a proof in
top normal form. However, only the logical parts of the proof play a role in the construction of
expansion trees. These logical parts can be identified as the cut-free subproofs after removal
of all cut-ancestors. Note that no cut-ancestor in such a subproof is principal formula of an
inference; we identify such subsequents as passive subsequent.

Definition 25 (Passive subsequent) Let ϕ be a cut-free proof of S : C, Γ � Δ, D such that
C � D is a clause. The subsequentC � D of S is called passive in ϕ if no ancestor ofC � D
in ϕ contains a formula which is principal formula of an inference.

Note that the passive subsequents are just the clauses used to define a top normal form.
Examples of proofs with passive clause parts are proof projections in CERES:

Proposition 2 Let ψ be a cut-free proof of C ′, Γ � Δ, D′ which is an instance of a proof
projection ϕ[C � D] in CERES. Then C ′ � D′ is passive in ψ .

Proof Immediate by induction on the length of ψ and by Definition 22. Note that the only
case in Definition 22 where the clause part changes is (c2). Here the projection ψ is defined
as

(ψ1)
C, Γe � Δe, D

(ψ2)
E,Πe � Λe, F

C, E, Γ ′
e ,Π

′
e � Δ′

e,Λ
′
e, D, F

ξ

By induction hypothesis C � D is passive in ψ1 and E � F is passive in ψ2. Therefore
C, E � D, F is passive in ψ . ��
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Definition 26 Let ϕ be a cut-free proof of C, Γ � Δ, D where C � D is passive in ϕ. We
define ϕ\(C � D) by induction on the number of nodes in ϕ.

– If ϕ is an axiom then ϕ = C,C ′ � D, D′ (note that the whole sequent is passive in ϕ).
We define ϕ\(C � D) = C ′ � D′.

– Let ϕ =

ϕ′
x

C, Γ � Δ, D

where C � D is passive in ϕ. Then, by definition of passive subclauses, ϕ′ is a proof
of C, Γ ′ � Δ′, D for some Γ ′ and Δ′. Indeed, the subclause C � D does not contain
a formula which is principal formula of an inference. By induction we have a proof
ϕ′\(C � D) of Γ ′ � Δ′ (note that C � D is also passive in ϕ′) and we define ϕ\(C �
D) =

ϕ′\(C � D)

Γ ′ � Δ′
x

Γ � Δ

– Let ϕ =
(ϕ1)

S1

(ϕ2)

S2 x
C, Γ � Δ, D

where C � D is passive in ϕ. As C, D are not principal formulas of an inference we get
that S1 = C1, Γ1 � Δ1, D1, S2 = C2, Γ2 � Δ2, D2, s.t. C1,C2 � D1, D2 = C � D
and C1 � D1 is passive in ϕ1, C2 � D2 is passive in ϕ2.
By induction we have a proof ϕ1\(C1 � D1) of Γ1 � Δ1 and a proof ϕ2\(C2 � D2) of
Γ2 � Δ2. Then we obtain ϕ\(C � D) =

(ϕ1\(C1 � D1))

Γ1 � Δ1

(ϕ2\(C2 � D2))

Γ2 � Δ2 x
Γ � Δ

The function logical(ϕ) for a proof in top normal form takes the cut-free proofs on top
and “subtracts” from them all ancestors of passive clauses.

Definition 27 (logical(ϕ)) Let ϕ : Θ(ρ, C,�) be a proof in top normal form s.t. C = {C1 �
D1, . . . ,Cn � Dn} and � = {ϕ1, . . . , ϕn} such that ϕi is a cut-free proof of Ci , Γ � Δ, Di .
Assume that for all i = 1, . . . , n Ci � Di is passive in ϕi . For every ψ ∈ top(ϕ) and ψ = ϕi
we define ψ ′ = ϕi\(Ci � Di ) and logical(ϕ) = {ψ ′ | ψ ∈ top(ϕ)}.
Below we define an expansion tree Ê(ϕ) which is defined by merging the expansion trees of
logical(ϕ). This structure will be the key for the development of an efficient algorithm for
extracting expansion trees from CERES normal forms.

Definition 28 Let ϕ be a proof in top normal form of a skolemized and normalized end-
sequent. We define

Ê(ϕ) = merge{ET(ψ) | ψ ∈ logical(ϕ)}.
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Theorem 2 Let ϕ : Θ(�, C,�) be a proof of a skolemized and normalized sequent C, Γ �
Δ, D in top normal form such that C = {C1 � D1, . . . ,Cn � Dn} and � = {ϕ1, . . . , ϕn},
where ϕi is a cut-free proof of Ci , Γ � Δ, Di . Assume that for all i = 1, . . . , n Ci � Di is
passive in ϕi . Then ET(ϕ) = Ê(ϕ) ◦ (C � D).

Proof By induction on the number of nodes in �.

Case 1: if ρ consists of just one node then ϕ = ϕi for some i ∈ {1, . . . , n} . We have to show
that ET(ϕi ) = Ê(ϕi ) ◦ (Ci � Di ). But Ê(ϕi ) = ET(ϕi\(Ci � Di )) and thus it remains to
show that

(�) ET(ϕi ) = ET(ϕi\(Ci � Di )) ◦ (Ci � Di ).

(�) is obtained via an easy induction on the number of inferences in ϕi using Definition 26.
Case 2: The last inference in � is R. Then � is of the form

(�1)

C1 � D1, Am
(�2)

Ak,C2 � D2

C1,C2 � D1, D2
R

Then (by definition of ϕ as Θ(�, C,�)) ϕ=

(ϕ1)
C1, Γ � Δ, D1, Am

(ϕ2)

Ak,C2, Γ � Δ, D2

C1,C2, Γ, Γ � Δ,Δ, D1, D2
cut

C1,C2, Γ � Δ, D1, D2
c∗

Assume that

ET(ϕ1) = C1, Γ
∗ � Δ∗, D1, A

m,

ET(ϕ2) = Ak,C2, Γ
+ � Δ+, D2,

where Seq(Γ ∗ � Δ∗) = Seq(Γ + � Δ+). By Definition 19 we obtain

(1) ET(ϕ) = (C1,C2 � D1, D2) ◦ merge(Γ ∗ � Δ∗, Γ + � Δ+)

Note that Γ ∗, Γ + and Δ∗,Δ+ are normalized. By induction hypothesis we have

Ê(ϕ1) ◦ (C1 � D1, A
m) = ET(ϕ1),

Ê(ϕ2) ◦ (Ak,C2 � D2) = ET(ϕ2).

and therefore

(2) Ê(ϕ1) = Γ ∗ � Δ∗, Ê(ϕ2) = Γ + � Δ+.

By definition of the merge operator we get from (1) and (2)

(3) ET(ϕ) = (C1,C2 � D1, D2) ◦ merge(Ê(ϕ1), Ê(ϕ2)).

By Definition 28 we obtain

Ê(ϕ1) = merge{ET(ψ) | ψ ∈ logical(ϕ1)},
Ê(ϕ2) = merge{ET(ψ) | ψ ∈ logical(ϕ2)}.
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Hence

merge(Ê(ϕ1), Ê(ϕ2)) =
merge(merge{ET(ψ) | ψ ∈ logical(ϕ1)},merge{ET(ψ) | ψ ∈ logical(ϕ2)}) =
merge{ET(ψ) | ψ ∈ logical(ϕ)}.

But by Definition 28 Ê(ϕ) = merge{ET(ψ) | ψ ∈ logical(ϕ)}. Combing this with (3) we
obtain

ET(ϕ) = (C1,C2 � D1, D2) ◦ Ê(ϕ).

Case 3: The last inference in � is a paramodulation.We only consider the case=r1 , the others
are analogous. Then � is of the form

(�1)
C1 � D1, s = t

(�2)
C2 � D2, A[s]

C1,C2 � D1, D2, A[t] =r1

Then, by definition of ϕ, we obtain ϕ=

(ϕ1)
C1, Γ � Δ, D1, s = t

(ϕ2)
C2, Γ � Δ, D2, A[s]

C1,C2, Γ, Γ � Δ,Δ, D1, D2, A[t] =r1

C1,C2, Γ � Δ, D1, D2, A[t] c∗

Assume that

ET(ϕ1) = C1, Γ
∗ � Δ∗, D1, s = t,

ET(ϕ2) = C2, Γ
+ � Δ+, D2, A[s]

where Seq(Γ ∗ � Δ∗) = Seq(Γ + � Δ+). By Definition 19 we obtain

(4) ET(ϕ) = (C1,C2 � D1, D2, A[t]) ◦ merge(Γ ∗ � Δ∗, Γ + � Δ+).

By induction hypothesis we have

Ê(ϕ1) ◦ (C1 � D1, s = t) = ET(ϕ1),

Ê(ϕ2) ◦ (C2 � D2, A[s]) = ET(ϕ2).

and therefore

(5) Ê(ϕ1) = Γ ∗ � Δ∗, Ê(ϕ2) = Γ + � Δ+.

By definition of the merge operator we get from (4) and (5)

(6) ET(ϕ) = (C1,C2 � D1, D2, A[t]) ◦ merge(Ê(ϕ1), Ê(ϕ2)).

By Definition 28 we obtain

Ê(ϕ1) = merge{ET(ψ) | ψ ∈ logical(ϕ1)},
Ê(ϕ2) = merge{ET(ψ) | ψ ∈ logical(ϕ2)}.

Hence, like in Case 2, we get

merge(Ê(ϕ1), Ê(ϕ2)) = merge{ET(ψ) | ψ ∈ logical(ϕ)}.
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But by Definition 28 Ê(ϕ) = merge{ET(ψ) | ψ ∈ logical(ϕ)}. Combing this with (6) we
obtain

ET(ϕ) = (C1,C2 � D1, D2, A[t]) ◦ Ê(ϕ).

��
Corollary 1 Let ϕ : Θ(�, C,�) be a proof of a skolemized and normalized sequent Γ � Δ

in top normal form s.t. C = {C1 � D1, . . . ,Cn � Dn} and � = {ϕ1, . . . , ϕn} such that ϕi is
a cut-free proof of Ci , Γ � Δ, Di . Assume that for all i = 1, . . . , n Ci � Di is passive in
ϕi . Then ET(ϕ) = Ê(ϕ).

Proof Immediate by Theorem 2: just define C � D as the empty sequent. ��
Corollary 2 Let ϕ be an LK= proof of a skolemized and normalized sequent S. Let
ϕ∗ : Θ(�, C,�) be a CERES normal form of ϕ such that � is a ground PR-refutation of
C, the set of all ground instances of clauses in CL(ϕ), and � is the set of all grounded
projections. Then ET(ϕ) = Ê(ϕ).

Proof Let ψ be a cut-free proof of C, Γ � Δ, D which is an instance of a projection of ϕ.
By Proposition 2 C � D is passive in ψ . As CERES normal forms are top normal forms all
conditions of Corollary 1 are fulfilled. ��

The last corollary describes a method to compute an expansion tree from any proof in top
normal form of a skolemized sequent S. Note that in case of a prenex sequent S we extract
Herbrand sequents. The computation of an expansion tree is based on top normal forms.
CERES normal forms ϕ∗ of proofs ϕ are also in top normal form, therefore we can compute
expansion trees in the same way. For CERES it means that ϕ∗ has to be constructed first. The
usual algorithm for the extraction of expansion trees from the CERES normal form is:

begin % algorithm EXP
1. compute CL(ϕ);
2. find a PR refutation ρ of CL(ϕ);
3. compute a ground refutation R from ρ;
4. compute the projections ϕ[C] for C ∈ CL(ϕ, R);
5. construct the CERES normal form ϕ∗ from the projections and R;
6. extract an expansion proof ET(ϕ) from ϕ∗.
end.

Instead of using algorithm EXP, we make use of Theorem 2 and define a new method
that extracts expansion proofs more efficiently by extracting partial expansion trees from the
projections. The idea is the following: we do not compute logical(ϕ∗) which would be the
set of all instantiated projections. Note that the size of logical(ϕ∗) is roughly the size of ϕ∗
itself. Instead we use from a ground resolution refutation R of CL(ϕ) the general projections
ϕ[C] for C ∈ CL(ϕ, R) and the set of substitutions Σ(C) for C ∈ CL(ϕ, R) which are the
set of ground substitutions for the clause C in the refutation R.

Definition 29 For every projection ϕ[C] : A, Γ � Δ,B, where A � B is the clause part
of ϕ[C], we define ϕ−[C] = ϕ(C)\(A � B) (note that A � B is a passive subsequent of
A, Γ � Δ,B), where the \-operator is defined as in Definition 26. Note that ET(ϕ−[C]) is a
proof relative to the axioms in ϕ−[C], which may differ from the axioms of ϕ (axioms need
not be tautological anyway). We define

T (ϕ, R) = mergeC∈CL(ϕ,R)mergeσ∈Σ(C)ET(ϕ−[C])σ.
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Then the computation of an expansion tree via CERES for a proof ϕ (of a closed skolemized
end-sequent S) goes as follows:

begin % algorithm EXPnew
1. compute CL(ϕ);
2. find a PR refutation ρ of CL(ϕ);
3. compute a ground refutation R from ρ

and for every C ∈ CL(ϕ, R) the set Σ(C);
4. compute the projections ϕ[C] and ϕ−[C] for C ∈ CL(ϕ, R);
5. for every C ∈ CL(ϕ, R) compute T [C] : mergeσ∈Σ(C)ET(ϕ−[C])σ ;
6. compute mergeC∈CL(ϕ,R)T [C] which is T (ϕ, R).

end.

Note that the computation of the Dp function of an expansion proof via CERES for a
proof ϕ (of a closed skolemized end-sequent S) can be easily obtained by computing the Dp
function of T (ϕ, R).

Theorem 3 Let ϕ be a proof of a skolemized, closed and normalized end-sequent and ϕ∗ the
CERES normal form based on a ground refutation R of CL(ϕ). Then ET(ϕ∗) = T (ϕ, R).

Proof Let CL(ϕ, R) = {C1, . . . ,Cn}. Now logical(ϕ∗) = �1 ∪ · · · ∪ �n where �i =
{ϕ−[Ci ]σ | σ ∈ Σ(Ci )}. Let ψi = ϕ−[Ci ]. Then by Theorem 2 we know that

ET(ϕ∗) = merge(mergeσ∈Σ(C1)
ET(ψ1σ), · · · ,mergeσ∈Σ(Cn)

ET(ψnσ))

which is equal to

ET(ϕ∗) = merge(mergeσ∈Σ(C1)
ET(ψ1)σ, · · · ,mergeσ∈Σ(Cn)

ET(ψn)σ )

which, by Definition 29, is exactly T (ϕ, R). So ET(ϕ∗) = T (ϕ, R). ��
Note that Theorem 3 also holds for the Dp function of expansion proofs, i.e. Dp(ET(ϕ∗)) =
Dp(T (ϕ, R)).

Corollary 3 Let ϕ be a proof of a skolemized,closed and normalized sequent S and R be a
refutation of CL(ϕ). Then T (ϕ, R) is an expansion proof of S.

Proof By Theorems 2 and 3. ��
Instead of computing all ϕ[C j ]σ j

i (obtained from the ACNF ϕ∗) the algorithm EXPnew
computes the ϕ[C j ] and extracts ET(ϕ−[C j ]) ≡ Tj , which is a partial expansion proof, then
constructs ×σ∈Σ(C j )Tjσ for all j and merges them. Example 11 illustrates the main features
of the method.

Example 11 Consider the proof ϕ as in Example 5 (where F = ∀x(Px → P f x)). The
ACNF ϕ is:

(ϕ1)

Pc, F � Pg2c, f2gc = g2c

(ϕ2)

Pc, F � Pg2c,Pf2gc
para

Pc, Pc, F, F � Pg2c, Pg2c,Pg2c
cl + cr

Pc, F � Pg2c

ϕ[Pg2c �]
Pg2c, Pc, F � Pg2c

cut
Pc, Pc, F, F � Pg2c, Pg2c

cl + cr
Pc, F � Pg2c
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where ϕ1 is

ϕ11

Pc, F � Pg2c,Pgc

ϕ[Pz � f 2z = gz]{z ← gc}
Pgc, Pc, F � Pg2c, f2gc = g2c

cut
Pc, Pc, F, F � Pg2c, Pg2c, f2gc = g2c

cl + cr
Pc, F � Pg2c, f2gc = g2c

ϕ11 is

π1

Pc, F � Pg2c,Pf2c

π2

Pc, F � Pg2c, f2c = gc
para

Pc, Pc, F, F � Pg2c, Pg2c,Pgc
cl + cr

Pc, F � Pg2c,Pgc

ϕ2 is

π1

Pc, F � Pg2c,Pf2c

π2

Pc, F � Pg2c, f2c = gc
para

Pc, Pc, F, F � Pg2c, Pg2c,Pgc
cl + cr

Pc, F � Pg2c,Pgc

ϕ[Pz � P f 2z]{z ← gc}
Pgc, Pc, F � Pg2c,Pf2gc

cut
Pc, Pc, F, F � Pg2c, Pg2c,Pf2gc

cl + cr
Pc, F � Pg2c,Pf2gc

π1 is

ϕ[� Pc]
Pc, F � Pg2c,Pc

ϕ[Pz � P f 2z]{z ← c}
Pc, Pc, F � Pg2c,Pf2c

cut
Pc, F � Pg2c,Pf2c

and π2 is

ϕ[� Pc]
Pc, F � Pg2c,Pc

ϕ[Pz � f 2z = gz]{z ← c}
Pc, Pc, F � Pg2c, f2c = gc

cut
Pc, F � Pg2c, f2c = gc

Now compute the Herbrand sequent of ϕ∗ (with the old method):

H(ϕ∗) = Pc, Pc → P f c, P f c → P f 2c, Pgc → P f gc, P f gc → P f 2gc � Pg2c

Note that H(ϕ∗) is a valid sequent in our axiom set (� f 2z = gz is an axiom).
With our newmethod we first compute Ti = ET(ϕ−[Ci ]) and define the substitutions σ

j
i :

T1 = Pc,∀x(Px → P f x) +z Pz → P f z + f z P f z → P f 2z � Pg2c
T2 = Pc,∀x(Px → P f x) +z Pz → P f z + f z P f z → P f 2 � Pg2c
T3 = Pc,∀x(Px → P f x) � Pg2c
T4 = Pc,∀x(Px → P f x) � Pg2c
σ 1
1 = (z ← c) σ 1

2 = (z ← gc)
σ 2
1 = (z ← c) σ 2

2 = (z ← gc)
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Note that T1 = T2. Now we compute T (ϕ, R) = merge(T1 σ 1
1 , T1 σ 1

2 , T2 σ 2
1 , T2 σ 2

2 , T3, T4)

T (ϕ, R) = merge(Pc,∀x(Px → P f x) +c Pc → P f c + f c P f c → P f 2c
� Pg2c,
(Pc,∀x(Px → P f x) +gc Pgc → P f gc + f gc P f gc → P f 2gc
� Pg2c,
Pc,∀x(Px → P f x) � Pg2c,
Pc,∀x(Px → P f x) � Pg2c)

T (ϕ, R) = Pc,∀x(Px → P f x) +c Pc → P f c,
+ f c P f c → P f 2c,
+gc Pgc → P f gc,
+ f gc P f gc → P f 2gc � Pg2c

The Dp function is

Dp(T (ϕ, R))) = Pc, Pc → P f c, P f c → P f 2c, Pgc → P f gc, P f gc → P f 2gc � Pg2c

5 Complexity

In this section we prove that the algorithm EXPnew outperforms the old algorithm EXP. In
particular we prove that the complexity of EXPnew is always better or equal to that of EXP.
Then we define an infinite sequence of LK-proofs ϕn where the complexity of EXP is cubic
in n while that of EXPnew is only quadratic. This implies that the computational complexity
of EXP cannot be linearly bounded by that of EXPnew. Our complexity measure will be the
maximal logical complexity of objects constructed by the algorithms.

Definition 30 (Size of a formula) Let A be a formula, then the size of A (‖A‖ f ) is inductively
defined as follows

‖A‖ f = 1 if A is an atomic formula ,

‖¬A‖ f = 1 + ‖A‖ f ,

‖A1 ◦ A2‖ f = 1 + ‖A1‖ f + ‖A2‖ f , ◦ ∈ {∧,∨,→},
‖Qx .A‖ f = 1 + ‖A‖ f , Q ∈ {∀, ∃}.

To improve legibility we write ‖F‖ instead of ‖F‖ f (with the exception of cases where
the precise notation is essential) and use the measure ‖ ‖ also for sequents, proofs and clause
sets.

Definition 31 (Size of a sequent) Let S : A1, . . . , An � An+1, . . . , Am be a sequent, then
the size of S is

‖A1, . . . , An � An+1, . . . , Am‖ = Σm
i=1‖Ai‖

Definition 32 (Size of an LK=-proof) Let ϕ be an LK=-proof. If ϕ is an axiom then ϕ

consists of just one node labelled by a sequent S; here we define ‖ϕ‖ = ‖S‖.
If ϕ is not an axiom then the end-sequent is a conclusion of a unary or of a binary rule.

So we distinguish two cases:
(a) ϕ =

ϕ′
S

x
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Then ‖ϕ‖ = ‖ϕ′‖ + ‖S‖.
(b) ϕ =

ϕ1 ϕ2

S
y

Then ‖ϕ‖ = ‖ϕ1‖ + ‖ϕ2‖ + ‖S‖.
Definition 33 (Size of an expansion tree) Let E be an expansion tree, then the size of E
(‖E‖) is inductively defined as follows

‖E‖ = ‖E‖ f if E is a quantifier-free formula ,

‖¬E‖ = 1 + ‖E‖,
‖E1 ◦ E2‖ = 1 + ‖E1‖ + ‖E2‖, ◦ ∈ {∧,∨,→},
‖Qx .E +t1 E1 +t2 · · · +tn En‖ = 1 + ‖E‖ + ‖E1‖ + · · · + ‖En‖, Q ∈ {∀, ∃}.

Definition 34 (Size of an s-expansion proof) Let E : E1, . . . , En � En+1, . . . , Em be an
s-expansion proof, then the size of E (‖E‖) is

‖E1, . . . , En � En+1, . . . , Em‖ = Σm
i=1‖Ei‖.

In our algorithms EXP and EXPnew we do not only construct sequents, formulas and
proofs, but also sets of clauses (which are finite sets of atomic sequents). If C = {C1, . . . ,Cn}
we define ‖C‖ = ‖C1‖+ . . .+‖Cn‖. We call the objects produced by a proof transformation
expressions.

Definition 35 (Expression) An expression is a formula, a sequent, a proof or a set of clauses.

Now we consider computations as sequences of expressions which are generated by an
algorithmic proof transformation. So let A be an algorithm and ϕ be a proof serving as input
to A. Then EA(ϕ) is the sequence of all expressions generated by A on input ϕ. Below we
define a complexity function induced by A given by the maximal expression generated by
A:

Definition 36 Let A be an algorithm on proofs. Then we define

CA(ϕ) = max{‖x‖ | x ∈ EA(ϕ)}.
Theorem 4 CEXPnew (ϕ) ≤ CEXP(ϕ) for all proofs ϕ in LK=.

Proof sketch: the first 4 steps of EXP and EXPnew are identical. The sum of the sizes of the
expansion trees generated by EXPnew is smaller or equal to the size of the CERES normal
form generated by EXP. ��

We show now that EXPnew can be asymptotically better that EXP. To this aim we define
the following sequence of LK-proofs ϕn :

(ωn)

∀x(Px → P f x) � ∀x(Px → P f nx)

(πn)

∀x(Px → P f nx), Pa � P f n
2
a

cut
Pa,∀x(Px → P f x) � P f n

2
a

where ωn is:
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(ψn)

Py, Py → P f y, . . . , P f n−1y → P f n y � P f n y →r
Py → P f y, . . . , P f n−1y → P f n y � Py → P f n y ∀l (n×)∀x(Px → P f x) � Py → P f n y ∀r∀x(Px → P f x) � ∀x(Px → P f nx)

and πn is:
(χn)

Pa → P f na, P f na → P f 2na, . . . , P f (n−1)na → P f n
2
a, Pa � P f n

2
a ∀l (n×)

∀x(Px → P f nx), Pa � P f n
2
a

recursive definition of ψn :ψ0 = Py � Py. And for n > 0 ψn =

Py � Py

ψn−1{y ← f y}
P f y, P f y → P f 2y, . . . , P f n−1y → P f n y � P f n y →l

Py, Py → P f y, . . . , P f n−1y → P f n y � P f n y

For our complexity measure we obtain

‖ψn‖ = 2 + 2(n + 1) + ‖ψn−1‖
note that ‖ψn−1‖ = ‖ψn−1{y ← f y}‖.

CP (ψ0) = 2

Obviously, there are constants a1, a2, b1, b2 (all > 0) such that

a1 ∗ n2 ≤ ‖ψn‖ ≤ a2 ∗ (n + 1)2 and b1 ∗ n2 ≤ ‖χn‖ ≤ b2 ∗ (n + 1)2.

Putting things together there are constants c1, c2 > 0 with

c1 ∗ n2 ≤ ‖ϕn‖ ≤ c2 ∗ (n + 1)2.

Now we compute the characteristic clause sets of the ϕn . After elimination of tautologies we
get

CL(ϕn) = {C1,n : Py � P f n y; C2 : � Pa; C3,n : P f n
2
a �}.

Now we compute the resolution refutation. The recursive definition is the following:
γ1:

� Pa Pa � P f na
R� P f na

γn :

(γn−1)

� P f (n−1)na P f (n−1)na � P f n
2
a

R
� P f n

2
a

We obtain ‖γn‖ = ‖γn−1‖ + 3.
Thus, the resolution schema is δn :

(γn)

� P f n
2
a P f n

2
a �

R�
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with substitutions {y ← a}, . . . , {y ← f (n−1)na}. We then get

‖δn‖ = 3n + 2.

Concerning the projections we adapt an improved version, minimal projections, which
is also used in the implementation of CERES. In this form of projection it is sufficient to
derive just a subsequent of the end-sequent which reduces the number of weakenings and
contractions in the ACNF.

ϕn[C1,n]:
(ψn)

Py, Py → P f y, . . . , P f n−1y → P f n y � P f n y ∀l(nx) + cl(nx)
Py,∀x(Px → P f x) � P f n y

ϕn[C2] (minimal projection)

Pa � Pa

ϕn[C3] (minimal projection):

P f n
2
a � P f n

2
a

Now we can construct the ACNF. ϕ∗
n is the ACNF-schema:

ϕ∗
1 :

Pa � Pa

(ϕn[C1,n{y ← a}])
Pa, F � P f na

cut
Pa, F � P f na

(ϕn[C1,n{y ← f na}])
P f na, F � P f 2na

cut + c∗
Pa, F � P f 2na

ϕ∗
n :

(ϕ∗
n−1)
. . .

Pa, F � P f (n−1)na

(ϕn[C1,n{y ← f (n−1)na}])
P f (n−1)na � P f n

2
a

cut + c∗
Pa, F � P f n

2
a

(ϕn[C3,n])
P f n

2
a � P f n

2
a

cut
Pa, F � P f n

2
a

where F = ∀x(Px → P f x). In ϕ∗
n there are n substitution instances of the proof ψn and

therefore the size of the ACNF-schema ϕ∗
n is

‖ϕ∗
n‖ ≥ a1 ∗ n3.

As CEXP(ϕn) ≥ ‖ϕ∗
n‖ (the algorithm EXP contains the construction of ϕ∗

n ) we finally obtain

CEXP(ϕ
∗
n ) ≥ a1 ∗ n3.

Therefore every expansion tree extraction from ϕ∗
n via EXP is at least cubic in n. Now we

consider the complexity of our improved method for extraction of expansion trees. We con-
struct the projections first, here we have the complexity O(n2) (just for ϕn[C1,n], otherwise
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constant). The construction of the refutation δn is in O(n). For the construction of the partial
expansion proof:

T (y) = ∀x(Px → P f x) +y Py → P f y,
+ f y P f y → P f 2y,
· · ·
+ f n−1 y P f n−1y → P f n y �

we obtain

‖T (y)‖ = 3(n − 1) + 4 = 3n + 1.

The last step is the computation of

merge(Pa �, T (y){y ← a}, T (y){y ← f na}, . . . , T (y){y ← f (n−1)na},� P f n
2
a)

O(n2): concatenate sequents of complexity 3n + 1 n-times.
The last sequent is an expansion proof of ϕ∗

n . The total expense of EXPnew is therefore (k
being a constant)

CEXPnew (ϕn) ≤ k ∗ (n + 1)2.

Now we put things together and obtain that EXPnew is never more expensive than EXP, but
EXP cannot be linearly bounded in EXPnew:

Theorem 5 EXPnew outperforms EXP, i.e.

(a) CEXPnew (ϕ) ≤ CEXP(ϕ) for all proofs ϕ in LK=.
(b) There exists no constant d such that for all proofs ϕ inLK=: CEXP(ϕ) ≤ d ∗CEXPnew (ϕ).

Proof (a) By Theorem 4. (b): Assume that such a constant d exists. By the construction of
the proofs ϕn above we would obtain

CEXP(ϕn) ≤ d ∗ CEXPnew (ϕn) for all n and thus

a1 ∗ n3 ≤ d ∗ k ∗ (n + 1)2 for all n.

But a1 ∗ n3 > d ∗ k ∗ (n + 1)2 almost everywhere and we obtain a contradiction. ��

Remark 4 We have shown that, for all proofs ϕ in LK= , CEXPnew (ϕ) ≤ CEXP(ϕ) and that a
asymptotic speed-up ofCEXP viaCEXPnew is possible. The problem to define a sharp bound on
CEXP in terms of CEXPnew remains open. Our conjecture is that CEXP cannot be exponential
in CEXPnew , i.e. that there exists a polynomial p such that

CEXP(ϕ) ≤ p(CEXPnew (ϕ)) for all ϕ in LK=.

In addition to the gain in complexity, another gain is a compact symbolic representation
of the expansion tree:

merge(T1Σ1, T2Σ2, . . . , TnΣn).
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6 Implementation and Experiments in Gapt

The algorithm EXPnew is implemented in the Gapt-system1 [12], which is a framework for
implementing proof transformations written in the programming language Scala. Initially it
was developed for the method CERES, but has been extended to other proof transformation
algorithms (note that the methods described in this paper are available from version 2.5 on).
This section explains how to run the described algorithm, followed by a discussion of results
obtained by experiments with formal proofs.

For information on how to install and use the system Gapt we refer to the Gapt User
Manual.2 Gapt opens in a Scala interactive shell (scala>) which can be used to run all the
commands provided by the system. Under “Proof Examples” there is a set of functions that
generate proofs of some end-sequent. In the following demonstration we will use the proof
from Example 5, which is referred to as CERESExpansionExampleProof. proof in Gapt. The
sequence of commands

scala> val p = CERESExpansionExampleProof. proof
scala> val p1 = CERES( p )
scala> prooftool ( p1 )

instantiates the proof from Example 5 and stores it in the variable p, which is used as input
for the method CERES. The variable p1 stores the generated CERES normal form. Note that
the outputs stored in variables p and p1 are strings representing the proofs. To obtain a proof
in a tree-like structure prooftool can be used, which is a viewer for proofs and other elements
also implemented in Gapt [11]. The algorithm EXP, which extracts expansion proofs from
CERES normal forms is implemented in Gapt as the method LKToExpansionProof. Note that
thismethod extracts an expansion proof fromanyLK-proof and not only fromCERESnormal
forms. More information on expansion trees in Gapt can be found in [21,25]. The following
demonstration shows how to obtain expansion proofs and Herbrand sequents (corresponding
to the deep function of an expansion proof) from the CERES normal form p1 (defined in the
demonstration above):

scala> val exp = LKToExpansionProof( p1 )
scala> prooftool ( exp )
scala> val dp = exp.deep
scala> prooftool ( dp )

The output stored in exp is a string representing the expansion proof of p1; using prooftool
a better representation can be obtained. Note that also the deep function can be displayed
in prooftool. The next demonstration shows how to use the algorithm EXPnew, which is
implemented as the method CERESExpansionProof (within the CERES implementation)

scala> val p = CERESExpansionExampleProof. proof
scala> val exp = CERES.CERESExpansionProof( p, Escargot )
scala> val dp = exp.deep

The output stored in variable dp is a string representing the deep function of the expansion
proof extracted from the proof projections and the corresponding ground PR refutation. Note
that we use a simple built-in prover called Escargot. Instead of using Escargot, any other

1 http://www.logic.at/gapt/.
2 http://www.logic.at/gapt/downloads/gapt-user-manual.pdf.

123

http://www.logic.at/gapt/
http://www.logic.at/gapt/downloads/gapt-user-manual.pdf


Extraction of Expansion Trees 425

resolution prover supported by Gapt may be used (Gapt includes interfaces to several first-
order theorem provers, such as Prover9, E Prover and LeanCoP, for more details we refer to
the Gapt User Manual).

To measure the complexity of algorithms we use the command time, provided by the
Gapt system. This command measures the time in ms that is needed on the system in use
to perform a method. We performed several experiments with proofs containing cuts and
measured the speed-up in time via

scala> time{ LKToExpansionProof( CERES( p ) ) }
scala> time{ CERES.CERESExpansionProof( p ) }

Our experiments have shown that there is a speed-up in the computation of expansion proofs
with the algorithm EXPnew compared to the algorithm EXP already for small and simple
proofs like in Example 5: our best result for the algorithm EXP is 47ms, on the other hand,
with the algorithm EXPnew we obtained 18ms. Since even for a small and simple proof like
the proof in Example 5 a speed-up is obtained, it is clear that we can increase the speed-up
whenwe considermore complex and longer proofs. Thereforewe analyzedmore complicated
proofs provided by Gapt, as la t t ice . proof, a proof of (one direction of) the equivalence
of different definitions of the concept of a lattice. For background information about this
proof and an informal version, we refer to Section 5 of [20]. Another interesting proof for
analyzing and comparing the implemented methods is tape . proof, which is a proof of the
statement “Given an infinite tape labelled by zeros and ones there are two cells with the
same value.”. The proof proceeds by a lemma stating that on such a tape there are either
infinitely many zeros or infinitely many ones. This is a subcase of the proof of the unbounded
pigeonhole principle, for more information we refer to Section 4.2 of [26] and Section 3 of
[1]. Note that the formalization of the tape proof as described in [26] is realized in Gapt as
tabeUrban . proof. Figure 1 shows our results on experiments with the proofs la t t ice . proof,
tape . proof and tapeUrban . proof; in all three cases, the method EXPnew outperforms the
method EXP.

tape.proof tapeUrban.proof lattice.proof

0

1,000

2,000

3,000

m
s

EXP EXPnew

Fig. 1 Comparison of the methods EXP and EXPnew for the proofs: tape . proof, tapeUrban . proof,
la t t ice . proof
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Table 1 Comparison of the three different methods for the extraction of expansion proofs: based onGentzen’s
reductive method, methods EXP and EXPnew

Proof Reductive (ms) EXP (ms) EXPnew (ms)

fol1.proof 68 27 17

fol2.proof 53 30 21

Pi2Pigeonhole.proof 1350 680 170

Pi3Pigeonhole.proof 842 552 181

poset.proof.cycleImpliesEqual3 1621 360 147

poset.proof.cycleImpliesEqual4 6877 850 250

CutIntroduction( LinearExampleProof( 4 )) 138 70 26

CutIntroduction( LinearExampleProof( 8 )) 294 42 31

CutIntroduction( LinearExampleProof( 10 )) 577 32 28

CutIntroduction( LinearExampleProof( 15 )) 890 36 26

CutIntroduction( LinearExampleProof( 18 )) 1329 54 25

CutIntroduction( LinearExampleProof( 19 )) 1205 85 51

CutIntroduction( LinearEqExampleProof( 2 )) 190 72 32

CutIntroduction( LinearEqExampleProof( 5 )) 924 98 34

CutIntroduction( LinearEqExampleProof( 10 )) 2640 113 43

CutIntroduction( LinearEqExampleProof( 15 )) 6510 134 46

CutIntroduction( LinearEqExampleProof( 16 )) 10,875 163 53

CutIntroduction( LinearEqExampleProof( 18 )) 12,423 455 97

CutIntroduction(
FactorialFunctionEqualityExampleProof( 3 ))

3525 500 360

CutIntroduction(
FactorialFunctionEqualityExampleProof( 4 ))

8473 795 590

CutIntroduction(
FactorialFunctionEqualityExampleProof( 5 ))

20,006 1430 930

Furthermore, we analyzed the two methods based on CERES in comparison to
reductive cut-elimination methods. The Gapt system contains an implementation of
Gentzen-style reductive cut-elimination, which can be used by calling the method
ReductiveCutElimination. For this analysis we used several proofs provided by Gapt, as
for instance simple proofs containing cuts (fol1 . proof, fol2 . proof), formalizations of the
so-called poset proof (poset . proof) and of the pigeonhole principle (Pi2Pigeonhole . proof,
Pi3Pigeonhole . proof) as well as some “artificial” proofs in the sense that we introduced
cuts to originally cut-free proofs. Indeed, Gapt provides a cut-introduction procedure called
CutIntroduction(p), which in some cases compresses the cut-free proof p by adding
cuts. We use this cut-introduction method on sequences of cut-free proofs, as for instance
the sequence of proofs LinearExampleProof(n), constructing cut-free proofs of sequents
P(0),∀x(P(x) → P(s(x))) � P(sn(0)), where n ≥ 0, FactorialFunctionEquality
ExampleProof(n), constructing proofs of f (n) = g(n, 1), where f is the head recursive
and g the tail recursive formulation of the factorial function and LinearEqExampleProof(n),
constructing cut-free proofs of sequents Refl, Trans, ∀x( f (x) = x) � f n(a) = a. Introduc-
ing cuts to these three sequences of proofs results in sequences of shorter proofs. Table 1
summarizes our results and shows that not only EXPnew is faster that EXP, but both CERES
based methods clearly outperform the method based on Gentzen-style cut-elimination.
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Fig. 2 Comparison of the method EXPnew and the method Reductive for the proof
CutIntroduction(SquareDiagonalExampleProof(n)) for 2 ≤ n ≤ 18
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Fig. 3 Comparison of the methods EXP and EXPnew for the proof (containing cuts)
CutIntroduction(SquareDiagonalExampleProof(n)) for 2 ≤ n ≤ 18

Another interesting sequence of cut-free proofs provided by Gapt is formalized in
SquareDiagonalExampleProof(n), which constructs a sequence of cut-free proofs of
the sequents P(0, 0),∀x∀y(P(x, y) → P(s(x), y)),∀x∀y(P(x, y) → P(x, s(y))) �
P(sn(0), sn(0)), where n ≥ 0. For every n the constructed proof goes along the diagonal of
P , i.e. one x-step, then one y-step, etc. Cuts can be introduced to this sequence of proofs, how-
ever the proof containing cuts obtained by the method CutIntroduction(SquareDiagonal
ExampleProof(n)) is not necessarily longer the higher the value for n is. More precisely,
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the proof SquareDiagonalExampleProof(n) might not get as much compressed as the proof
SquareDiagonalExampleProof(n+1) by introducing cuts, leading to a shorter proof for n+1.
Therefore, the method based on reductive cut-elimination is not always slower for higher
values of n. In fact, as can be observed in Fig. 2, the computing time for the method based on
reductive cut-elimination on the proof CutIntroduction(SquareDiagonalExampleProof(7))
is 6235ms, while on the proof CutIntroduction(SquareDiagonalExampleProof(8)) it is
1278ms. The analysis in Fig. 2 is performed for values 2 ≤ n ≤ 18, as for higher values the
constructed proof is too long to be analyzed on the operating system in use. Note that also
for SquareDiagonalExampleProof(n) the method EXPnew outperforms the method EXP, as
can be seen in Fig. 3.

We want to remark that the obtained results depend to a great degree on the operating
system in use. Therefore, it is possible that the obtained results fluctuate. Nevertheless, the
speed-up of the method EXPnew compared to EXP is given and can be clearly recognized.

7 Conclusion

In the analysis ofmathematical proofs it is usuallymore important to gain essentialmathemat-
ical information from proofs (which typically lies in the terms), than to traverse complicated
and long propositional proofs. This was our motivation for avoiding the construction of an
atomic cut normal form and focus on the quantifier inferences in the final proof (represented
by a Herbrand sequent or by an expansion proof). In the original CERES method, the extrac-
tion of expansion proofs is performed after the final result of CERES (a proof containing at
most atomic cuts, the CERES normal form) is obtained.We first analysedACNFs and defined
a new version of ACNF where the cut-inferences are the last inferences in the proof and only
contractions and weakenings occur between them. Proofs of that structure are said to be in
top normal form.We have shown that the logical parts of proofs in top normal form suffice to
compute expansion proofs. Since proofs in CERES normal form are in top normal form, its
logical parts (the proof-projections) suffice to extract expansion proofs. First we refute the
characteristic clause set CL(ϕ) and, from a corresponding ground refutation R, obtain a set
of ground substitutions Σ(C) for all clauses C ∈ CL(ϕ) that occur in R. We construct the
general CERES projections ϕ[C], corresponding to the clauses C ∈ CL(ϕ) that occur in R,
and extract partial expansion proofs T [C]. Finally we instantiate the partial expansion proofs
T [C] by substitutions in Σ(C) and combine the resulting expansion proofs by merging; the
result is an expansion proof of the end-sequent (which coincides with the expansion proof of
the CERES normal form). Using this method we avoided the construction of an atomic cut
normal form.

We also obtain an improvement in asymptotic complexity. Note that we do not compute n
instances of the projection ϕ[Ci ] with the corresponding substitution σ i

j like it is needed for
the construction of the CERES normal form, instead we compute the projection once, remove
clause parts and then instantiate the corresponding expansion proof (Herbrand sequent) with
the corresponding substitutions. The described algorithm is implemented in the Gapt system
and we describe how to use it. We show that even for small and not complicated proofs a
speed-up in time is obtained by the new algorithm.

Since we investigated this method for first-order logic only, further work has to deal with
a generalization of this method to higher-order logic. In higher-order logic we have to deal
with a different CERES-method (CERESω [19]) and a resolution calculus for higher-order
logic. The extraction of expansion proofs fromCERES-projections in the higher-order case is
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a non-trivial task, since CERESω as well as the resolution calculus for higher-order logic are
muchmore complicated than in the first-order case. If and how themethod can be generalized
to the higher-order case, future work will tell.
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