
Journal of Automated Reasoning (2020) 64:363–389
https://doi.org/10.1007/s10817-018-09504-w

A Verified Implementation of Algebraic Numbers
in Isabelle/HOL

Sebastiaan J. C. Joosten1 · René Thiemann1 · Akihisa Yamada1

Received: 10 October 2018 / Accepted: 29 November 2018 / Published online: 9 December 2018
© The Author(s) 2018

Abstract
We formalize algebraic numbers in Isabelle/HOL. Our development serves as a verified
implementation of algebraic operations on real and complex numbers. We moreover provide
algorithms that can identify all the real or complex roots of rational polynomials, and two
implementations to display algebraic numbers, an approximative version and an injective
precise one. We obtain verified Haskell code for these operations via Isabelle’s code gener-
ator. The development combines various existing formalizations such as matrices, Sturm’s
theorem, and polynomial factorization, and it includes new formalizations about bivariate
polynomials, unique factorization domains, resultants and subresultants.

Keywords Theorem proving · Algebraic numbers · Real algebraic geometry · Resultants

1 Introduction

Algebraic numbers, i.e., the numbers that are expressed as roots of non-zero integer (or
equivalently rational) polynomials, are an attractive subset of the real or complex numbers.
Every satisfiable polynomial constraint has solutions in the domain of algebraic numbers; in
particular, algebraic numbers are closed under arithmetic operations (addition, multiplica-
tion, integer powers, and there inverses). Moreover these arithmetic operations are precisely
computable, and comparisons of algebraic numbers are decidable. As a consequence, alge-
braic numbers are an important utility in computer algebra systems; e.g., Collin’s cylindrical
algebraic decomposition algorithm for solving problems in real algebraic geometry heavily
relies upon algebraic numbers [20, Sect. 8.6.5].

Our original interest in algebraic numbers stems from a certification problem about auto-
matically generated complexity proofs, where for a given matrix A ∈ Qn×n we have to

This research was supported by the Austrian Science Fund (FWF) project Y757. The authors are listed in
alphabetical order regardless of individual contributions or seniority. Sebastiaan is now working at
University of Twente, the Netherlands, and Akihisa at National Institute of Informatics, Japan. We thank the
reviewers of this paper for their helpful comments.

B René Thiemann
rene.thiemann@uibk.ac.at

1 University of Innsbruck, Innsbruck, Austria

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10817-018-09504-w&domain=pdf
http://orcid.org/0000-0002-6590-6220
http://orcid.org/0000-0002-0323-8829
http://orcid.org/0000-0001-8872-2240

364 S. J. C. Joosten et al.

−1 1

x

p(x)

Fig. 1 The polynomial p with its four real roots

compute the growth rate of An for increasing n [25]. To this end, all complex roots of the
characteristic polynomial of A have to be identified.

Example 1 Consider amatrix A whose characteristic polynomial is f (x) = 1
3 ·(1+2x +3x4)

and let λ1, . . . , λ4 be the complex roots of f . If the norm of some λi is larger than 1, then the
growth rate of A is exponential; if all norms are below 1, then An tends to 0; and otherwise
the growth rate is polynomial and its degree can be determined by further computations.

In order to apply this criterion,weneed to compute each norm |λi | = √
Re(λi)2 + Im(λi)2,

and afterwards compare it with 1. All these computations can be performed with the help of
algebraic numbers, as we will see throughout this paper. For instance, in this example we
obtain the following results where roots are indexed from the smallest to the largest, and
where the polynomials g = −1 − 12x2 + 144x6, h = 7 − 216x2 − 336x4 − 1248x6 +
1152x8 + 6912x12, and p = 1 − 3x4 − 12x6 − 9x8 + 27x12 are constructed during the
computation.

Re(λ1) = root #1 of g, Im(λ1) = root #2 of h, |λ1| = root #3 of p
Re(λ2) = root #1 of g, Im(λ2) = root #3 of h, |λ2| = root #3 of p
Re(λ3) = root #2 of g, Im(λ3) = root #1 of h, |λ3| = root #4 of p
Re(λ4) = root #2 of g, Im(λ4) = root #4 of h, |λ4| = root #4 of p

As each norm |λi | is below 1, cf. Fig. 1, we can conclude that An tends to 0 for increasing n.

In this paper, we describe an implementation of algebraic numbers in Isabelle/HOL [21].
Up to our knowledge it is the first implementation that is both fully verified and executable on
its own, i.e., without information from external tools. The implementation already became
a crucial component of the automated reasoning tool CeTA for verifying complexity proofs
[1,25] that are generated during the annual termination competitions [12]. It is also used
within a verified solver for linear recurrences [10].

The paper is structured as follows.

– We first introduce some basic notions of algebraic numbers and then formalize the fact
that every algebraic number has a unique canonical polynomial that represents it. We
argue that these canonical polynomials make a good internal representation (Sect. 2).

– For each algebraic operation,we formalize how to synthesize a polynomial that represents
the output using polynomials that represent the inputs. We thus show that algebraic
numbers are closed under the algebraic operations (Sect. 3).

– For the multiplication and addition of algebraic numbers, we refer to resultants. We
implement and formalize the subresultant remainder sequence algorithm, which can
efficiently compute resultants (Sect. 4).

– Using the above results, we implement the algebraic operations and comparisons of real
and complex algebraic numbers, and a function to uniquely convert them into strings. We
develop a hierarchy of four layers to represent real algebraic numbers, formalize several
bisection algorithms, and integrate optimizations to obtain efficient code (Sect. 5).

123

A Verified Implementation of Algebraic Numbers 365

– We moreover provide algorithms that identify all real and complex roots of a rational
polynomial. Together with the fact that complex roots of a real polynomial come in com-
plex conjugate pairs, we derive algorithms that completely factor rational polynomials
into real or complex polynomial factors (Sect. 6).

– As we made an effort for efficiency, we experimentally compare the implementation
against a version described in a preliminary version [24] of this paper, and the commercial
computer algebra tool Wolfram Mathematica 11 (Sect. 7).

Most of the algorithms and proofs of our formalization are based on a textbook by Mishra
[20, Chapters 7 and 8]; it contains a detailed implementation of real algebraic numbers,
including proofs. When it comes to subresultants, we followed the original papers by Brown
and Traub [2,3]. However, our formalization also includes algorithms and optimizations,
which we did not find in the literature, though they might be known.

For the Coq proof assistant, the Mathematical Components library1 contains various for-
malized results around algebraic numbers, e.g., quantifier elimination procedures for real
closed fields [6]. In particular, the formalization of algebraic numbers for Coq is given by
Cohen [4]. He employed Bézout’s theorem to derive desired properties of resultants, while
we followed proofs by Mishra [20] and formalized various facts on resultants. Our work is
orthogonal to the more recent work which avoids resultants [5]. A partial Coq formalization
of subresultants also exists [19]. In contrast, our formalization is complete, and also integrates
an optimization due to Ducos [8, Sect. 2].

For Isabelle, Li and Paulson [18] independently implemented algebraic numbers. They
however did not formalize resultants; instead, they employed an external tool as an oracle
to provide polynomials that represent desired algebraic numbers, and provided a method to
validate that the polynomials from the oracle are suitable.2 Due to our optimization efforts,
we can execute their examples [18, Fig. 3] in 0.016 seconds on our machine, where they
reported 4.16 seconds.3

The whole formalization is available in the archive of formal proofs (AFP), mostly in
entries Algebraic Numbers and Subresultants. Additionally, on

https://doi.org/10.5281/zenodo.1411394

we link statements in the paper with the Isabelle sources and provide details on our experi-
ments.

2 Representation of Algebraic Numbers

Our formalization is based on Isabelle/HOL, and we state theorems and definitions following
Isabelle’s syntax. For instance, of-int :: int ⇒ α :: ring-1 indicates that of-int is a function that
takes integers and returns elements of typeα, which is of class ring-1. The type of polynomials
over coefficients of type α is denoted by α poly. In Isabelle, a polynomial f (x) = ∑m

i=0 fi x i

is written as [: f0, . . . , fm :] (the leading coefficient comes last in the list), coeff f i denotes
the coefficient fi , degree f the degree m, and poly f a the evaluation f (a) at a ::α.

A number a is algebraic if it is a root of a non-zero integer polynomial f . The notion is
defined in Isabelle 2018 as follows.

1 See http://math-comp.github.io/math-comp.
2 The suitability test cannot simply evaluate the polynomial on the algebraic point and test whether the result
is 0; evaluating at an algebraic point requires the basic arithmetic operations on algebraic numbers, which are
the operations we are defining in this work.
3 However, we use a faster computer with 3.2 GHz instead of 2.66 GHz.

123

https://doi.org/10.5281/zenodo.1411394
http://math-comp.github.io/math-comp

366 S. J. C. Joosten et al.

Definition 1 algebraic a ≡ ∃f. (∀i. coeff f i ∈ Z) ∧ f �= 0 ∧ poly f a = 0

Here the condition that f is an integer polynomial is expressed by enforcing the coefficients
of f to be in the set Z, which is of type α set. In this definition, the polynomial f :: α poly
and the algebraic number a :: α share the same domain type α, which will be instantiated
by real or complex. Since our motivation is to implement functions that actually operate on
algebraic numbers of type real and complex, manipulating polynomials in type α poly leads
to a circular dependency. Hence we introduce the predicate f represents a, meaning that a
non-zero integer polynomial f :: int poly has a :: α as a root.

Definition 2 f represents a ≡ ipoly f a = 0 ∧ f �= 0

Here, ipoly f a is an abbreviation for poly (of-int-poly f) a, and of-int-poly :: int poly ⇒ α

poly converts the type of integer polynomials.
We obtain the following alternative characterization of algebraic numbers.

Lemma 1 algebraic a ←→ (∃f. f represents a)

2.1 Unique Representation

An algebraic number can be represented by arbitrarily many polynomials; for instance
√
2 is

represented by f (x) = x2 −2, g(x) = −x2 +2, h(x) = x4 +2x3−4x −4, k(x) = 2x2 −4,
etc. However, every algebraic number can be uniquely represented by an integer polynomial
which has no non-trivial divisors and a positive leading coefficient. The degree of this unique
representative polynomial is called the degree of the algebraic number. For instance, f is this
unique representative of

√
2, whereas g has a negative leading coefficient, and h is reducible

as h(x) = f (x) · (x2 + 2x + 2).
Irreducibility of a polynomial often means that it is non-constant and has no non-constant

divisor of smaller degree, and in the preliminary version of this work [24] we used such
a definition. Isabelle 2018, however, uses the following predicate irreducible for arbitrary
commutative rings.

Definition 3 irreducible f ≡
¬ f dvd 1 ∧ f �= 0 ∧ (∀ g h. f = g · h −→ g dvd 1 ∨ h dvd 1)

Here dvd is Isabelle’s notation for divisibility. This definition is stronger than the polynomial-
specific version. In particular, irreducible f for non-constant integer polynomial f demands
that f is content-free, i.e., the GCDof the coefficients of f is 1; otherwise, f is “reducible” by
the GCD. For instance, the integer polynomial k above is reducible since k(x) = (x2 −2) ·2.
Note also that the definitions are equivalent on field polynomials.

We adopt this stronger definition in the current work, and formulate the uniqueness state-
ment as follows.

Lemma 2 assumes algebraic a
shows ∃! f. f represents a ∧ irreducible f ∧ lead-coeff f > 0

Typical uniqueness results found in the literature (e.g., [11, pp. 700] and [20, pp. 319])
state that there is a unique representative polynomial of the minimum degree. Our claim is
more useful for computing the unique representative: if we find any irreducible polynomial
representing a number, then we do not have to search for other polynomials of lower degree
that represent the same number. The typical statement is easily obtained from Lemma 2;
actually the irreducible representative polynomial is of the minimum degree.

123

A Verified Implementation of Algebraic Numbers 367

Corollary 1 assumes irreducible f and f represents a and g represents a
shows degree f ≤ degree g

To prove Lemma 2 we first show that polynomials over a unique factorization domain
(UFD) forms a UFD again. Whereas the class factorial-ring was (independently) introduced
to Isabelle 2016-1 for UFDs, it demands several extra operations, i.e., unit-factor, normalize,
gcd, etc., to derive that polynomials over a UFD form a UFD. We instead define a more
general class ufd:

class ufd = idom +
assumes f �= 0 �⇒ ¬ f dvd 1 �⇒ ∃ F. mset-factors F f
and mset-factors F f �⇒ mset-factors G f �⇒ rel-mset (ddvd) F G

Here the first assumption claims that for every non-zero and non-unit element f in the
domain, there exists a multiset F of irreducible factors of f , denoted by the predicate mset-
factors F f . The second assumption claims that for any element f , any two irreducible
factorizations F and G of f are “associated”, i.e., F and G contain the same number of
factors, f1, . . . , fn and g1, . . . , gn , such that f1 ddvd g1, …, fn ddvd gn . Here a ddvd b is
defined as a dvd b ∧ b dvd a.

In this general setting we show that polynomials over a UFD form a UFD.

instance poly :: (ufd) ufd

This result is instantly lifted to any multivariate polynomials; if α is of sort ufd, then so is
α poly, and thus so is α poly poly, and so on. This is crucial for formalizing addition and
multiplication of algebraic numbers, where we extensively use bivariate polynomials.

We also establish a connection between ufd and the already existing locale factorial-
monoid. Thus we can derive results from factorial-monoid, e.g., that irreducibility and pri-
mality are equivalent in UFDs. This yields that for an irreducible integer polynomial f with
positive leading coefficient, the GCD of f and any polynomial g is either 1 or f itself:

Lemma 3 assumes irreducible f and lead-coeff f > 0
shows gcd f g ∈ {1, f }
To prove Lemma 2 we further show that the GCD of two integer polynomials stays the

same up to a constant factor if we embed Z into R or C.

Lemma 4 gcd (of-int-poly f) (of-int-poly g) =
inverse (of-int (lead-coeff (gcd f g))) · of-int-poly (gcd f g)

Our proof of Lemma 2 then works as follows: Assume that f and g are two different,
positive and irreducible integer polynomials with a common real or complex root a. That is,
f and g as real or complex polynomials have a common factor x − a and hence, their GCD
is a non-constant polynomial. On the other hand, the GCD of f and g as integer polynomials
must be 1: it cannot be f or g itself, since f �= g.

2.2 Unique Representation or Not?

Despite the existence of a unique (and minimal) representative polynomial of an algebraic
number, it is a priori questionable whether it is a good choice in an implementation to stick
to the unique representative polynomials. There is a trade-off between the cost of computing
unique representatives from arbitrary representations via polynomial factorization, and the
penalty of not using minimal representations in a sequence of operations.

123

368 S. J. C. Joosten et al.

Table 1 Computation time/degree of representing polynomials for
∑n

i=1
√

i

Factorization n = 6 n = 7 n = 8 n = 9 n = 10

Square-free 0.054s/64 0.807s/128 19.725s/256 3m19s/384 1h48m/768

Complete 0.019s/8 0.044s/16 0.080s/16 0.080s/16 0.117s/16

We answer this question experimentally by computing representations of the algebraic
numbers

∑n
i=1

√
i for various n. In one configuration we stick to the unique representatives

and perform complete polynomial factorization after each addition. In another configuration
we only perform the efficient square-free factorization that eliminates duplicate factors.

The result is reported in Table 1, where the computation time t and the degree d of the
representing polynomial is reported as t/d . Here the benefit of complete factorization is clear;
the growth of the degrees is so rapid that manipulating the high-degree polynomials is more
costly than applying complete factorization each time.

Hencewe choose irreducible polynomials for representing algebraic numbers; however for
those of degree 1, i.e., the rational numbers, there is already an efficient implementation.When
implementing a binary arithmetic operation on algebraic numbers, we actually implement
two variants: one on a rational and an algebraic number, and another one on two algebraic
numbers. The former variant is faster to execute than the more generic latter one. This special
treatment for rational numbers explains why there is no measurable difference in Table 1 in
the computation time of

∑8
i=1

√
i and

∑9
i=1

√
i : the last addition when computing

(
8∑

i=1

√
i

)

+ √
9 =

(
8∑

i=1

√
i

)

+ 3 = . . .

will be the efficient “rational + algebraic”-addition.

3 Synthesizing Representative Polynomials

In order to define arithmetic operations over algebraic numbers, the first task is the following:
Given polynomials that represent the input numbers, compute a polynomial that represents
the output number. In the sequel, wewill illustrate the constructions for the various arithmetic
operations in ascending difficulty.

3.1 Constants

Obviously, a rational number a = n
d can be represented by dx − n.

Definition 4 poly-rat a ≡ case quotient-of a of (n, d) ⇒ [: −n, d :]

Lemma 5 (poly-rat a) represents (of-rat a)

Isabelle’s implementation of the rational numbers ensures that n and d are coprime and
d ≥ 1. Therefore the polynomial is already positive and irreducible.

Lemma 6 irreducible (poly-rat a) and lead-coeff (poly-rat a) > 0

123

A Verified Implementation of Algebraic Numbers 369

3.2 Negation and Inverse

Consider an algebraic number a represented as a root of f (x) = ∑m
i=0 fi x i . To represent

the unary minus −a, the polynomial poly-uminus, defined as f (−x), i.e.,
∑m

i=0(−1)i fi x i ,
does the job.

Lemma 7 assumes f represents a shows (poly-uminus f) represents (−a)

For the inverse 1
a , it is also not difficult to show that the reciprocal polynomial

∑m
i=0 fi xm−i , which is defined in Isabelle 2018 as reflect-poly, has 1

a as a root.

Lemma 8 assumes f represents a and a �= 0
shows (reflect-poly f) represents (inverse a)

It is beneficial to also show that poly-uminus and reflect-poly preserve irreducibility,
since otherwise we would have to perform polynomial factorization to maintain the invariant
of always working on irreducible polynomials. We argue as follows: Suppose that f is
irreducible and represents a. Clearly poly-uminus preserves the degree and content; thus if
poly-uminus f is reducible, then there is a polynomial h of smaller degree that represents−a.
Since poly-uminus h represents −(−a) = a, we obtain a polynomial representing a whose
degree is smaller than f . This contradicts the uniqueness of f .

The same argument works also for reflect-poly, and we formalize the following lemma
that generalizes the two.

Lemma 9 assumes irreducible f and f represents a
and degree g ≤ degree f
and content-free g and g represents b
and ∀ h. (h represents b −→ (I h) represents a ∧ degree (I h) ≤ degree h)

shows irreducible g

By instantiating b in the lemma by −a, g by poly-uminus f , and I by poly-uminus, we
obtain the desired result for poly-uminus. Similarly we easily obtain the result for reflect-poly.

Lemma 10 assumes irreducible f and degree f �= 0
shows irreducible (poly-uminus f)

Lemma 11 assumes irreducible f and f represents a and a �= 0
shows irreducible (reflect-poly f)

3.3 Multiplication and Addition with Rational Numbers

If we had chosen rational polynomials to represent algebraic numbers, it would be easy to
add or multiply a rational number to an algebraic number: when f represents a, the rational
polynomials f (x − n

d) and f (d
n · x) represent a + n

d and a · n
d , respectively. In our current

formalization, however, we work with integer polynomials for efficiency reasons. As neither
f (x − n

d) nor f (d
n · x) is in general an integer polynomial, we define the polynomials slightly

differently.
To represent a · n

d , we use the following constant multiple of f (d
n · x):

nm · f
(d

n · x
) =

m∑

i=0

fi · di · nm−i · xi

123

370 S. J. C. Joosten et al.

where f (x) = ∑m
i=0 fi · xi . Similarly, for a + n

d we first compute dm · f (1d · x), and compose
this polynomial and dx − n to obtain dm · f (x − d

n). In the following definition, f ◦p g
denotes the polynomial composition f (g(x)), and the monomial cxn is denoted by monom
c n.

Definition 5

poly-mult-rat-main n d f ≡ ∑
i ≤ degree f. monom (coeff f i · di · ndegree f−i) i

poly-mult-rat b f ≡
case quotient-of b of (n, d) ⇒ poly-mult-rat-main n d f

poly-add-rat b f ≡
case quotient-of b of (n, d) ⇒ poly-mult-rat-main d 1 f ◦p [: −n, d :]

We prove the desired correctness results in a straightforward way.

Lemma 12 assumes f represents a
shows (poly-add-rat b f) represents (of-rat b + a)

Lemma 13 assumes f represents a and b �= 0
shows (poly-mult-rat b f) represents (of-rat b · a)

The condition b �= 0 in Lemma 13 stems from the fact that we are essentially performing
division. In practice this just demands a special case for b = 0, which trivially results in the
rational number 0.

Unfortunately both poly-add-rat and poly-mult-rat do not preserve irreducibility in terms
of Definition 3 in general, since they do not preserve content; e.g., for f (x) = 2x − 3,
the unique representation of 3

2 , poly-mult-rat f 2 results in the polynomial 2x − 6, which
represents 3 but is not content-free. Nevertheless, we only need to eliminate content to obtain
irreducibility.We define a function cf-pos-poly f which divides all coefficients by the content,
and additionally ensures a positive leading coefficient. Note that f represents a if and only if
cf-pos-poly f represents a. Since each of the above functions preserves degree, and an inverse
operation can be found, we apply Lemma 9 and derive the desired irreducibility results.

Lemma 14 assumes irreducible f and degree f �= 0
shows irreducible (cf-pos-poly (poly-add-rat b f))

Lemma 15 assumes irreducible f and degree f �= 0 and b �= 0
shows irreducible (cf-pos-poly (poly-mult-rat b f))

3.4 n-th Root

For n-th root of a represented by f (x) = ∑m
i=0 fi x i , it is easy to see that f (xn), i.e.,∑m

i=0 fi xni , represents n
√

a.

Definition 6 poly-nth-root n f ≡ f ◦p monom 1 n

Lemma 16 assumes f represents a and bn = a and n �= 0
shows (poly-nth-root n f) represents b

We stated the result for n-th roots without using Isabelle’s operations root and csqrt,
because they are defined only on types real and complex, respectively, but not on a generic
field. We easily derive the results for the specific types.

123

A Verified Implementation of Algebraic Numbers 371

Lemma 17 assumes f represents (a :: complex)
shows (poly-nth-root 2 f) represents (csqrt a)

Lemma 18 assumes f represents (a :: real) and n �= 0 and a > 0
shows (poly-nth-root n f) represents (root n a)

In contrast to previous sections, poly-nth-root does not preserve irreducibility, even though
it preserves contents. Consider, e.g., poly-nth-root 4 applied to x −64, the unique representa-
tive of 64. The resulting polynomial is x4−64, which can be factored into (x2−8) · (x2+8).
Also for the polynomials obtained from addition andmultiplication of two algebraic numbers,
we cannot ensure irreducibility in general. We address this issue in Sect. 5.3.

3.5 Addition andMultiplication of Algebraic Numbers

To add or multiply two irrational algebraic numbers a and b, respectively represented as roots
of polynomials f and g, we must compose non-zero polynomials poly-add f g and poly-mult
f g that have a + b and a · b as a root.

For this purpose the resultant is a well-known solution. The resultant of the polynomials
f (x) = ∑m

i=0 fi x i and g(x) = ∑n
i=0 gi xi is defined as Res(f , g) = det(S f ,g), where S f ,g

is the Sylvester matrix:

S f ,g =

⎡

⎢⎢⎢⎢⎢⎢⎢
⎣

fm fm−1 · · · f0
. . .

. . .
. . .

fm fm−1 · · · f0
gn gn−1 · · · g0

. . .
. . .

. . .

gn gn−1 · · · g0

⎤

⎥⎥⎥⎥⎥⎥⎥
⎦

⎫
⎬

⎭
n rows

⎫
⎬

⎭
m rows

Note that if f and g are univariate, then Res(f , g) is a constant. We write Resx (f (x), g(x))

for Res(f , g) when the resolved variable x should be clarified. If f and g are bivariate then
Resy(f (x, y), g(x, y)) is a univariate polynomial over x .

We first state the desired result for addition. Here, poly-add f g is defined as the univariate
polynomial Resy(f (x − y), g(y)).

Lemma 19 assumes f represents a and g represents b
shows (poly-add f g) represents (a + b)

We perform multiplication through division by the inverse, and division as follows: poly-
div f g is defined as Resy(f (x · y), g(y)) and poly g 0 �= 0 ensures that g does not represent
0, so that in particular b �= 0.

Lemma 20 assumes f represents a and g represents b and poly g 0 �= 0
shows (poly-div f g) represents (a / b)

To prove each lemma, we need to prove two claims: the resultant has a desired root, and
is a non-zero polynomial. In the next sections we prove each of the claims.

3.5.1 Resultant has Desired Roots

For non-constant polynomials f and g over a commutative ring, we can compute polynomials
p and q such that for arbitrary x ,

Res(f , g) = p(x) · f (x) + q(x) · g(x). (1)

123

372 S. J. C. Joosten et al.

To formally prove the result, we first define a function mk-poly that operates on the
Sylvester matrix. For each j-th column except for the last one, mk-poly adds the j-th column
multiplied by xm+n− j to the last column. Each addition preserves determinants, and we
obtain the following equation:

Res(f , g) = det(mk-poly S f ,g) = det

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢
⎣

fm · · · f1 f0 f (x) · xn−1

. . .
. . .

. . .
...

fm · · · f1 f0 f (x) · x
fm · · · f1 f (x)

gn · · · g1 g0 g(x) · xm−1

. . .
. . .

. . .
...

gn · · · g1 g0 g(x) · x
gn · · · g1 g(x)

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥
⎦

(2)

Note here that only the last column depends on x . We can extract this column using the
Laplace expansion, which we formalize as follows.

Lemma 21 assumes A ∈ carrierm n n and j < n
shows det A = (

∑
i < n. Ai j · cofactor A i j)

Here A ∈ carrierm n n just means that A is an n × n matrix over the considered ring, and
cofactor A i j is defined as (−1)i+ j · det B, where B is the minor matrix of A obtained by
removing the i-th row and j-th column. Thus we can remove the last column of the matrix
A in (2), by choosing j = m + n − 1. Note that then every cofactor A i j is independent
from x . We obtain p and q in (1), as Res(f , g) is represented as follows:

(
n−1∑

i=0

cofactor A i j · xi

)

· f (x) +
(

m−1∑

i=0

cofactor A (n + i) j · xi

)

· g(x)

Lemma 22 fixes f g :: α :: comm-ring-1 poly
assumes degree f > 0 and degree g > 0
shows ∃p q. degree p < degree g ∧ degree q < degree f ∧

[: resultant f g :] = p · f + q · g

The lemma implies that, if f and g are polynomials of positive degree with a common
root, say f (a) = g(a) = 0, then

Res(f , g) = p(a) · f (a) + q(a) · g(a) = 0

The result is lifted to the bivariate case: f (a, b) = g(a, b) = 0 implies that
Resy(f (a, y), g(a, y)) = 0 for all a and b.

Lemma 23 fixes f g :: α :: comm-ring-1 poly poly
assumes degree f > 0 ∨ degree g > 0
and poly2 f a b = 0 and poly2 g a b = 0

shows poly (resultant f g) a = 0

Here, poly2 is our notation for bivariate polynomial evaluation.
Now for univariate non-zero polynomials f and g with respective roots a and b, the

bivariate polynomials f (x − y) and g(y) have a common root at x = a+b and y = b. Hence,
Lemma 23 indicates that the univariate polynomial Resy(f (x − y), g(y)) has x = a + b as
a root.

123

A Verified Implementation of Algebraic Numbers 373

Lemma 24 fixes f g :: α :: comm-ring-1 poly
assumes g �= 0 and poly f a = 0 and poly g b = 0
shows poly (poly-add f g) (a + b) = 0

We need a variation of Lemma 24 in which f and g are of type int poly while a and b are
still of type α. We prove some homomorphism lemmas to obtain the following:

Lemma 25 assumes g �= 0 and ipoly f a = 0 and ipoly g b = 0
shows ipoly (poly-add f g) (a + b) = 0

Analogously, if b �= 0, then f (x · y) and g(y) have a common root at x = a/b and y = b.

Lemma 26 assumes g �= 0 and ipoly f a = 0 and ipoly g b = 0 and b �= 0
shows ipoly (poly-div f g) (a / b) = 0

3.5.2 Resultant is Non-Zero

Now consider the second claim: poly-add f g and poly-div f g are non-zero polynomials. Note
that they would otherwise have any number as a root. Somewhat surprisingly, formalizing
this claim is more involved than the first one.

We first strengthen Lemma 22, so that p and q are non-zero polynomials. Here, we require
an integral domain idom, i.e., there exist no zero divisors.

Lemma 27 fixes f g :: α :: idom poly
assumes degree f > 0 and degree g > 0
shows ∃ p q. degree p < degree g ∧ degree q < degree f ∧
[: resultant f g :] = p · f + q · g ∧ p �= 0 ∧ q �= 0

The proof is easy for the case where Res(f , g) is non-zero: we obtain p and q using
Lemma 22, and it is easy to see that p · f + q · g cannot be a constant if p = 0 or q = 0,
using the constraints on degrees. For the case Res(f , g) = 0, we formalize the classical
result that linear equation Av = 0 on an integral domain has a non-zero solution if and
only if det(A) = 0. Since resultants are the determinants of Sylvester matrices, from a non-
zero solution to S f ,gv = 0 one can extract non-zero polynomials p and q as a solution to
p · f + q · g = 0.

If Res(f , g) = 0, then from Lemma 27 we have p · f = −q · g. In UFDs, this implies
that f and g cannot be coprime, i.e., that f and g have a common factor, since otherwise f
must divide −q , contradicting degree(f) > degree(q).

The definition of the predicate coprime in Isabelle 2018 relies on the definition of gcd.
We generalize coprime as follows in order to state the above for arbitrary UFDs:

Definition 7 coprime f g ≡ ∀h. h dvd f −→ h dvd g −→ h dvd 1

Lemma 28 fixes f g :: α :: ufd poly
assumes degree f > 0 ∨ degree g > 0 and resultant f g = 0
shows ¬ coprime f g

Finally, we reason that Resy(f (x − y), g(y)) and Resy(f (x · y), g(y)) are non-zero
polynomials by contradiction. As f and g are integer polynomials—a UFD— there exist
irreducible factorizations: f = f1 · · · fm and g = g1 · · · gn . The operation of transforming a

123

374 S. J. C. Joosten et al.

univariate polynomial f (x) to the bivariate f (x − y) is a ring homomorphism, and moreover
preserves irreducibility. Thus,

f (x − y) = f1(x − y) · · · fm(x − y)

is an irreducible factorization. The same property clearly holds for the transformation from
g(x) to g(y), and we get an irreducible factorization of g(y):

g(y) = g1(y) · · · gn(y) (3)

Now suppose that Resy(f (x − y), g(y)) = 0. Then Lemma 28 implies that f (x − y) and
g(y) have a common proper factor. Without loss of generality consider an irreducible one
h(x, y). In UFDs, this implies that

fi (x − y) ddvd h(x, y) ddvd g j (y)

for some i ≤ m and j ≤ n. By fixing y, e.g., to 0, we conclude fi (x) divides a constant
g j (0), and hence fi is a constant. This contradicts the assumption that fi is a proper factor
of f .

The reasoning is similar for division, but note that the transformation from f (x) to f (x · y)

does not preserve irreducibility: monomial x is irreducible but x · y is not. Nevertheless it is
a ring homomorphism and we have a (possibly reducible) factorization:

f (x · y) = f1(x · y) · · · fm(x · y)

Now if Resy(f (x · y), g(y)) = 0, then we obtain an irreducible factor h(x, y) by the
same reasoning as above. We still have the irreducible factorization (3) for g(y), and thus
g j (y) ddvd h(x, y) for some j .

As h(x, y) is irreducible and divides f (x · y), it divides some fi (x · y). Here we need the
fact that irreducibility and primality coincide in UFDs. Hence,

g j (y) ddvd h(x, y) dvd fi (x · y)

Now we fix x to 0. Then we conclude that g j (y) divides a constant fi (0), and hence g j is
a constant, leading to a contradiction (the case fi (0) = 0 will ultimately be handled by the
assumption that g does not represent 0). This proves that poly-add f g and poly-div f g are
non-zero polynomials, completing our proof of Lemma 19 and Lemma 20.

4 Computing the Resultant

Resultants can be computed by first building the Sylvester matrix and then computing its
determinant by transformation into row echelon form. A more efficient way to compute
resultants has been developed by Brown and Traub: the subresultant polynomial remainder
sequence (PRS) algorithm [2,3].

The algorithm computes Res(f , g) in the manner of Euclid’s algorithm. It repeatedly
performs the polynomial division on the two input polynomials and replaces one input of
larger degree by the remainder of the division.

We first consider all computations over the fraction field α fract, where all division oper-
ations are inherently exact. We then prove that intermediate values stay of form a

1 ; that is,
we can use a partial division operator div on the integral domain α, that satisfies (a · b) div
b = a for b �= 0, but not necessarily (a div b) · b = a. Therefore, our final implementation
works solely on the integral domain, without requiring fraction field operations.

123

A Verified Implementation of Algebraic Numbers 375

The j-th subresultant of the polynomials f and g with f (x) = ∑m
i=0 fi x i and g(x) =∑n

i=0 gi xi is defined as follows:

Sub j (f (x), g(x)) = det

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢
⎣

fm · · · f j+1 · · · f0 f (x) · xn− j−1

. . .
. . .

. . .
...

fm · · · f j+1 · · · f0 f (x) · x j+1

. . .
. . .

...
...

fm · · · f j+1 f (x)

gn · · · g j+1 · · · g0 g(x) · xm− j−1

. . .
. . .

. . .
...

gn · · · g j+1 · · · g0 g(x) · x j+1

. . .
. . .

...
...

gn · · · g j+1 g(x)

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥
⎦

(4)

Note that, in contrast to resultants, the subresultant of polynomials is a polynomial of the same
type. However, due to equation (2), Sub0(f (x), g(x)) is actually the constant Res(f , g).

Lemma 29 subresultant 0 f g = [: resultant f g :]

Using the following lemma, we can always assume degree(f) ≤ degree(g). In the remain-
der of this section, we write m for degree(f) and n for degree(g).

Lemma 30 subresultant j f g = (−1)(m− j)·(n− j) · subresultant j g f

Following Brown and Traub [3], we then formalize the following lemma, showing that a
Euclidean algorithm can be used to compute subresultants. As in the Euclidean algorithm,
we require a polynomial h such that h = f + b · g for some b, where l = degree(h) < n.

Lemma 31 (Subresultants via Euclidean algorithm)

1. j < l �⇒ subresultant j f g = (−1)(m− j)·(n− j) · (coeff g n)m−l · subresultant j g h
2. subresultant l f g = (−1)(m−l)·(n−l) · (coeff g n)m−l · (coeff h l)n−l−1 · h
3. l < j �⇒ j < n − 1 �⇒ subresultant j f g = 0
4. subresultant (n − 1) f g = (−1)m−n+1 · (coeff g n)m−n+1 · h

For non-field polynomials, and in particular bivariate polynomials, polynomial division
is not always possible, but pseudo-division is: we can find h such that h = d · f + b · g for
some constant d . The following lemma allows us to use pseudo-division instead of division
in subresultant computation.

Lemma 32 d �= 0 �⇒ subresultant j (d · f) g = dn− j · subresultant j f g

Iterated application of pseudo-division results in repeated multiplication with constants
dn− j , and hence the coefficients of the processed polynomials increase exponentially. One
approach to keep the coefficients small is to divide the polynomials by their content in every
iteration, as in Collin’s primitive PRS algorithm [3, Sect. 4]. We have implemented this
approach for the preliminary version [24] of this paper.

This work additionally formalizes the more sophisticated subresultant PRS algorithm
of Brown and Traub [2,3]. Here, a constant c—the leading coefficient of a subresultant of

123

376 S. J. C. Joosten et al.

the input polynomials—is carried around as an extra argument. It is used to perform exact
divisions on the pseudo-remainder polynomials without the necessity to calculate the content
in every iteration.

The core of this algorithm is formalized as follows, where sdiv-poly is an Isabelle function
that divides a polynomial by a constant.

Definition 8 subresultant-prs-main f g c = (
let m = degree f; n = degree g; lf = lead-coeff f; lg = lead-coeff g;

δ = m − n; d = lgδ div cδ − 1; h = pseudo-mod f g
in if h = 0 then (g, d)

else subresultant-prs-main g (sdiv-poly h ((− 1)δ+1 · lf · cδ)) d)

The above function works under the invariant that n < m (so that δ − 1 ≥ 0 in Definition 8)
and in particular the invariant that all divisions are exact. Thus as the initial step we establish
these invariants, and obtain a suitable initial value for c.

Definition 9 subresultant-prs f g ≡
let h = pseudo-mod f g; δ = degree f − degree g; c = (lead-coeff g)δ

in if h = 0 then (g, c)
else subresultant-prs-main g ((− 1)δ+1 · h) c

The invocation of subresultant-prs f g returns a pair (h, d), where h is a scalar multiple
of the GCD of f and g, and Res(f , g) = d if degree(h) = 0, and Res(f , g) = 0 otherwise.

In addition to the definitions of subresultant-prs and subresultant-prs-main we develop
an optimized implementation in the form of code equations. These optimizations include
treating common cases separately, avoiding calculating the same value twice, and replacing
expressions like (−1)δ+1 ·h by a single negation.We also integrate the efficient calculation of
lgδ div cδ − 1 described by Ducos as dichotomous Lazard [8, Sect. 2], but we did not integrate
Ducos’ second optimization about the calculation of sdiv-poly in Definition 8.

We define the final function as resultant-impl, and prove the following correctness result
as a code equation:

Lemma 33 resultant f g = resultant-impl f g

We also define a function gcd-impl that returns the GCD of two polynomials based on
subresultant-prs, and get a correctness result:

Lemma 34 gcd f g = gcd-impl f g

We do not state Lemma 34 as a code equation, since on simple polynomials, e.g., of type
int poly, we experimentally see that the algorithm performs worse than the standard GCD
implementation. The algorithm becomes beneficial for multivariate polynomials, e.g., int
poly poly poly.

5 Real Algebraic Numbers

In the previous two sections, we have seen how to synthesize a polynomial f representing an
algebraic number a as one of its root. To unambiguously represent a, we need to specifywhich
root of f is actually a.Moreover, we need a concrete representation of real algebraic numbers.
Both of these problems are addressed in this section, resulting in a verified implementation
of real algebraic numbers.

123

A Verified Implementation of Algebraic Numbers 377

Fig. 2 Internal type hierarchy for representing real algebraic numbers, including invariants and conversions
to real numbers

l1

l2

r1

r2

l3 r3

a1

a2

a3

x

f(x)

Fig. 3 Representing all roots a1, a2, and a3 of some polynomial f

5.1 Datatypes for Real Algebraic Numbers

For representing real algebraic numbers, we develop a hierarchy of four layers.
On the lowest, Layer 1 (cf. Fig. 2), we define the type real-alg-1 that represents a real

algebraic number a as a triple (f , l, r), where [l, r] is a rational interval in which only a is
a root of f . The function real-of-1 takes such a triple and gives back a :: real. This function
is defined only on triples that represents exactly one algebraic number, which is ensured as a
part of the invariant invariant-1. The invariant additionally demands that the representative
polynomials are irreducible and have positive leading coefficients, and that the lower- and
upper-bounds of the interval have the same sign. For instance, in Fig. 3 the three roots a1, a2,
and a3 of f are represented by the triples (f , l1, r1), (f , l2, r2), and (f , l3, r3), respectively,
as each interval [li , ri] contains exactly one root ai . Note also that the intervals may be
overlapping.

Layer 2 introduces the datatype real-alg-2, which takes a special treatment for rational
numbers, so that computations involving only rational numberswill not experience overheads
that would arise by manipulating roots of polynomials as in Layer 1. Hence, invariant-2

123

378 S. J. C. Joosten et al.

Fig. 4 Definitions and properties for negation illustrated for all layers

demands that the (f , l, r)-form is used only for algebraic numbers of degree at least 2. In
real-alg-2, we additionally store the index of the root, counted from the smallest to the largest.

Layer 3 introduces the type real-alg-3, which is identical to real-alg-2 but now invariant-2
is enforced by the type system.

Layer 4 introduces the quotient type real-alg, that identifies different representations of
the same number. Hence, the built-in equality of Isabelle/HOL on real-alg corresponds to
equality on the represented real numbers. We do not have this property in other layers, since
they still permit a number to be represented differently; e.g.,

√
2 is encoded by (x2 −2, 1, 2),

(x2 − 2, 1.4, 1.5), etc.
In each layer we define algebraic operations that are formalized in Sect. 3. Here we take

the computation of −a as a first simple example, cf. Fig. 4. Other arithmetic operations like
addition require factorization and root separation which will be discussed in Sect. 5.3.

In Layer 1, uminus-1 (f, l, r) computes the new representative polynomial poly-uminus f ,
and takes [−r ,−l] as the new interval. To satisfy the invariant that the leading coefficient is
positive, abs-int-poly, which just negates the polynomial if the leading coefficient is negative,
is applied. The correctness lemma states that the invariants are preserved and the desired −a
is represented.

In Layer 2, we perform a simple case-analysis on whether the represented number a is
rational or not. If it is, then we use the rational number −a, and otherwise invoke uminus-1
from Layer 1. Afterwards, real-alg-2 :: real-alg-1 ⇒ real-alg-2 is applied. This function
converts the triple representation into real-alg-2 by either extracting the rational root if f is
linear, or by computing the index of the root by invoking Sturm’s method.

Lifting the algorithms and the correctness lemma from Layer 2 to Layers 3 and 4 is then
immediate using Isabelle’s lifting and transfer package [14].

5.2 Comparison and Tightening Intervals

Asweworkonunique representative polynomials,we can immediately determine the equality
of two algebraic numbers in Layer 2: they are equal if the representative polynomials and

123

A Verified Implementation of Algebraic Numbers 379

l q

ra x

f(x)

Fig. 5 Comparing an algebraic number a and a rational number q. In this case, we know q < a since f (q)

and f (r) have different signs

the root indices match. This test is implemented as follows, and satisfies the corresponding
correctness statement.

fun equal-2 (Rational q) (Rational r) = (q = r)
| equal-2 (Irrational n (f, -, -)) (Irrational m (g, -, -)) = (f = g ∧ n = m)
| equal-2 (Rational -) (Irrational - -) = False
| equal-2 (Irrational - -) (Rational -) = False

Lemma 35 assumes invariant-2 x and invariant-2 y
shows equal-2 x y ←→ real-of-2 x = real-of-2 y

We can efficiently compare an algebraic number a and a rational number q . Suppose that
a is irrational and represented by (f , l, r). Then a = q is impossible as q is rational, so we
want to know whether a < q or q < a. It is trivial if q /∈ [l, r], and otherwise we compare
the signs of f (q) and f (r): we know a < q if the signs coincide, and q < a otherwise (see
Fig. 5).

Definition 10 compare-rat-1 q (f, l, r) ≡
if q < l then Lt else if q > r then Gt else
if sgn (ipoly f q) = sgn (ipoly f r) then Gt else Lt

Using this comparison with rational numbers, we can tighten the intervals to arbitrary
precision: by taking, e.g., q = l+r

2 one can halve the interval to [l, q] or [q, r], depending on
whether a < q or q < a.

Being able to tighten intervals, we can implement the floor �a� and ceiling �a� operations:
tighten the interval of a until it contains at most one integer point, and then use the sign-based
comparison to determine whether a is less or greater than the integer.

We can also compare two irrational algebraic numbers a and b by tightening intervals.
The implementation of the comparison functions4 for the first two layers is shown in Fig. 6.

In Layer 1, if a and b have disjoint intervals, then comparison is trivial. Otherwise
compare-1 tightens the intervals of a and b until they become disjoint. The procedure is
terminating only if a �= b, since intervals will never become disjoint if a = b. Hence
Isabelle’s partial-function command [16], that allows defining potentially nonterminating
procedures, becomes essential. In order to conveniently prove correctness, we define some
well-founded relations for inductive proofs, which are reused for various bisection algo-
rithms. For instance, we define a relation based on a decrease in the size of the intervals by
at least δ, where δ is the separation distance, i.e., the minimal distance of two distinct roots
of some polynomial.

4 The formalization differs slightly, since the value of sgn (ipoly p r) is carried around for efficiency.

123

380 S. J. C. Joosten et al.

Fig. 6 Comparison for the first two layers

In Layer 2, compare-2 invokes a suitable comparison function depending on rationality:
Isabelle’s standard compare for two rational numbers, compare-rat-1 if exactly one of the
inputs is rational, and compare-1 for two irrational numbers. Before invoking compare-1,
compare-2 first tests equality in order to ensure termination.

5.3 Polynomial Factorization and Root Separation

Recall the invariant of Layer 1: the representing polynomial must be irreducible and have
exactly one root in the provided interval.Hence, after synthesizing a polynomial f to represent
an algebraic number a, we must further ensure irreducibility of f and provide an interval in
which a is the only root of f .

For unary minus and multiplicative inverse, Lemmas 10 and 11 ensure irreducibility, and
moreover the obvious intervals [−r ,−l] and [r−1, l−1] work, where [l, r] is the interval for
the input. For other arithmetic operations from Sect. 3, the synthesized polynomial is not
generally irreducible, and obviously derived intervals may contain multiple roots.

We first establish irreducibility by a formalized polynomial factorization algorithm [7],
and obtain irreducible polynomials f1, · · · , fn , such that exactly one of them represents the
desired a. So the remaining task is to determine which fi has a as a root, and to provide an
interval in which a is the only root of fi .

We achieve the two goals in one go. Our algorithm maintains: the current interval [l, r],
which contains the desired a; a list F of candidate polynomials which have at least one root
in the interval; and the total number n of roots the candidates have in the interval.

The procedure returns if n = 1; in this case, F contains exactly one polynomial, and this
polynomial represents a. Otherwise, it tightens [l, r], and then updates n and simultaneously
excludes those factors from F that have no root in [l, r]. We will explain later in this section
how to count the number of real roots a polynomial f has in a given interval.

Note that this procedure terminates only if exactly one candidate polynomial has a as a
root. Consequently, we again use partial-function to define the procedure in Isabelle.

123

A Verified Implementation of Algebraic Numbers 381

How [l, r] is tightened depends on the actual operation we are computing. Hence we
model the algorithm abstractly using the two functional parameters:

bnd-get :: β ⇒ rat × rat
bnd-update :: β ⇒ β

The type variable β represents states, which contain sufficient information to maintain inter-
vals. The interval is retrieved by the function bnd-get, and bnd-update updates one state to
another in which a tighter interval is obtained.

For instance, if a is the addition of b and c, represented by (g, lb, rb) and (h, lc, rc), then
the state is a quadruple (lb, rb, lc, rc), bnd-get returns [lb + lc, rb + rc], and bnd-update
tightens intervals of b and c using the bisection algorithm tighten-poly-bounds of Sect. 5.2.
Multiplication a = b · c is treated in the same way, except that bnd-get returns the interval
[lb ·lc, rb ·rc]; here, themain bisection algorithm formultiplication is only invoked on positive
numbers, and a separate algorithm takes care of the signs.

Finally, for computing the n-th root a = n
√

b of a positive number b, the state is an interval
[la, ra] containing a, where initially la = ⌊

n
√

lb
⌋
and ra = ⌈

n
√

rb
⌉
. In every iteration of

bnd-update, we first compute the rational number m = la+ra
2 . We then compare m with a by

comparing mn with b. This detour is necessary, since the latter comparison can be computed
using compare-rat-1 from Sect. 5.2, whereas the former comparison is problematic since a
is not available. Finally, we update the interval [la, ra] to one of the tighter intervals [la, m],
[m, m], or [m, ra], depending on whether a < m, a = m, or m < a.

We present the correctness statement of the generic factor selection procedure only on
Layer 2 where the functions bnd-get and bnd-update are implicit arguments to select-correct-
factor-int-poly, and where bnd-updatei init is iterated function application of bnd-update on
input init.

Lemma 36 assumes converges-to (λ i. bnd-get (bnd-updatei init)) x
and select-correct-factor-int-poly init f = r and ipoly f x = 0 and f �= 0

shows invariant-2 r and real-of-2 r = x

The actual correctness proof in Layer 1 is a rather involved inductive proof; the well-
foundedness of the induction relation depends on the convergence of the bounds towards
a, and the statement uses 12 invariants that are maintained throughout the proof.

It remains to count how many roots a polynomial f has in a given interval. We implement
such a root-counting function rc f using Sturm’s method, with a special treatment for linear
polynomials.We extend the existing formalization byEberl [9],which takes a real polynomial
and real bounds, so that it can be applied on rational polynomials with rational bounds;
nevertheless, the number of real roots must be determined. This extension is crucial as we
later implement the real numbers by the real algebraic numbers viadata refinement [13]; at this
point we must not yet use real number arithmetic. The correctness of this extension is shown
mainly by proving that all algorithms utilized in Sturm’s method can be homomorphically
extended. For instance, for Sturm sequences we formalize the following result:

Lemma 37 sturm (real-of-rat-poly f) = map real-of-rat-poly (sturm-rat f)

For efficiency, we adapt the algorithm for our specific purpose. Sturm’s method works in
two phases: the first phase computes a Sturm sequence, and the second one computes the
number of roots by counting the number of sign changes on this sequence for both the upper
and the lower bounds of the interval. The first phase depends only on the input polynomial,
but not on the interval bounds. Therefore, for each polynomial f in the candidate list F
we precompute the Sturm sequence once, so that when a new interval is queried, only the

123

382 S. J. C. Joosten et al.

second phase of Sturm’s method has to be evaluated. This can be seen in the following code
equation:

Lemma 38 count-roots-interval-rat f = (
let fs = sturm-rat (map-poly rat-of-int f) (* precompute *)
in …(λ l r. sign-changes-rat fs l − sign-changes-rat fs r + . . .) …)

5.4 Implementing Real and Complex Numbers via Real Algebraic Numbers

Having the arithmetic operations on real algebraic numbers, we now provide code equations
to implement the real numbers via real algebraic numbers by data refinement, where real-of
:: real-alg ⇒ real is converted into a constructor in the generated code.

Lemma 39 (Code lemmas)

(real-of x) + (real-of y) = real-of (x + y)
(* similar code lemmas for =,<,−, ·,/,floor,etc. *)

Note that in Lemma 39, the left-hand side of the equality is addition for type real, whereas
the right is addition for type real-alg.

As a consequence, Isabelle users now can specify algorithms using algebraic operations on
type real andwill obtain executable codewhich uses our verified real algebraic number imple-
mentation. Similarly, one can prove a lemma over real numbers like (sqrt 2+ root 3 7)2 /∈ Q

by evaluation.
To implement complex algebraic numbers, we require nearly nothing: Isabelle implements

complex numbers as pairs of real numbers representing the real and imaginary part, and this
is possible also in the algebraic setting. Note that a complex number is algebraic if and
only if both the real part and the imaginary part are algebraic. Thus, all of the following
operations become executable on the complex numbers for free: +, −, ·, /,

√·, =, and
complex conjugate. These operations are already implemented via operations on the real
numbers, and computed by real algebraic numbers via data refinement. For instance, complex
square roots are computed as

√
x + yi =

√√
x2 + y2 + x

2
+

√√
x2 + y2 − x

2
i · sgn y

Another approach to implement complex algebraic numbers would be to use one repre-
senting polynomial in combination with a rectangle in the complex plane to uniquely identify
roots, instead of using two real algebraic numbers, each requiring its own representing poly-
nomial and interval. As most of our results have been formalized in a generic way, this would
become possible if one had replaced the bisection algorithms by similar methods to separate
complex roots, e.g., by formalizing results by Kronecker [23, Sect. 1.4.4]. Li provides such
a complex root counting algorithm in the AFP [17]. However, his verified implementation
currently has some limitations resulting in runtime errors, which makes it at least hard, to
use it as a bisection algorithm which must always succeed.

5.5 Displaying Algebraic Numbers

We provide two approaches to display real algebraic numbers, i.e., two functions show-real-
alg of type real-alg ⇒ string. The first one displays an approximative value of an algebraic

123

A Verified Implementation of Algebraic Numbers 383

number a. Essentially, the rational number �1000a�
1000 is computed and displayed as a string. For

instance,
√
2 is displayed as “∼ 1.414”.

The second approach displays an algebraic number without approximation, canonically
in form “root #n of f ”. For Layer 4 we have to prove that this approach actually defines a
function, i.e., f and n are uniquely defined by the represented algebraic number. This result
easily follows from the invariant that we use irreducible polynomials in combination with
their uniqueness, Lemma 2.

Besides this well-definedness result, we also prove soundness in the following sense. The
function show-real-alg first invokes a function real-alg-show-info :: real-alg ⇒ real-alg-
show-info where

datatype real-alg-show-info =
Rat-Info rat | Sqrt-Info rat rat | Real-Alg-Info (int poly) nat

It then converts these intermediate values into strings.
Whereas there is no soundness statement for the final show-real-alg, we prove the follow-

ing result for real-alg-show-info.

Lemma 40 assumes real-alg-show-info x = info and real-of x = a
shows info = Rat-Info r �⇒ a = of-rat r
and info = Sqrt-Info r s �⇒ a = of-rat r + sqrt (of-rat s)
and info = Real-Alg-Info f n �⇒

f represents a ∧ n = card {y. y ≤ a ∧ ipoly f y = 0 }

Using show-real-alg, we define a function for displaying values of type real and then provide
its executable implementation via a code equation.

Definition 11 show-real a ≡
if ∃x. a = real-of x then show-real-alg (THE x. a = real-of x)
else ′′transcendental number′′

Lemma 41 show-real (real-of x) = show-real-alg x

Using show-real, it is trivial to display complex numbers. Here we only present a simplified
definition. The actual definition produces nicer strings if the imaginary part or real part are
zero. In the definition, Isabelle’s list-append operator @ is used for string concatenation.

Definition 12 show-complex a ≡
show-real (Re a) @ ′′ + ′′ @ show-real (Im a) @ ′′i′′

6 Real and Complex Roots of Rational Polynomials

In this section, we provide executable functions which identify all real or complex roots of
an integer or rational polynomial, as illustrated in Example 1. Without loss of generality
we only consider integer polynomials, since every rational polynomial can be converted
into an integer polynomial with the same roots, namely by multiplying with the common
denominator of the coefficients.

Based on the root finding algorithms, we also provide complete real and complex poly-
nomial factorization algorithms, that work for polynomials with rational coefficients.

123

384 S. J. C. Joosten et al.

6.1 Real Roots of Integer Polynomials

We cannot yet represent the roots of an arbitrary polynomial f as root #1 of f , …, root #n of
f as in Example 1, since we have to establish the invariant that f is irreducible, and provide
an interval for each root.

Example 2 The polynomial f = −14+ 63x + 49x2 + −490x3 + 469x4 + 21x5 + −126x6

has three real roots. The algorithm for computing all roots of f will result in the rational
number 1

3 and the first two roots of g = 2+ 3x +−7x2 + x3 + 2x4, which are irrational and
are the unique roots of g in the intervals [−4,−2] and [−2, 0].

So, essentially the construction works in three steps:

1. integer polynomial factorization: f = −7 · (−1 + 3x)2 · g in Example 2
2. construction of initial bounds for roots: all roots of g are within [−8, 8]
3. bisection until one finds intervals for all roots: the roots of g are the unique roots of g in

the intervals [−4,−2] and [−2, 0]
For the first step we use again the formalized polynomial factorization algorithm. Then

we develop an algorithm that, given an irreducible polynomial f , produces a list of intervals
such that each interval contains exactly one root of f , and every root of f is contained in
one of them. Below we provide more details on the second and third step.

6.1.1 Root Bounds

Instead of searching the infinite real space for roots of a polynomial, we start with a closed
interval. There are some known bounds on the maximal absolute value of roots of a polyno-
mial. Among them we choose Cauchy’s bound, as it is efficient and easy to formalize, and
gives sufficient precision for our purpose.

The Cauchy bound C(f) of a non-zero polynomial f (x) = ∑m
i=0 fi x i is defined as

follows:

C(f) = 1 + max{| f0|, . . . , | fm−1|}
| fm |

Then for any root a of f , we have |a| ≤ C(f). In the implementation, we do not start with
the exact computed bound, which most often is a fraction. Instead, we start with the smallest
power of 2 such that 2n ≥ C(f). The advantage is that then the bisection algorithm avoids
fractions as long as possible. In Example 2, C(g) = 9

2 and hence, we choose 8 as the initial
bound.

Definition 13 root-bound f ≡ let
m = degree f;
n = 1 + div-ceiling (max-list (map (λ i. |coeff f i|) [0..<m])) |lead-coeff f|

in of-int (2log-ceiling 2 n)

Lemma 42 assumes root-bound f = B and degree f �= 0
shows ipoly f x = 0 �⇒ norm x ≤ of-rat B and B ≥ 0

123

A Verified Implementation of Algebraic Numbers 385

6.1.2 Root Separation

Nowwe separate the roots using a bisection algorithm. Themain idea is similar to the interval
tightening algorithm in Sect. 5.3. The difference is that here we keep track of all the roots.
Hence the algorithm stores two lists: a work list of intervals fromwhich roots of input f have
to be found, and a result list which stores the already found intervals each containing exactly
one root of f . Initially the work list is a singleton containing the interval [−B, B] where B
is the initial bound explained above, and the result list is empty.

In every iteration the algorithm picks up an interval [l, r] from the work list, and calls
the root-counting function rcf l r to determine the number n of real roots of f within this
interval. If n = 0 then the algorithm throws away this interval and carries on to the next of
the work list. If n = 1 then a root is identified; the representation (f , l, r) is added to the
result list. Finally, if n > 1 then the algorithm splits the interval into [l, l+r

2] and [l+r
2 , r] and

pushes them back to the work list. The overlap of the intervals is not problematic, since the
bisection algorithm is only invoked on irreducible polynomials of degree at least 2, which
cannot have a rational root like l+r

2 . In particular, the algorithm will return a distinct list of
roots.

The bisection algorithm is defined via partial-function for efficiency reasons. The root
counting function rcf , that is obtained after the first phase of Sturm’s method, is passed as a
parameter to the main procedure, in order to avoid recomputation. If the algorithm is invoked
with an unexpected function, e.g., one that always yields n = 2, then it is nonterminating.

We prove that, if correct arguments are passed, then the result of the bisection algorithm is
as intended. To this end, we perform well-founded induction on the work list. Here we define
δ as in the bisection algorithm of Sect. 5.2, but now combine the size-measure of intervals
with the multiset-extension of a well-founded order [15]. This is required, since if n > 1 we
replace one interval by two smaller ones.

The final correctness is stated as follows.

Lemma 43 assumes f �= 0
shows set (real-roots-of-int-poly f) = {a. ipoly f a = 0}
and distinct (real-roots-of-int-poly f)

6.2 Complex Roots of Integer Polynomial

In contrast to Sect. 5.4, where complex algebraic numbers are easily implemented via real
algebraic numbers, it is not so trivial to develop a complex-number counterpart of real-roots-
of-int-poly, i.e., a method to identify all complex roots of an integer polynomial f .

To identify complex roots, we formalize the following algorithm. It is based on a construc-
tive proof of the fact that a complex number is algebraic if and only if its real and imaginary
part are algebraic [22, Corollary 7.3].

– Consider a complex root a + bi of f for a, b ∈ R. We have

2a = (a + bi) + (a − bi)

and since both a + bi and a − bi are roots of f , 2a is a root of poly-add f f. Hence the
following polynomial g has a as a root:

g = poly-mult-rat 1
2 (poly-add f f)

123

386 S. J. C. Joosten et al.

Similarly, 2i · b = (a + bi) − (a − bi) is a root of poly-add f (poly-uminus f), and as 2i
is represented by polynomial 4 + x2, the following polynomial h has b as a root:

h = poly-div (poly-add f (poly-uminus f)) [:4, 0, 1:]

– Let C be the set of complex numbers a + bi with a ∈ real-roots-of-int-poly g and
b ∈ real-roots-of-int-poly h. Then C contains at least all roots of f . Return {c ∈
C . f (c) = 0} as the final result.

The actual formalization of complex-roots-of-int-poly contains several special measures to
improve efficiency, e.g., factorizations are performed in between, explicit formulas are used,
symmetries are exploited, etc. In particular, we explain how we efficiently compute {c ∈
C . f (c) = 0} from C .

Since we have now executable complex algebraic operations, one can in principle eval-
uate f (c) and test whether it is 0 or not. A drawback of this approach is the demand for
manipulating polynomials of high degree. For instance, when testing f (c) = 0 in Example 1,
complex algebraic numbers like c4 occur. These result in factorization problems for integer
polynomials of degree 144.

Instead, we formalize the following algorithm based on interval arithmetic.

– For each c ∈ C , extract the real intervals Ir and Ii from the internal representation of
the real and imaginary part, respectively. Use interval arithmetic to test whether 0 ∈
f (Ir + Ii i). If 0 is not contained in the interval, remove c from C .

– If |C | = degree(f), return C .
– Tighten all bounds of C so that the extracted intervals will be half of the previous size

and start again.

The filter algorithm is formalized on Layer 3, since it is the highest layer which still permits
to access the internal interval bounds. Its termination is proven by showing some conver-
gence properties, so that in particular all non-roots are eventually detected and removed. The
correctness result of the complex-roots-of-int-poly looks as in the real case.

Lemma 44 assumes f �= 0
shows set (complex-roots-of-int-poly f) = {a. ipoly f a = 0}
and distinct (complex-roots-of-int-poly f)

6.3 Factorization of Polynomials overC andR

With the help of the complex roots algorithm complex-roots-of-int-poly and the fundamental
theorem of algebra, we further develop two algorithms that factor polynomials with rational
coefficients overC andR, respectively. Factorization overC is easy: every factor corresponds
to a root. Hence, the algorithm and the proof mainly take care of the multiplicities of the roots
and factors. Also for factorization over R, we first determine the complex roots. Afterwards,
we extract all real roots and group each pair of complex conjugate roots. Here, the main work
is to prove that for each complex root c, its multiplicity is the same as the multiplicity of the
complex conjugate of c.

7 Experiments

Nowwe experimentally evaluate our implementation.We compare the following three imple-
mentations of algebraic numbers:

123

A Verified Implementation of Algebraic Numbers 387

Table 2 Total time for example computations with algebraic numbers

Experiment Old version New version Mathematica

(1) Examples in [18, Fig. 3] 0.032s 0.016s 0.061s

(2) {norm (x) | x ∈ C ∧ 1 + 2x + 3x4 = 0} 21.941s 0.207s 0.654s

(3)
∑10

i=1
√

i 0.422s 0.117s 0.070s

(4)
∑6

i=1
3√i 41.779s 19.902s 0.081s

(5) (
∑9

i=1
√

i) − (
∑8

i=1
√

i) 26.459s 2.261s 0.000s

– Old version refers to our verified implementation as described in the preliminary version
of this paper [24].

– New version refers to our current implementation of algebraic numbers as described in
this paper.

– Mathematica refers to Wolfram Mathematica 11. Here, we invoke the methods
RootReduce and IsolatingInterval in order to obtain the representing polyno-
mial and an interval which uniquely identifies the root, respectively.

Differences with the old version include:

– The type of representing polynomials are now int poly rather than rat poly.
– We incorporated the verified factorization algorithm [7] while the old version uses an

unverified one that does not ensure irreducibility.
– We introduced the sign-based comparison technique (Sect. 5.2) while the old version

uses Sturm’s method. Due to this, the old version has to keep Sturm sequences in internal
representations while the new version does not.

– We introduced an algorithm that finds the correct factor and a valid interval in one go
(Sect 5.3),while the old version performs these tasks sequentially: it first tightens intervals
until undesired roots are excluded, and then applies factorization and selects the correct
factor.

– We formalized Brown and Traub’s subresultant PRS algorithm (Sect. 4), while the old
version uses a variant of Collin’s primitive PRS algorithm.

– We apply interval arithmetic for filtering the complex roots of a polynomial from a list
of candidates. In contrast, the old version utilizes algebraic number arithmetic.

All of our implementations have been tested using extracted Haskell code which has been
compiled by GHC version 8.2.1 using ghc -O2. The experiments with Mathematica have
been conducted within the graphical user interface using Mathematica’s Timing routine.
All experiments in this paper have been executed on a 3.2GHz 8-Core Intel Xeon W with
64GB of RAM running macOS High Sierra.

The results of our experiments in Table 2 illustrate that our new implementation is signif-
icantly faster than the old implementation.

The big difference in experiment (2) is due to the use of interval arithmetic instead of
expensive complex algebraic number computations (Sect. 6.2). For the other experiments,
the improvements aremainly due to optimizations of the bisection algorithms and the resultant
computation.

In Table 3 we report on detailed profiling information on experiments (4) and (5). The
improvements in tightening intervals is due to the sign-based method (Sect. 5.2) and the
combined algorithm which tightens intervals and selects correct factors at the same time
(Sect. 5.3). In experiment (5) we also see that the subresultant PRS algorithm of Sect. 4

123

388 S. J. C. Joosten et al.

Table 3 Timing of individual sub-algorithms in percentage of total runtime

Experiment Algorithm Old version (%) New version (%)

(4) Tightening intervals 59.3 11.5

(4) Resultant 0.1 0.0

(4) Factorization 40.1 88.4

(5) Tightening intervals 13.3 1.5

(5) Resultant 76.1 35.9

(5) Factorization 10.7 62.6

significantly improves the computation time of resultants. As a consequence of our opti-
mizations, polynomial factorization is the main bottleneck of the new implementation.

Table 2 also reveals that there is further room for efficiency improvements in order to
compete with the commercial product Mathematica. In particular in Experiment (5), Math-
ematica can first symbolically simplify the expression to

√
9 which is then easily computed.

In contrast, our implementation computes the difference of two real algebraic numbers, each
having minimal representatives of degree 16. Still, also our implementation has its benefit:
it is formally verified.

8 Conclusion

We developed verified algorithms for real and complex algebraic numbers in Isabelle/HOL.
These include all the algebraic operations, algorithms to identify complex roots of rational
polynomials, and to uniquely present algebraic numbers as strings. The formalization is
available to every Isabelle user, and the implementation is available to every programmer as
verified Haskell code.

As for future work, a formalization of an equivalent to Sturm’s method for the complex
numbers would admit to represent the roots in Example 1 just as root #(1,2,3,4) of f , without
the need for high-degree polynomials for the real and imaginary part. Moreover, a more
efficient verified polynomial factorization algorithm would be welcome, since this algorithm
is currently the most time-consuming part when computing algebraic numbers.

Finally, it would be useful to algorithmically prove that the complex algebraic numbers are
algebraically closed, so that one is not restricted to rational coefficients in the factorization
algorithms over R and C.

Acknowledgements Open access funding provided by Austrian Science Fund (FWF).

OpenAccess This article is distributed under the terms of the Creative Commons Attribution 4.0 International
License (http://creativecommons.org/licenses/by/4.0/),which permits unrestricted use, distribution, and repro-
duction in any medium, provided you give appropriate credit to the original author(s) and the source, provide
a link to the Creative Commons license, and indicate if changes were made.

References

1. Avanzini, M., Sternagel, C., Thiemann, R.: Certification of complexity proofs using CeTA. In: RTA 2015.
pp. 23–39. LIPIcs 36 (2015)

2. Brown, W.S.: The subresultant PRS algorithm. ACM Trans. Math. Softw. 4(3), 237–249 (1978)

123

http://creativecommons.org/licenses/by/4.0/

A Verified Implementation of Algebraic Numbers 389

3. Brown, W.S., Traub, J.F.: On Euclid’s algorithm and the theory of subresultants. J. ACM 18(4), 505–514
(1971)

4. Cohen, C.: Construction of real algebraic numbers in Coq. In: ITP 2012. LNCS, vol. 7406, pp. 67–82
(2012)

5. Cohen, C., Djalal, B.: Formalization of a Newton series representation of polynomials. In: CPP 2016. pp.
100–109. ACM (2016)

6. Cohen, C., Mahboubi, A.: Formal proofs in real algebraic geometry: from ordered fields to quantifier
elimination. Log. Methods Comput. Sci. 8(1:02), 1–40 (2012)

7. Divasón, J., Joosten, S., Thiemann, R., Yamada, A.: A formalization of the Berlekamp-Zassenhaus fac-
torization algorithm. In: CPP 2017, pp. 17–29 (2017)

8. Ducos, L.: Optimizations of the subresultant algorithm. J. Pure Appl. Algebra 145, 149–163 (2000)
9. Eberl, M.: A decision procedure for univariate real polynomials in Isabelle/HOL. In: CPP 2015. pp.

75–83. ACM (2015)
10. Eberl, M.: Linear recurrences. Archive of Formal Proofs (Oct 2017), http://isa-afp.org/entries/Linear_

Recurrences.html, Formal proof development
11. von zur Gathen, J., Gerhard, J.: Modern computer algebra, 2nd edn. Cambridge University Press, Cam-

bridge (2003)
12. Giesl, J., Mesnard, F., Rubio, A., Thiemann, R., Waldmann, J.: Termination competition (termCOMP

2015). In: CADE 2015. LNCS, vol. 9195, pp. 105–108 (2015)
13. Haftmann, F., Krauss, A., Kunčar, O., Nipkow, T.: Data refinement in Isabelle/HOL. In: ITP 2013. LNCS,

vol. 7998, pp. 100–115 (2013)
14. Huffman, B., Kunčar, O.: Lifting and transfer: a modular design for quotients in Isabelle/HOL. In: CPP

2013. LNCS, vol. 8307, pp. 131–146 (2013)
15. Jouannaud, J.P., Lescanne, P.: On multiset orderings. Inf. Process. Lett. 15(2), 57–63 (1982)
16. Krauss, A.: Recursive definitions of monadic functions. In: PAR 2010. EPTCS, vol. 43, pp. 1–13 (2010)
17. Li, W.: Count the number of complex roots. Archive of Formal Proofs (Oct 2017), http://isa-afp.org/

entries/Count_Complex_Roots.html, Formal proof development
18. Li, W., Paulson, L.C.: A modular, efficient formalisation of real algebraic numbers. In: CPP 2016. pp.

66–75. ACM (2016)
19. Mahboubi, A.: Proving formally the implementation of an efficient gcd algorithm for polynomials. In:

IJCAR 2006. LNCS, vol. 4130, pp. 438–452 (2006)
20. Mishra, B.: Algorithmic Algebra. Texts and Monographs in Computer Science. Springer, New York

(1993)
21. Nipkow, T., Paulson, L., Wenzel, M.: Isabelle/HOL—A Proof Assistant for Higher-Order Logic, LNCS,

vol. 2283. Springer (2002)
22. Niven, I.: Irrational Numbers. No. 11 in Carus Mathematical Monographs, Mathematical Association of

America (1956)
23. Prasolov, V.V.: Polynomials. Springer (2004)
24. Thiemann, R., Yamada, A.: Algebraic numbers in Isabelle/HOL. In: ITP 2016. LNCS, vol. 9807, pp.

391–408 (2016)
25. Thiemann, R., Yamada, A.: Formalizing Jordan normal forms in Isabelle/HOL. In: CPP 2016. pp. 88–99.

ACM (2016)

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

123

http://isa-afp.org/entries/Linear_Recurrences.html
http://isa-afp.org/entries/Linear_Recurrences.html
http://isa-afp.org/entries/Count_Complex_Roots.html
http://isa-afp.org/entries/Count_Complex_Roots.html

	A Verified Implementation of Algebraic Numbers in Isabelle/HOL
	Abstract
	1 Introduction
	2 Representation of Algebraic Numbers
	2.1 Unique Representation
	2.2 Unique Representation or Not?

	3 Synthesizing Representative Polynomials
	3.1 Constants
	3.2 Negation and Inverse
	3.3 Multiplication and Addition with Rational Numbers
	3.4 n-th Root
	3.5 Addition and Multiplication of Algebraic Numbers
	3.5.1 Resultant has Desired Roots
	3.5.2 Resultant is Non-Zero

	4 Computing the Resultant
	5 Real Algebraic Numbers
	5.1 Datatypes for Real Algebraic Numbers
	5.2 Comparison and Tightening Intervals
	5.3 Polynomial Factorization and Root Separation
	5.4 Implementing Real and Complex Numbers via Real Algebraic Numbers
	5.5 Displaying Algebraic Numbers

	6 Real and Complex Roots of Rational Polynomials
	6.1 Real Roots of Integer Polynomials
	6.1.1 Root Bounds
	6.1.2 Root Separation

	6.2 Complex Roots of Integer Polynomial
	6.3 Factorization of Polynomials over mathbbC and mathbbR

	7 Experiments
	8 Conclusion
	Acknowledgements
	References

