
Journal of Automated Reasoning (2020) 64:461–484
https://doi.org/10.1007/s10817-018-09503-x

KSP A Resolution-Based Theorem Prover for Kn: Architecture,
Refinements, Strategies and Experiments

Cláudia Nalon1 · Ullrich Hustadt2 · Clare Dixon2

Received: 31 October 2018 / Accepted: 28 November 2018 / Published online: 17 December 2018
© The Author(s) 2018

Abstract
In this paper we describe the implementation of KSP, a resolution-based prover for the
basic multimodal logic Kn . The prover implements a resolution-based calculus for both local
and global reasoning. The user can choose different normal forms, refinements of the basic
resolution calculus, and strategies. We describe these options in detail and discuss their
implications. We provide experiments comparing some of these options and comparing the
prover with other provers for this logic.

Keywords Modal logics · Theorem proving · Resolution method

1 Introduction

Modal logics have long been used in Computer Science for describing and reasoning about
complex systems, including programming languages [42], knowledge representation and
reasoning [8,21,43], verification of distributed systems [18–20] and terminological reasoning
[46]. Themost basic of such logics is themultimodal Kn , which extends the classical language
with new operators, �a and ♦a , with a ∈ A = {1, . . . , n}, a fixed finite set of indexes. A
formula ϕ is interpreted with respect to a Kripke Structure, which comprises a set of worlds,
a set of relations over the worlds, and an evaluation function which assigns an interpretation
to every atomic formula at every world. This interpretation can then be lifted from atomic

C. Dixon was partially supported by the EPSRC funded RAI Hubs FAIR-SPACE (EP/R026092/1) and RAIN
(EP/R026084/1), and the EPSRC funded programme Grant S4 (EP/N007565/1).

B Clare Dixon
CLDixon@liverpool.ac.uk

Cláudia Nalon
nalon@unb.br

Ullrich Hustadt
U.Hustadt@liverpool.ac.uk

1 Department of Computer Science, University of Brasília, Brasília, DF, Brazil

2 Department of Computer Science, University of Liverpool, Liverpool, UK

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10817-018-09503-x&domain=pdf
http://orcid.org/0000-0002-9792-5346
http://orcid.org/0000-0002-0455-0267
http://orcid.org/0000-0002-4610-9533

462 C. Nalon et al.

formulae to arbitrary formulae. Three related reasoning tasks have been extensively discussed
in the literature:

(i) given a formula ϕ, the local satisfiability problem consists of showing that there is a
model and a world in it that satisfies ϕ;

(ii) given a formula ϕ, the global satisfiability problem consists of showing that there is a
model such that all worlds in this model satisfy ϕ;

(iii) given a set of formulae Γ and a formula ϕ, the local satisfiability of ϕ under the global
constraints (or assumptions) Γ consists of showing that there is a model that globally
satisfies all formulae in Γ and that there is a world in this model that satisfies ϕ.

Those reasoning tasks are far from trivial. The local satisfiability problem for the multi-
modal propositional case is PSPACE-complete [21]. The global satisfiability and the local
satisfiability under global constraint problems for Kn are EXPTIME-complete [50].

Several proof methods and tools for reasoning in Kn exist, either in the form of meth-
ods applied directly to the modal language [17,27] or obtained by translation into a more
expressive target language (First-Order Logic [24] or Hybrid Logic [2], for instance).
Translation-based methods benefit not only from the existence of available theorem provers,
therefore not requiring additional effort for implementation, but also the strategies available
for the target language can be almost immediately applied to the translated problem [23]. This
is not the case for direct methods, where strategies need to be adapted to deal with the under-
lying normal forms and inference rules. However, the translation into a more expressive logic
combined with a standard proof method for that logic may involve a computational overhead
and may not necessarily result in a decision procedure for the set of translated formulae.
Additionally, standard proof methods for the target logic may not normally include all opti-
misations and strategies that can be included in a direct method. For example, here we employ
‘hyper-resolution-like’ inferences that avoid the generation of intermediate resolvents and
thereby reduce the search space.

We will focus on the resolution-based methods for Kn which are presented in [33,34].
Both calculi are clausal: a formula to be tested for satisfiability is first translated into a
normal form, to which a set of inference rules are applied. The inference rules applied to
propositional clauses (i.e. those where modal operators do not occur) are basically variants of
the binary resolution rule [45]. For dealing with modal clauses, a set of hyper-resolution rules
[44] are applied to modal and propositional clauses. Themain difference between those proof
methods resides in their normal form: in [33], for completeness, all clauses are considered for
application of the resolution rules; whilst in [34], because clauses are labelled, the resolution
rules only need to be applied when the labels of clauses can be unified. Differently from other
calculi which use labels for guiding the application of inference rules [3,5,10,11,54,55], the
labels in the clausal form given in [34] do not refer to worlds, but to the modal layer (i.e. the
distance from the root of a model) where a subformula holds.

Both proof methods have been implemented in our prover, KSP [36], a resolution-based
prover for the multi-modal logic K. The structure of the normal form restricts application
of the resolution inference rules reducing the search space whilst remaining complete. The
prover also uses the set of support strategy [56], a strategy that requires that the set of clauses
is partitioned in two sets and, then, restricts that clauses used as premises for resolution
inferences are from different sets in this partition. For the modal case, the use of labels
relating to modal layer of subformulae allows us to restrict clause selection even further.
The prover also incorporates a range of simplification techniques and refinements intended
to improve efficiency of the prover. Here, we concentrate on the implementation aspects of
those techniques and refinements, further discussing the architecture of the prover, a variety

123

KSP A Resolution-Based Theorem Prover for Kn : Architecture… 463

of choices available to the user, and their impact on the efficiency of the prover. The resulting
prover outperforms other modal provers for formulae that have a high degree of nesting of
modal formulae. This paper extends the work in [35] providing full details of the prover, its
main control loop, pre-processing options, notions of redundancy, refinements and strategies.
The prover is based on the calculus presented in [34] and its sources are available at [36]. We
also provide experimental results comparing KSP with other provers and analysing some of
the combinations of refinements and strategies. The results update and extend those in [35]
by using more recent versions of the provers involved, presenting additional experimental
results and considering the performance of portfolios of provers.

The paper is organised as follows. We introduce the syntax and semantics of Kn in Sect. 2.
In Sects. 3 and 4 we briefly describe the normal form and the calculus. Section 5 describes
the available strategies and their implementations. The evaluation of strategies and of the
performance of the prover compared to existing tools are given in Sect. 6. We summarise our
results and provide conclusions in Sect. 7.

2 Language

Let A = {1, . . . , n}, n ∈ N, be a finite fixed set of indexes and P = {p, q, s, t, p′, q ′, . . .}
be a denumerable set of propositional symbols. The set of well-formed formulae, WFFK , is
the least set such that every p ∈ P is in WFFK ; if ϕ and ψ are in WFFK , then so are ¬ϕ,

(ϕ ∧ ψ), (ϕ ∨ ψ), �a ϕ, and ♦a ϕ for each a ∈ A. The formulae false, true, (ϕ ⇒ ψ), and
(ϕ ⇔ ψ) are introduced as the usual abbreviations for (ϕ ∧ ¬ϕ),¬false, and (¬ϕ ∨ ψ), and
((ϕ ⇒ ψ) ∧ (ψ ⇒ ϕ)), respectively (where ϕ,ψ ∈ WFFK).

A literal is either a propositional symbol or its negation; the set of literals is denoted
by L . We denote by ¬l the complement of the literal l ∈ L , that is, ¬l denotes ¬p if l is
the propositional symbol p, and ¬l denotes p if l is the literal ¬p. A modal literal is either
�a l or ♦a l, where l ∈ L and a ∈ A. The modal depth of a formula is recursively defined as
follows:

Definition 1 Let ϕ,ψ ∈ WFFK be well-formed formulae. The modal depth of a formula is
given by the functionmdepth : WFFK −→ N, where:

– mdepth(p) = 0, for p ∈ P;
– mdepth(¬ϕ) = mdepth(ϕ);
– mdepth(ϕ ∧ ψ) = max(mdepth(ϕ),mdepth(ψ));
– mdepth(ϕ ∨ ψ) = max(mdepth(ϕ),mdepth(ψ));
– mdepth(�a ϕ) = 1 + mdepth(ϕ);
– mdepth(♦a ϕ) = 1 + mdepth(ϕ).

The modal level of a subformula is given relative to its position in the syntactic tree of its
superformula.

Definition 2 Let ϕ, ϕ′ be well-formed formulae. Let Σ be the alphabet {1, 2, .} and Σ∗
the set of all finite sequences over Σ . The empty sequence in Σ∗ is denoted by ε. Let

τ : WFFK × Σ∗ × {+,−} × N −→ 2
WFFK×Σ∗×{+,−}×N

be the partial function inductively
defined as follows (where λ ∈ Σ∗, pol ∈ {+,−}, ml ∈ N, and the complement of a symbol
in {+,−} is given as comp(+) = −, comp(−) = +):

– τ(p, λ, pol,ml) = {(p, λ, pol,ml)}, for p ∈ P;

123

464 C. Nalon et al.

– τ(¬ϕ, λ, pol,ml) = {(¬ϕ, λ, pol,ml)} ∪ τ(ϕ, λ.1, comp(pol),ml);
– τ(�a ϕ, λ, pol,ml) = {(�a ϕ, λ, pol,ml)} ∪ τ(ϕ, λ.1, pol,ml + 1);
– τ(♦a ϕ, λ, pol,ml) = {(♦a ϕ, λ, pol,ml)} ∪ τ(ϕ, λ.1, pol,ml + 1);
– τ(ϕ∧ϕ′, λ, pol,ml) = {(ϕ∧ϕ′, λ, pol,ml)}∪τ(ϕ, λ.1, pol,ml)∪τ(ϕ′, λ.2, pol,ml);
– τ(ϕ∨ϕ′, λ, pol,ml) = {(ϕ∨ϕ′, λ, pol,ml)}∪τ(ϕ, λ.1, pol,ml)∪τ(ϕ′, λ.2, pol,ml).

The function τ applied to (ϕ, ε,+, 0) returns the annotated syntactic tree for ϕ, where each
node is uniquely identified by a subformula, its path order (or its position) in the tree, its
polarity, and its modal level.

Definition 3 Let ϕ be a formula and let τ(ϕ, ε,+, 0) be its annotated syntactic tree. If
(ϕ′, λ, pol,ml) ∈ τ(ϕ, ε,+, 0), then themodal level ofϕ′ inϕ is given bymlevel(ϕ, ϕ′, λ) =
ml and the polarity of ϕ′ in ϕ is given by pol(ϕ, ϕ′, λ) = pol.

If mlevel(ϕ, ϕ′, λ) = ml we say that ϕ′ at position λ of ϕ occurs at the modal level ml.
For instance, p occurs three times in the formula �a �a (p ∧ (¬�a p ∨ ♦a p)), at position
1.1.1 at modal level 2; and at positions 1.1.2.1.1.1 and 1.1.2.2.1 at modal level 3. Let ϕ′ be
a subformula at position λ of a formula ϕ. If pol(ϕ, ϕ′, λ) = +, we say that ϕ′ has positive
polarity at λ. Similarly, ifpol(ϕ, ϕ′, λ) = −, we say that ϕ′ has negative polarity at λ. If for all
positions λ at themodal levelml, we have that either pol(ϕ, ϕ′, λ) = + or pol(ϕ, ϕ′, λ) = −,
then ϕ′ is said to be pure at the modal level ml. Finally, if ϕ′ is pure at all modal levels, then
ϕ′ is said to be a pure. For example, taking ϕ to be the formula �a �a (p ∧ (¬�a p ∨ ♦a p))
above, then p occurs only with positive polarity at modal level 2 and with both negative and
positive polarity at the modal level 3. Thus, p is pure at the modal level 2, but it is not pure
at the modal level 3 (hence, it is not pure when considering the whole formula). A literal l is
pure at the modal level ml if is either of the form p or ¬p and p is pure at the modal level
ml. If a literal l is pure at all modal levels, then we say l is a pure literal.

Modal formulae are interpreted over (rooted) Kripke models:

Definition 4 A Kripke model M for n agents over P is given by a tuple

(W , w0, R1, . . . , Rn, π),

whereW is a set of possibleworldswith a distinguished worldw0, each accessibility relation
Ra is a binary relation onW such that their union is a tree with root w0, and π : W → (P →
{true, false}) is a function which associates with each world w ∈ W an interpretation to
propositional symbols.

Definition 5 Satisfaction of a formula at a world w of a model M is defined inductively, as
follows:

– (M, w) |� p if, and only if, π(w)(p) = true, where p ∈ P;
– (M, w) |� ¬ϕ if, and only if, (M, w)
|� ϕ;
– (M, w) |� (ϕ ∧ ψ) if, and only if, (M, w) |� ϕ and (M, w) |� ψ ;
– (M, w) |� (ϕ ∨ ψ) if, and only if, (M, w) |� ϕ or (M, w) |� ψ ;
– (M, w) |� �a ϕ if, and only if, for all w′, wRaw

′ implies (M, w′) |� ϕ;
– (M, w) |� ♦a ϕ if, and only if, there is w′ such that wRaw

′ and (M, w′) |� ϕ.

Let M = (W , w0, R1, . . . , Rn, π) be a model. A formula ϕ is locally satisfied in M , denoted
by M |�L ϕ, if (M, w0) |� ϕ. The formula ϕ is locally satisfiable if there is a model M such
that (M, w0) |� ϕ. A formula ϕ is globally satisfied in M , denoted by M |�G ϕ, if for all
w ∈ W , (M, w) |� ϕ. A formula ϕ is said to be globally satisfiable if there is a model M

123

KSP A Resolution-Based Theorem Prover for Kn : Architecture… 465

such that M globally satisfies ϕ. Satisfiability of a set of formulae is defined as usual. Given
a set of formulae Γ , a formula ϕ is locally satisfiable under global assumptions Γ , if there
is a model M such that M |�G Γ and M |�L ϕ.

A model M = (W , w0, R1, . . . , Rn, π) is tree-like if
⋃n

a=1 Ra is a tree, i.e. a directed
acyclic graph (with root w0). As a formula is locally satisfiable if, and only if, it is locally
satisfiable in a tree-likemodel [21], from nowonwewill only consider such a class ofmodels.
We denote by depth(w) the length of the unique path from w0 to w through the union of
the accessibility relations in M . We call a modal layer the equivalence class of worlds at the
same depth in a model.

We note that checking the local satisfiability of a formula ϕ can be reduced to the problem
of checking the local satisfiability of its subformulae at the modal layer of a model which
corresponds to the modal level where those subformulae occur (see [1]). Due to this close
correspondence of modal layer and modal level we use the terms interchangeably.

Also, checking the global satisfiability of ϕ can be reduced to checking the local satisfia-
bility of ϕ at all modal layers (up to an exponential distance from the root) of a model [14,50].
The following definitions and results are needed later. Let K∗

n be the extension of Kn with
an additional operator �∗ , the universal operator. Let M = (W , w0, R1, . . . , Rn, π) be
a tree-like model for Kn . The model M∗ is the tuple (W , w0, R1, . . . , Rn, R∗, π), where
R∗ = W × W . A formula �∗ ϕ is locally satisfied at the world w in the model M∗, written
(M∗, w) |�L �∗ ϕ, if, and only if, for all w′ ∈ W , we have that (M∗, w′) |� ϕ. Given these
definitions, for ϕ inWFFK , deciding M |�G ϕ is equivalent to deciding M∗ |�L �∗ ϕ. Also,
deciding if a formula ϕ is satisfiable under the global assumptionsΓ = {γ1, . . . , γm},m ∈ N,
is equivalent to deciding M∗ |�L ϕ ∧ �∗ (γ1 ∧ . . . ∧ γm).

Thus, a uniform approach based on modal levels can be used to deal with all satisfiability
problems.

3 Layered Normal Form

The calculi presented in [33,34] are both clausal. We present the normal form described in
[34], as this normal form can be also used to simulate the one given in [33]. A formula to be
tested for local or global satisfiability is first translated into a normal form called Separated
Normal Form with Modal Levels, SNFml . A formula in SNFml is a conjunction of clauses
labelled by the modal level at which they occur. We write ml : ϕ to denote that ϕ holds
at the modal level ml ∈ N ∪ {∗}. By ∗ : ϕ we mean that ϕ holds at all modal levels.
Formally, let WFFml

K be the set of formulae ml : ϕ such that ml ∈ N ∪ {∗} and ϕ ∈ WFFK .
Let M∗ = (W , w0, R1, . . . , Rn, R∗, π) be a model and ϕ ∈ WFFK . Satisfiability of labelled
formulae is given as follows:

– M∗ |� ml : ϕ if, and only if, for all worlds w ∈ W such that depth(w) = ml, we have
〈M∗, w〉 |� ϕ;

– M∗ |� ∗ : ϕ if, and only if, M∗ |� �∗ ϕ.

Note that labels in a formula work as a kind of weak universal operator, allowing us to talk
about formulae that are satisfied at a given modal layer.

Clauses in SNFml are in one of the following forms:

– Literal clause ml : ∨r
b=1 lb

– Positive a-clause ml : l ′ ⇒ �a l
– Negative a-clause ml : l ′ ⇒ ♦a l

123

466 C. Nalon et al.

Table 1 The translation function ρ

whereml ∈ N∪{∗} and l, l ′, lb ∈ L . Clauses are kept in simplified form, that is, no duplicate
literals are allowed and a clause such as ml : C ∨ l ∨ ¬l simplifies to ml : true. As the
disjunction operator is commutative, associative, and idempotent, simplification takes place
regardless of the order of literals in a clause. Positive and negative a-clauses are together
known asmodal a-clauses; the index a may be omitted if it is clear from the context. A literal
clause ml : C is said to be positive (resp. negative) if all literals l occurring in C are of the
form p (resp. ¬p), for p ∈ P .

Let ϕ be a formula in the language of Kn . In the following, we assume ϕ is in Negation
Normal Form (NNF), that is, a formula where the operators are restricted to ∧, ∨, �a , ♦a
and ¬; also, only propositions are allowed in the scope of negations. The transformation of a
formula ϕ into SNFml is achieved by recursively applying rewriting and renaming [41]. Let
ϕ be a formula and t a propositional symbol not occurring in ϕ. For local satisfiability, the
translation of ϕ is given by 0 : t ∧ ρ(0 : t ⇒ ϕ), where t is a new propositional symbol and
the transformation function ρ : WFFml

K −→ WFFml
K is defined in Table 1. We refer to clauses

of the form 0 : D, for a disjunction of literals D, as initial clauses. For global satisfiability,
the translation of ϕ is given by ∗ : t ∧ ρ(∗ : t ⇒ ϕ) where t is a new propositional symbol.
For testing the satisfiability of ϕ under global assumptions Γ = {γ1, . . . , γm}, m ∈ N, the
translation is given by ∗ : t ∧ ρ(0 : t ⇒ ϕ) ∧ ρ(∗ : t ⇒ γ1 ∧ . . . ∧ γm).

As the conjunction operator is commutative, associative, and idempotent, in the following
we often refer to a formula in SNFml as a set of clauses. The next lemma shows that the
transformation into SNFml is satisfiability preserving.

Lemma 1 [34] Let ϕ ∈ WFFK be a formula and let t be a propositional symbol not occurring
in ϕ. Then: (1) ϕ is locally satisfiable if, and only if, 0 : t ∧ ρ(0 : t ⇒ ϕ) is satisfiable; (2)
ϕ is globally satisfiable if, and only if, ∗ : t ∧ ρ(∗ : t ⇒ ϕ) is satisfiable.

The proof is standard. For the only if part, if ϕ is satisfiable, then there is a model M =
(W , w0, R1, . . . , Rn, π) that satisfies ϕ. We build a model M ′ = (W , w0, R1, . . . , Rn, π

′)
where the valuation of π ′ of the new symbols introduced by renaming are set to true exactly
at the worlds where the formulae they are replacing are also evaluated to true. For the if
part, if there is a model M that satisfies the translation of ϕ, by ignoring the labels and the
valuation of the propositional symbols not occurring in ϕ, we show that M also satisfies ϕ.

The fact that the transformation for formulae under global assumptions is also satisfiability
preserving follows easily from Lemma 1.

123

KSP A Resolution-Based Theorem Prover for Kn : Architecture… 467

Some of the refinements implemented in KSP require further transformation of the set of
clauses. For instance, for completeness of negative resolution [44], we require that literals
occurring in the scope of modal operators are positive. Given a set of clauses in SNFml , in
addition to the rules given in Table 1, we exhaustively apply the following rewriting rules
(where ml ∈ N ∪ {∗}, t, p ∈ P , and t ′ is a new propositional symbol):

ρ(ml : t ⇒ �a ¬p) = (ml : t ⇒ �a t ′) ∧ ρ(ml + 1 : t ′ ⇒ ¬p)
ρ(ml : t ⇒ ♦a ¬p) = (ml : t ⇒ ♦a t ′) ∧ ρ(ml + 1 : t ′ ⇒ ¬p)

We call the resulting normal form SNF+
ml . It can be shown that the resulting set of clauses is

satisfiable if, and only if, the original set of clauses is satisfiable.
Completeness of ordered resolution [22] requires that literals in the scope of modal oper-

ators are “small enough” with respect to a given ordering on literals. Also for completeness,
those literals need to be available in the set of literal clauses so that the relevant clauses used
in the hyper-resolution rules are derived. We can ensure these conditions are met by further
processing of the set of SNFml clauses. Let Φ be a set of clauses and PΦ be the set of propo-
sitional symbols occurring in Φ. Let � be a well-founded and total ordering on PΦ . This
ordering can be extended to literals LΦ over PΦ by setting ¬p � p and p � ¬q whenever
p � q , for all p, q ∈ PΦ . A literal l is said to be maximal with respect to a clause ml : C ∨ l
if, and only if, there is no l ′ occurring in C such that l ′ � l. Given a set of clausesΦ in SNFml
and an ordering on the literals occurring in Φ, in addition to the rules given in Table 1, we
exhaustively apply the following rewriting rules (where ml ∈ N∪ {∗}, t ∈ P , l ∈ L and t ′ is
a new propositional symbol):

ρ(ml : t ⇒ �a l) = (ml : t ⇒ �a t ′) ∧ ρ(ml + 1 : t ′ ⇒ l)
ρ(ml : t ⇒ ♦a l) = (ml : t ⇒ ♦a t ′) ∧ ρ(ml + 1 : t ′ ⇒ l)

where p � t ′, for all p occurring in Φ. We call the resulting normal form SNF++
ml . Again, it

is easy to show that Φ is satisfiable if, and only if, the resulting set of clauses in SNF++
ml is

satisfiable.

4 Inference Rules

The calculus comprises a set of inference rules for dealing with propositional and modal
reasoning. In the following, we denote by σ the result of unifying the labels in the premises
for each rule. Formally, unification is given by the function σ : 2N∪{∗} −→ N ∪ {∗}, where
σ({ml, ∗}) = ml; and σ({ml}) = ml; otherwise, σ is undefined. The inference rules given
in Table 2 can only be applied if the unification of their labels is defined (where ∗ − 1 = ∗).
Note that for GEN1 and GEN3, if the modal clauses in the premises occur at the modal level
ml, then the literal clause in the premises occurs at the next modal level, ml + 1.

Definition 6 Let Φ be a set of clauses in SNFml . A derivation from Φ is a sequence of sets
Φ0, Φ1, . . . where Φ0 = Φ and, for each i > 0, Φi+1 = Φi ∪ {D}, where D /∈ Φi is the
resolvent obtained from Φi by an application of either LRES, MRES, GEN1, GEN2, or GEN3.
We also require that D is in simplified form and that D is not a tautology. A set of clauses
Φ is saturated if every clause that is a resolvent obtained from Φ by an application of either
LRES, MRES, GEN1, GEN2, or GEN3 is either a tautology or it is already contained in Φ. A
local refutation for Φ is a derivation Φ0, . . . , Φk , k ∈ N, where 0 : false ∈ Φk . A global
refutation for Φ is a derivation Φ0, . . . , Φk , k ∈ N, where ∗ : false ∈ Φk . A derivation

123

468 C. Nalon et al.

Table 2 Inference rules, where ml = σ({ml1, . . . ,mlm+1,mlm+2 − 1}) in GEN1, GEN3, where m ≥ 0;
ml = σ({ml1,ml2}) in LRES, MRES; and ml = σ({ml1,ml2,ml3}) in GEN2

Φ0, . . . , Φi from Φ is terminating if it is either a local (resp. global) refutation for Φ or if
there is a Φi , i ∈ N, such that Φi is saturated.

For the satisfiability problem under global assumptions, a refutation is either a local or
a global refutation. The following theorems, taken from [34] where full proofs are given,
ensure the calculus is sound, complete and terminating.

Theorem 1 (Soundness [34]) Let Φ be a set of clauses in SNFml and Φ0, . . . , Φk , k ∈ N, be
a derivation for Φ. If Φ is satisfiable, then every Φi , 0 ≤ i ≤ k, is satisfiable.

Soundness of the calculus is proved by showing that, for each inference rule, if the premises
are satisfiable, so it is the resolvent.

Theorem 2 (Completeness [34]) Let Φ be an unsatisfiable set of clauses in SNFml . Then
there is a refutation for Φ by applying the resolution rules given in Table 2.

Completeness is proved by showing that if a setΦ of clauses in SNFml is unsatisfiable, there is
a refutation produced by the method presented here. The proof is by induction on the number
of nodes of a graph, known as behaviour graph [9], built from Φ. Intuitively, nodes in the
graph correspond to worlds and the set of edges correspond to the accessibility relations in a
model. The graph construction is similar to the construction of a canonical model, followed
by filtrations based on the set of clauses, often used to prove completeness for proof methods
in modal logics [6]. We show that deletions of nodes in the graph correspond to application
of the inference rules given in Table 2. If the reduced graph is empty, then the set of clauses is
unsatisfiable and there is refutation from Φ. If the reduced graph is not empty, then a model
witnessing the satisfiability of Φ can be built from it.

Theorem 3 (Termination [34]) LetΦ be a set of clauses in SNFml . Then, any derivation from
Φ terminates.

This result follows from the fact that none of the inference rules generates new literals, new
modal literals, or new labels. Hence, there are a finite number of clauses that can be built
from the literals and modal literals occurring in Φ.

We note that, for a given formulaϕ, the normal formgiven in [33], called SNF, is equivalent
to (∗ : start ⇒ t) ∧ ρ(∗ : t ⇒ ϕ), where t is a new propositional symbol and start is a

123

KSP A Resolution-Based Theorem Prover for Kn : Architecture… 469

Table 3 Inference rules for initial clauses

constant denoting the root of the tree-like model. Two additional inference rules, given in
Table 3 are required for completeness. In this case, a refutation for a set of clauses Φ is
either a global refutation or a derivation Φ0, . . . , Φk , k ∈ N, where ∗ : start ⇒ false ∈ Φk .
Also, by taking (0 : t) ∧ ρ(∗ : t ⇒ ϕ) as the normal form of ϕ, the calculus presented in
[33] can be simulated by the one given in [34], without the rules given in Table 3. Instead of
having clauses of the form ∗ : start ⇒ ϕ, we have 0 : ϕ. Then, LRES simulates IRES1 with
ml1 = ml2 = 0; and IRES2 with ml1 = 0 and ml2 = ∗.

5 Implementation

KSP is an implementation, written in C, of the calculus described in Sect. 4. The prover was
designed to support experimentation with different combinations of refinements of its basic
calculus. Refinements and options for (pre)processing the input are coded as independently
as possible in order to allow for the easy addition and testing of new features. This might not
lead to optimal performance (e.g. some techniques need to be applied consecutively, whereas
most tools would apply them concurrently), but it helps to evaluate how the different options
independently contribute to achieve efficiency. In its current version, KSP implements local
and global reasoning. The implementation of a proof search procedure for local satisfiability
under global assumptions is ongoing work.

First we discuss themain processing cycle and in thenwe give an overview of the available
options and their implementations. For a comprehensive list of options, see [36], where the
sources and instructions on how to install and use KSP can be found.

5.1 Main Processing Cycle

The proof search procedure for local satisfiability implemented in KSP is shown in Fig. 1.
The preprocessing steps (Lines 2–4) are explained in Sects. 5.2, 5.3, and 5.4. The main loop
(Lines 6–16) is based on the given-clause algorithm implemented in Otter [31], a variation
of the set of support strategy [56], a refinement which restricts the set of choices of clauses
participating in a derivation step. For the classical case, a set of clauses Δ is partitioned into
two sets Γ and Λ = Δ\Γ , where Λ must be satisfiable for completeness. The set Γ is
the set of support (the sos, aka passive or unprocessed set); and Λ is called the usable (aka
active or processed set). The given clause is chosen from Γ , resolved with clauses in Λ, and
moved from Γ to Λ. Resolvents are added to Γ . For the modal calculus, the set of clauses
is further partitioned according to the modal level at which clauses occur. That is, for each
modal levelml there are three sets:Γ li t

ml ,Λ
li t
ml andΛmod

ml , where the first two sets contain literal
clauses while the latter contains modal clauses. As the calculus does not generate new modal
clauses and because the set of modal clauses by itself is satisfiable (as they are implications

123

470 C. Nalon et al.

Fig. 1 Main loop

and the left-hand sides are a single non-negated proposition), there is no need for a set for
unprocessed modal clauses. Attempts to apply an inference rule are guided by the choice,
for each modal layer ml, of a literal clause in Γ li t

ml , which can be resolved with either a set of
modal clauses in Λmod

ml−1 or with a literal clause in Λli t
ml .

In more detail, let Γ li t be the union of all sets of literal clauses (Line 5). A cycle corre-
sponds to one iteration of the outer loop (Lines 6–16). This loop is executed while the set of
unprocessed clauses is not empty. In the inner loop (Lines 7–15), for every modal level ml,
a literal clause is returned by the function given. The options for selecting the modal level
and the literal clause at this level are described in Sects. 5.5 and 5.6. Once a literal clause is
selected, it is tested for redundancy (Line 9), i.e. clauses that can be deleted without affecting
the satisfiability of the clause-set. The choices for redundancy elimination are presented in
Sect. 5.9. If the given clause is not redundant, then it is processed against all usable modal
clauses in the previous modal level (Lines 10 and 11) and against all usable literal clauses
at the same modal level (Line 12). Note that as no modal clauses are generated during the
proof search, the inference rules MRES and GEN2 are applied before the prover enters the
main loop. This is discussed further in Sect. 5.4. The refinements that can be used to apply
LRES are given in Sect. 5.7. Once the inference rules are applied the chosen clause is moved
to the set of processed clauses (Line 13) and removed from the set of unprocessed clauses
(Line 14). If the empty clause (0: false) is generated at the modal level 0, then the procedure
returns that the set of clauses is unsatisfiable (Line 15). Note that in Fig. 1, only the condition
for local reasoning is given. If the prover is set for global satisfiability, then that condition
changes to ∗ : false ∈ Γ li t . If the empty clause is not found, the procedure returns that the
set of clauses is satisfiable (Line 17).

5.2 Input Processing

The input is read from either a file or from the command line. A configuration file can also be
given. In this case, the options given at the command line override those in the configuration

123

KSP A Resolution-Based Theorem Prover for Kn : Architecture… 471

file. A input file is a set of declarations (the options for the prover) followed by sets of modal
formulae or clauses. The user can also specify the sets of formulae and clauses as either
processed (usable) or unprocessed (sos).

The tokeniser and the parser were built with Flex [12] and Bison [13], which are both free,
open source software and easily available. The input language of KSP is LR(2) which can
be handled by Bison with options for generating a generic parser. Relying on generators for
the lexer and the parser might not lead to the most efficient implementation of the automata
which recognise the given language. However, changes in the grammar require very little
effort to be implemented, making this part of the code easier to maintain.

The outputs of the parser are a double-linked annotated abstract tree and a symbol table.
In the annotated tree, a number is assigned to every node in order to avoid unnecessary
transversal of the tree while performing simplification. The assigned number may not be
unique1, but two formulae are checked for repetition, for instance, only if they are assigned
the same number. Conjunctions are treated as n-ary operators and nested conjunctions are
flattened. The operands of conjunctions are ordered: first come Boolean constants, second
propositional symbols, third compound propositional formulae, and fourth modal formulae.
The same applies to disjunctions. The symbol table contains information about the propo-
sitional symbols, constants, and modal operators occurring in the formula: their type, id,
number of occurrences, number of positive and negative occurrences (both globally and by
modal level). A double level hash table contains the locations of the positions of propositional
symbols and constants in the tree: the first level corresponds to the modal level at which they
occur and the second level to the addresses themselves, so that book-keeping the deletions
in the tree can be done fast (typically, in constant time).

As the parsing is bottom-up, as usual for LR grammars, linearisation (i.e. the removal
of double-implications) and the calculation of polarity requires at least another pass in the
tree. This extra transversal of the tree is only done in case there is any double-implication
occurring in the input formula or if the option for (modal level) pure literal elimination is
set. Modal level pure literal elimination consists of replacing every propositional symbol p
which is pure at a modal level ml by a constant. If p occurs only with positive polarity at
ml, then p is replaced by true; if it occurs only with negative polarity, then p is replaced by
false.

If the input is a set of formulae, depending on the options given by the user, the formulae
are first transformed into their Negation Normal Form (NNF) or into Box Normal Form
(BNF) [39]. The translation into BNF also removes the ♦a operator. Thus, the �a operator
is also allowed in the scope of negations. More precisely, the translation into BNF differs
from the NNF just in one case. When transforming a formula as¬�a ϕ into NNF, the result is
♦a NNF(¬ϕ); the transformation of the same formula into BNF results in ¬�a BNF(¬ϕ). For
example, the formula �a (p∧q)∧ ♦a ¬(p∧q) is transformed into �a (p∧q)∧¬�a (p∧q),
which is easier to check for simplification than checking the resulting NNF which is �a (p∧
q) ∧ ♦a (¬p ∨ ¬q).

Then transformation into prenex (option prenex) or antiprenex normal form (option
antiprenex) or one after the other can be applied. The definitions of those normal forms
are given in [32]. Basically, the prenex normal form corresponds to pushing the modal oper-
ators occurring in a formula ϕ as far as possible outwards the formula in order to obtain ϕ′
which is equivalent to ϕ. For instance, the prenex normal form of (�a p∧ �a q) is �a (p∧ q).
Similarly, the antiprenex normal form corresponds to pushing the modal operators occurring

1 We would need arbitrary precision arithmetics for doing so.

123

472 C. Nalon et al.

Table 4 Simplification rules

in ϕ as far as possible inwards the formula in order to produce ϕ′ equivalent to ϕ. For instance,
the antiprenex normal form of ♦a (p ∨ q) is (♦a p ∨ ♦a q).

With options nnfsimp (resp. bnfsimp), simplification is applied to formulae in NNF (resp.
BNF); with options early_ple and early_mlple, pure literal elimination is applied globally
or at every modal level, respectively. The simplification rules are given in Table 4. Most of
those simplification rules can be found in the literature (e.g. [49]). The only rules we are not
aware that were reported before are (♦a true∨ �a ϕ) �→ true and (�a false∧ ♦a ϕ) �→ false.
We show that the first of those rules is correct. The formula (♦a true∨ �a ϕ) is semantically
equivalent to (♦a ϕ∨ ♦a ¬ϕ∨�a ϕ), which is semantically equivalent to (♦a ϕ∨¬�a ϕ∨�a ϕ).
As ¬�a ϕ ∨ �a ϕ is a tautology, the whole formula simplifies to true. The proof that the
transformation of (�a false ∧ ♦a ϕ) �→ false is correct is similar.

5.3 Transformation to Normal Form

By default, formulae are transformed into SNFml . There are four different options that deter-
mine the normal form. Two of those options are used for transforming a set of clauses into
SNF+

ml and into SNF++
ml , as described in Sect. 3. The two other options are used for trans-

forming a set of clauses into SNF−
ml and SNF−−

ml , which are defined analogously to SNF+
ml

and SNF++
ml , but where literals in the scope of modal operators are renamed by new negative

literals.
The transformation into any of those normal forms requires renaming [41]. All renaming

is performed bottom-up and it uses an auxiliary hash table based on the number assigned
to the formulae in the tree structure and the modal level at which the formula occurs. A
bottom-up renaming might not be optimal with regard to the number of generated clauses for
linear formulae (those where bi-implications do not occur and subformulae are not repeated)
[7]. An alternative would be top-down renaming. However, for formulae which are not
linear, top-down renaming cannot ensure that the number of generated clauses is smaller
than that obtained with bottom-up renaming. A future version of KSP will implement small
normal forms [37], but at the moment only four different forms of renaming are available.
With the option normal_renaming, every subformula is renamed by a new propositional
symbol. With option limited_reuse_renaming, the same new propositional symbol is used
for all occurrences of the same subformula being renamed at a particular modal level. Yet
another option, extensive_reuse_renaming, also uses the same propositional symbol for all
occurrences of the same subformula being renamed; in addition, if a formula ϕ was renamed
by a new propositional symbol t , then the NNF of ¬ϕ is renamed by ¬t . With the option

123

KSP A Resolution-Based Theorem Prover for Kn : Architecture… 473

conjunct_renaming, modal subformulae that occur in conjunctions are renamed, instead of
applying the usual rewriting rule. When applied together, conjunct_renaming and either
limited_reuse_renaming or extensive_reuse_renamingmight lead to a smaller set of clauses.
For instance, ml : t ⇒ �a p ∧ (p ∨ �a p) is transformed into {ml : t ⇒ t1,ml : t ⇒ t2,ml :
t1 ⇒ �a p,ml : t2 ⇒ p ∨ t1}.

The set of clauses resulting from the transformation into the normal form is stored in a
trie-like structure (implemented as multi-level hash tables), according to the set they belong
to (usable, sos), their type (initial, literal, modal positive, modal negative), their modal level,
the index of the modal operator (in the case of modal clauses), their maximal literal, and
their size (in the case of initial and literal clauses). Clauses are implemented as simplified,
ordered lists of literals. Also, for every propositional symbol, a list of clauses by modal
level is kept in the symbol table. The trie structure helps to make the implementation of
clause and literal selection efficient, to reduce the number of clauses being checked during
redundancy tests (repetition and subsumption), and also to reduce the number of misses
during the construction of the set of candidate clauses to which a particular resolution rule is
applied. The list of clauses kept in the symbol table allows for efficiently finding the clauses
to be processed during the application of unit resolution (options unit and lhs_unit) and pure
literal elimination (option ple, which is applied if the literal is pure in the whole set of clauses;
or option mlple, which is applied if the literal is pure at a modal level).

5.4 Preprocessing of Clauses

The preprocessing of clauses comprises several taskswhichmay be set by the user. By default,
we prevent duplicate clauses to be stored in the trie-like structure that we use to maintain
the set of clauses, but only duplicates in the set they are stored are checked. For instance, if
a clause is to be stored in Γ li t

ml , then we only check this particular set for a duplicate. With
option check_full_repeated, repetition of clauses is checked against all sets of clauses at the
same modal level.

Propagation of a literal in the scope of the operator ♦a is applied at this stage, with option
propdia. The propagation rule is given by

ml : l ′ ⇒ ♦a l
ml + 1 : l

for literals l and l ′, modal levelml, and index a, with the side condition that there is only one
negativemodal clause inΛmod

ml (otherwise, the rule is not sound). Propagation of a literal is not
needed for completeness, but as the inference rule generates a unit clause at the propositional
set of formulae, unit propagation and subsumption can be applied, reducing the number of
literals at the modal level ml + 1.

If the set of modal clauses at the modal levelml does not contain a negative modal clause,
than all positive modal clauses at that modal level and all clauses (modal and literal) with
modal level greater thanml can be deleted. This is justified by the fact that a worldw satisfies
�a l, for a literal l and index a, if there is no world w′ such that (w,w′) ∈ Ra . Thus, we
can take the empty relation for all worlds at the level ml, which satisfy all positive modal
clauses. As the worlds at greater modal levels are no longer accessible, the sets of clauses
corresponding to those levels can also be deleted. The option for this simplification is mle.

As no modal clauses are generated during the proof search, the inference rulesMRES and
GEN2 are also exhaustively applied at this step, that is, before the prover enters the main loop.
We note that the transformation into SNF+

ml , SNF
++
ml , SNF

−
ml , or SNF

−−
ml is performed after the

123

474 C. Nalon et al.

preprocessing of clauses. If any of those four options related to the transformation into the
normal form are set by the user, then all literals in the scope of modal operators will have
the same polarity. Therefore, the inference rulesMRES and GEN2 are not applicable and will
be blocked. However, as those inference rules produce very short resolvents, which can be
particularly useful to reduce the number of clauses if subsumption is also set, the user can
force those inference rules to be applied even when they are not needed for completeness,
by setting the options mres and gen2.

If forward and/or backward subsumption [29] are set, then self-subsumption is also applied
at this point. Forward and backward subsumption are performed in lazymode and only against
the usable (see Sect. 5.9). However, for self-subsumption, clauses are tested against all sets,
irrespective of where they are stored.

By default, the usable sets Λli t
ml of literal clauses are empty (unless those sets are given as

input). However, the user has the choice of automatically populating those usable sets with
literal clauses. There are six options: populate_non_negative moves literal clauses which
are not negative from Γ li t

ml to Λli t
ml ; populate_non_positive moves clauses which are not

positive fromΓ li t
ml toΛli t

ml ; populate_negativemoves negative literal clauses fromΓ li t
ml toΛli t

ml ;
populate_positivemovespositive literal clauses fromΓ li t

ml toΛli t
ml ;populate_max_lit_negative

moves literal clauses whose maximal literal is negative from Γ li t
ml to Λli t

ml ; and the option
populate_max_lit_positivemoves literal clauses whose maximal literal is positive from Γ li t

ml
to Λli t

ml .
Wenote that populating the usable setsmust be donewith some care, as some combinations

of the set of support and other refinements are not complete. For instance, using ordered
resolution as a refinement, consider the set Δ = {0 : p ∨ q, 0 : p ∨ ¬q, 0 : ¬p ∨ q, 0 :
¬p∨¬q},which is unsatisfiable, and let p � q be the orderingover the propositional symbols.
Using the optionpopulate_non_negative,weobtainΛli t

0 = {0 : p∨q, 0 : p∨¬q, 0 : ¬p∨q},
which is satisfiable, and Γ li t

0 = {0 : ¬p ∨ ¬q}. In the first cycle, there is only one clause to
choose, ¬p is the maximal literal, and the only non-redundant generated resolvent is 0 : ¬q ,
which is added to Γ li t

0 . Now, as 0 : ¬p ∨ ¬q is moved to the set of usable clauses, 0 : ¬q is
the only clause that can be chosen in the sos. However, there is no clause in Λli t

0 where q is
the maximal literal. Thus, no inference steps can be applied, and the procedure would output
the set as satisfiable. In contrast, using the options populate_non_negative with negative
resolution or populate_max_lit_positive with either negative or ordered resolution are safe
choices.

5.5 Controlling the Inner Loop

The inner loop executed during the proof search (Lines 7–15) iterates over the modal levels
in the set of literal clauses. As mentioned before, each set Γ li t

ml is implemented as multi-level
hash tables, where the modal level is one of the keys. By default, these sets are scanned
by following the order of the entries in the hash table. However, the user can set different
orderings. With option ordlevel_ascend, the for loop iterates in ascending order of modal
levels, that is, from ml = 0 to the maximal modal level; and with option ordlevel_descend,
the modal levels are scanned from the maximal modal level down to ml = 0. With option
ordlevel_shuffle, the list of modal levels is partitioned in half and the two lists are merged,
just before entering the inner loop; the modal levels are then scanned in the resulting order.
Preliminary evaluation of these features, checked over the LWB benchmarks [25], shows that
the default performs better. However, we have not performed an extensive evaluation yet.

123

KSP A Resolution-Based Theorem Prover for Kn : Architecture… 475

5.6 Clause Selection

Besides the set of support strategy, which restricts clause selection to those in the sos, there are
five different heuristics for choosing a literal clause as the given clause at a modal level within
each cycle. With option shortest, the clause with the smallest size at that particular modal
level is chosen. With option newest, clause selection simulates a stack (last in, first out). With
option oldest, clause selection simulates a queue (first in, first out).With option smallest (resp.
greatest), the given clause is the shortest clause with the smallest (resp. greatest) maximal
literal in the set.

5.7 Refinements

Besides the implemented restrictions on clause selection, the user can further restrict LRES by
choosing options ordered (clauses can only be resolved on their maximal literals with respect
to an ordering chosen by the prover in such a way to preserve completeness), negative (one of
the premises is a negative clause, i.e. a clause where all literals are of the form ¬p for some
p ∈ P), positive (one of the premises is a positive clause), or negord, where both negative
and ordered resolution inferences are performed.

The completeness of some of these refinements depends on the particular normal form
chosen. For instance, negative resolution is incomplete without SNF+

ml or SNF++
ml . For

example, the set {0 : p, 0 : p ⇒ �a ¬q, 0 : p ⇒ ♦a s, 1 : ¬s ∨ q} is locally unsat-
isfiable, but as there is no negative literal clause in the set, no refutation can be found
with negative resolution. By renaming ¬q with t in the scope of �a , we obtain the set
{0 : p, 0 : p ⇒ �a t, 0 : p ⇒ ♦a s, 1 : ¬s ∨ q, 1 : ¬t ∨ ¬q} in SNF+

ml , from which
a refutation using negative resolution can be found. Similarly, ordered resolution requires
SNF++

ml for completeness, while positive resolution requires SNF−
ml or SNF

−−
ml .

5.8 Inference Rules

Besides the inference rules given in Table 2, three more inference rules are also implemented.
With option unit, unit clauses are propagated through all literal clauses and the right-hand
side of modal clauses, that is, the following inference rules are applied:

[UNIT]
ml1 : l1 ∨ . . . ∨ lm ∨ l
ml2 : ¬l

σ({ml1,ml2}) : l1 ∨ . . . ∨ lm

[UNIT-GEN1]
ml1 : l1 ⇒ ♦a l
ml2 : ¬l

σ({ml1,ml2 − 1}) : ¬l1

[UNIT-GEN3]
ml1 : l1 ⇒ �a l
ml2 : l2 ⇒ ♦a l3
ml3 : ¬l

σ({ml1,ml2,ml3 − 1}) : ¬l1 ∨ ¬l2
Clearly, UNIT, UNIT-GEN1, UNIT-GEN3 are special cases of the inference rules LRES, GEN1,
and GEN3, respectively. Their implementation, however, is different, as the set of candidates
to resolvewith the unit clauseml : ¬l is built from the list of clauses stored in the symbol table
instead of using the trie-like structure for clauses. Subsumption, if set, is also immediately
applied. By default, redundancy is only checked when a clause is chosen, but for those unit
resolution rules the premisesml1 : l1∨ . . .∨lm ∨l inUNIT andml1 : l1 ⇒ ♦a l inUNIT-GEN1
are deleted from the set of clauses as soon as subsuming resolvents are generated.

The option lhs_unit propagates unit clauses through the left-hand side of modal clauses,
that is, the following inference rules are applied:

123

476 C. Nalon et al.

[LHS-UNIT-1]
ml1 : l
ml2 : l ⇒ ♦a l ′

σ({ml1,ml2}) : true ⇒ ♦a l ′

[LHS-UNIT-2]
ml1 : l
ml2 : l ⇒ �a l ′

σ({ml1,ml2}) : true ⇒ �a l ′

Again, if the modal clauses in the premises are subsumed by the resolvents in those inference
rules, they are immediately deleted from the clause set. The rules LHS-UNIT-1 and LHS-UNIT-
2 are not needed for completeness. However, exhaustive application of the two rules together
with subsumption and the usual unit resolution removes all occurrences of the literal ¬l at
the modal level ml; thus, if the options for pure literal elimination are set, more clauses can
be removed from the clause set.

The inference rules shown in Table 3 are set with the option ires, which together with the
global option, implements initial resolution and, therefore, the calculus given in [33]. The
inference rules IRES1 and IRES2 are, by default, applied after themain loop described in Fig. 1.
For an unsatisfiable set of clauses, if the literal clauses are not by themselves unsatisfiable, this
means that a proof can only be found after the set of literal clauses is saturated, which might
be very time consuming. With option interires, initial and literal resolution are interleaved,
that is, IRES1 and IRES2 are applied within the main loop given in Fig. 1, which may shorten
the time to finding a proof.

5.9 Redundancy Elimination

Pure literal elimination can be applied globally (option ple) or by modal level (optionmlple).
For modal level pure literal elimination, if a literal l is pure at a modal level ml, then the
literal can be set to true at that level. This means that any literal clause at the modal level
ml in which l occurs can be deleted. If l occurs in the scope of �a on the right-hand side
of a positive modal clause, then the positive modal clause can also be deleted (because
�a true is a tautology). If l occurs in the scope of ♦a on the right-hand side of a positive
modal clause ml − 1 : l ′ ⇒ ♦a l, then the clause ml − 1 : l ′ ⇒ ♦a l is deleted and the
clause ml − 1 : l ′ ⇒ ♦a true is generated. Because ♦a true is not a tautology, the newly
generated clause is kept in the set of clauses. As the number of literal occurrences is stored
in the symbol table, at the implementation level, the procedure for modal level pure literal
elimination consists of scanning the information related to all propositional symbols p and
deleting the list of clauses at a particular modal level ml if the number of either positive
or negative occurrences of p at the modal level ml is zero. For pure literal elimination, the
procedure is similar.

Both forward (option fsub) and backward subsumption (option bsub) are implemented. A
literal clause ml : C is subsumed by a literal clause ml ′ : D if, and only if, ml ′ : D implies
ml : C . For forward subsumption, a literal clause ml : C is deleted if it is subsumed by
any older literal clause. For backward subsumption, a literal clause ml : C is deleted if it is
subsumed by any newer literal clause. In both cases, subsumption is applied in lazy mode: a
clause is tested for subsumption only when it is selected from Γ li t

ml and only against clauses
in Λli t

ml . As pointed out in [47], lazy subsumption avoids expensive checks for clauses that
might never be selected during the search of a proof. Also, the trie-like structure for clauses
is used to improve the selection of candidates for subsumption. A clauseml : C is subsumed
by a clause ml ′ : D if, and only if, the following holds:
1. σ({ml,ml ′}) is defined;
2. the size of ml : C is greater or equal the size of ml ′ : D;
3. the maximal literal in ml : C is less or equal the maximal literal in ml ′ : D;
4. the minimal literal in ml : C is greater or equal the minimal literal in ml ′ : D.

123

KSP A Resolution-Based Theorem Prover for Kn : Architecture… 477

The first three conditions are keys in the trie-like structure, thus the first approximation
for a set of candidates can be obtained in linear time on the size of the clause set for a
particular modal level. The last condition requires testing all clauses which satisfy the first
three conditions, but it can also be easily checked: as clauses are implemented as ordered
lists, it only requires to test the head of those lists.

The user can force subsumption checking in the whole set of clauses by setting the option
sos_sub.

6 Evaluation

We have compared KSP 0.1.2 with the provers BDDTab [15,38], FaCT++ 1.6.3 [51,52],
InKreSAT 1.0 [26,27], Spartacus 1.1.3 [16,17], and a combination of the optimised functional
translation [23] with Vampire 4.2.2 [28,53]2. In this context, FaCT++ represents the previous
generation of reasoners while the remaining systems have all been developed in recent years.
Unless stated otherwise, the reasoners were used with their default options.

Our benchmarks [36] consist of three collections of modal formulae:

1. The complete set of TANCS-2000 modalised random QBF (MQBF) formulae [30] com-
plemented by the additional MQBF formulae provided by Kaminski and Tebbi [27]. This
collection consists of five classes, called qbf, qbfL, qbfS, qbfML, and qbfMS in the fol-
lowing, with a total of 1016 formulae, of which 617 are known to be satisfiable and 399
are known to be unsatisfiable (due to at least one of the provers being able to solve the
formula). The minimum modal depth of formulae in this collection is 19, the maximum
225, average 69.2 with a standard deviation of 47.5.

2. LWB basic modal logic benchmark formulae [4], with 56 formulae chosen from each
of the 18 parameterised classes. In most previous uses of these benchmark classes, only
parameter values 1 to 21 were used for each class, resulting in 378 benchmark formulae
with a median size of a benchmark formula of 1072.5 and a maximum size of 24,972. For
such lowparameter values,most benchmark formulaewere easily solvable by state-of-the
art provers. To overcome this problem we have instead chosen the 56 parameter values
so that only the best current provers, if any at all, will be able to solve all the formulae
within a time limit of 1000 CPU second. The median value of the maximal parameter
value used for the 18 classes is 1880, far beyond what has ever been tested before. The
median size of benchmark formulae is 342,077.5 and the maximum size is 288,072,146.
Of the 1008 formulae, half are satisfiable and half are unsatisfiable by construction of
the benchmark classes. The minimum modal depth of formulae in this collection is 1,
the maximum 30,004, average 1065.7 with a standard deviation of 2670.1.

3. Randomly generated 3CNFK formulae [40] over 3 to 10 propositional symbols with
modal depth 1 or 2. We have chosen formulae from each of the 11 parameter settings
given in the table on page 372 of [40]. For the number of conjuncts we have focused
on a range around the critical region where about half of the generated formulae are
satisfiable and half are unsatisfiable. The resulting collection contains 1000 formulae, of
which 457 are known to be satisfiable and 464 are known to be unsatisfiable. Note that
this collection is quite distinct to the one used in [27] which consisted of 135 3CNFK

formulae over 3 propositional symbols with modal depth 2, 4 or 6, all of which were

2 We have excluded *SAT from the comparison as it produced incorrect results on a number of benchmark
formulae.

123

478 C. Nalon et al.

1/4 1/2 1 2 4 8 15 30 60 120 250 500 1000

100

200

300

400

500

600

700

800

900

1,000

CPU time in seconds

In
st
an
ce
s
So
lv
ed

1/4 1/2 1 2 4 8 15 30 60 120 250 500 1000

100

200

300

400

500

600

700

800

900

1,000

CPU time in seconds

In
st
an
ce
s
So
lv
ed

KSP (ordered) KSP (negative)
KSP (positive) KSP (plain)

1/4 1/2 1 2 4 8 15 30 60 120 250 500 1000

100

200

300

400

500

600

700

800

900

1,000

CPU time in seconds

In
st
an
ce
s
So
lv
ed

1/4 1/2 1 2 4 8 15 30 60 120 250 500 1000

400
600
800

1,000
1,200
1,400
1,600
1,800
2,000
2,200
2,400

CPU time in seconds

In
st
an
ce
s
So
lv
ed

(a) (b)

(c) (d)

Fig. 2 Benchmarking results for KSP

satisfiable. The minimum modal depth of formulae in this collection is 1, the maximum
2, average 1.8 with a standard deviation of 0.4.

In [35] we have used the same benchmark formulae and the same versions of BDDTab,
FaCT++ and InKreSAT, but used KSP 0.1.1, Spartacus 1.0, and Vampire 3.0 instead of the
more recent versions employed here. We also applied a different method of computing the
optimised functional translation; themethod used now is faster, but typically results in a larger
formula as fewer simplifications are performed during the computation. As a consequence
the results reported for these three provers are different to those in [35].

Benchmarking was performed on PCs with an Intel i7-2600 CPU@3.40 GHz and 16 GB
main memory. For each formula and each prover we have determined the median run time
over five runs with a time limit of 1000 CPU seconds for each run.

Figure 2 shows the impact of different refinements on the performance of KSP on the
MQBF, LWB, and 3CNFK collections and all benchmark formulae together. KSP (plain)
uses the rules shown in Table 2, without additional refinement, on a set of SNFml clauses. KSP
(ordered) applies ordered resolution on a set of SNF++

ml clauses. KSP (negative) uses negative
resolution on a set of SNF+

ml clauses, while KSP (positive) applies positive resolution on a set
of SNF−

ml clauses. Irrespective of the refinement, the shortest clause is selected to perform
inferences; both forward and backward subsumption are used; the unit and lhs-unit resolution
rules are applied; prenex and early_mlple are set; and no simplification steps are applied.
KSP (ordered) offers the best performance on the MQBF and LWB collections, while on the
3CNFK collection KSP (negative) performs best. KSP (plain) performs slightly worse than
these two refinements on all three collections andKSP (positive) is significantlyworse than the
other three refinements. Overall, as shown in Fig. 2d, KSP (ordered) performs best. Ordered
resolution restricts the applicability of the rules further than the other refinements. Not only

123

KSP A Resolution-Based Theorem Prover for Kn : Architecture… 479

1/4 1/2 1 2 4 8 15 30 60 120 250 500 1000

100

200

300

400

500

600

700

800

900

1,000

CPU time in seconds

In
st
an
ce
s
So
lv
ed

1/4 1/2 1 2 4 8 15 30 60 120 250 500 1000

100

200

300

400

500

600

700

800

900

1,000

CPU time in seconds

In
st
an
ce
s
So
lv
ed

BDDTab InKreSAT KSP (ordered)
FaCT++ Spartacus OFT + Vampire

1/4 1/2 1 2 4 8 15 30 60 120 250 500 1000

100

200

300

400

500

600

700

800

900

1,000

CPU time in seconds

In
st
an
ce
s
So
lv
ed

1/4 1/2 1 2 4 8 15 30 60 120 250 500 1000

400
600
800

1,000
1,200
1,400
1,600
1,800
2,000
2,200
2,400

CPU time in seconds

In
st
an
ce
s
So
lv
ed

(a) (b)

(c) (d)

Fig. 3 Benchmarking results for all provers

is this an advantage on satisfiable formulae in that a saturation can be found more quickly,
but also unsatisfiable formulae where with this refinement KSP typically finds refutations
more quickly than with any of the other refinements. That being said, the difference between
KSP (plain), KSP (negative) and KSP (ordered) is smaller than one might expect. This is
due to the fact that for a modal formula, the corresponding set of SNF++

ml clauses is larger
than the set of SNF+

ml clauses which in turn is typically larger than the set of SNFml clauses.
This counterbalances the advantages gained from the more constrained proof search of the
refinements.

Figure 3 compares the performance of all the provers on the MQBF, LWB, and 3CNFK

collections and all benchmark formulae together. For the MQBF collection we see that KSP
(ordered) performs better than any of the other provers. The graphs in Fig. 4 offer some
insight into why KSP performs well on these formulae. Each of the four graphs shows for
one formula from each class how many atomic subformulae occur at each modal level, the
formulae originate from MQBF formulae with the same number of propositional symbols,
conjuncts and QBF quantifier depth. Formulae in the class qbfS are the easiest, the total
number of atomic subformulae is low and spread over a wide range of modal levels, thereby
reducing the possibility of inference steps between the clauses in the layered normal form
of these formulae. In contrast, in qbfMS formulae almost all atomic subformulae occur at
just one modal level. Here the layered normal form can offer little advantage over a simpler
normal form. But the number of atomic subformulae is still low and KSP seems to derive
an advantage from the fact that the normal form ‘flattens’ the formula: KSP is at least two
orders of magnitude faster than any other prover on this class. The classes qbf and qbfL are
more challenging. While the atomic subformulae are more spread out over the modal levels
than for qbfMS, at a lot of these modal levels there are more atomic subformulae than in a

123

480 C. Nalon et al.

25 50 75 100

2

4

6

8

#
A
to
m
s

qbfS (C30,V16,D4)

25 50 75 100

100

200

300
qbfMS (C30,V16,D4)

25 50 75 100

100

200

300

Modal level

#
A
to
m
s

qbf (C30,V16,D4)
qbfL (C30,V16,D4)

25 50 75 100 125 150 175

100

200

300

Modal level

qbfML (C30,V16,D4)

Fig. 4 Modal structure of MQBF formulae

qbfMS formula in total. The layered modal translation is effective at reducing the number of
inferences for these classes, but more inference possibilities remain than for qbfMS. Finally,
qbfML combines the worst aspects of qbfL and qbfMS, the number of atomic subformulae
is higher than for any other class and there is a ‘peak’ at one particular modal level. This is
the only MQBF class containing formulae that KSP cannot solve.

On the LWB collection KSP performs slightly better than the other provers with Spartacus
being the second best system and the combination of the optimised functional translation
with Vampire (OFT + Vampire) performing worst. Table 5 provides more detailed results.
For each prover it shows in the left column howmany of the 56 formulae in a class have been
solved and in the right column the parameter value of the most difficult formula solved. For
InKreSAT we are not reporting this parameter value for three classes on which the prover’s
runtime does not increase monotonically with the parameter value but fluctuates instead. As
indicated in bold in the table, BDDTab is the best performing prover on one class, InKreSAT
on three, OFT + Vampire on three, Spartacus on four, and KSP on five classes; KSP and
Spartacus are joint best on a further two classes. A characteristic of the classes on which KSP
performs best is again that atomic subformulae are evenly spread over a wide range of modal
levels.

It is worth pointing out that simplification alone is sufficient to detect that formulae in
lin_p are unsatisfiable. For grz_p, pure literal elimination can be used to reduce all formulae
in this class to the same simple formula; the same is true for grz_n and lin_n. Thus, these
classes are tests of how effectively and efficiently, if at all, a prover uses these techniques.

On the 3CNFK collection, InKreSAT is the best performing prover and KSP the worst
performing one. This should nownot come as a surprise. For 3CNFK we specifically restricted
ourselves to formulae with low modal depth which in turn means that the layered normal
form has little positive effect.

It is evident from these results that no prover is best on all the collections and on every
benchmark formula. It therefore makes sense to employ a portfolio of provers when trying to
determine the satisfiability of a modal formula. Following Schuppan and Darmawan [48], we
can consider an ‘Oracle Procedure’ based on an oracle that for each benchmark formula picks

123

KSP A Resolution-Based Theorem Prover for Kn : Architecture… 481

Table 5 Detailed evaluation results on the LWB benchmark

BDDTab FaCT++ InKreSAT KSP (ordered) Spartacus OFT +Vampire

branch_n 22 22 12 12 15 15 18 18 12 12 36 42

branch_p 22 22 12 12 22 22 24 24 14 14 35 40

d4_n 20 440 6 40 34 53 1760 31 880 14 200

d4_p 26 640 24 600 18 360 56 1880 35 1040 21 960

dum_n 39 2400 42 2640 23 1120 52 3440 49 3200 16 560

dum_p 42 2640 38 2320 28 1520 52 3440 52 3440 19 800

grz_n 35 2600 27 1800 50 4500 5 50 51 5000 20 1100

grz_p 35 2600 27 1800 51 5000 29 2000 49 4000 26 1700

lin_n 46 4000 43 3400 33 2500 1 10 34 2500 40 3100

lin_p 14 500 28 1 × 105 56 5 × 105 24 6000 55 4 × 105 28 1 × 105

path_n 37 290 48 400 7 14 56 1200 48 400 42 340

path_p 35 270 48 400 5 12 56 1200 48 400 42 340

ph_n 10 10 8 16 24 90 3 6 22 80 13 35

ph_p 11 11 9 8 10 10 5 5 9 9 10 10

poly_n 39 600 34 500 30 33 480 47 760 18 180

poly_p 38 580 34 500 28 400 33 480 47 760 17 160

t4p_n 40 3500 24 1500 17 800 41 4000 46 6500 10 100

t4p_p 48 7500 49 8000 28 54 13000 54 13000 12 300

For each prover, the left column shows how many of the 56 formulae have been solved and the right column
shows the parameter of the most difficult formula solved. The best performance is shown in bold. Parameters
are typeset in italics while indices are typeset in roman

Table 6 Use of each prover by an Oracle Solver

BDDTab FaCT++ InKreSAT KSP Spartacus OFT + Vampire Unsolved

674 111 912 849 748 57 227

the best performing prover among the six that we have evaluated, or, alternatively, executes
all six provers in parallel and then only accounts for the one with the shortest runtime. Table 6
shows for how many of benchmark formulae the Oracle Procedure would pick a particular
prover to get the shortest runtime. As sometimes two or more provers can solve a benchmark
formula in the same amount of time, some double counting is involved. Also, there are 227
benchmark formulae that none of the provers can solve within the time limit of 1000 CPU
seconds.

A more realistic approach takes advantage of the observation that KSP performs best for
formulae of high modal depth while other provers perform well on modal formulae of low
modal depth. We consider a procedure that uses KSP (ordered) to solve all formulae with a
modal depth greater than 3 while for all other formulae one of the other provers is used. The
threshold of 3 gave us the best result in terms of the total number of problems solved by this
procedure. Figure 5 shows how well this approach performs. It shows benchmarking results
for combinations of KSP (ordered) with BDDTab, InKreSAT, and Spartacus. It also shows
the performance of the Oracle Procedure as well as the performance of a restricted version of
the Oracle Procedure that is only allowed to choose between InKreSAT and Spartacus. As we
can see, the combination of KSP (ordered) with InKreSAT performs best, slightly better than
the combination with Spartacus, and significantly better than the combination with BDDTab.

123

482 C. Nalon et al.

Fig. 5 Benchmarking results for
portfolios of provers

1/4 1/2 1 2 4 8 15 30 60 120 250 500 1000
400
600
800

1,000
1,200
1,400
1,600
1,800
2,000
2,200
2,400
2,600
2,800

CPU time in seconds

In
st
an
ce
s
So
lv
ed

Oracle Procedure
Oracle InKreSAT + Spartacus
KSP (ordered) + BDDTab
KSP (ordered) + InKreSAT
KSP (ordered) + Spartacus

The combination of KSP (ordered) with InKreSAT also performs better than the restricted
Oracle Procedure. This indicates that such a combination not only offers a practical approach
to obtaining a procedure that performs better than any single prover, but also that the use of
KSP by such a procedure offers performance advantages over other combinations of provers.

7 Conclusions

We have presented the clausal resolution prover KSP for both local and global reasoning for
the multi-modal propositional modal logic, Kn . This is based on a complete calculus where
resolution inferences are restricted to clauses at the same modal level. This paper focuses on
the implemented prover providing full details of the input processing, normal forms, clause
preprocessing, the main control loop including proof search strategies and clause selection,
refinements via variants of ordered resolution, inference rules and dealing with redundant
clauses. We carried out an experimental evaluation with the prover comparing KSP with
other provers and also analysing some of these combinations. The evaluation shows that KSP
works well on problems with high modal depth where the separation of modal layers can be
exploited to improve the efficiency of reasoning.

As with all provers that provide a variety of strategies and optimisations, to get the best
performance for a particular formula or class of formulae it is important to choose the right
strategy and optimisations. KSP currently leaves that choice to the user. The development of
an auto mode in which the prover makes a choice of its own, based on an analysis of the
given formula, is future work.

The same applies to the transformation to the layered normal form. Again, KSP offers a
number of ways in which this can be done as well as a number of simplifications that can be
applied during the process. It is clear that this affects the performance of the prover, but we
have yet to investigate the effects on the benchmark collections introduced in this paper.

OpenAccess This article is distributed under the terms of the Creative Commons Attribution 4.0 International
License (http://creativecommons.org/licenses/by/4.0/),which permits unrestricted use, distribution, and repro-
duction in any medium, provided you give appropriate credit to the original author(s) and the source, provide
a link to the Creative Commons license, and indicate if changes were made.

123

http://creativecommons.org/licenses/by/4.0/

KSP A Resolution-Based Theorem Prover for Kn : Architecture… 483

References

1. Areces, C., Gennari, R., Heguiabehere, J., de Rijke, M.: Tree-based heuristics in modal theorem proving.
In: W. Horn (ed.) ECAI 2000, pp. 199–203. IOS Press, Amsterdam (2000)

2. Areces, C., Heguiabehere, J.: Hylores 1.0: Direct resolution for hybrid logics. In: A. Voronkov (ed.)
CADE 2002, LNCS, vol. 2392, pp. 156–160. Springer, Berlin (2002)

3. Balbiani, P., Demri, S.: Prefixed tableaux systems for modal logics with enriched languages. In: M.E.
Pollack (ed.) IJCAI 1997, pp. 190–195. Morgan Kaufmann, Los Altos (1997)

4. Balsiger, P., Heuerding, A., Schwendimann, S.: A benchmark method for the propositional modal logics
K, KT, S4. J. Automat. Reason. 24(3), 297–317 (2000)

5. Basin, D., Matthews, S., Vigano, L.: Labelled propositional modal logics: theory and practice. J. Logic
Comput. 7(6), 685–717 (1997)

6. Blackburn, P., de Rijke, M., Venema, Y.: Modal Logic. Cambridge University Press, Cambridge (2001)
7. de la Tour, T.B.: An optimality result for clause form translation. J. Symb. Comput. 14(4), 283–301 (1992)
8. Fagin, R., Halpern, J.Y., Moses, Y., Vardi, M.Y.: Reasoning About Knowledge. MIT Press, Cambridge

(1995)
9. Fisher, M., Dixon, C., Peim, M.: Clausal temporal resolution. ACM Trans. Comput. Logic 2(1), 12–56

(2001)
10. Fitting, M.: Prefixed tableaus and nested sequents. Ann. Pure Appl. Logic 163(3), 291–313 (2012)
11. Fitting, M., Mendelsohn, R.L.: First-Order Modal Logic. Kluwer, Dordrecht (1998)
12. Flex: The fast lexical analyzer generator. http://github.com/westes/flex (2017). Accessed 6 Dec 2018
13. GNU Bison: The yacc-compatible parser generator. http://www.gnu.org/software/bison/ (2017).

Accessed 6 Dec 2018
14. Goranko, V., Passy, S.: Using the universal modality: gains and questions. J. Logic Comput. 2(1), 5–30

(1992)
15. Goré, R., Olesen, K., Thomson, J.: Implementing tableau calculi using BDDs: BDDTab system descrip-

tion. In: S. Demri, D. Kapur, C.Weidenbach (eds.) IJCAR 2014, LNCS, vol. 8562, pp. 337–343. Springer,
Berlin(2014)

16. Götzmann, D., Kaminski, M.: Spartacus: sources and benchmarks. Saarland University, Saarbrücken,
Germany. http://www.ps.uni-saarland.de/spartacus/. Accessed 6 Dec 2018

17. Götzmann, D., Kaminski, M., Smolka, G.: Spartacus: a tableau prover for hybrid logic. Electron. Notes
Theor. Comput. Sci. 262, 127–139 (2010)

18. Hailpern, B.T.: Verifying Concurrent Processes Using Temporal Logic. LNCS, vol. 129. Springer, Berlin
(1982)

19. Halpern, J.Y.: Using reasoning about knowledge to analyze distributed systems. Ann. Rev. Comput. Sci.
2, 37–68 (1987)

20. Halpern, J.Y., Manna, Z., Moszkowski, B.: A hardware semantics based on temporal intervals. In: J. Díaz
(ed.) ICALP 1983, LNCS, vol. 154, pp. 278–291. Springer, Berlin (1983)

21. Halpern, J.Y., Moses, Y.: A guide to completeness and complexity for modal logics of knowledge and
belief. Artif. Intell. 54(3), 319–379 (1992)

22. Hayes, P.J., Kowalski, R.A.: Semantic trees in automatic theorem proving. In: Meltzer, B., Michie, D.
(eds.) Machine Intelligence, vol. 4, pp. 87–101. Elsevier, Amsterdam (1969)

23. Horrocks, I.R., Hustadt, U., Sattler, U., Schmidt, R.: Computational modal logic. In: Blackburn, P., van
Benthem, J., Wolter, F. (eds.) Handbook of Modal Logic, pp. 181–245. Elsevier, Amsterdam (2006)

24. Hustadt, U., Schmidt, R.A.: MSPASS: modal reasoning by translation and first-order resolution. In:
R. Dyckhoff (ed.) TABLEAUX 2000, LNCS, vol. 1847, pp. 67–71. Springer, Berlin (2000)

25. Jaeger, G., Balsiger, P., Heuerding, A., Schwendimann, S., Bianchi, M., Guggisberg, K., Janssen, G.,
Heinle, W., Achermann, F., Boroumand, A.D., Brambilla, P., Bucher, I., Zimmermann, H.: LWB: the
logics workbench 1.1. University of Berne, Switzerland. http://home.inf.unibe.ch/~lwb/benchmarks/
benchmarks.html. Accessed 6 Dec 2018

26. Kaminski, M., Tebbi, T.: InKreSAT: sources and benchmarks. Saarland University, Germany. http://www.
ps.uni-saarland.de/~kaminski/inkresat/. Accessed 6 Dec 2018

27. Kaminski, M., Tebbi, T.: InKreSAT: modal reasoning via incremental reduction to SAT. In: CADE 2013,
LNCS, vol. 7898, pp. 436–442. Springer, Berlin (2013)

28. Kovács, L., Voronkov, A.: First-order theorem proving and Vampire. In: N. Sharygina, H. Veith (eds.)
CAV 2013, LNCS, vol. 8044, pp. 1–35. Springer, Berlin (2013)

29. Lee, R.C.T.: A completeness theorem and computer program for finding theorems derivable from given
axioms. Ph.D. thesis, University of California, Berkeley, USA (1967)

30. Massacci, F.,Donini, F.M.:Design and results ofTANCS-2000non-classical (modal) systems comparison.
In: R. Dyckhoff (ed.) TABLEAUX 2000, LNCS, vol. 1847, pp. 52–56. Springer, Berlin (2000)

123

http://github.com/westes/flex
http://www.gnu.org/software/bison/
http://www.ps.uni-saarland.de/spartacus/
http://home.inf.unibe.ch/~lwb/benchmarks/benchmarks.html
http://home.inf.unibe.ch/~lwb/benchmarks/benchmarks.html
http://www.ps.uni-saarland.de/~kaminski/inkresat/
http://www.ps.uni-saarland.de/~kaminski/inkresat/

484 C. Nalon et al.

31. McCune, W.W.: OTTER 3.0 reference manual and guide. Technical report ANL-94/6, Argonne National
Lab, Lemont, IL, USA (1994). http://www.osti.gov/servlets/purl/10129052-6WVVjK/native/. Accessed
6 Dec 2018

32. Nalon, C., Dixon, C.: Anti-prenexing and prenexing for modal logics. In: M. Fisher, W. van der Hoek,
B. Konev, A. Lisitsa (eds.) JELIA 2006, LNCS, vol. 4160, pp. 333–345. Springer, Berlin (2006)

33. Nalon, C., Dixon, C.: Clausal resolution for normal modal logics. J. Algorithms 62, 117–134 (2007)
34. Nalon, C., Hustadt, U., Dixon, C.: A modal-layered resolution calculus for K. In: H. de Nivelle (ed.)

TABLEAUX 2015, LNCS, vol. 9323, pp. 185–200. Springer, Berlin (2015)
35. Nalon, C., Hustadt, U., Dixon, C.: : A resolution-based prover for multimodal K. In: N. Olivetti,

A. Tiwari (eds.) IJCAR 2016, LNCS, vol. 9706, pp. 406–415. Springer, Berlin (2016)
36. Nalon, C., Hustadt, U., Dixon, C.: : sources and benchmarks. University of Brasília, Brazil (2018).

http://www.cic.unb.br/~nalon/#software. Accessed 6 Dec 2018
37. Nonnengart, A., Weidenbach, C.: Computing small clause normal forms. In: Robinson, A., Voronkov, A.

(eds.) Handbook of Automated Reasoning, vol. 1, pp. 335–367. Elsevier, Amsterdam (2001)
38. Olesen,K.:BDDTab: sources and benchmarks.AustralianNationalUniversity,Canberra,Australia. http://

users.cecs.anu.edu.au/~rpg/BDDTab/. Accessed 6 Dec 2018
39. Pan, G., Sattler, U., Vardi, M.Y.: BDD-based decision procedures for the modal logic K. J. Appl. Non

Class. Logics 16(1–2), 169–208 (2006)
40. Patel-Schneider, P.F., Sebastiani, R.: A newgeneralmethod to generate randommodal formulae for testing

decision procedures. J. Artif. Intell. Res. (JAIR) 18, 351–389 (2003)
41. Plaisted, D.A., Greenbaum, S.: A structure-preserving clause form translation. J. Symb. Comput. 2(3),

293–304 (1986)
42. Pratt, V.R.: Application of modal logic to programming. Stud. Log. 39(2/3), 257–274 (1980)
43. Rao, A.S., Georgeff, M.P.: Modeling rational agents within a BDI-architecture. In: R. Fikes, E. Sandewall

(eds.) KR 1991, pp. 473–484. Morgan Kaufmann, Los Altos (1991)
44. Robinson, J.A.: Automatic deduction with hyper-resolution. Int. J. Comput. Math. 1, 227–234 (1965)
45. Robinson, J.A.: A machine-oriented logic based on the resolution principle. J. ACM 12(1), 23–41 (1965)
46. Schild, K.: A correspondence theory for terminological logics. In: J. Mylopoulos, R. Reiter (eds.) IJCAI

1991, pp. 466–471. Morgan Kaufmann, Los Altos (1991)
47. Schulz, S.: Simple and efficient clause subsumption with feature vector indexing. In: Bonacina, M.P.,

Stickel, M.E. (eds.) Automated Reasoning and Mathematics: Essays in Honour of William W. McCune.
LNCS, vol. 7788, pp. 45–67. Springer, Berlin (2013)

48. Schuppan, V., Darmawan, L.: Evaluating LTL satisfiability solvers. In: T. Bultan, P.A. Hsiung (eds.) ATVA
2011, LNCS, vol. 6996, pp. 397–413. Springer, Berlin (2011)

49. Sebastiani, R., Vescovi, M.: Automated reasoning in modal and description logics via SAT encoding: the
case study of K(m)/ALC-satisfiability. J. Artif. Intell. Res. 35(1), 343–389 (2009)

50. Spaan, E.: Complexity of modal logics. Ph.D. thesis, University of Amsterdam, The Netherlands (1993)
51. Tsarkov, D.: FaCT++: sources. https://github.com/ethz-asl/libfactplusplus. Accessed 6 Dec 2018
52. Tsarkov, D., Horrocks, I.: FaCT++ description logic reasoner: system description. In: U. Furbach,

N. Shankar (eds.) IJCAR 2006, LNCS, vol. 4130, pp. 292–297. Springer, Berlin (2006)
53. Voronkov, A., Kovács, L., Reger, G., Suda, M., Kotelnikov, E., Robillard, S., Gleiss, B., Rawson, M.,

Bhayat, A., Riener, M.: Vampire. https://vprover.github.io/. Accessed 6 Dec 2018
54. Waaler, A.: Connections in nonclassical logics. In: Robinson, J.A., Voronkov, A. (eds.) Handbook of

Automated Reasoning, pp. 1487–1578. Elsevier, Amsterdam (2001)
55. Wallen, L.A.: Automated Deduction in Non-classical Logics. MIT Press, Cambridge (1990)
56. Wos, L., Robinson, G.A., Carson, D.F.: Efficiency and completeness of the set of support strategy in

theorem proving. J. ACM 12, 536–541 (1965)

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

123

http://www.osti.gov/servlets/purl/10129052-6WVVjK/native/
http://www.cic.unb.br/~nalon/#software
http://users.cecs.anu.edu.au/~rpg/BDDTab/
http://users.cecs.anu.edu.au/~rpg/BDDTab/
https://github.com/ethz-asl/libfactplusplus
https://vprover.github.io/

	KSP A Resolution-Based Theorem Prover for Kn: Architecture, Refinements, Strategies and Experiments
	Abstract
	1 Introduction
	2 Language
	3 Layered Normal Form
	4 Inference Rules
	5 Implementation
	5.1 Main Processing Cycle
	5.2 Input Processing
	5.3 Transformation to Normal Form
	5.4 Preprocessing of Clauses
	5.5 Controlling the Inner Loop
	5.6 Clause Selection
	5.7 Refinements
	5.8 Inference Rules
	5.9 Redundancy Elimination

	6 Evaluation
	7 Conclusions
	References

