
J Autom Reasoning (2016) 57:3–36
DOI 10.1007/s10817-016-9364-6

Labelled Interpolation Systems for Hyper-Resolution,
Clausal, and Local Proofs

Matthias Schlaipfer1 · Georg Weissenbacher1

Received: 1 October 2014 / Accepted: 4 February 2016 / Published online: 16 February 2016
© The Author(s) 2016. This article is published with open access at Springerlink.com

Abstract Craig’s interpolation theorem has numerous applications in model checking, auto-
mated reasoning, and synthesis. There is a variety of interpolation systems which derive
interpolants from refutation proofs; these systems are ad-hoc and rigid in the sense that
they provide exactly one interpolant for a given proof. In previous work, we introduced a
parametrised interpolation systemwhich subsumes existing interpolation methods for propo-
sitional resolution proofs and enables the systematic variation of the logical strength and the
elimination of non-essential variables in interpolants. In this paper, we generalise this system
to propositional hyper-resolution proofs as well as clausal proofs. The latter are generated
by contemporary SAT solvers. Finally, we show that, when applied to local (or split) proofs,
our extension generalises two existing interpolation systems for first-order logic and relates
them in logical strength.

Keywords Craig interpolation · Satisfiability checking · Resolution

1 Introduction

Craig interpolation [14] has proven to be an effective heuristic in applications such as model
checking, where it is used as an approximate method for computing invariants of transition
systems [39,54], and synthesis, where interpolants represent deterministic implementations
of specifications given as relations [31]. The intrinsic properties of interpolants enable
concise abstractions in verification and smaller circuits in synthesis. Intuitively, stronger
interpolants provide more precision [29,46], and interpolants with fewer variables lead to

Supported by the Austrian National Research Network S11403-N23 (RiSE), the LogiCS doctoral program
W1255-N23 of the Austrian Science Fund (FWF), and by the Vienna Science and Technology Fund
(WWTF) through Grant VRG11-005.

B Georg Weissenbacher
georg.weissenbacher@tuwien.ac.at

1 TU Wien, Vienna, Austria

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10817-016-9364-6&domain=pdf

4 M. Schlaipfer, G. Weissenbacher

smaller designs [7,31]. However, interpolation is mostly treated as a black box, leaving no
room for a systematic exploration of the solution space. In addition, the use of different
interpolation systems complicates a comparison of their interpolants. We present a novel
framework which generalises a number of existing interpolation techniques and supports a
systematic variation and comparison of the generated interpolants.

1.1 Contributions

We present a novel parametrised interpolation system which extends our previous work on
propositional interpolation [16].

– The extended system supports hyper-resolution (see Sect. 3) and allows for systematic
variation of the logical strength (with an additional degree of freedom over [16]) and the
elimination of non-essential literals [15] in interpolants.

– We generalise (in Sect. 4) our interpolation system for hyper-resolution steps to clausal
refutations generated by contemporary SAT solvers such as PicoSAT [5], allowing us to
avoid the generation of intermediate interpolants.

– When applied to local (or split) proofs [30], the extended interpolation system generalises
the existing interpolation systems for first-order logic presented in [32,55] and relates
them in logical strength (Sect. 5).

This paper is an extended version of [56], and includes novel results on interpolation for
clausal proofs and empirical results (see Sect. 4).

2 Background

This section introduces our notation (Sect. 2.1) and restates the main results of our previous
paper on labelled interpolation systems [16] in Sect. 2.2.

2.1 Formulae and Proofs

In our setting, the term formula refers to either a propositional logic formula or a formula in
standard first-order logic.

2.1.1 Propositional Formulae

Wework in the standard setting of propositional logic over a set X of propositional variables,
the logical constants T and F (denoting true and false, respectively), and the standard logical
connectives ∧, ∨, ⇒, and ¬ (denoting conjunction, disjunction, implication, and negation,
respectively).

Moreover, let LitX = {x, x | x ∈ X} be the set of literals over X , where x is short for
¬x . We write var(t) for the variable occurring in the literal t ∈ LitX . A clause C is a set
of literals. The empty clause � contains no literals and is used interchangeably with F. The
disjunction of two clausesC and D is their union, denotedC ∨D, which is further simplified
to C ∨ t if D is the singleton {t}. In clauses, we sometimes omit the disjunction ∨ to save
space. A propositional formula in conjunctive normal form (CNF) is a conjunction of clauses,
also represented as a set of clauses.

123

Labelled Interpolation Systems for Hyper-Resolution, Clausal... 5

2.1.2 First-Order Logic

The logical connectives from propositional logic carry over into first-order logic. We fix
an enumerable set of variables, function and predicate symbols over which formulae are
built in the usual manner. The vocabulary of a formula A is the set of its function and
predicate symbols. L(A) refers to the set of well-formed formulae which can be built over
the vocabulary of A.

Variables may be universally (∀) or existentially (∃) quantified. A formula is closed if all
its variables are quantified and ground if it contains no variables. As previously, conjunctions
of formulae are also represented as sets.

Given a formula A in either first-order or propositional logic, we use Var(A) to denote
the set of free (unquantified) variables in A.

2.1.3 Inference Rules and Proofs

We write A1, . . . , An |� A to denote that the formula A holds in all models of A1, . . . , An

(where n ≥ 0). An inference rule
A1 · · · An

A
(1)

associates zero or more premises (or antecedents) A1, . . . , An with a conclusion A. The
inference rule (1) is sound if A1, . . . , An |� A holds. A (sound) inference system I is a set
of (sound) inference rules.

The propositional resolution rule (Res), for example, is a sound inference rule stating that
an assignment satisfying the clauses C ∨ x and D ∨ x also satisfies C ∨ D. The clauses
C ∨ x and D ∨ x are the antecedents, x is the pivot, and the conclusion C ∨ D is called the
resolvent. Res(C, D, x) denotes the resolvent of C and D with the pivot x .

Definition 1 (Proof) A proof (or derivation) P in an inference system IP is a directed acyclic
graph (VP , EP , �P ,sP), where VP is a set of vertices, EP is a set of edges, �P is a function
mapping vertices to formulae, and sP ∈ VP is the sink vertex. An initial vertex has in-degree
0. All other vertices are internal and have in-degree ≥ 1. The sink has out-degree 0. Each
internal vertex v with edges (v1, v), . . . , (vm, v) ∈ EP is associated with an inference rule
Inf ∈ IP with antecedents �P (v1), . . . , �P (vm) and conclusion �P (v).

The subscripts above are dropped if clear.Avertex vi in P is a parent of v j if (vi , v j) ∈ EP .
A proof P is a refutation if �P (sP) = F. Let A and B be conjunctive formulae. A refutation P
of an unsatisfiable formula A∧ B is an (A, B)-refutation (i.e., for each initial vertex v ∈ VP ,
�P (v) is a conjunct of A or a conjunct of B). A proof is closed (ground, respectively) if �P (v)

is closed (ground) for all v ∈ VP .
In the following, we use the propositional resolution calculus to instantiate Definition 1.

Definition 2 (Resolution Proof) A resolution proof R is a proof in the inference system
comprising only the resolution rule Res. Consequently, �R maps each vertex v ∈ VR to a
clause, and all internal vertices have in-degree 2. Let pivR be the function mapping internal
vertices to pivot variables. For an internal vertex v and (v1, v), (v2, v) ∈ ER , �R(v) =
Res(�R(v1), �R(v2), pivR(v)).

Note that the value of �R at internal vertices is determined by that of �R at initial vertices
and the pivot function pivR . We write v+ for the parent of v with piv(v) in �(v+) and v− for
the parent with ¬piv(v) in �(v−).

A resolution proof R is a resolution refutation if �R(sR) = �.

123

6 M. Schlaipfer, G. Weissenbacher

A
x0

A
x0 x2

x2
A

x1 x2

x1

B
x1 x2

B
x2

x1

A
x0

A
x0 x2

x2
A
x2

B
Tx2

B
x2

T

A
x0

A
x0 x2

x2
A
x2

B
x2

B
x2

x1 1 0

Fig. 1 The interpolant x1 acts as a “separator” for the resolution refutation

2.2 Interpolation Systems and Labelling Functions

There are numerous variants and definitions of Craig’s interpolation Theorem [14]. We use
the definition of a Craig interpolant introduced by McMillan [39]:

Definition 3 (Interpolant) A Craig interpolant for a pair of formulae (A, B), where A ∧ B
is unsatisfiable, is a formula I whose free variables, function and predicate symbols occur in
both A and B, such that A ⇒ I and B ⇒ ¬I hold.

Craig’s interpolation theorem guarantees the existence of such an interpolant for unsat-
isfiable pairs of formulae (A, B) in first order logic. Consequently, it also holds in the
propositional setting, where the conditions of Definition 3 reduce to A ⇒ I , B ⇒ ¬I ,
and Var(I) ⊆ Var(A) ∩ Var(B).

Example 1 Let A = (x0) ∧ (x0 ∨ x2) ∧ (x1 ∨ x2) and B = (x2) ∧ (x1 ∨ x2). Then I = x1 is
an interpolant for (A, B). Intuitively, x1 interpolant acts as a “separator” for the underlying
refutationproof (the leftmost proof inFig. 1).By setting x1 toFweobtain a refutationof the A-
partition, as illustrated in Fig. 1. Similarly, setting x1 to T yields a refutation for B—the inter-
polant can be understood as a multiplexer. Equivalently, I is T if A is T, and¬I is T if B is T.

Numerous techniques to construct interpolants have been proposed (c.f. Sect. 6). In partic-
ular, there is a class of algorithms that derive interpolants from proofs; the first such algorithm
for the sequent calculus is presented in Maehara’s constructive proof [37] of Craig’s theo-
rem. In this paper, we focus on interpolation systems that construct an interpolant from an
(A, B)-refutation bymapping the vertices of a resolution proof to a formula called the partial
interpolant.

Formally, an interpolation system Itp is a function that given an (A, B)-refutation R yields
a function, denoted Itp(R, A, B), from vertices in R to formulae over Var(A) ∩ Var(B). An
interpolation system is correct if for every (A, B)-refutation R with sink s, it holds that
Itp(R, A, B)(s) is an interpolant for (A, B). We write Itp(R) for Itp(R, A, B)(s) when A
and B are clear. Let v be a vertex in an (A, B)-refutation R. The pair (�(v), Itp(R, A, B)(v))

is an annotated clause and is written �(v) [Itp(R, A, B)(v)] in accordance with [40].
In the following, we review the labelled interpolation systems we introduced in [16].

Labelled interpolation generalises several existing propositional interpolation systems pre-
sentedbyHuang [28],Krajíček [33], Pudlák [42], andMcMillan [39].Adistinguishing feature
of a labelled interpolation system is that it assigns an individual label c ∈ {⊥,a,b,ab} to
each literal in the resolution refutation.
Definition 4 (Labelling Function) Let (S, , ,) be the lattice
below, where S = {⊥,a, b, ab} is a set of symbols and , and
are defined by the Hasse diagram to the right. A labelling function

LR : VR × Lit → S for a refutation R over a set of literals Lit
satisfies that for all v ∈ VR and t ∈ Lit:

⊥
a b

ab

123

Labelled Interpolation Systems for Hyper-Resolution, Clausal... 7

For an initial vertex v with (v) = C

(A-clause)
C [C b]

if C ∈ A (B-clause)
C [¬(C a)]

if C ∈ B

For an internal vertex v with piv(v) = x, (v+) = C1 ∨ x and (v−) = C2 ∨ x

C1 ∨ x [I1] C2 ∨ x [I2]
C1 ∨ C2 [I3]

(A-Res) if L(v+, x) L(v−, x) = a, I3
def= I1 ∨ I2

(AB-Res) if L(v+, x) L(v−, x) = ab, I3
def= (x ∨ I1) ∧ (x ∨ I2)

(B-Res) if L(v+, x) L(v−, x) = b, I3
def= I1 ∧ I2

Fig. 2 Labelled interpolation system for resolution proofs

1. LR(v, t) = ⊥ iff t /∈ �R(v)

2. LR(v, t) = LR(v1, t)� · · · � LR(vm, t) for an internal vertex v, its parents {v1, . . . , vm},
and literal t ∈ �R(v).

Due to Condition (2) above, the labels of literals at initial vertices completely determine
the labelling function for literals at internal vertices. The following condition ensures that a
labelling function respects the locality of a literal t in accordance with (A, B). A literal t is
A-local and therefore labelled a if var(t) ∈ Var(A)\Var(B). Conversely, t is B-local and
therefore labelledb if var(t) ∈ Var(B)\Var(A). Literals t forwhich var(t) ∈ Var(A)∩Var(B)

are shared and can be labelled a, b, or ab (which generalises existing interpolation systems).

Definition 5 (Locality) A labelling function L for an (A, B)-refutation R preserves locality
if for any initial vertex v and literal t in R

1. a � L(v, t) implies that var(t) ∈ Var(A), and
2. b � L(v, t) implies that var(t) ∈ Var(B).

For a given labelling function L , we define the downward projection of a clause at a vertex
v with respect to c ∈ S as �(v)�c,L

def= {t ∈ �(v) | L(v, t) � c} and the upward projection

�(v)�c,L as �(v)�c,L
def= {t ∈ �(v) | c � L(v, t)}. The subscript L is omitted if clear from the

context.

Definition 6 (Labelled Interpolation System for Resolution) Let L be a locality preserving
labelling function for an (A, B)-refutation R. The labelled interpolation system Itp(L) maps
vertices in R to partial interpolants as defined in Fig. 2.

Labelling functions provide control over the interpolants constructed from a resolution
proof. Firstly, labelled interpolation systems support the elimination of non-essential (periph-
eral [50], respectively) variables from interpolants [15]. Secondly, labelled interpolation
systems—and their respective interpolants—are ordered by logical strength. A labelled inter-
polation system Itp(L) is stronger than Itp(L ′) if for all refutations R (for which L and L ′
are locality preserving labelling functions), Itp(L , R) ⇒ Itp(L ′, R). The partial order � on
labelling functions (first introduced in [16]) guarantees an ordering in strength:

123

8 M. Schlaipfer, G. Weissenbacher

Definition 7 (Strength Order) We define the total order on the lattice S =
{⊥,a, b,ab} as b ab a (c.f. the Hasse diagram to the right). Let L and
L be labelling functions for an (A, B)-refutation R. The function L is stronger than L ,
denoted L L , if for all v ∈ VR and t ∈ , L(v, t) L (v, t).

b
ab
a
⊥

Theorem 2 in [16] shows that if L is a stronger labelling function than L ′, the interpolant
obtained from Itp(L) logically implies the one obtained from Itp(L ′).

3 Interpolation for Hyper-Resolution

In this section, we extend labelled interpolation systems to a richer inference system, in
particular, the inference system comprising (propositional) hyper-resolution [43]. Hyper-
resolution is a condensation of a derivation consisting of several resolutions and avoids the
construction of intermediate clauses. Hyper-resolution has several applications in proposi-
tional satisfiability checking, such as pre-processing [21] of formulae or as an integral part
of the solver (e.g., [2]).

Positive hyper-resolution combines a single clause (called the nucleus) containing n nega-
tive literals x1, . . . , xn and n satellite clauses each ofwhich contains one of the corresponding
non-negated literals xi (where 1 ≤ i ≤ n):

satellites
︷ ︸︸ ︷

(C1 ∨ x1) · · · (Cn ∨ xn)

nucleus
︷ ︸︸ ︷

(x1 ∨ · · · ∨ xn ∨ D)
∨n

i=1 Ci ∨ D
[HyRes]

In negative hyper-resolution the roles of xi and xi are exchanged.

Definition 8 (Hyper-Resolution Proof) A hyper-resolution proof R is a proof using only the
inference ruleHyRes. Accordingly, �R maps each vertex v ∈ VR to a clause, and all internal
vertices have in-degree ≥ 2. Each internal vertex v has n ≥ 1 parents v+

1 , . . . , v+
n such that

�R(v+
i) = Ci ∨ xi and one parent v− with �R(v−) = x1 ∨ · · · ∨ xn ∨ D, and consequently,

�R(v) = ∨n
i=1 Ci ∨ D.

The definition of labelling functions (Definition 4) readily applies to hyper-resolution
proofs. Note that � is not a total order on labelling functions. Lemma 1 (a generalisation
of Lemma 3 in [16] to hyper-resolution proofs) enables a comparison of labelling functions
based solely on the values at the initial vertices.

Lemma 1 Let L and L ′ be labelling functions for an (A, B)-refutation R. If L(v, t) �
L ′(v, t) for all initial vertices v and literals t ∈ �(v), then L � L ′.

A proof of Lemma 1 is given in Appendix 1. In the following, we generalise labelled inter-
polation systems to hyper-resolution. The underlying intuition is to replace the multiplexer
in the case AB-Res in Definition 6 with a general multiplexer controlled by the pivot literals
of the hyper-resolution step. This idea is illustrated in Fig. 3 for the proof in Example 1 and
formalised in the following definition:

Definition 9 (Labelled Interpolation System for Hyper-Resolution) Let L be a locality pre-
serving labelling function for an (A, B)-refutation R, where R is a hyper-resolution proof.
The labelled interpolation system Itp(L) maps vertices in R to partial interpolants as defined
in Fig. 4.

123

Labelled Interpolation Systems for Hyper-Resolution, Clausal... 9

a
x0

a
x0

ab
x2

x2 [F]
ab

x1 x2 [F]

nucleus satellites
[HyRes]

ab
x1 x2

ab
x2

x1 [T]

[I]

x0 x0 x2

x2x1 x2

?
x1
x2

x1 x2x2

x1

Fig. 3 Generalising labelled interpolation to hyper-resolution

For an initial vertex v with (v) = C

(A-clause)
C [C b]

if C ∈ A (B-clause)
C [¬(C a)]

if C ∈ B

For an internal vertex v with predecessors {v+
1 , . . . , v+

n , v−} (where n ≥ 1)
with (v+

i) = (Ci ∨ xi), for 1 ≤ i ≤ n, and (v−) = (D ∨ x1 ∨ · · · ∨ xn)

C1 ∨ x1 [I1] · · · Cn ∨ xn [In] x1 ∨ · · · ∨ xn ∨ D [In+1]
n
i=1 Ci ∨ D [I]

(A-HyRes) if ∀i ∈ {1..n} . L(v+
i , xi) L(v−, xi) = a, I

def= n+1
i=1 Ii

(AB-HyRes) if ∀i ∈ {1..n} . L(v+
i , xi) L(v−, xi) = ab,

1.) I
def= n

i=1(xi ∨ Ii) ∧ In+1 ∨ n
i=1 xi , or

2.) I
def= n

i=1(xi ∧ Ii) ∨ In+1 ∧ n
i=1 xi

(B-HyRes) if ∀i ∈ {1..n} . L(v+
i , xi) L(v−, xi) = b, I

def= n+1
i=1 Ii

Fig. 4 Labelled interpolation system for hyper-resolution proofs

The interpolation system leaves us a choice for internal nodes AB-HyRes. We will use
Itp1 (Itp2, respectively) to refer to the interpolation system that always chooses case 1 (case
2, respectively). Note furthermore that Definitions 6 and 9 are equivalent in the special case
where n = 1.

Remark 1 Note that unlike the interpolation system for ordinary resolution proofs presented
in Definition 6, Itp is not total for hyper-resolution proofs: the case split requires the pivots of
the hyper-resolution step to be uniformly labelled, i.e., the rules A-HyRes, AB-HyRes, and
B-HyRes require L(v+

i , xi)� L(v−, xi) to be a, ab, or b, respectively, for all i ∈ {1, . . . , n}.
This limitation is addressed in Sect. 4.1.

In the following we present a conditional correctness result:

Theorem 1 (Correctness)For any (A, B)-refutation R (where R is a hyper-resolution proof)
and locality preserving labelling function L, Itp(L , R) (if defined) is an interpolant for (A, B).

The proof of Theorem 1 (given in Appendix 1) establishes that for each vertex v ∈ VR

with �R(v) = C and I = Itp(L , R)(v), the following conditions hold:

– A ∧ ¬(C�a,L) ⇒ I ,
– B ∧ ¬(C�b,L) ⇒ ¬I , and
– Var(I) ⊆ Var(A) ∩ Var(B).

For �R(s) = �, this establishes the correctness of the system.

123

10 M. Schlaipfer, G. Weissenbacher

We emphasise that Theorem 1 does not constrain the choice for the case AB-HyRes. Since
both Itp1(L , R) and Itp2(L , R) satisfy the conditions above, this choice does not affect the
correctness of the interpolation system. In fact, it is valid to mix both systems by defining
a choice function χ : VR → {1, 2} which determines which interpolation system is chosen
at each internal node. We use Itpχ (L , R) to denote the resulting interpolation system. This
modification, however,may have an impact on the logical strength of the resulting interpolant.

Theorem 2 Let the hyper-resolution proof R be an (A, B)-refutation and L be a locality
preserving labelling function. Moreover, let Itpχ (L , R) and Itpχ ′(L , R) be labelled inter-
polation systems (defined for L , R) with the choice functions χ and χ ′, respectively. Then
Itpχ (L , R) ⇒ Itpχ ′(L , R) if χ(v) ≤ χ ′(v) for all internal vertices v ∈ VR.

Proof sketch This follows (by structural induction over R) from
(
∧n

i=1
(xi ∨ Ii) ∧

(

In+1 ∨
∨n

i=1
xi

))

⇒
(
∨n

i=1
(xi ∧ Ii) ∨

(

In+1 ∧
∧n

i=1
xi

))

.

��
Note that the converse implication does not hold; a simple counterexample for an internal
vertex with n = 2 is the assignment x1 = x2 = F, I1 = T, and I2 = I3 = F.

The final theorem in this section extends the result of Theorem2 in [16] to hyper-resolution
proofs:

Theorem 3 If L and L ′ are labelling functions for an (A, B)-refutation R (R being a hyper-
resolution proof) and L � L ′ such that Itpi (L , R) as well as Itpi (L

′, R) are defined, then
Itpi (L , R) ⇒ Itpi (L

′, R) (for a fixed i ∈ {1, 2}).
The proof of Theorem 3, provided in Appendix 1, is led by structural induction over R. For

any vertex v in R, let Iv and I ′
v be the partial interpolants due to Itpi (L , R) and Itpi (L

′, R),
respectively. We show that Iv ⇒ I ′

v ∨ {t ∈ �R(v) | L(v, t) � L ′(v, t) = ab} for all vertices v,
establishing Iv ⇒ I ′

v for the sink to show that Itpi (L , R) ⇒ Itpi (L
′, R).

Theorems 2 and 3 enable us to fine-tune the strength of interpolants, since the sets of
all labelling and choice functions ordered by � and ≤, respectively, form complete lattices
(c.f. [16, Theorem 3]). Finally, we remark that the Theorems 2 and 3 are orthogonal. The
former fixes the labelling function L , whereas the latter fixes the choice function χ .

4 Interpolation for Clausal Proofs

Contemporary SAT solvers such as MiniSAT [17] and PicoSAT [5] are based on conflict-
driven clause learning (CDCL) [49]. The CDCL algorithm avoids the repeated exploration
of conflicting variable assignments by caching the causes of failures in the form of learned
clauses. To this end, the solver stores assignments (decisions) and their implications in an
implication graph, from which it derives learned clauses in case of a conflict. We refrain
from providing a description of CDCL, since numerous excellent expositions are available
(e.g., [6,34]). The following example, borrowed from [38], illustrates the construction of
resolution proofs in CDCL solvers.

Example 2 Figure 5 shows a partial implication graph for the clauses (x4 x10 x6), (x4 x2 x5),
(x5 x6 x7), and (x6 x7). Nodes represent assignments (annotated with the corresponding
decision level, e.g., x10@2 indicates that x10 was assigned F at level 2) and each edge
represents an implication deriving from a clause in which all but one literal is assigned under

123

Labelled Interpolation Systems for Hyper-Resolution, Clausal... 11

x4@6

x5@6

x6@6

x10@2

x2@2

x7@6

C4

C4

C2

C1

C2

C1

C3

C3 C1 ≡ {x4, x10, x6}
C2 ≡ {x4, x2, x5}
C3 ≡ {x5, x6, x7}
C4 ≡ {x6, x7}

Fig. 5 Implication graph and conflict analysis

the current assignment. The final node � indicates a conflict under the current assignment,
and its incoming edges are annotated with the conflicting clauseC4. This conflict stems from
the fact that C4 disagrees with C1 and C3 on the implied literals x6 and x7, respectively. By
subsequently resolving on the conflicting literals, we obtain

C5 = Res(C4,C3, x7) = {x5, x6} and C6 = Res(C5,C1, x6) = {x4, x5, x10}.
The clause C6 disagrees with C2 on the implied literal x5. The resolvent of these clauses is
C7 = Res(C6,C2, x5) = {x2, x4, x10}. C7 contains a single literal (x4) assigned at decision
level 6 while still conflicting with the current partial assignment. Accordingly, reverting the
decision x4 at level 6 and adding C7 as learned clause prevents the solver from revisiting this
part of the search space.

The learned clause in Example 2 is a consequence of clauses of the original instance and
previously learned clauses. Each learned clause is the conclusion of a chain of resolution
steps.

Definition 10 (Chain) A (resolution) chain of length n is a tuple consisting of an input
clause D0 and an ordered sequence of clause-pivot pairs 〈Ci , xi 〉 (where 1 ≤ i ≤ n). The
final resolvent Dn of a resolution chain is defined inductively as Di = Res(Di−1,Ci , xi).

A resolution chain generated by a CDCL solver has the following properties [4]:

– Regularity: each pivot variable is resolved upon at most once in the chain.
– Linearity: each intermediate clause Di (1 ≤ i ≤ n) in a chain is obtained by deriving

Di−1 with an initial clause C j (2 ≤ j ≤ n) or with a previously derived clause Dk

(k < i − 1).
– Tree-likeness: each derived clause is used exactly once in the chain.

A resolution derivation with these properties is called trivial [4]. For reasons of per-
formance, proof-logging solvers discard all intermediate resolvents generated during the
construction of a conflict clause and retain only resolution chains. Clausal proofs [22,25]
and proofs stored in the TraceCheck-format1 moreover omit the pivot literals as well as the
order of the resolution steps, recording only the unordered set of clauses D0,C1, . . . ,Cn for
each resolution chain.

If D0 is a nucleus and C1, . . . ,Cn are suitable satellites, the chain can be replaced by a
hyper-resolution step assuming its conclusion Dn satisfies the HyRes rule. In general, this
may not be the case: D0 = {x1, x2},C1 = {x2, x3},C2 = {x3, x4} is a valid resolution
chain (with conclusion {x1, x4}) that does not match the antecedents HyRes rule.

1 http://fmv.jku.at/tracecheck/README.tracecheck.

123

http://fmv.jku.at/tracecheck/README.tracecheck

12 M. Schlaipfer, G. Weissenbacher

To address this problem, we introduce a more general inference rule which requires the
existence of a resolution chain matching its premises and conclusion as a side condition.
Each of the n premises contains a non-empty (sub-)set of pivot literals Pi which occur in
opposite phase in the other clauses of the premise. The clause learning algorithm illustrated
in Example 2 results in resolution chains that satisfy the following properties:

– The pivot literals
⋃n

i=1 Pi do not occur in the conclusion of the chain.

Remark 2 The algorithm resolves upon pivot literals that are implied but not yet assigned at
the respective node in the implication graph. Accordingly, the clauses preceding the node in
the implication graph cannot contain the implied literal, since they would otherwise not be
unit. Therefore, a pivot literal, once resolved, is never re-introduced in a resolution chain.
– The conjunction

∧n
i=1 Pi is unsatisfiable (guaranteed by the existence of a resolution

chain).

These properties are reflected in the following inference rule:

Definition 11 (TraceCheck Resolution) Let D1, . . . , Dn be an (unordered) set of clauses.
Let Pi

def= {t ∈ Di | ∃ j · 1 ≤ j ≤ n ∧ j �= i ∧ t ∈ Dj } and Ci
def= Di\Pi . If there exists a

resolution chain D1, 〈D2, x2〉, . . . , 〈Dn, xn〉 with conclusion
∨n

i=1 Ci then

(C1 ∨ P1) · · · (Cn ∨ Pn)
∨n

i=1 Ci
[TCRes]

Analogously to Definition 8, we introduce the notion of a clausal proof.

Definition 12 (Clausal Proof) A clausal proof R is a proof using only the inference rule
TCRes. Accordingly, �R maps each vertex v ∈ VR to a clause and every internal vertex v

has n ≥ 2 parents v1, . . . , vn such that �R(vi) = Ci ∨ Pi (as in Definition 11). Consequently,
�R(v) = ∨n

i=1 Ci .

The following definition extends the interpolation system for hyper-resolution proofs
presented in Sect. 3 to clausal proofs.

Definition 13 (Labelled Interpolation System for Clausal Proofs) Let L be a locality pre-
serving labelling function for an (A, B)-refutation R, where R is a clausal proof. The labelled
interpolation system Itp(L) maps vertices in R to partial interpolants as defined in Fig. 6.

Note that the interpolation system in Definition 13 is a generalisation of the interpolation
system for hyper-resolution (Definition 9). Its correctness is established using a similar argu-
ment as used for Theorem 1. The proof of the following theorem is provided in Appendix 1.

Theorem 4 (Correctness) For any (A, B)-refutation R (where R is a clausal proof) and
locality preserving labelling function L, Itp(L , R) (if defined) is an interpolant for (A, B).

The results of Theorems 2 and 3 can be generalised to clausal proofs in a straight-forward
manner. We omit the discussion of the details.

4.1 Splitting and Reordering Resolution Chains

Just like the interpolation system for hyper-resolution proofs, the interpolation system in
Definition 13 has the deficiency that the function Itp(L) is not total: there are labelling
functions L for which the result of Itp(L) is undefined. This problem arises whenever the

123

Labelled Interpolation Systems for Hyper-Resolution, Clausal... 13

For an initial vertex v with (v) = C

(A-clause)
C [C b]

if C ∈ A (B-clause)
C [¬(C a)]

if C ∈ B

For an internal vertex v with predecessors {v1, . . . , vn} (where n ≥ 1)
with (vi) = (Ci ∨ Pi), for 1 ≤ i ≤ n

C1 ∨ P1 [I1] · · · Cn ∨ Pn [In]
n
i=1 Ci [I]

(A-TCRes) if ∀i ∈ {1..n} . t ∈ Pi ⇒ L(vi, t) = a, I
def= n

i=1 Ii
(AB-TCRes) if ∀i, j ∈ {1..n}, i = j . x ∈ Pi ∧ x ∈ Pj ⇒ L(vi, x) L(vj , x) = ab,

1.) I
def= n

i=1 Ii ∨ Pi or
2.) I

def= n
i=1 Ii ∧ ¬Pi

(B-TCRes) if ∀i ∈ {1..n} . t ∈ Pi ⇒ L(vi, t) = b, I
def= n

i=1 Ii

Fig. 6 Labelled interpolation system for clausal proofs

(
a

x1 ∨C1) (
ab
x2 ∨C2) (

a
x3 ∨C3) (

a
x4 ∨C4) (

a
x1 ∨ a

x2 ∨ a
x3 ∨ b

x4 ∨D)
C1 ∨ C2 ∨ C3 ∨ C4 ∨ D

(
a

x1 ∨C1) (
a

x3 ∨C3) (
a

x1 ∨ a
x2 ∨ a

x3 ∨ b
x4 ∨D)

(
a

x2 ∨ b
x4 ∨C1 ∨ C3 ∨ D)

[A-HyRes]
(
ab
x2 ∨C2) (

a
x4 ∨C4)

C1 ∨ C2 ∨ C3 ∨ C4 ∨ D
[AB-HyRes]

Fig. 7 Splitting hyper-resolution steps

pivots in a TraceCheck resolution step are not uniformly labelled, and therefore none of the
rules in Fig. 6 is applicable.

Instead of adapting the interpolation system, we address the problem by splitting the
corresponding resolution chains. A single chain can be split into two consecutive chains,
with the final resolvent of the first acting as the input clause of the second, without affecting
the final result. By splitting resolution steps whose pivots are not uniformly labelled we can
always generate a labelled refutation for which Itp is a total function. The example in Fig. 7
illustrates this transformation for a single hyper-resolution step.

Eachhyper-resolution orTraceCheck resolution stepmayneed to be rewritten into several
subsequent uniformly labelled steps, thus changing the proof structure. Note that the results
on the relative strength of interpolants in Sect. 3 naturally only apply if both proofs have the
same structure. The effect of the order of resolution steps on the strength of interpolants is
discussed in [16, Section 5.2] and exceeds the scope of this paper.

The number of resolution steps resulting from splitting depends on the order of the pivots
in the given resolution chain, as demonstrated in the following example.

Example 3 Figure 8 shows two resolution chains (presented as trivial resolution proofs).

In the left proof, the order of the pivots is
a
x1,

b
x2,

a
x3, necessitating two splits to obtain a

uniform labelling of the pivots. The proof to the right corresponds to a similar resolution
chain in which the first two resolution steps have been swapped. The resulting split yields
the following two TraceCheck resolution steps:

123

14 M. Schlaipfer, G. Weissenbacher

{ a
x1,

b
x2} { a

x1}
{ b
x2,

a
x3}

{ b
x2}

{ a
x3}

w

v { a
x3}

{ a
x1,

b
x2}{ b

x2,
a
x3}
{ a
x1}

{ a
x1,

a
x3}

{ a
x3}

v

w { a
x3}

Fig. 8 Reordering resolution chains

{ a
x1,

b
x2}{ a

x1,
b
x2}
{ b
x2,

a
x3}

{ b
x2}

{ a
x3}

w

v { a
x3}

{ a
x1,

b
x2}{ b

x2,
a
x3}
{ a
x1,

b
x2}

{ a
x1,

a
x3}

{ a
x3,

b
x2}

v

w { a
x3}

{ b
x2}

Fig. 9 Reordering in the presence of merge literals may invalidate the resolution chain

(
a
x1 ∨ b

x2) (
b
x2 ∨ a

x3)

(
a
x1 ∨ a

x3)
[B-TCRes] (

a
x1 ∨ a

x3) (
a
x1) (

a
x3)

�
[A-TCRes]

Accordingly, the interpolation system Itp(L) is applicable to the corresponding clausal proof.

Example 3 shows that reordering the resolution steps in a chain can result in fewer uni-
formly labelled TraceCheck resolution steps. A swap (�) of two subsequent resolution
steps, formally defined in [16, Def. 10] and illustrated in Fig. 8, is allowed whenever it does
not change the conclusion of the resolution chain. In the presence of merge literals [1] (i.e.,
literals t ∈ �(v) such that t ∈ �(v+) and t ∈ �(v−)) this is not guaranteed [16], as illustrated
in Fig. 9.

The final resolvent of a chain may depend on the order of the ordinary resolution steps:
literal x2 is re-introduced after being eliminated in the modified chain, while it ismerged and
eliminated once and for all in the original chain.

In the absence of merge literals, this issue does not arise. For this reason, [56] prohibits
merge literals in resolution chains (in addition to requiring that the premises match the
HyRes rule). While this guarantees that a any permutation of the clause-pivot sequence still
represents a valid resolution chain and leaves the final resolvent unaffected (an immediate
consequence of [16, Lemma 4]), the requirement is overly restrictive. In the following, we
discuss conditions under which reordering does not invalidate the proof even in the presence
of merge literals.

Let R and R′ def= R[w � v] be as in Figs. 10 and 11. According to [16], the clause label
C ′ = �′(v) = Res(�′(w), �′(v2), t0) in Fig. 11 differs from C = �(v) in Fig. 10 in the
following two cases:

1. If t0 ∈ C3 then t0 ∈ C , but t0 /∈ C ′.
2. If t1 ∈ C2 then t1 /∈ C , but t1 ∈ C ′.
As explained in Remark 4, the former case does not occur in resolution chains generated

by CDCL, since resolved literals are never reintroduced. In the second case, however, the
swap introduces a literal into an (intermediate) resolvent. Since the resolution chain is regular,
this literal propagates to the final resolvent of the chain, potentially invalidating the clausal
proof.

123

Labelled Interpolation Systems for Hyper-Resolution, Clausal... 15

Fig. 10 Proof R t0 ∨ t1 ∨ C1

v1 v2

v3w

v

t0 ∨ C2

t1 ∨ C3

t1 ∨ C1 ∨ C2

C

Fig. 11 Graph R′ def= R[w � v] t0 ∨ t1 ∨ C1

v1 v3

v2w

v

t1 ∨ C3

t0 ∨ C2

t0 ∨ C1 ∨ C3

C

Instead of prohibiting the transformation in general, however, it is possible to analyse
the underlying resolution proof R to determine whether the literal introduced by the trans-
formation is eliminated along all paths to the sink of the proof [3,9,19]. The set of literals
eliminated along all paths from v ∈ VR to sR can be defined as the meet-over-all-paths in
the terminology of data-flow analysis:

Definition 14 (Safe Literals) Let R = (VR, ER, �R,sR) be a resolution refutation. The safe
literals σ(v) of a vertex v ∈ VR are defined inductively as follows:

rlit(v,w) = t s.t. t ∈ �(v), var(t) = piv(w), ∃u �= w · (u, w) ∈ ER ∧ rlit(u, w) = t

σ(v) =
{∅ if v = sR

⋂

(v,w)∈ER
(σ (w) ∪ {rlit(v,w)}) otherwise

A solution to the data-flow equation in Definition 14 can be computed in linear time
since the graph R is acyclic. For the proof to the left of Fig. 9 we obtain σ(v) = {x3} and
σ(w) = {x2, x3}, for instance.

Let v be the final vertex of the trivial resolution derivation that corresponds to a given
resolution chain. A swap of two vertices of the chain that introduces a literal t in �(v) is admis-
sible iff t ∈ σ(v). Accordingly, the literal t is introduced in the conclusion (final resolvent,
respectively) of the chain. The proof remains valid since t is subsequently eliminated.

Example 4 Figure 12 shows a refutation with two chains generated by a CDCL solver, where

the vertex p marks the end of the first chain. As in Example 3, the pivot order
a
x1,

b
x2,

a
x3 of

the first chain enforces a split resulting in the TraceCheck resolution steps on the right side
in Fig. 12. Similarly to the example in Fig. 9, reordering of the vertices w and v results in the

introduction of the literal
b
x2 in �(p). The transformation is safe, however, since x2 ∈ σ(p).

The transformation yields the following uniformly labelled TraceCheck resolution steps:

(
a
x1 ∨ b

x2) (
b
x2 ∨ a

x3)

(
a
x1 ∨ a

x3)
[B-TCRes] (

a
x1 ∨ a

x3) (
a
x1 ∨ b

x2 ∨ a
x4) (

a
x3)

(
b
x2 ∨ a

x4)

[A-TCRes]

(
b
x2 ∨ a

x4) (
ab
x2 ∨ ab

x4) (
a
x2)

�
[AB-TCRes]

123

16 M. Schlaipfer, G. Weissenbacher

{ a
x1,

b
x2} { a

x1,
b
x2,

a
x4}

{ b
x2,

a
x3}

{ b
x2,

a
x4}
{ a
x3,

a
x4}

v

w { a
x3}

p { a
x4}{ab

x2,
ab
x4}

{ ab
x2}

q{ a
x2}

(
a
x1∨ b

x2) (
a
x1∨ b

x2∨ a
x4)

(
b
x2∨ a

x4)
[A-TCRes]

(
b
x2∨ a

x4) (
b
x2∨ a

x3)

(
a
x3∨ a

x4)
[B-TCRes]

(
a
x3∨ a

x4) (
a
x3)

(
a
x4)

[A-TCRes]

(
a
x2) (

ab
x2∨ ab

x4) (
a
x4) [AB-TCRes]

Fig. 12 Two resolution chains and a corresponding clausal proof (after splitting)

The interpolation system in Definition 13 remains applicable to the transformed clausal
proof, since conclusions of TraceCheck resolution steps may always be weakened. The
transformation may, however, affect the labelling of the pivots of the subsequent resolution
steps. This might be undesirable, if it forces us to split subsequent chains. It is possible to
avoid a change of the labelling by computing safe labels for the literals in a proof.

Definition 15 (Safe Labels) Given a refutation R = (VR, ER, �R,sR), the mapping ς :
VR × Lit → S (where S = {⊥,a,b,ab} as in Definition 4) is defined inductively as
follows:

litlab(u, v, t) =
{

L(v+, var(t)) � L(v−, var(t)) if t = rlit(u, v)

ς(v, t) otherwise

ς(v, t) =
{⊥ if v = sR�

(v,w)∈E litlab(v,w, t) otherwise

(2)

Given a vertex v ∈ VR and a literal t ∈ �(v), we call ς(v, t) the safe label of t .

The safe labels ς are computed in lockstep with σ (Definition 14). Whenever a literal
t ∈ σ(v) introduced into �(v) is labelled such that L(v, t) � ς(v, t), then the labelling of
the pivots in the subsequent resolution steps remains unchanged [9].

Example 5 For the resolution refutation in Fig. 12 we obtain ς(q, x2) = ς(p, x2) = ab.
Swapping the vertices v and w introduces x2 in �(p) with L(p, x2) = a. Consequently, the
labelling of the pivot in the final resolution step is preserved.

The empirical evaluation in the following sectionmotivates the use of interpolation systems
for clausal proofs.

4.2 Empirical Results

We implemented the labelled interpolation system for clausal proofs as an extension to the
TraceCheck-tool.2 TraceCheck’s original purpose is the verification of the output of SAT
solvers, based on proof certificates stored in the TraceCheck-format.

Our interpolation systemcanbe easily incorporated intoTraceCheck. The only significant
change arises from splitting the resolution chains to establish that Itp(L) is defined for a given
labelling function L , as described in Sect. 4.1. Our implementation currently does not try to
reduce the number of splits by means of reordering.

2 http://fmv.jku.at/booleforce/.

123

http://fmv.jku.at/booleforce/

Labelled Interpolation Systems for Hyper-Resolution, Clausal... 17

0e+00

2e+04

4e+04

6e+04

8e+04

0e+00 2e+04 4e+04 6e+04 8e+04

initial

sp
lit

Number of chains

0e+00

3e+05

6e+05

9e+05

0e+00 3e+05 6e+05 9e+05

split

bi
na

ry

Number of chains

Fig. 13 Number of chains before and after splitting; binary resolution steps

For the experimental evaluation of our implementation, we use benchmarks from reactive
synthesis [8] obtained via the interpolation-based relation determinisation technique pre-
sented in [31]. We use PicoSAT 957 [5] to obtain clausal proofs in the TraceCheck-format.
We limit the proofs to those with a file size between 100kB and 10MB, resulting in 133
benchmarks. We label the literals in A-clauses a and the literals in B-clauses b, which prov-
ably results in the introduction of fewer literals than other labellings [9,15]. All experiments
were executed on an Intel Core i5 M560 at 2.67GHz and with 8GB of RAM.

To measure the impact of transforming a clausal proof for labelled interpolation, we look
at proofs before (initial) and after (split) splitting (Fig. 13). UsingTraceCheck’s-b option
(binary), we also compare the clausal interpolation system to the conventional interpolation
system for binary resolution proofs (presented in Sect. 2.2).3 Fig. 14 shows the average
length of chains before and after splitting. On average, 44.86% of the chains generated by
TraceCheck need to be split to enable interpolation (Fig. 15).

Figure 16 compares the number of Boolean operations in the interpolants generated by
clausal interpolation and binary interpolation. The difference is negligible, since n-ary con-
junctions are encoded by binary gates. Figure 17 shows the memory consumption of our
interpolation systems (in megabytes). The plot for run-time has a similar shape. The average
run-time for split proofs is 0.9 s and 5.49 s for binary proofs. The quantiles are as follows:

0% 25% 50% 75% 100%

split (s) 0.01 0.17 0.52 1.40 4.85
binary (s) 0.06 0.63 1.79 5.55 54.09

We use the And-Inverter-Graph (AIG) library AIGER4 to store interpolants. The library
performs trivial simplifications and structural hashing to keep the circuit size small. The

3 Note that this transformation affects the whole proof, resulting in high memory usage. TCRes offers a
natural way to compute interpolants for resolution chains without intermediate clauses. Alternatively, one
could apply ordinary resolution iteratively on resolution chains and retain only partial interpolants at the end
of a chain. We did not experimentally evaluate the latter approach.
4 http://fmv.jku.at/aiger/.

123

http://fmv.jku.at/aiger/

18 M. Schlaipfer, G. Weissenbacher

Fig. 14 Average chain length

0e+00

1e+02

2e+02

3e+02

4e+02

5e+02

0e+00 1e+02 2e+02 3e+02 4e+02 5e+02
initial

sp
lit

Average chain length

Fig. 15 Chains that need to be
split (46%)

0e+00

2e+03

4e+03

6e+03

8e+03

0e+00 2e+03 4e+03 6e+03 8e+03

total number of chains

nu
m

be
r o

f c
ha

in
s s

pl
it

Initial chains vs. split chains

Fig. 16 Number of gates before
reduction

0.0e+00

3.0e+05

6.0e+05

9.0e+05

1.2e+06

0.0e+00 3.0e+05 6.0e+05 9.0e+05 1.2e+06
split

bi
na

ry

Naive gate count

123

Labelled Interpolation Systems for Hyper-Resolution, Clausal... 19

Fig. 17 Memory usage

0e+00

1e+03

2e+03

3e+03

4e+03

0e+00 1e+03 2e+03 3e+03 4e+03
split

bi
na

ry

Proof memory usage (MB)

0e+00

2e+04

4e+04

6e+04

8e+04

0e+00 2e+04 4e+04 6e+04 8e+04

split

bi
na

ry

Interpolant size

0e+00

1e+04

2e+04

3e+04

0e+00 1e+04 2e+04 3e+04

split

bi
na

ry
Interpolant size (ABC−minimized)

Fig. 18 Size of AIG circuit; before and after reduction by ABC

graph on the left of Fig. 18 shows that the interpolants extracted from clausal proofs are
consistently smaller than interpolants generated by the conventional interpolation technique.

Finally, we use ABC [12] to gather statistics about the interpolant and to reduce the circuit
size further with the following commands: strash; balance; fraig; refactor
-z; rewrite -z; fraig;. After reduction, the sizes of the interpolants extracted from
clausal proofs and from binary proofs are similar. We emphasise that interpolation based on
clausal proofs is superior with respect to memory consumption and the intermediate size of
interpolants.

5 Local Refutations and Hyper-Resolution

Jhala and McMillan demonstrate in [30, Theorem 3] that the applicability of propositional
interpolation systems is not restricted to propositional logic. If a first-order refutation R
has a certain structure, namely if for each inference step in R the antecedents as well as
the conclusion are either entirely in L(A) or in L(B), then one can use a propositional

123

20 M. Schlaipfer, G. Weissenbacher

interpolation system (such as the ones in Sects. 2.2 and 3) to construct an interpolant that is
a Boolean combination of the formulae in R. Kovács and Voronkov subsequently arrived at
a similar result [32].

We recapitulate the results from [30,32] before we proceed to show that our interpolation
system fromDefinition 9 generalises the system of [32] aswell as a variation of [32] presented
in [55].

Definition 16 (Local Refutation) An (A, B)-refutation R in a given inference system for
first-order logic is local if there exists a total partitioning function πR : VR → {A, B} such
that for all edges (v1, v2) ∈ ER we have �R(v1), �R(v2) ∈ L(πR(v2)).

While proofs in general do not have this property, there is a variety of decision procedures
that yield local (ground) refutations. The construction of local proofs is addressed in [20,30,
32,41], to name only a few.

The following operation, which resembles the constructions in [32, Lemma 8], [30, The-
orem 3], and [20, Section 5.5]), extracts a premise in L(A) (L(B), respectively) for a vertex
v ∈ VR with π(v) = A (π(v) = B, respectively) from a local refutation R.

Definition 17 (A-Premise, B-Premise Let R be a local (A, B)-refutation with partitioning
function π , and let v ∈ VR such that π(v) = A. Then

A-premise (v)
def=

{u | (u, v) ∈ ER and π(u) = B or u is initial } ∪
⋃

{A-premise (u) | (u, v) ∈ ER and π(u) = A }.
B-premise(v) is defined analogously.

Intuitively, A-premise(v) comprises the leaves of the largest sub-derivation S rooted at v
such that π(u) = A for all internal vertices u ∈ VS .5 If the underlying inference system is
sound, we have {�(u) | u ∈ A-premise(v)} |� �(v). If, moreover, �(v) as well as all formulae
of A-premise(v) are closed, we make the following observation (c.f. related results in [32,
Lemma 1] and [20, Lemma 3]):

Corollary 1 Let R be a local closed refutation in a sound inference system, and let v ∈ VR

an internal vertex such that πR(v) = A. Then, the following Horn clause is a tautology:
∨

u∈A-premise(v)

¬�R(u) ∨ �R(v) (3)

A similar claim holds for the case in which π(v) = B.

Corollary 1 is a pivotal element in our proof of the following theorem:

Theorem 5 (c.f. [30, Theorem 3]) Let R be a closed local (A, B)-refutation in a sound
inference system. Then one can extract a Craig interpolant from R using a propositional
interpolation system.

Proof Let v ∈ VR be such that π(v) = A. If v is initial, then either A or B contains the
unit clause Cv = �(v). Otherwise, according to Corollary 1, the clause Cv = ({¬�(u) | u ∈
5 In particular, it is possible to choose πR in such a manner that S is the largest sub-derivation rooted at v in
R such that �R(u) ∈ L(A) for all u ∈ VS . This corresponds to the setting in [32, Lemma 8].

123

Labelled Interpolation Systems for Hyper-Resolution, Clausal... 21

A

y = x

y ≤ x

A

y = 0

A

z = y&(y − 1)
z ≤ y − 1

z < y

z < x

z = x

B

x = z

false

Fig. 19 Refutation of (y = x) ∧ (y �= 0) ∧ (z = y&(y − 1)) ∧ (x = z); A-premise of z < x

A-premise(v)}∨�(v)) is tautological (and therefore implied by A). Moreover, it follows from
Definition 16 that if u ∈ A-premise(v) is not an initial vertex of R then �R(u) ∈ L(A)∩L(B)

holds. Accordingly, Cv ∈ L(A), and we add Cv to A. A similar argument holds for v ∈ VR

with π(v) = B.
By construction, the resulting set of clauses Cv , v ∈ VR , is propositionally unsatis-

fiable [30,32]; also, each clause is implied by either A or B. Moreover, all literals with
t ∈ L(A)\L(B) (t ∈ L(B)\L(A), respectively) are local to A (B, respectively). Accord-
ingly, it is possible to construct an interpolant for (A, B) using the interpolation systems
presented in Sects. 2.2 and 3. ��
Example 6 Figure 19 shows an (A, B)-refutation for A ≡ (y = x) ∧ (y �= 0) ∧ (z =
y&(y − 1)) and B ≡ (x = z), where x,y,z are bit-vectors and & denotes bit-wise con-
junction. Let vertex v be such that �(v) = (z < x) and π(v) = A. The dashed line in Fig. 19
indicates the sub-proof rooted at v, whose leaves constitute the A-premise of v. Following
the construction in the proof of Theorem 5, we obtain the following hyper-resolution step
with conclusion �(v).

(y = x) (y �= 0) (z = y&(y − 1))

tautology inL(A)
︷ ︸︸ ︷

(

(y = x) ∨ (y �= 0) ∨ (z = y&(y − 1)) ∨ (z<x)
)

z<x

Consider the vertex w with �(w) = (z �= x) and π(w) = B. The corresponding B-premise
is {v}, resulting in the resolution step Res({(z < x)}, {¬(z < x), (z �= x)}, (z < x)) with
conclusion (z �= x).

Kovács and Voronkov avoid the explicit construction of a resolution proof by defining
their interpolation system directly on the local proof [32, Theorem 11]:

Definition 18 Let R be a local and closed (A, B)-refutation. The interpolation system ItpKV
maps vertices v ∈ VR , forwhich �R(v) ∈ L(A)∩L(B) holds, to partial interpolants as defined
in Fig. 20.

Remark In addition to the condition in Definition 16, Kovács and Voronkov require that for
each v ∈ VR with predecessors v1, . . . , vn , �(v) ∈ L(A) ∩ L(B) if �(vi) ∈ L(A) ∩ L(B)

for all i ∈ {1, . . . , n}. A local derivation satisfying this condition is symbol-eliminating, i.e.,
it does not introduce “irrelevant” symbols. This technical detail allows the leaves of R to be
merely implied by A (or B) instead of being actual elements of A (B, respectively), while
preserving the correctness of the interpolation system. This effectively enables interpolation
for non-closed formulae (A, B).

123

22 M. Schlaipfer, G. Weissenbacher

For an initial vertex v

(A-clause)
�(v) [�(v)]

if �(v) ∈ A (B-clause)
�(v) [¬�(v)]

if �(v) ∈ B

For an internal vertex v with {v1, . . . , vn} = π(v)-premise(v) such that
�(vi) ∈ L(A) ∩ L(B) for 1 ≤ i ≤ m ≤ n and

�(vj) L∈
 (A) ∩ L(B) for m < j ≤ n .

�(v1) [I1] · · · �(vm) [Im] �(vm+1) · · · �(vn)
�(v) [I]

(A-justified) if π(v) = A, I
def=

∧m
i=1(�(vi) ∨ Ii) ∧ ∨m

i=1 ¬�(vi)

(B-justified) if π(v) = B, I
def=

∧m
i=1(�(vi) ∨ Ii)

Fig. 20 Interpolation system ItpKV for local proofs

We proceed to show one of the main results of this paper, namely that our interpolation
system Itp from Definition 9 is able to simulate the interpolation system ItpKV .

Theorem 6 Let R be a local and closed (A, B)-refutation. Then we can construct a hyper-
resolution refutation H of (A, B) and a locality preserving labelling function L such that for
each v ∈ VR with �R(v) ∈ L(A) ∩ L(B) there exists a corresponding vertex u ∈ VH such
that ItpKV (R)(v) ⇔ Itp1(L , H)(u).

Proof sketch We demonstrate that it is possible to construct a hyper-resolution refutation
H of (A, B) in which each internal step of ItpKV is simulated using two hyper-resolution
steps. The induction hypothesis is that for each internal vertex v ∈ VR with {v1, . . . , vn} =
π(v)-premise(v) and m as in Definition 18, we have vertices {u1, . . . , un} ⊆ VH such that

1. �H (ui) = �R(vi) for 1 ≤ i ≤ n, and
2. Itp1(L , H)(ui) ⇔ ItpKV (R)(vi) for 1 ≤ i ≤ m, and

3. Itp1(L , H)(u j) =
{

F if �(v j) ∈ A
T if �(v j) ∈ B

for m < j ≤ n.

We add an auxiliary vertex labelled with the clause ¬�H (u1) ∨ · · · ∨ ¬�H (un) ∨ �R(v),
which, by Corollary 1 and by Definition 16, can be regarded as element of formula π(v) (see
proof of Theorem 5). The first hyper-resolution step eliminates the literals local to π(v); the
interpolants and labels are indicated for π(v) = A:

a
�H (um+1) [F] · · · a

�H (un) [F] (
a¬�H (um+1) ∨ · · · ∨ a¬�H (un) ∨ · · · ∨ a

�R(v)) [F]
(

ab¬�H (u1) ∨ · · · ∨ ab¬�H (um) ∨ a
�R(v)) [F]

The second hyper-resolution step eliminates the shared literals �H (ui) (for 1 ≤ i ≤ m).
Again, the labels and interpolants are for the case that π(v) = A:

�H (u1) [I1] · · · �H (um) [Im] (
ab¬�H (u1) ∨ · · · ∨ ab¬�H (um) ∨ a

�R(v)) [F]
a

�R(v)
[∧m

i=1(�H (ui) ∨ Ii) ∧ (F ∨ ∨m
i=1 ¬�H (ui))

]

The sink of this resolution step is the vertex u ∈ VH such that �H (u) = �R(v) and
Itp1(L , H)(u) = ItpKV (v). ��

123

Labelled Interpolation Systems for Hyper-Resolution, Clausal... 23

We proceed to show that our system for hyper-resolution also generalises another existing
interpolation system for local refutations. In [55], we introduced the following variation of
the interpolation system in Definition 18:

Definition 19 Let ItpW be the interpolation system as described in Definition 18, except for
the following modification:

(A-justified) if π(v) = A, I
def= ∨m

i=1(¬�(vi) ∧ Ii)

(B-justified) if π(v) = B, I
def= ∨m

i=1(¬�(vi) ∧ Ii) ∨ ∧m
i=1 �(vi)

The following theorem states that the interpolation system in Definition 9 is powerful
enough to simulate ItpW .

Theorem 7 Let R be a local and closed (A, B)-refutation. Then we can construct a hyper-
resolution refutation H of (A, B) and a locality preserving labelling function L such that for
each v ∈ VR with �R(v) ∈ L(A) ∩ L(B) there exists a corresponding vertex u ∈ VH such
that ItpW (R)(v) ⇔ Itp2(L , H)(u).

The proof is essentially equivalent to the proof of Theorem 6. Moreover, as a consequence
of Theorem 2, ItpKV is stronger than ItpW .

Corollary 2 Let R be a closed local (A, B)-refutation in a sound inference system. Then
ItpKV (R) ⇒ ItpW (R).

6 Related Work

There is a vastly growing number of different interpolation techniques; a recent survey of
interpolation in decision procedures is provided by [10]. An exposition of interpolation
techniques for SMT solvers can be found in [13]. The work of Yorsh and Musuvathi [58]
enables the combination of theory-specific and propositional interpolation techniques [16,
28,33,39,42].

The novel interpolation systempresented in Sect. 3 extends our priorwork on propositional
interpolation systems [16]. The idea of using labelling functions (initially introduced in [50] in
the context of LTL vacuity detection to determine the peripherality of variables in resolution
proofs) is common to both approaches. In [16], the partial interpolants are determined by the
labelling of the literals in the initial vertices, while the system presented in Sect. 3 adds an
additional degree of freedom by allowing us to make a choice at each internal node.

Recent work by Vizel and Gurfinkel [24] addresses the construction of interpolants from
clausal/DRUP proofs (whose size is reduced by means of trimming [25]). Their interpolation
system splits partial interpolants into two components, one of which is kept in CNF. Their
algorithm restructures the DRUP proof on-the-fly in order to increase the size of the com-
ponent kept in CNF. Earlier work by Vizel et al. [53] targets the construction of interpolants
in CNF by first constructing an over-approximation of an interpolant, which is then refined
using inductive strengthening [11].

There is a number of techniques to reduce the size of resolution proofs [3,9,19]. These
techniques target binary resolutionproofs, however. The combinationof labelled interpolation
systems for binary resolution proofs and proof reduction has also been studied extensively
by Rollini et al. [44,45].

A number of interpolation techniques rely on local proofs (e.g., [20,30,32,36,41]). Not
all interpolation techniques are based on local proofs, though: McMillan’s interpolating

123

24 M. Schlaipfer, G. Weissenbacher

inference system for equality logic with uninterpreted functions and linear arithmetic [40],
for instance, performs an implicit conversion of the proof. In [35], propositional proofs of
bit-vector formulas are lifted to proofs in equality logic. The approach presented in [47]
avoids the construction of proofs altogether and handles theory combination by reduction
to a base theory as in [51] or [52]. InterHorn [23] extracts interpolants from first-order
resolution proofs generated by a Horn-clause solver. Sharma et al. show how to compute
interpolants without proofs using machine learning techniques [48].

Hoder et al. [26] present a technique that enables the variation of interpolants by fine-
tuning the partitioning in Definition 16. In Example 6, for instance, changing π(w) = B
to π(w) = A results in propositional proof that does not contain the literal (z < x).
Accordingly, the term does not occur in the resulting interpolant. This approach can be
combined with our interpolation system in a straight forward manner.

An extension of [16] to sequence interpolants is presented in [46]. A survey of
interpolation-based model checking techniques is provided in [54]. Interpolation-based syn-
thesis is discussed in [27,31]. Other applications of interpolation algorithms include fault
localization [59] and error explanation [18,57], where the quality of interpolants can impact
the utility of the diagnosis.

7 Consequences and Conclusion

We present a novel interpolation system for hyper-resolution proofs which generalises our
previous work [16]. We subsequently generalise this interpolation system to clausal proofs,
generated by contemporary SAT solvers. By defining a rule that addresses hyper-resolution
or clausal resolution steps (introduced by pre-processing [21] or extracted from resolution
chains), we avoid the construction of intermediate partial interpolants, resulting in reduced
memory consumption and smaller intermediate interpolants. As future work, we will inves-
tigate whether proof restructuring [24] and heuristics based on proof analysis [9] can result
in a further reduction of splitting.

By applying our technique to local proofs, we combine a number of first-order [32,55]
and propositional interpolation techniques [28,33,39,42] into one uniform interpolation
approach.As in [30], our approach avoids an explicit theory combination step [58]. Therefore,
it enables the variation of interpolant strength and the elimination of non-essential literals
across the theory boundary.

Acknowledgments Open access funding provided by Austrian Science Fund (FWF). We would like to
thank Armin Biere and his co-authors for providing TraceCheck and AIGER as open source software under
a permissive license. We thank Adrián Rebola-Pardo for his helpful comments.

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 Inter-
national License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution,
and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source,
provide a link to the Creative Commons license, and indicate if changes were made.

Appendix 1: Proofs

Remark The downward projection of a clause �(v) = C at vertex v with respect to c ∈ S
is defined as �(v)�c,L

def= {t ∈ �(v) | L(v, t) � c}, the respective upward projection is

�(v)�c,L
def= {t ∈ �(v) | c � L(v, t)} (cf. Sect. 2.2). It follows from condition 1 in Definition 4

123

http://creativecommons.org/licenses/by/4.0/

Labelled Interpolation Systems for Hyper-Resolution, Clausal... 25

that �(v)�⊥,L = ∅ for all vertices v. Therefore, the following two equalities hold for any
clause C = �(v) in a refutation R:

– C�b,L = (C�b,L\C�a,L)

– C�a,L = (C�a,L\C�b,L)

We make repeated use of these equalities in this section. Moreover, our proofs use the fol-
lowing propositions:

Proposition 1 The implication
(

n
∧

i=1

(xi ∨ Ii) ∧
(

In+1 ∨
n

∨

i=1

xi

))

⇒
(

n
∨

i=1

(xi ∧ Ii) ∨
(

In+1 ∧
n

∧

i=1

xi

))

is a tautology.

Proof This follows from the fact that the conjunction
(

n
∧

i=1

(xi ∨ Ii) ∧
(

In+1 ∨
n

∨

i=1

xi

))

∧
(

n
∧

i=1

(xi ∨ ¬Ii) ∧
(

¬In+1 ∨
n

∨

i=1

xi

))

is unsatisfiable (by hyper-resolution). Note that the implication in the other direction does not
hold; a simple counterexample for the case n = 2 is the assignment x1 = x2 = F, I1 = T,
and I2 = I3 = F. ��
Proposition 2 Let

∧n
i=1 Pi be unsatisfiable. Then the implication

(

n
∧

i=1

(Ii ∨ Pi)

)

⇒
(

n
∨

i=1

(Ii ∧ ¬Pi)

)

is a tautology.

Proof This follows from the fact that

n
∧

i=1

(Ii ∨ Pi) ∧
n

∧

i=1

(¬Ii ∨ Pi) ≡
n

∧

i=1

(Ii ∨ Pi) ∧ (¬Ii ∨ Pi)

is unsatisfiable [since Res((Ii ∨ Pi), (¬Ii ∨ Pi), Ii) = Pi and
∧n

i=1 Pi is unsatisfiable]. ��
Theorem 1 (Correctness)For any (A, B)-refutation R (where R is a hyper-resolution proof)
and locality preserving labelling function L, Itp(L , R) (if defined) is an interpolant for (A, B).

Proof By induction over the structure of the (A, B)-refutation R. Let I be the partial inter-
polant at a vertex v labelled with a clauseC = �(v). We show that every such I andC satisfy
the following conditions:

1. A ∧ ¬(C�a,L) ⇒ I ,
2. B ∧ ¬(C�b,L) ⇒ ¬I , and
3. Var(I) ⊆ Var(A) ∩ Var(B).

For the sink v with �(v) = �, this establishes Theorem 1. The labelling function L , being
unique in this proof, is omitted from subscripts.

123

26 M. Schlaipfer, G. Weissenbacher

Base case Let v be an initial vertex and let C = �R(v).

1. C ∈ A:

(a) A ∧ ¬(C�a) ⇒ C�b, is equivalent to A ⇒ (C�b\C�aL) ∨ C�a. This holds because
(C�b\C�a) ∨ C�a = C , and A ⇒ C because C ∈ A.

(b) B∧¬(C�b) ⇒ ¬(C�b), is equivalent to B∧(C�b\C�a) ⇒ C�b. This holds because
(C�b\C�a) ⊆ C�b and clauses represent disjunctions.

(c) For all literals t ∈ (C�b\C�a) the following conditions hold:
– var(t) ∈ Var(A), since C ∈ A.
– L(v, t) = b. Therefore, by Definition 5, Var(t) ∈ Var(B).

This establishes that Var(C�b\C�a) ⊆ Var(A) ∩ Var(B).

2. C ∈ B: Symmetric to C ∈ A.

Induction step Wefirst prove a useful equality. Let v be an internal vertex of R with ancestors
{v+

1 , . . . , v+
n , v−}. We claim that

n
∨

i=1

(�(v+
i)\{xi })�c ∨ (�(v−)\{x1, . . . , xn})�c = �(v)�c (4)

holds for a symbol c ∈ {a,b}. This is because for any t ∈ �(v+
i) (for 1 ≤ i ≤ n), if

var(t) �= xi , then L(v+
i , t) � L(v, t). The same holds for t ∈ �(v−). Thus, if var(t) �= xi

and t ∈ �(u)�c for u ∈ {v+
1 , . . . , v+

n , v−}, then t ∈ �(v)�c. Conversely, if t ∈ �(v)�c, then
c � L(v, t) by the definition of projection. From Definition 5, L(v, t) = L(v+

1 , t) � · · · �
L(v+

n , t)�L(v−, t), thus, if c � L(v, t) and c �= ab, then ∃i · c � L(v+
i , t) or c � L(v−, t).

It follows that ∃i · t ∈ (�(v+
i)\{xi })�c or t ∈ (�(v−)\{x1, . . . , xn})�c.

For the induction step, let �(v+
i) = (xi ∨ Ci) and �(v−) = (x1 ∨ · · · ∨ xn ∨ D). Due to

the requirement that Itp(L , R) is defined, we may assume that ∀i ∈ {1, . . . , n} · L(v+
i , xi)�

L(v−, xi) = c (for a fixed c) and perform a case split on c:

1. ∀i ∈ {1, . . . , n} · L(v+
i , xi) � L(v−, xi) = a:

Induction hypothesis

satellites(i ∈ {1, . . . , n}) nucleus

A ∧ xi ∧ ¬(Ci �a) ⇒ Ii A ∧ x1 ∧ . . . ∧ xn ∧ ¬(D�a) ⇒ In+1

B ∧ ¬(Ci �b) ⇒ ¬Ii B ∧ ¬(D�b) ⇒ ¬In+1

It follows that A ∧ ¬(Ci �a) ⇒ (xi ∨ Ii) for i ∈ {1, . . . , n} and A ∧ ¬(D�a) ⇒
(In+1 ∨ ∨n

i=1 xi), and therefore

A ∧
n

∧

i=1

¬(Ci �a) ∧ ¬(D�a)

︸ ︷︷ ︸

¬(
∨n

i=1 Ci∨D)�a, by (4)

⇒
n

∧

i=1

(x ∨ Ii) ∧ (In+1 ∨
n

∨

i=1

xi).

By applying hyper-resolution on the right-hand side of the implication we conclude that

A ∧
n

∧

i=1

¬(Ci �a) ∧ ¬(D�a) ⇒
n+1
∨

i=1

Ii .

123

Labelled Interpolation Systems for Hyper-Resolution, Clausal... 27

Similarly, we derive from the induction hypothesis that

A ∧ ¬(

n
∨

i=1

Ci ∨ D)�a ⇒ ¬In+1 ∧
n

∧

i=1

¬Ii ,

and thus

A ∧ ¬(

n
∨

i=1

Ci ∨ D)�a ⇒ ¬
n+1
∨

i=1

Ii .

Var(
∨n+1

i=1 Ii) ⊆ Var(A) ∩ Var(B) holds because Var(Ii) ⊆ Var(A) ∩ Var(B) for all
i ∈ {1, . . . , n}.

2. ∀i ∈ {1, . . . , n} · L(v+
i , xi) � L(v−, xi) = b: The proof is symmetric to the first case.

3. ∀i ∈ {1, . . . , n} · L(v+
i , xi) � L(v−, xi) = ab:

Induction hypothesis Let L(v+
i , xi) = a and L(v−, xi) = b, 1 ≤ i ≤ n, for instance.

We obtain the following induction hypothesis:

satellites nucleus

A ∧ xi ∧ ¬(Ci �a) ⇒ Ii A ∧ ¬(D�a) ⇒ In+1

B ∧ ¬(Ci �b) ⇒ ¬Ii B ∧ x1 ∧ . . . ∧ xn ∧ ¬(D�b) ⇒ ¬In+1

In general, for an arbitrary labelling function L , this can always be extended to the
induction hypothesis for L(v+

i , xi) = L(v−, xi) = ab, 1 ≤ i ≤ n:

satellites nucleus

A ∧ xi ∧ ¬(Ci �a) ⇒ Ii A ∧ x1 ∧ . . . ∧ xn ∧ ¬(D�a) ⇒ In+1

B ∧ xi ∧ ¬(Ci �b) ⇒ ¬Ii B ∧ x1 ∧ . . . ∧ xn ∧ ¬(D�b) ⇒ ¬In+1

From this, it follows immediately that

A ∧
n

∧

i=1

¬(Ci �a) ∧ ¬(D�a) ⇒
n

∧

i=1

(xi ∨ Ii) ∧ (x1 ∨ · · · ∨ xn ∨ In+1),

and by applying the equality (4) we conclude that

A ∧ ¬(

n
∨

i=1

Ci ∨ D)�a ⇒
n

∧

i=1

(xi ∨ Ii) ∧ (In+1 ∨
n

∨

i=1

xi)

holds. This establishes the first condition for case 1 of AB-HyRes; case 2 is covered by
applying Proposition 1.
Similarly, we derive

B ∧ ¬(

n
∨

i=1

Ci ∨ D)�b ⇒
n

∧

i=1

(xi ∨ ¬Ii) ∧ (x1 ∨ · · · ∨ xn ∨ ¬In+1).

Note that this already establishes condition 2 for case 2 of AB-HyRes. By repeated
application of resolution, one can further show that the right-hand side of this implication
is inconsistent with

∧n
i=1(xi ∨ Ii) ∧ (x1 ∨ · · · ∨ xn ∨ In+1). It follows that

B ∧ ¬(

n
∨

i=1

Ci ∨ D)�b ⇒ ¬
(

n
∧

i=1

(xi ∨ Ii) ∧ (In+1 ∨
n

∨

i=1

xi)

)

,

123

28 M. Schlaipfer, G. Weissenbacher

which covers case 1 of AB-HyRes.
Note that xi ∈ Var(A) ∩Var(B) due to L(v+

i , xi) � L(v−, xi) = ab (for 1 ≤ i ≤ n) and
Definition 5, and therefore Var(

∧n
i=1(xi ∨ Ii) ∧ (In+1 ∨ ∨n

i=1 xi)) ⊆ Var(A) ∩Var(B)

holds.

��
Lemma 1 Let L and L ′ be labelling functions for an (A, B)-refutation R. If L(v, t) �
L ′(v, t) holds for all initial vertices v and literals t ∈ �(v), then L � L ′.
Proof We show that L(v, t) � L ′(v, t) for all v in R by structural induction.

Base case If v in R is an initial vertex, L(v, t) � L ′(v, t) holds by assumption.

Induction hypothesis For an internal vertex v and literal t :

satellites(1 ≤ i ≤ n) nucleus

L(v+
i , t) � L ′(v+

i , t) L(v−, t) � L ′(v−, t)

Induction step Let v be an internal vertex in R with ancestors {v+
1 , . . . , v+

n , v−}, and let
�R(v+

i) = Ci ∨ xi and �R(v−) = D ∨ x1 ∨ · · · ∨ xn .
We consider two cases:

1. If t /∈ �(v), then L(v, t) = L ′(v, t) = ⊥.
2. If t ∈ �(v), there are three cases:

– If L(v, t) = b, then L(v, t) � L ′(v, t) because b is the infimum of (S,�), as
indicated in the Hasse diagram to the right.

– If L(v, t) = ab then ab � L ′(v, t). If not, L ′(v, t)must be b, implying that L ′(v+
i , t)

with 1 ≤ i ≤ n and L ′(v−, t) are all b by the definition of �. By the induction
hypothesis, we further conclude that for all i ∈ {1, . . . , n} it holds that L(v+

i , t) =
L(v−, t) = b, leading to a contradiction.

– If L(v, t) = a then, by the induction hypothesis, L ′(v+
i , t) (where 1 ≤ i ≤ n) and

L ′(v−, t) are either a or ⊥. In all cases, the lemma holds.

��
Theorem 3 If L and L ′ are labelling functions for an (A, B)-refutation R (R being a hyper-
resolution proof) and L � L ′ such that Itpi (L , R) as well as Itpi (L

′, R) are defined, then
Itpi (L , R) ⇒ Itpi (L

′, R) (for a fixed i ∈ {1, 2}).
Proof We prove Theorem 3 by structural induction over R. For any vertex v in R, let Iv
and I ′

v be the partial interpolants due to Itp(L , R) and Itp(L ′, R), respectively. We show that
Iv ⇒ I ′

v ∨ �R(v)|ab,L ,L ′ for all vertices v, where

�R(v)|ab,L ,L ′
def= {t ∈ �R(v) | L(v, t) � L ′(v, t) = ab}.

This establishes Iv ⇒ I ′
v for the sink to show that Itp(L , R) ⇒ Itp(L ′, R).

Base case Let v be an initial vertex and let �R(v) = C .

1. If C ∈ A, then Iv = C�b,L and I ′
v = C�b,L ′ . We need to show that C�b,L ⊆ C�b,L ′ ∨

C |ab,L ,L ′ . For any t ∈ C�b,L , if L(v, t) �= L ′(v, t) then L(v, t) � L ′(v, t) = ab, and
therefore t ∈ C |ab,L ,L ′ . Otherwise, L(v, t) = L ′(v, t) = b, and therefore t ∈ C�b,L ′ .

2. If C ∈ B, then Iv = ¬(C�a,L) and I ′
v = ¬(C�a,L ′). The proof that C�a,L ′ ⊆ C�a,L ∨

C |ab,L ,L ′ is analogous to the first case.

123

Labelled Interpolation Systems for Hyper-Resolution, Clausal... 29

Induction step We first prove a useful intermediate result. Let v be an internal vertex of R
with ancestors {v+

1 , . . . , v+
n , v−}. We claim that

(

n
∨

i=1

(�(v+
i)\{xi })|ab,L ,L ′ ∨ (�(v−)\{x1, . . . , xn})|ab,L ,L ′

)

⇒ �(v)|ab,L ,L ′ (5)

for arbitrary locality preserving labelling functions L and L ′. We prove (5) by showing that
any t contained in clause of the left-hand side of the implication must also be contained in
�(v)|ab,L ,L ′ . This holds because for any u ∈ {v+

1 , . . . , v+
n , v−} and t ∈ �(u)with var(t) �= xi

(for 1 ≤ i ≤ n) if L(u, t) � L ′(u, t) = ab then L(v, t) � L ′(v, t) = ab since, according to
Definition 1, L(v, t) = L(v+

1 , t)� · · · � L(v+
n , t)� L(v−, t) and L ′(v, t) = L ′(v+

1 , t)� · · · �
L ′(v+

n , t) � L ′(v−, t).
For the induction step, let v be an internal vertex in R and let �R(v+

i) = (xi ∨ Ci) and
�R(v−) = (x1 ∨ · · · ∨ xn ∨ D), and let �R(v) = ∨n

i=1 Ci ∨ D. Partial interpolants are
indicated as before.

Induction hypothesis

satellites(1 ≤ i ≤ n) nucleus

Iv+
i

⇒ I ′
v+
i

∨ (xi ∨ Ci)|ab,L ,L ′ Iv− ⇒ I ′
v− ∨ (x1 ∨ · · · ∨ xn ∨ D)|ab,L ,L ′

Recall from the proof of Lemma 1, that if L(v+
i , x) � L ′(v+

i , x) (for all i ∈ {1, . . . , n})
and L(v−, x) � L ′(v−, x), then,

L(v+
1 , x) � · · · � L(v+

n , x) � L(v−, x) �
L ′(v+

1 , x) � · · · � L ′(v+
n , x) � L ′(v−, x). (6)

For the induction step, let �(v+
i) = (xi ∨Ci) and �(v−) = (x1∨· · ·∨xn ∨D). We assume

that ∀i ∈ {1, . . . , n} · L(v+
i , xi) � L(v−, xi) = c (for a fixed c) and perform a case split on

c. I and I ′ denote the partial interpolants due to Itp(L , R) and Itp(L ′, R), respectively.

1. ∀i ∈ {1, . . . , n} · L(v+
i , xi) � L(v−, xi) = a:

Then Iv = ∨n
i=1 Iv+

i
∨ Iv− , and from (6) we conclude that for all i ∈ {1, . . . , n} it

holds that L ′(v+
i , xi) � L ′(v−, xi) = a, and therefore I ′

v = ∨n
i=1 I

′
v+
i

∨ I ′
v− . Moreover,

L ′(v+
i , xi) = L ′(v−, xi) = a for 1 ≤ i ≤ n, and therefore, the induction hypothesis can

be simplified to

satellites(1 ≤ i ≤ n) nucleus

Iv+
i

⇒ I ′
v+
i

∨ Ci |ab,L ,L ′ Iv− ⇒ I ′
v− ∨ D|ab,L ,L ′ .

We derive Iv ⇒
(

∨n
i=1(I

′
v+
i

∨ Ci |ab,L ,L ′) ∨ (I ′
v− ∨ D|ab,L ,L ′)

)

, and by applying (5),

we obtain Iv ⇒ ∨n
i=1 I

′
v+
i

∨ I ′
v− ∨ (∨n

i=1 Ci ∨ D
) |ab,L ,L ′ , which is equivalent to Iv ⇒

I ′
v ∨ �(v)|ab,L ,L ′ .

2. ∀i ∈ {1, . . . , n} · L(v+
i , xi)� L(v−, xi) = ab: We distinguish two cases for AB-HyRes.

123

30 M. Schlaipfer, G. Weissenbacher

In the first case, Iv = ∧n
i=1(xi ∨ Iv+

i
) ∧ (Iv− ∨ ∨n

i=1 xi), and by applying the induction
hypothesis we derive

Iv ⇒
(

n
∧

i=1

(xi ∨ I ′
v+
i

∨ (xi ∨ Ci)|ab,L ,L ′)∧

(x1 ∨ · · · ∨ xn ∨ I ′
v− ∨ (x1 ∨ · · · xn ∨ D)|ab,L ,L ′)

)

.

Note that the right-hand side of this implication is equivalent to
(

n
∧

i=1

(xi ∨ I ′
v+
i

∨ Ci |ab,L ,L ′) ∧ (x1 ∨ · · · ∨ xn ∨ I ′
v− ∨ D|ab,L ,L ′)

)

,

which in turn implies

n
∧

i=1

(

xi ∨ I ′
v+
i

∨
(

n
∨

i=1

Ci |ab,L ,L ′ ∨ D|ab,L ,L ′

)

∧
)

(

x1 ∨ · · · ∨ xn ∨ I ′
v− ∨

(

n
∨

i=1

Ci |ab,L ,L ′ ∨ D|ab,L ,L ′

))

.

By applying (5), we obtain

Iv ⇒
n

∧

i=1

(xi ∨ I ′
v+) ∧ (x1 ∨ · · · ∨ xn ∨ I ′

v−) ∨
(

n
∨

i=1

Ci ∨ D

)

|ab,L ,L ′ ,

which establishes Iv ⇒ I ′
v ∨ �(v)|ab,L ,L ′ for the case in which L ′(v+

i , x) � L ′(v−, xi) = ab
for all i ∈ {1, . . . , n}. Moreover, since

∧n
i=1(xi ∨ I ′

v+) ∧ (x1 ∨ · · · ∨ xn ∨ I ′
v−) implies

(
∨n

i=1 I
′
v+
i
∨I ′

v−) (by hyper-resolution), it also holds that Iv ⇒ I ′
v∨�(v)|ab,L ,L ′ if L ′(v+

i , xi)�
L ′(v−, xi) = a (for 1 ≤ i ≤ n) and I ′

v = (
∨n

i=1 I
′
v+
i

∨ I ′
v−). From (6) we conclude that

�i · L ′(v+
i , x) � L ′(v−, xi) = b.

In the second case, Iv = ∨n
i=1(xi ∧ Iv+

i
)∨(Iv− ∧∧n

i=1 xi), and by applying the induction
hypothesis we derive

Iv ⇒
(

n
∨

i=1

(xi ∧ (I ′
v+
i

∨ (xi ∨ Ci)|ab,L ,L ′))∨

(x1 ∧ · · · ∧ xn ∧ (I ′
v− ∨ (x1 ∨ · · · xn ∨ D)|ab,L ,L ′))

)

,

which implies

Iv ⇒
(

n
∨

i=1

((xi ∧ I ′
v+
i
) ∨ Ci |ab,L ,L ′) ∨ ((x1 ∧ · · · ∧ xn ∧ I ′

v−) ∨ D|ab,L ,L ′)

)

,

and by (5) we derive Iv ⇒ I ′
v ∨ (

∨n
i=1 C ∨ D)|ab,L ,L ′ , which establishes the correctness

of our claim for the case in which L ′(v+
i , x) � L ′(v−, xi) = ab for all i ∈ {1, . . . , n}.

Moreover, since
∨n

i=1(xi ∧ I ′
v+) ∨ (x1 ∧ · · · ∧ xn ∧ I ′

v−) implies (
∨n

i=1 I
′
v+
i

∨ I ′
v−), it also

holds that Iv ⇒ I ′
v ∨ �(v)|ab,L ,L ′ if L ′(v+

i , xi) � L ′(v−, xi) = a (for 1 ≤ i ≤ n) and
I ′
v = (

∨n
i=1 I

′
v+
i

∨ I ′
v−). As previously, �i · L ′(v+

i , x) � L ′(v−, xi) = b holds.

123

Labelled Interpolation Systems for Hyper-Resolution, Clausal... 31

3. ∀i ∈ {1, . . . , n} · L(v+
i , xi) � L(v−, xi) = b:

Then Iv = ∧n
i=1 Iv+

i
∧ Iv− . By (6), we need to distinguish three cases:

(a) ∀i ∈ {1, . . . , n}.L ′(v+
i , xi) � L ′(v−, xi) = b:

Then, as in case 1, the induction hypothesis can be simplified to Iv+
i

⇒ I ′
v+
i

∨
Ci |ab,L ,L ′ (where 1 ≤ i ≤ n) and Iv− ⇒ I ′

v− ∨ D|ab,L ,L ′ , and we obtain

n
∧

i=1

Iv+
i

∧ Iv− ⇒
(

n
∧

i=1

(I ′
v+
i

∨ Ci |ab,L ,L ′) ∧ (I ′
v− ∨ D|ab,L ,L ′)

)

.

By an argument similar to the one made in case 2 we derive Iv ⇒ I ′
v ∨ (

∨n
i=1 Ci ∨

D)|ab,L ,L ′ .
(b) ∀i ∈ {1, . . . , n}.L ′(v+

i , xi) � L ′(v−, xi) = ab:
Then I ′

v = ∧n
i=1(xi ∨ I ′

v+
i
) ∧ (x1 ∨ · · · ∨ xn ∨ I ′

v−) in the first case of AB-HyRes,

and by applying the induction hypothesis we derive

Iv ⇒
n

∧

i=1

(I ′
v+
i

∨ (xi ∨ Ci)|ab,L ,L ′) ∧ (I ′
v− ∨ (x1 ∨ · · · ∨ xn ∨ D)|ab,L ,L ′).

The right-hand side of the implication in turn implies

n
∧

i=1

(xi ∨ I ′
v+
i

∨ Ci |ab,L ,L ′) ∧ (x1 ∨ · · · ∨ xn ∨ I ′
v− ∨ D|ab,L ,L ′), (7)

and by further weakening (7) and applying (5) we derive

Iv ⇒
n

∧

i=1

(xi ∨ I ′
v+
i
) ∧ (x1 ∨ · · · ∨ xn ∨ I ′

v−) ∨
(

n
∨

i=1

Ci ∨ D

)

|ab,L ,L ′ . (8)

Finally, (8) also establishes Iv ⇒ I ′
v ∨(

∨n
i=1 C∨D)|ab,L ,L ′ for case 2 of AB-HyRes

(by Proposition 1).
(c) ∀i ∈ {1, . . . , n}.L ′(v+

i , xi) � L ′(v−, xi) = a:
Then I ′

v = (
∨n

i=1 I
′
v+
i

∨ I ′
v−). Since we have previously shown (8) and since

furthermore
∧n

i=1(xi ∨ I ′
v+
i
) ∧ (x1 ∨ · · · ∨ xn ∨ I ′

v−) implies (by Proposition 1)
∨n

i=1(xi ∨ I ′
v+
i
) ∨ (x1 ∧ · · · ∧ xn ∧ I ′

v−), which in turn implies
∨n

i=1 I
′
v+
i

∨ I ′
v− , we

conclude that Iv ⇒ I ′
v ∨ �(v)|ab,L ,L ′ .

��
Theorem 4 (Correctness) For any (A, B)-refutation R (where R is a clausal proof) and
locality preserving labelling function L, Itp(L , R) (if defined) is an interpolant for (A, B).

Proof Analogous to the proof of Theorem 1 by induction over the structure of the (A, B)-
refutation R. Let I be the partial interpolant at a vertex v labelled with a clause C = �(v).
We show that every such I and C satisfy the following conditions:

1. A ∧ ¬(C�a,L) ⇒ I ,
2. B ∧ ¬(C�b,L) ⇒ ¬I , and
3. Var(I) ⊆ Var(A) ∩ Var(B).

For the sink v with �(v) = �, this establishes Theorem 4. The labelling function L , being
unique in this proof, is omitted from subscripts.

123

32 M. Schlaipfer, G. Weissenbacher

Base case As in the proof of Theorem 1.

Induction step We perform a case split for the labelling of the pivots:

1. (A-TCRes): ∀i ∈ {1, . . . , n} · t ∈ Pi ⇒ L(vi , t) = a
Induction hypothesis (for i ∈ {1, . . . , n}):

A ∧ ¬(Pi �a) ∧ ¬(Ci �a) ⇒ Ii

B ∧ ¬(Ci �b) ⇒ ¬Ii

In this case Pi �a = Pi , so it follows that A ∧ ¬(Ci �a) ⇒ (Pi ∨ Ii) and therefore:

A ∧
n

∧

i=1

¬(Ci �a) ⇒
n

∧

i=1

(Pi ∨ Ii)

Since
∧n

i=1 Pi is unsatisfiable, we can apply chain resolution to the right and side to derive
∧n

i=1(Pi ∨ Ii) ≡ ∨n
i=1 Ii . By furthermore rewriting the left hand side, we obtain

A ∧ ¬
(

n
∨

i=1

Ci

)

�a ⇒
n

∨

i=1

Ii ,

satisfying the first condition. Similarly, we derive

B ∧
n

∧

i=1

¬(Ci �b) ⇒
n

∧

i=1

¬Ii and B ∧ ¬
(

n
∨

i=1

Ci

)

�b ⇒ ¬
n

∨

i=1

Ii

from the induction hypothesis, which satisfies the second condition. The third condition
is satisfied because for all i ∈ {1, . . . , n},Var(Ii) ⊆ Var(A) ∩ Var(B) and therefore
Var(

∨n
i=1 Ii) ⊆ Var(A) ∩ Var(B) holds as well.

2. (B-TCRes): ∀i ∈ {1, . . . , n} · t ∈ Pi ⇒ L(vi , t) = b: The proof is symmetric to the
first case.

3. (AB-TCRes):∀i, j ∈ {1, . . . , n}, i �= j · x ∈ Pi∧x ∈ Pj ⇒ L(v j , xi)�L(vi , xi) = ab:
Note that for an arbitrary labelling function L , we have ¬(Pi �a) ⇒ ¬Pi and ¬(Pi �b) ⇒
¬Pi . Therefore, we can strengthen the induction hypotheses to

A ∧ ¬Pi ∧ ¬(Ci �a) ⇒ Ii

B ∧ ¬Pi ∧ ¬(Ci �b) ⇒ ¬Ii

It follows immediately that

A ∧ ¬
(

n
∨

i=1

Ci �a

)

⇒
n

∧

i=1

(Pi ∨ Ii),

establishing the first condition for case 1 of AB-TCRes. By applying Proposition 2 to
weaken the right hand side (which yields A ∧ ¬(

∨n
i=1 Ci �a) ⇒ ∨n

i=1(¬Pi ∧ Ii)), we
establish the condition 1 for case 2 of AB-TCRes.
Analogously we derive

B ∧ ¬
(

n
∨

i=1

Ci �b

)

⇒
n

∧

i=1

(Pi ∨ ¬Ii), (9)

123

Labelled Interpolation Systems for Hyper-Resolution, Clausal... 33

which establishes the second condition for case 2 of AB-TCRes (B ∧ ¬ (∨n
i=1 Ci �b

) ⇒
¬∨n

i=1(¬Pi ∧ Ii)). By Proposition 2, ¬∨n
i=1(¬Pi ∧ Ii) implies ¬∧n

i=1(Pi ∨ Ii).
Therefore, it follows that

B ∧ ¬
(

n
∨

i=1

Ci �b

)

⇒ ¬
n

∧

i=1

(Pi ∨ Ii),

which establishes the second condition for case 1 of AB-TCRes. The third condition is
established by the fact that all the pivot literals in Pi are shared. ��

Theorem 6 Let R be a local and closed (A, B)-refutation. Then we can construct a hyper-
resolution refutation H of (A, B) and a locality preserving labelling function L such that for
each v ∈ VR with �R(v) ∈ L(A) ∩ L(B) there exists a corresponding vertex u ∈ VH such
that ItpKV (R)(v) ⇔ Itp1(L , H)(u).

Proof By induction over the structure of the (A, B)-refutation R. Let Iv be the partial inter-
polant at a vertex v.

Base case For each initial vertex v ∈ VR we construct a vertex u ∈ VH with �H (u) = �R(v).
First, consider the case that �R(v) ∈ L(A) ∩ L(B). We distinguish two cases:

1. �R(v) ∈ A: Then Iv = �R(v). Let L(u, �R(v)) = b, and since �H (u) ∈ A we have
Iu = Iv .

2. �R(v) ∈ B: Then Iv = ¬�R(v). Let L(u, �R(v)) = a, and since �H (u) ∈ B we have
Iu = Iv .

Otherwise, �R(v) /∈ L(A)∩L(B). Then L(u, �H (u)) = a if �R(v) ∈ A and L(u, �H (u)) = b
if �R(v) ∈ B, and therefore and Iu = F or Iu = T, respectively.

Induction step Let v ∈ VR be an internal vertex such that �R(v) ∈ L(A) ∩ L(B) and
{v1, . . . , vn} = π(v)-premise(v), and �(vi) ∈ L(A) ∩ L(B) for 1 ≤ i ≤ m ≤ n and
�(v j) /∈ L(A) ∩ L(B) for m < j ≤ n.

Induction hypothesis There are {u1, . . . , un} ⊆ VH such that

1. �H (ui) = �R(vi) for 1 ≤ i ≤ n, and
2. Iui ⇔ Ivi for 1 ≤ i ≤ m, and
3. Iu j = F if �(v j) ∈ A (Iu j = T if �(v j) ∈ B, respectively) for m < j ≤ n.

By Corollary 1, the clause C = ¬�H (u1) ∨ · · · ∨ ¬�H (un) ∨ �R(v) is a tautology. We
distinguish two cases:

1. (A-justified) π(v) = A.
AddC to A and addw1 to VH such that �H (w1) = C . Let L(w1,¬�(ui)) = ab for 1 ≤ i ≤ m,
L(w1,¬�(u j)) = a for m < j ≤ n, and L(w1, �(v)) = a. Then, add w2 to VH and perform
the hyper-resolution step

�H (um+1) [F] · · · �H (un) [F] �H (w1) [F]
�H (w2) [F] ,

where �H (w2) = �H (u1)∨· · · �H (um)∨�R(v) and Iw2 = F. Then, add u to VH and perform
the hyper-resolution step

�H (u1) [Iu1] · · · �H (um) [Ium] �H (w2) [F]
�H (u) [Iu] ,

123

34 M. Schlaipfer, G. Weissenbacher

such that �H (u) = �R(v) and Iu = ∧m
i=1(�H (ui) ∨ Iui) ∧ (F ∨ ∨m

i=1 ¬�H (ui)).

2. (B-justified) π(v) = B. Analogous to the first case, but Iw2 = T. ��

References

1. Andrews, P.B.: Resolution with merging. J. ACM 15(3), 367–381 (1968)
2. Bacchus, F.: Enhancing davis putnam with extended binary clause reasoning. In: Eighteenth National

Conference on Artificial Intelligence, pp. 613–619. American Association for Artificial Intelligence,
Menlo Park (2002)

3. Bar-Ilan, O., Fuhrmann, O., Hoory, S., Shacham, O., Strichman, O.: Linear-time reductions of resolution
proofs. Technical Report IE/IS-2008-02, Technion (2008)

4. Beame, P., Kautz, H., Sabharwal, A.: Towards understanding and harnessing the potential of clause
learning. J. Artif. Intell. Res. 22(1), 319–351 (2004)

5. Biere, A.: PicoSAT essentials. JSAT 4(2–4), 75–97 (2008)
6. Biere, A., Heule, M.J.H., van Maaren, H., Walsh, T.: Handbook of Satisfiability, Volume 185 of Frontiers

in Artificial Intelligence and Applications. IOS Press (2009)
7. Bloem, R., Galler, S., Jobstmann, B., Piterman, N., Pnueli, A., Weiglhofer, M.: Specify, compile, run:

hardware from psl. Electron. Notes Theor. Comput. Sci. 190(4), 3–16 (2007)
8. Bloem, R., Könighofer, R., Seidl, M.: Sat-based synthesis methods for safety specs. In: McMillan, K.,

Rival, X. (eds.) VMCAI, Volume 8318 of LNCS, pp. 1–20. Springer, Berlin (2014)
9. Bloem, R., Malik, S., Schlaipfer, M., Weissenbacher, G.: Reduction of resolution refutations and inter-

polants via subsumption. In: Haifa Verification Conference, pp. 188. Springer (2014)
10. Bonacina, M.P., Johansson, M.: On interpolation in decision procedures. In: TABLEAUX, Volume 6793

of LNCS, pp. 1–16. Springer (2011)
11. Bradley, A.R.: SAT-based model checking without unrolling. In: VMCAI, Volume 6538 of LNCS, pp.

70–87. Springer (2011)
12. Brayton, R., Mishchenko, A.: ABC: An academic industrial-strength verification tool. In: CAV, Volume

6174 of LNCS, pp. 24–40. Springer (2010)
13. Cimatti, A., Griggio, A., Sebastiani, R.: Efficient generation of Craig interpolants in satisfiability modulo

theories. ACM Trans. Comput. Logic, 12(1), 1–54 (2010)
14. Craig,W.: Linear reasoning. A new form of theHerbrand–Gentzen theorem. J. Symb. Log. 22(3), 250–268

(1957)
15. D’Silva, V.: Propositional interpolation and abstract interpretation. In: European Symposium on Program-

ming, Volume 6012 of LNCS. Springer (2010)
16. D’Silva, V., Kroening, D., Purandare, M., Weissenbacher, G.: Interpolant strength. In: VMCAI, Volume

5944 of LNCS, pp. 129–145. Springer (2010)
17. Eén, N., Sörensson, N.: An extensible SAT-solver. In: SAT, Volume 2919, pp. 502–518. Springer (2004)
18. Ermis, E., Schäf,M.,Wies, T.: Error invariants. In: FormalMethods, Volume 7436 of LNCS, pp. 187–201.

Springer (2012)
19. Fontaine, P., Merz, S., Paleo, B.W.: Compression of propositional resolution proofs via partial regular-

ization. In: CADE, Volume 6803 of LNCS. Springer (2011)
20. Fuchs, A., Goel, A., Grundy, J., Krstić, S., Tinelli, C.: Ground interpolation for the theory of equality. In:

TACAS, Volume 5005 of LNCS, pp. 413–427. Springer (2009)
21. Gershman, R., Strichman, O.: Cost-effective hyper-resolution for preprocessing cnf formulas. In: SAT,

Volume 3569 of LNCS, pp. 423–429. Springer (2005)
22. Goldberg, E., Novikov, Y.: Verification of proofs of unsatisfiability for CNF formulas. In: DATE, pp.

886–891. IEEE (2003)
23. Gupta, A., Popeea, C., Rybalchenko,A.:Generalised interpolation by solving recursion-freeHorn clauses.

CoRR, abs/1303.7378 (2013)
24. Gurfinkel, A., Vizel, Y.: Druping for interpolants. In: Formal Methods in Computer-Aided Design, pp.

99–106. FMCAD Inc. (2014)
25. Heule, M., W.A.H. Jr., Wetzler, N.: Trimming while checking clausal proofs. In: Formal Methods in

Computer-Aided Design, pp. 181–188. IEEE (2013)
26. Hoder, K., Kovács, L., Voronkov, A.: Playing in the grey area of proofs. In: Principles of Programming

Languages, pp. 259–272. ACM (2012)

123

Labelled Interpolation Systems for Hyper-Resolution, Clausal... 35

27. Hofferek, G., Gupta, A., Könighofer, B., Jiang, J.R., Bloem, R.: Synthesizing multiple boolean functions
using interpolation on a single proof. In: Formal Methods in Computer-Aided Design, pp. 77–84. IEEE
(2013)

28. Huang, G.: Constructing Craig interpolation formulas. In: Computing and Combinatorics, Volume 959
of LNCS, pp. 181–190. Springer (1995)

29. Jhala, R., McMillan, K.L.: Interpolant-based transition relation approximation. In: CAV, Volume 3576 of
LNCS, pp. 39–51. Springer (2005)

30. Jhala, R.,McMillan,K.L.:A practical and complete approach to predicate refinement. In: TACAS,Volume
3920 of LNCS, pp. 459–473. Springer (2006)

31. Jiang, J.-H.R., Lin, H.-P., Hung, W.-L.: Interpolating functions from large Boolean relations. In: ICCAD,
pp. 779–784. ACM (2009)

32. Kovács, L., Voronkov, A.: Interpolation and symbol elimination. In: CADE, Volume 5663 of LNCS, pp.
199–213. Springer (2009)

33. Krajíček, J.: Interpolation theorems, lower bounds for proof systems, and independence results for
bounded arithmetic. J. Symb. Log. 62(2), 457–486 (1997)

34. Kroening, D., Strichman, O.: Decision Procedures: An Algorithmic Point of View. Texts in Theoretical
Computer Science. Springer (2008)

35. Kroening, D.,Weissenbacher, G.: Lifting propositional interpolants to theword-level. In: FormalMethods
in Computer-Aided Design, pp. 85–89. IEEE (2007)

36. Kroening, D., Weissenbacher, G.: An interpolating decision procedure for transitive relations with unin-
terpreted functions. In: Haifa Verification Conference, Volume 6405 of LNCS, pp. 150–168. Springer
(2011)

37. Maehara, S.: On the interpolation theorem of Craig. Sûgaku 12, 235–237 (1961)
38. Malik, S., Weissenbacher, G.: Boolean satisfiability solvers: techniques and extensions. In: Software

Safety and Security—Tools for Analysis and Verification, NATO Science for Peace and Security Series.
IOS Press (2012)

39. McMillan, K.L.: Interpolation and SAT-basedmodel checking. In: CAV,Volume 2725 of LNCS, pp. 1–13.
Springer (2003)

40. McMillan, K.L.: An interpolating theorem prover. Theor. Comput. Sci. 345(1), 101–121 (2005)
41. McMillan, K.L.: Quantified invariant generation using an interpolating saturation prover. In: TACAS,

Volume 4963 of LNCS, pp. 413–427. Springer (2008)
42. Pudlák, P.: Lower bounds for resolution and cutting plane proofs and monotone computations. J. Symb.

Log. 62(3), 981–998 (1997)
43. Robinson, J.: Automatic deduction with hyper-resolution. J. Comput. Math. 1, 227–234 (1965)
44. Rollini, S.F., Alt, L., Fedyukovich, G., Hyvärinen, A.E.J., Sharygina, N.: PeRIPLO: A framework for

producing effective interpolants in SAT-based software verification. In: Logic for Programming, Artificial
Intelligence, and Reasoning (LPAR), Volume 8312 of LNCS, pp. 683–693. Springer (2013)

45. Rollini, S.F., Bruttomesso, R., Sharygina, N., Tsitovich, A.: Resolution proof transformation for com-
pression and interpolation. Form. Methods Syst. Des. 45(1), 1–41 (2014)

46. Rollini, S.F., Sery, O., Sharygina, N.: Leveraging interpolant strength inmodel checking. In: CAV,Volume
7358 of LNCS, pp. 193–209. Springer (2012)

47. Rybalchenko, A., Sofronie-Stokkermans, V.: Constraint solving for interpolation. In: VMCAI, Volume
4349 of LNCS, pp. 346–362. Springer (2007)

48. Sharma, R., Nori, A., Aiken, A.: Interpolants as classifiers. In: Madhusudan, P., Seshia, S., (eds.) CAV,
Volume 7358 of LNCS, pp. 71–87. Springer, Berlin (2012)

49. Silva, J.P.M., Sakallah, K.A.: GRASP—a new search algorithm for satisfiability. In: ICCAD, pp. 220–227
(1996)

50. Simmonds, J., Davies, J., Gurfinkel, A., Chechik,M.: Exploiting resolution proofs to speed upLTLvacuity
detection for BMC. STTT 12(5), 319–335 (2010)

51. Sofronie-Stokkermans, V.: Interpolation in local theory extensions. In: Automated Reasoning, pp. 235–
250. Springer (2006)

52. Totla, N.,Wies, T.: Complete instantiation-based interpolation. In: Principles of Programming Languages,
pp. 537–548. ACM, New York (2013)

53. Vizel, Y., Ryvchin, V., Nadel, A: Efficient generation of small interpolants in CNF. In: CAV, Volume 8044
of LNCS, pp. 330–346. Springer (2013)

54. Vizel, Y., Weissenbacher, G., Malik, S.: Boolean satisfiability solvers and their applications in model
checking. Proc. IEEE 103(11), 2021–2035 (2015)

55. Weissenbacher, G: Program Analysis with Interpolants. Ph.D. thesis, Oxford (2010)
56. Weissenbacher, G: Interpolant strength revisited. In: SAT, Volume 7317 of LNCS, pp. 312–326. Springer

(2012)

123

36 M. Schlaipfer, G. Weissenbacher

57. Weissenbacher, G: Explaining heisenbugs. In: Runtime Verification, Volume 9333 of LNCS, p. XV.
Springer (2015)

58. Yorsh, G., Musuvathi, M: A combination method for generating interpolants. In: CADE, Volume 3632
of LNCS, pp. 353–368 (2005)

59. Zhu, C.S., Weissenbacher, G., Malik, S: Silicon fault diagnosis using sequence interpolation with back-
bones. In: ICCAD, pp. 348–355. IEEE (2014)

123

	Labelled Interpolation Systems for Hyper-Resolution, Clausal, and Local Proofs
	Abstract
	1 Introduction
	1.1 Contributions

	2 Background
	2.1 Formulae and Proofs
	2.1.1 Propositional Formulae
	2.1.2 First-Order Logic
	2.1.3 Inference Rules and Proofs

	2.2 Interpolation Systems and Labelling Functions

	3 Interpolation for Hyper-Resolution
	4 Interpolation for Clausal Proofs
	4.1 Splitting and Reordering Resolution Chains
	4.2 Empirical Results

	5 Local Refutations and Hyper-Resolution
	6 Related Work
	7 Consequences and Conclusion
	Acknowledgments
	Appendix 1: Proofs
	References

