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Abstract Proof development in proof assistants such as HOL, Coq, Mizar, etc. is an activity
where authors usually produce proofs by typing out proof scripts or system tactics. Quite
frequently, however, authors also have to read existing proof scripts, either to imitate smart
proof pieces, or to refactor fragments of reasoning to make some theorem stronger, more
easily applicable and so on. Therefore, it is important to develop techniques to improve
legibility of proofs, since it directly affects productivity of script writers. To analyze the
legibility of natural deduction proofs, we investigate proof graphs that represent the flow
of information in given reasoning. Our analysis of the information flow leads to methods
of improving proof readability based on Behaghel’s First Law, which states that in legible
text relevant pieces of information must occur close to each other. The presented method
maximizes the number of close connections between premises and steps that use these steps
as justification. In this paper we show that our optimization method is NP-hard.

Keywords Natural deduction - Legibility - NP-completeness

1 Introduction

Analyzing declarative natural deduction proofs developed with proof assistants, one
may conclude that their legibility often seems to be of secondary importance to their
authors. Computer assisted proof development frameworks can check of the proofs scripts
created in this way, according to the opinion of some proof writers, is extremely difficult or
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even impossible. Still, the experience of big proof development efforts shows that adapting
existing proofs is unavoidable and requires reading proof scripts [7].

There are proof scripts whose authors spend a lot of time over their readability [2,
11-14]. However, an analysis of proof scripts, especially long and more complex ones,
leads to a conclusion that the readability of proof scripts in general might be very
far from the acceptable level of readability. This concerns especially systems such as
Isabelle/Isar [28] or Mizar [8], where the proof script language is close to the natural
language [26].

Clearly, authors of formal proof scripts can manually try to improve readability of their
works in a similar way some authors of informal mathematical proofs make them more
readable than others. [9]. However, the digital form of structured formal proofs enables not
only automatic correctness verification, but also automatic enhancement of proof scripts.
Systems such as Mizar are being developed in many directions to improve proof scripts
collected in Mizar Mathematical Library (MML) [20]. In particular,

(i) the visualization of proof scripts in HTML format is being improved [27],

(ii) the new Mizar language constructions [16, 17, 19] that stem from informal deduc-
tions are implemented into new versions of MML [10], respecting the license
requirements [1],

(iii) there are experiments with strengthening the Mizar inference checker by implement-
ing selected computer algebra capabilities in order to reduce user input and shorten
MML texts [21],

(iv) methods of rebuilding the reasoning structure to extract lemmas have been devel-

oped [23].

The aim of this article is to consider methods that improve the legibility of natural
deduction proofs by changing the order of reasoning steps. Results obtained by initial exper-
iments with step order manipulation were implemented in MML version 4.127.1060
[22]. These results were positively received by Mizar users despite the fact that the exper-
iment used a simple greedy algorithm. Therefore, it seems important to further examine
methods that can be used for this goal.

Methods that reorganize the order of steps focus mainly on the location of the infor-
mation used to justify a given step. Clearly, premises that are used to justify a step have
to be previously derived in the proof, but this information can be located somewhere far
away in the proof, or within a close neighborhood of the step that refers to it. We focus
mainly on this aspect of legibility. According to models of cognitive perception of read
material and the Behaghel’s First Law, we follow this principle: elements that belong
close together intellectually will also be placed close together [3]. With Behaghel’s law in
mind, we assume that a reference which connects a premise and a step that uses it in the
justification is more comprehensive if between the premise and the step only few other
steps occur. The exact number of these other intermediary steps that can appear without
significant loss of readability is different for different readers. But the opinions of sev-
eral users of the Mizar database seem to suggest that the number might be fixed for every
person.

In this paper we study the computational complexity of methods that have origins in
Behaghel’s law. In Section 2, we formulate various problems of improving the legibility
of natural deduction proofs in terms of DAGs. Then, in Section 3, we show that formu-
lated problems are NP-complete. In Section 4 we reformulate one of these problems in
terms of Hamiltonian paths. Finally, Section 5 concludes the paper and discusses the future
work.
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2 Formulation of Behaghel’s Law Determinants

To formulate legibility criteria we first need to set up the terminology and notation.
Let G = (V,E) be a DAG and a vertex u € V. We assume that G is with-
out self-loops i.e. without edges that connect a vertex to itself. We use the following
notation:

New) :={veV:(vu) €k} (incoming arcs),

Nér(u) ={veV:(uv) ekE} (outgoing arcs), M

NG ()| is the in-degree of u and IN&L(u)I is the out-degree of u. A sequence P =
(uy,uz, ..., u,) of vertices of G is called a path if (u;,u;+1) € Efori =1,2,...,n—1,
the length of a path P is the number of arcs in the path. We denote by TS(G) the set of all
topological sortings of G. For a topological sorting T € TS(G) and a subset E; € E we
use the following notation:

TE(r) := {{v,u) € E; : T(w) — T(v) = 1},

T (1) = {(v,u) € E1: T(w) —t(v) < n}.
where n is a positive integer. Given an arc (4, v) € E. The number t(v) — () is called the
t—distance.

Let 7 = {Vi, Va,..., Vi} be a partition of V. We denote by G(G, ) the following
digraph (directed graph):

(m, (Vi, Vi) : 1 <, j<kANi#jA HV(“GVi/\UGVj/\WaU)GE)})- (3)
u,ve

@)

Given an undirected graph G = (V, E), a vertex cover of G is a subset V' of V such that
each edge of E is incident to at least one vertex of V',

In further considerations a simplified model of proofs is used. The general case of such
models that describe proofs written in natural deduction was introduced and considered
n [22]. The simplified model of proofs is represented by a DAG ‘33 with a distinguished
set of arcs SR(P). The vertices of P represent steps of reasoning and arcs of P repre-
sent the flow of information between different steps of reasoning. Additionally, an arc of
R(P) describes the dependence between a step s (the head of the arc) and a previously
justified step p (the tail of the arc), called reference arc, if the statement formulated in step
p is used in the justification of s. Other arcs of 3 describe e.g. the dependence between
steps which introduce dummy variables, and steps that contain these variables in the
statement.

The methods of improving legibility of proofs based on Behaghel’s First Law can be
formulated as the following two decision problems:
1st Method of Improving Legibility for n (1st MIL,,):

INSTANCE: ADAG G = (V, E), asubset E| of E and K < |Eq]|.

QUESTION: Does there exist a topological sorting T of G for which |7:,E‘ ()= K?

2nd Method of Improving Legibility (2nd MIL):
INSTANCE: ADAG G = (V, E), asubset E; of E, a positive integer K < |V/|.
QUESTION: Does there exist a topological sorting t of G for which t(u) — t(v) < K
for every (v, u) € E|?

In our setting, the subset E| corresponds to the set of reference arcs. The 1st MIL,, corre-

sponds to the case when the number of local references arcs is optimized. The parameter n
that occurs in 1st MIL,, corresponds to the cognitive limit such that references of T—distance
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is less than or equal to n are considered to be comprehensive while the arcs with t—distance
greater — obscure. The 2nd MIL corresponds to the case when we want to construct a topo-
logical sorting of the proof graph where every reference arc has t—distance no greater than
the ”cognitive limit“. Observe that 2nd MIL problem is equivalent to a known NP-complete
problem called Directed Bandwidth (see GT41 in [5]). Thus, we immediately conclude that
2nd MIL is NP-complete, too. In our consideration we show that 1st MIL,, problem is also
NP-complete.

Having analyzed the “cognitive limit*“ indicated by the Mizar system users, we can
distinguish one subcase of 1st MIL, problem, where n = 1. Before we formulate this
case, it should be observed that proofs do not contain self-loops, just like in mathematical
proofs it is illegal for a statement of step s to be used in the justification of s. There-
fore we can formulate a subcase of 1st MIL, problem, where n = 1 in the following
form, that is equivalent to this subcase if a digraph occurring in the instance is without
self-loops.
3rd Method of Improving Legibility (3rd MIL):

INSTANCE: A DAG G = (V, E), asubset E; of E, a positive integer K < |V|.

QUESTION: Does there exist a topological sorting T of G for which |TE1 (7)| > K?

This subcase of 1st MIL, problem presents the case where more comprehensive are
only references with premises located directly in the preceding step. Since each step of the
reasoning can have at most one premise located in the preceding step, intuitions related
to the 3rd MIL problem can be expressed as follows: a step where at least some of the
information it requires is available in the directly preceding step is more comprehensive
than a step in which all information is far away in the proof. This interpretation has a lot in
common with the construction then implemented in Mizar, Isabelle/Isar and other systems
where the proof style inspired by Mizar is implemented: Declare [25], Mizar Mode for HOL
[15], Mizar-light for HOL-light [29], MMode for Coq [6], declarative proof language (DPL)
for Coq [4]. The construction then indicates that a fact derived directly before should
be used in the current step as (part of) its justification. Hence this construction augments
the proof context. Additionally, appropriate arrangement of proof steps in a reasoning can
increase the number of uses of then, and the maximization of this number is realized by
the decision problem 3rd MIL.

3 The NP-Completeness of the 1st MIL Problem

It is clear that 1st MIL, is in the NP class. We can guess a topological sorting t and count
the number of arcs with limited r—distance. To show that 1st MIL is NP-hard, we transform
the Vertex Cover problem, which is known to be NP-complete (see GT41 in [5]) to 3rd
MIL. This is done in Theorem 1. Subsequently, we transform 3rd MIL to 1st MIL, in
Theorem 2.

For convenience we recall the Vertex Cover problem.
Vertex Cover (VC):

INSTANCE: An undirected graph G = (V, E) and a positive integer K < |V|.

QUESTION: Is there a vertex cover of size at most K ?

Theorem 1 3rd MIL is NP-complete.
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Proof We transform VC to 3rd MIL. Let an undirected graph G = (V, E) and a positive
integer K < | V| be an instance of VC. We construct a directed graph G’ = (V’/, E’) and a
subset of arcs E1 C E’ such that there exists a vertex cover of G with the size at most K if
and only if there exists a topological sorting T € TS(G’) for which [T £1(7)| > |V| — K.
Let G', E be defined by

V' =V x{0,1},
E' = {{{v,0), (v, 1)) : v e VIU{{{v,0), (u, 1)) : {v, u} € E}, “)
Ey = {{({(v,0), (v, 1)) :ve V}

This translation can clearly be done in LOGSPACE. Notice that G’ is acyclic since for each
v € V the in-degree of vertices (v, 0) is 0 and out-degree of vertices (v, 1) is 0.

The main idea of the proof is based on the fact that the choice of at least one vertex of
every arc {v, u} € E to a vertex cover of G can be expressed by a choice of at least one of
arcs ((v, 0), (v, 1)), ((u, 0), (u, 1)) to E1 \ TE1(z). Let us consider an {v, u} that belongs
to E. First note that the vertices (v, 0) and (u, 0) are connected with exactly one outgoing
arc that belongs to E|, either ((v, 0), (v, 1)) or ({u, 0), {u, 1)). To justify the formulated
above fact we show that these arcs must not belong to TE1(1), for every T € TS(G') (see
Fig. 1). This is a consequence of a simple observation that at most one of two equalities
T((v,0) +1 = 7((v, 1)), T((u,0)) + 1 = t({u, 1)) can hold for every t € TS(G').
Suppose, contrary to our claim that both hold. Since 7 is an injective function, we have
T((v,0)) < t({u, 0)) or t({u, 0)) < t({v,0)). Let us assume that 7({v, 0)) < t({(u, 0))
(the other case is analogous). As t({(v, 0)) + 1 = ({v, 1)) and (v, 1) # (u, 0) we have that
t({v, 1)) < T({u, 0)), but this contradicts the fact that T € TS(G"), since {(u, 0), (v, 1)) €
E'.

Let V be a vertex cover of G with |V| < K. Let us consider a partition 7()) of G’
defined by

a(V) :={{{v,0)}:veVIU{{v, )} :v e VIU{{{v,0), (v, )} :ve V\V}L ®))

It follows that vertices in G(G’, 7()))) have size at most two. Moreover every vertex that
has the form {({v, 0)} has no incoming arcs since (v, 0) also does not have, and analogously
every vertex that has the form {(v, 1)} has no outgoing arcs since (v, 1) does not have.
Hence, cycles can consist only of vertices of size 2 in G(G’, w(V)), but vertices of this
kind are not connected since V is a vertex cover. For this reason it is easy to check that
G(G’, 7w (V)) is acyclic and, in consequence, there exists T € TS(G(G’, w(V))). Let o :

V' — {1,2,...,|V’|} be the function defined as follows:
1+ > |R| for |P| =1,
N Ren(V):t(R)<t(P)
olwid=1 4,4 3 IR| for |P| =2, ©)

Ren(V):t(R)<t(P)

where P is the only element of 77 ())) that contains (v, i). First we show that o € TS(G’).
Indeed, let us consider an arc {((w, i), (¢, j)) € E’ and we denote by P,,, P, the only element
of (V) that contains (w, i), (¢, j), respectively. We have i = 0, j = 1, because the out-
degree of (w, 1) is 0 and the in-degree of (¢, 0) is 0 in G’. Note that if P, = P;, then w = ¢,
o({w,0)) +1 = o({t, 1)), and finally o ((w, 0)) < o({t, 1)). Suppose that P, # P;.
Then (P, P,) is an arc in G(G', 7 (V)), hence t(Py) < t(P), o({t, 1)) — o ({w, 0)) >

|R|, and finally o ((w, 0)) < o ({t, 1)).
Rex(V):t(Py)<t(R)<T(Pr)

It is also easily seen that {{(v,0), (v, 1)) € E; : v e V\V} C TE1(o), hence finally
TE (o) = V|- K.
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Fig. 1 An example that illustrates the construction from the proof of Theorem 1, where V = {v, w}

Let 0 € TS(G'), for which |[TE1 (o) > |V|— K. LetV, = {v € V : ({v,0), (v, 1)) €
E1\ TE (0)}. As TE'(6) C Ej, |E1] = |V]| we infer that [V,| < K, so we only need
to show that ), is a vertex cover of G. Suppose, contrary to our claim, that there exists
an edge {v,u} € E such that {v,u} NV, = @. Note that if o((v, 1)) — o ({v,0)) > 1
then ((v,0), (v,1)) ¢ TFi (o), and consequently v € V,, but this contradicts our
assumption that {v,u} NV, = @. Hence o({v, 1)) — o({v,0)) < 1 and analogously
o((u, 1)) — o({u,0)) < 1. Additionally, o ((v,0)) < o((u, 1)), o ((u,0)) < o({u, 1)),
since ¢ € TS(G’), but these inequalities are between natural numbers, hence finally
o({(v,0)) =0o({u,0)),0({v, 1)) = o ({u, 1)) and v = u, but this contradicts our assumption
that G is without self-loops. O

Let us take a DAG G = (V, E), a subset E’ of E and a positive integer n. We define a
digraph G, = (V,, E,) and a subset E,, of E, as:

Vi =VU{:veVAL<i<n}
E, = EU&y,, (7
E,ll :E/Ugv,n

where £y, 1= {(v, v;) : v € V A1 <i < n}. Note that the construction of G, can clearly
be done in LOGSPACE. Obviously, G,, is acyclic since for every new vertex v € V, \ V
the out-degree is 0. We show that there exists a topological sorting T € TS(G) for which
|TE:(r)| > K if and only if there exists a topological sorting o € TS(G,) for which
|’7;,E+”l (0)| = n-|V|+ K. For this purpose we show firstly that we can rearrange the vertices
on every topological sorting of G, so that all the vertices in V remain in their relative
position in a new topological sort of G, and the vertices vy, vy, ..., v, are all moved right
behind v forallv € V.

Lemma 1 Let E' be a subset of E and o be a topological sorting of G,. Then there exists
a topological sorting o’ € TS(G,) such that:
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(i) ifv,u €V ando(v) < o(u), then o' (v) < o' (u),
(ii) zfv e V, then o’ (v,) =o'(v)+iforalli=1,2,...,n,

(i) IT (0)|<|T 1 (@],

Proof We define a sequence al,a?, ..., alVl of the vertices of V based on o such that

o(a') < o(al)if and only if i < j foreach 1 < i, j < |V|. We construct a sequence
¥ = {00, 01, 02, ..., o)y|) of topological sortings of G, based on o such that | 11+1(U’)| >
E! .

|7:l+”1 (o) fori = 1,2,...,|V|, and then ¢’ := o}y, fulfils the lemma’s conditions. The
constructed topological sorting rearranges the vertices as follows: o9 = o and for every
1<i<|V]

(i) all the vertices in V retain their relative positions o; from o,

(ii) every vertex v € V), that occurs before a' in o;_ preserves its position in o;,
(iii)  the vertices ai, a}, ..., a, are all moved right behind a',

@v) T @) < 1T @)l

Now we proceed by induction over the sorting index number i. We prove the following
conditions:

(i) ifvueVy\{al,d} ...al},i >0, 0,_1(a) < o;_1(v), and 0;_1(v) < 07_1(u)
then o; (v) < oi(u),
(ii) ifveV,i>0,ando;_(v) <o;_(a') then o; (v) = oi_1(v),
(i) if1 < j <n,i>0thenoj(a)) =oi(@)+J,
(iv) ifi > Othen |7, +1(<7,_1)| <7, 1(cr,-)l.

The case i = 0 is obvious. To prove the induction step, assume that we have already con-
structed o; for some i, where 0 < i < |V/|. It is clear that there exists o;+; € TS(G’) that
satisfies the following constraints:

() ifvu e V\{at d . at!), 0i(@™!) < 0;(v) and 0;(v) < 0;(u) then
0i+1(v) < oiy1(u), )
(ii) ifve V,ando;(v) < o;(@t!) then 0,41 (v) = 0;(v).
(i) if 1< j < nthenoiyi (@) = 0i(a™) + j.

To finish the proof we show that |7 +1(cr,)| < |T +1(c7,+1)| It is easy to check that to
i+1

compare the size of the sets it is enough to check the number of outgoing arcs from al

in both these sets. Suppose contrary to our clalm that 'T 1+1(0i) has more than T nt1(Git1)

such kind of arcs. From (2) we infer that 7; 3 l(0,) cannot have more than n + 1 such
; 1 .

arcs. But from (iii) we conclude that (a’*l,a;+ ) € 7:l+”1 (0j11) for j = 1,2,...,n

E| . i .
hence 7, " (0;) has to have exactly n + 1 arcs outgoing from a'*!. Since not all these

l+1>

arcs can be in the form (a“r1 for j = 1,2,...,n, there exists v € V such that

(@t vy e Ti”l (7). Additionally, we can assume that o; (v) has the smallest value among

n
all o;(u) such that u € V and (a't!, u) € 'Ti”l (07). Clearly, 0ir1(v) = o1 (@t +n+1,

n

. E’
hence (a't!,v) € 7,1 (0i4+1) and consequently, 7:1+1((7[+1) has the same outgoing arcs

; E/ -
from a’t! as 7; 1 (0i), a contradiction. (I
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Lemma 2 Let E' be a subset of E and o be a topological sorting of G,. Then there exists
a topological sorting T € TS(G) such that

ITE O = 1T @) =n - V.

Proof Leto € TS(G,). From Lemma 1 we conclude that there exists o’ € TS(G,) such
that

o'(v)) =0'(v) +i ®)
for every v € V,i = 1,2,...,n, and |T+l(0)| |77£r’/’1 (6')]. Define a sequence
a',a%, ..., aV! of the vertices of V as follows: o/(a') < o'(a’) if and only if i < j
for all 1 < i,j‘ < |V|l,and let T : V — {1,2,...,|V]} be the function given by
the formula 7(a' ) = i foreachi = 1,2,...,|V]. Note that T is a topological sort-

ing of G since a € TS(G,). Hence t0 complete the proof it is enough to show that
ITE (1) = |T+l(o )|—n-|V], since IT L(@D|—n-|V]| = |T+](a)|—n |V|. For this pur-

pose we show only that 7;“ (0c)=TFE (t)UEy , since it is evident that TE ©ONEy =0
and |Ey | =n-|V].

Observe that &y, C Tli”l (6"), which follows from (8). To show that TE (r) <

- n

TE

nJrl(a ) let us consider (v, u) € TE (7). Then there exists 1 < i < |V| — 1 such that

v=ad,u=a"! since t(u) — t(v) = 1. Additionally, all vertices that have the form a", 5

i+1

for j = 1,2,...,n and only these vertices are located between at and a in the linear

arrangement o’. Hence o’ (u) — o’/ (v) = n + 1 and finally (v, u) € T_H(O' ).
To show the last inclusion 7;LE+'/'1 (o) < TE (1)U Ev ., let us consider an arc (w, t) €

7:5:1 (¢') and assume that (w, t) ¢ Ev ,. By assumption, (w, r) € Ej, hence (w,t) € E’
since E;, = E'U&y , and (w, 1) & Ey p. Consequently, w,t € V, but between every two

dlfferent vertices of V in the linear arrangement o’ at least n vertices belong to V,, \'V,
hence o’ (t) —o'(w) > n+1. Add1t10nallyc7 (t)—o’(w) < n+1,since (w, 1) € ’T (0.
It follows that between w, 7 in o’ there are no vertices that belong to V, hence there exists
j such that w = a’, t = a1 < Jj < V| =1, and finally (w, ) € TE (1), since
(w,t) € E'. O

This result can be strengthened to evidence that giving more freedom to put premises
farther from their place of use cannot give us any polynomial algorithm.

Theorem 2 The problem 1st MIL,, is NP-complete for each n.

Proof The case n = 1 is obvious since we proved in Theorem 1 that 3rd MIL is NP-
complete problem. Assume that n > 1. For this case we transform 3rd MIL to 1st MIL,,.
Leta DAG G = (V, E), E’ be a subset of E and a positive integer K < |V| be an instance
of 3rd MIL. Recall the definition (7) of graph G, in the proof of Theorem 1. We prove that
there exists a topological sorting 7 € TS(G) for which |TE ()| = K if and only if there

exists a topological sorting o € TS(G,—1) for which |T o) =m—-1)-|V|+K.
Let t be a topological sorting of G for which I'TE ()] > K, and let us consider the
functiono : V,—1 — {1,2,...,|V,—1]} defined as follows:

o) =1+n-(r(v) -1, ow)=14+i+n-(t(v) —1), )
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foreveryv € Vandi = 1,2,...,n — 1. Observe that 0 € TS(G,,—1), since o (v) < o (u)
foreach (v, u) € E,and o (v) < a(vl) foreachv e V,1 <i < n—l By the definition of o

we obtain that TE1(z) UEy ,—1 C 'T (o), hencefmally IT )= m-1-|V|+K.
Let o be a topological sorting of G,,_; for which |’T )| > (n — 1) V| + K. By

Lemma 2 we infer that there exists T € TS(G) such that |75 (7)| > |7' o) -m—1)-
|V|since n > 1. Hence finally | 7% ()| > K. O

Analyzing the family of graphs constructed in Theorem 1, 2 we obtain that 1st MIL,, is
NP-complete only for instances, where subsets E, E are not equal. The case E = E| is also
NP-complete, and it was proved in [24], but the transformation there is not in LOGSPACE,
and we do not know how to improve it to be in LOGSPACE.

4 Problem 3rd MIL as a Finding of a Hamiltonian Path

In this section we state and classify an unexplored problem equivalent to 3rd MIL that
will be determined in the terms of Hamiltonian paths for acyclic digraph. Such a state-
ment enables interpreting the 3rd MIL problem among the problems known as Hamiltonian
Completion problems that correspond to the existence of a Hamiltonian path.
Directed Hamiltonian Path Completion (Directed HPC):

INSTANCE: ADAG G = (V, E), asubset E| of E, a positive integer K.

QUESTION: Does there exist E| being a subset of V?2 containing Ej, such that
|E{ \ E1l < K and the digraph (V, E U E/) is acyclic and the digraph (V, E/) has a
Hamiltonian path?

Note that in the reality of graphs undirected completion to a Hamiltonian circuit (see
GT34 in [5]) or path (see GT39 in [5]) are known NP-complete problems. Additionally,
Directed Hamiltonian Circuit (see GT38 [5]), Directed Hamiltonian Path [5] are also NP-
complete for digraphs, but the second problem can be solved in polynomial time for acyclic
digraphs [18].

In this section we show in Theorem 4 that Directed HCP is also NP-complete, since 3rd
MIL is NP-complete too. Additionally, as 3rd MIL is NP-complete even for E = E; (see
[24]), we obtain by Theorem 3 that E; can be replaced by E in instances of Directed HCP.

Observe first that K occurring in the instance of Directed HCP can be restricted by
V| — 1, since for K > |V| — 1 a solution always exists. Indeed, let T be a topological
sorting of G, then it is evident that E; = E; U £(t) is a solution of Directed HCP, where
E@={'@). i+ 1)) :1<i<|V|-1}.

Theorem 3 Let G = (V, E) be a DAG , E| be a subset of E and K be a positive integer
not greater than |V | — 1. The following conditions are equivalent:

(i)  there exists a topological sorting T of G for which |TE1(7)| > K,
(ii)  there exists E| be a subset of V2 containing E1, such that [E{\NE1l <|VI-K -1,
the digraph (V, E U E}) is acyclic and the digraph (V, E\) has a Hamiltonian path.

Proof (i) = (ii) Let t € TS(G) for which |TE1(r)| > K. Let us consider E| = EU
E(1). Observe that T E1 (1) € £(t), hence E, \E1 € E@\T 1 (1), and finally |ET\E1]| <

@ Springer



304 K. Pak

|V|— 1 — K. Additionally € TS((V, EU E})) and (t 7' (1), t7'(2), ..., !(V])) isa
Hamiltonian path of (V, E/), hence finally the proof of the first implication is complete.
(ii) = (i) Let us consider Ei being a subset of y2 containing Ej, such that
|E{ \ E1| < |V| — K — 1, the digraph (V, E U EY) is acyclic, and (V, E{) has a Hamil-
tonian path h = (vi, vz, ..., vy)). Lett : V. — {1,2,...,|V]} be a function given by
the formula t(v;) = i foreachi = 1,2,...,|V|. We claim that t € TS(G). Indeed, sup-
pose contrary to our claim, that there exists an arc (#, w) € E such that t(u) > t(w).
Then (w, Ve w)+1, Ve(w)+2s - - - Vr(u)—1, 4, W) is a cycle, but this contradicts our assump-
tion that (V, EU Ei) is acyclic. Since T € TS(G) we need to show only that |{(v, u) € E :
T(u) — t(v) = 1}| < K. Note that £(r) C E| since b is a path of (V, E{). Additionally
EOO\TE (1) =E@\Ejand E(v)\E| C E}\ E1, hence E@O\TE @) < |VI-K—-1.
As |E@)| =|V| =1, TEi(r) € E(r) we have that |TE1 ()| > K. O

An easy computation shows that from Theorem 1 and 3 we can infer the following
theorem.

Theorem 4 Directed HPC is NP-complete.

Note that searching of the set |\ E can be limited to a subset of VI\E|.As (V, EUEY)
is acyclic, we obtain that E] \ E cannot contain any arc (u, v) that generates a circle in the
digraph (V, E U {(u, v)}). Additionally, if there exists a directed path of (V, E) that leads
from u to v and has length at last 2 then (V, E{) has a Hamiltonian path if and only if
(V, E; \ {(u, v)}) also does, hence such kind of arcs may also be ignored in the search of
E1\E|.

5 Conclusions

We concentrated on two methods of improving proof readability based on Behaghel’s
First Law. We proved that the most comprehensive interpretation of this law lead to
optimization of the problems corresponding with NP-complete decision problems. Addi-
tionally, for one of these problems we have found an equivalent formulation as unexplored
problem Directed-HCP concerning the existence of Hamiltonian paths in digraphs. This
problem enables interpreting considered proof readability improvement problems among
NP-complete problems of finding a Hamiltonian path.

From the point of view of future authors of formal proofs it is also important to find
heuristics that quickly give satisfactory approximate solutions to both problems: 1st and
2nd MIL in more appropriate hierarchy of these problems. The next step in the process of
improving proof readability should be finding algorithms that approximate the problem 1st
MIL and its subcase 3rd MIL. The successful application of SMT technology to solving
computationally difficult problems suggests that application of SMT solvers can also be an
effective way of finding solutions to MIL problems.

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 Inter-
national License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution,
and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source,
provide a link to the Creative Commons license, and indicate if changes were made.
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