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Abstract Recently some longstanding open lattice theory problems were solved with the
help of automated theorem provers. The question which may be posed is how to cope with
such results to improve their presentation for human without loss of machine-readability,
not only at the proof level, which should be rather straightforward, but also at the stage of
rebuilding appropriate data structure. We describe the framework extending already existed
in the Mizar library for Boolean algebras to cover more general cases of lattice with comple-
ments. The efficiency of this approach was tested e.g. on short axiom systems for Boolean
algebras based on negation and disjunction. We also proved Nachbin theorem for spectra of
distributive lattices.
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1 Introduction

Lattices are important structures which can be applied in many mathematical theories. It
is not surprising that they are also present in repositories of automatically verified mathe-
matical knowledge. As forty years of MIZAR [25] is connected with the forthcoming 25th
anniversary of the MIZAR Mathematical Library (MML), we describe our enhancement of
the data structure already developed for lattices in MML. The article where lattices were
introduced formally [27] is numbered 26 in the list of all MIZAR articles [21]; only inci-
dence structures were introduced earlier, before the rich hierarchy of group, fields, rings,
and vector spaces.

The author was heavily involved with lattices in MIZAR; either during the formalization
of Compendium of Continuous Lattices (CCL) [3], or certifying in MIZAR some well-known
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problems of axiomatizations of Boolean algebras — as, e.g. Robbins’ problem, various
axiom systems in terms of the Sheffer stroke or disjunction and negation etc., authoring 14
MI1ZzAR articles devoted to the lattice theory. We choose some problems solved with the help
of automated deduction systems. As a test for flexibility and effectiveness of the frame-
work for lattice theory coded in MML we translate some of the examples of such output
(which is essentially hard to follow by human) into more human-readable format with-
out loss of machine readability. We describe selected issues and methods concerning the
mechanization of certain class of lattices, namely complemented ones, including Boolean
algebras (BA).

The problem of development of a framework to present a machine proof is not new.
Large algebraic hierarchy has been built especially to prove (also in Coq) the Funda-
mental Theorem of Algebra [6]. The main difference comparing to our approach is that
we didn’t construct the whole framework from scratch. A huge library of formalized
mathematical knowledge with an open architecture [1] may become not so convenient
to work with if we have to integrate approaches developed in many styles by different
authors.

The structure of this paper is as follows. In Section 2 the mathematical and histori-
cal background is given, the next section describes the structures we used. Fourth section
contains basic notions for Boolean algebras which were available in MML. Section 5
deals with main mechanisms and issues which were of major importance during our
work with adopting other proofs into MIZAR. Some statistics showing position of the
MIizAR proof among other machine proofs is shown. In the sixth section we describe
experiences where complementation operator is not explicitly given (Nachbin’s theo-
rem) while in the last sections we draw some concluding remarks and present future
work.

We cite definitions straight from the corresponding abstract files which are generated
from articles and which contain only items exported to the library, so correctness condi-
tions are not given (as well as justification of theorems, schemes, and clusters). Published
MIZAR articles cited in this paper are available in Formalized Mathematics where their
MML identifier is given.

2 Background

In 1933 Huntington [14, 15] presented the following basis for Boolean algebras:
a+b=>b+a,

(a+b)+c=a+ (b+oc),
@ +bY +@+b) =a;
where a, b, ¢ are arbitrary elements of an abstract algebra (L, +,”).

In this set of independent postulates for the algebra of logic the last one is called Hunting-
ton equation. Robbins proposed another axiom as a replacement for Huntington equation,
namely:

(@+b) +@+b)) =a.

The hypothesis that commutativity and associativity together with Robbins equation is

sufficient to characterize Boolean algebras remained open for over 60 years. In 1992 Winker

gave a partial solution for the problem by proposing several another conditions which imply
Huntington axiom. One of them, named Winker’s second condition, played a crucial role in
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the solution of Robbins problem. The proof that all Robbins algebras satisfy also Winker
condition given by McCune with the help of automated theorem prover EQP/OTTER (Octo-
ber 1996) started a series of papers devoted to methods of proving/analysing that fact
in different systems (Mathematica [5], ILF [4]). Shortly thereafter the problem has been
also formalized in MIZAR language. However, we decided not to include the article to
the MML as we proved a partial result — that algebras satisfying Robbins equation sat-
isfy also Winker’s second condition. The aim of our work was quite different: “another
attempt to translate EQP/OTTER proof into more human-readable form” [17]. In our opin-
ion, the state of MIZAR database at that time (1997, MIZAR version 5.3.07, MML version
3.5.544, presently the number of Mizar articles in MML approaches 1240, twice as much
as in 1997) posed us far from the acceptable way of formalization. Numerous revisions
of MML urged us to revise also our proof to keep it correct with respect to MML and
enabled us to find a way of more convenient construction of the proof. Later on, in [9]
we formalized a full proof of the fact that all Robbins algebras are Boolean and, as far
as we know, it was the first mechanically checked proof of Robbins conjecture which
took into account Huntington’s [15] paper as well. Furthermore, extensive use of notions
and theorems for lattice theory already defined in the MIZAR repository suggested their
possible improvements, improving also lattice-theoretic representation of other areas of
mathematics [7].

3 Hierarchy of Structures

According to the classical definition, Boolean algebra is a 6-tuple of the form
(B,V,A,’,0,1), where Vv, A are binary operations in B, " is a function from B into B and
0, 1 are two distinct elements of B; the axiomatics concerned with it is well known. The
structures in MIZAR are not tuples but rather partial functions on selectors which is more
appropriate for implementing inheritance mechanisms. One of the first approaches was to
introduce a new MIZAR structure as an ancestor of GroupStr and doubleLoopStr
as defined in VECTSP_1. The latter one has been used widely e.g. while develop-
ing theory of polynomials in MIZAR, especially formalizing Fundamental Theorem of
Algebra. This structure was also used in our very first attempt to formalize Robbins
algebras.

The backbone structure for almost all MML structures is 1-sorted and all con-
sidered structures in the paper are descendants of it. Some of the objects have only
one prefix (an ancestor) — in that case additional fields (selectors) are given. The
number of multiprefixed structures in MML is relatively high (45 out of total 145).
Essentially, structures play a role of signatures for domains. The definition of a struc-
ture provides only the typing data for operators (selectors) and this information is
enriched by the use of adjectives which will be explained in the next section in more
detail.

Our motivation was to be as close as possible to Huntington’s original paper where the
underlying structure was (B, V, ). Moreover, intensive work with formalization of CCL
(nearly 60 MIZAR articles and numerous revisions of MML) made lattice theory devel-
oped in MIZAR more suitable to work with. In fact, the only two definitions of attribute
“Boolean” in MML were introduced just for lattices. The first one was for posets, and the
other for algebras with two binary operations. The first approach has its full exposure in [3].
Inheritance mechanisms implemented in MIZAR verifier allow for applying the attributes in
all descendant structures.
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We cite as an example the definition of a structure with signature (2,1) which may
be treated as orthosemilattice. It is prefixed by the sup-semilattice and structure with
complementation.

definition
struct (\/-SemilattStr, ComplStr) ComplLattStr
(# carrier -> set,
L_join -> BinOp of the carrier,
Compl -> UnOp of the carrier #);
end;

The ComplLattStr has been introduced to keep defined notions and theorems at
a satisfactory level of generality. It has two antecedents: upper semilattice — from which
L_join is inherited, and a structure with complement operation which brings the field
Compl. The carrier is inherited from both structures. The OrthoLattStr ensures that
all the attributes (with “Boolean” at the top) for Lat t St r can be used. Obviously, full cor-
respondence between newly introduced Robbins and previously defined in MML Boolean
algebras can be shown for lattices, not for semilattices.

4 Boolean Algebras in MI1ZAR

In this section we shall describe briefly the formal apparatus for lattices intro-
duced in MML [27] and its correspondence to axiom systems proposed by Hunt-
ington (the first set of independent postulates for the algebra of logic [15]). The
lattice theory in MIZAR is built on LattStr as a fundamental structure mode.
The mode Lattice is defined as Lattice-like non empty LattStr, where
the single adjective Lattice-like is a shorthand for six attributes: concern-
ing the supremum (join-commutative, join-associative) and the infi-
mum (meet-commutative, meet-associative) as well as the both operations
(join-absorbing and meet-absorbing) — and the names are self-explanatory
enough. It could be noticed that many theorems and even definitions are often stated with
all six attributes although the proof effectively uses only two—three of them. We have soft-
ware detecting assumptions and proof steps which are not used but we still lack mechanisms
to find automatically more general required type or conditions under which the proposition
remains true.

Obviously, the problem of keeping notions at the possibly high level of generality is
particularly important in articles which form the foundations of a given field of mathematics.
It can be explained better using the definitions taken from [27]; the existence of the upper
bound may defined for semilattices:

definition let IT be non empty \/-SemilattStr;
attr IT is upper-bounded means
:: LATTICES:def 14
ex ¢ being Element of IT st

for a being Element of IT holds ¢ "\/" a=c & a "\/" ¢c = c;
end;

The above adjective is used in the assumption of the following definition:

definition

let L be non empty \/-SemilattStr;

assume L is upper-bounded;

func Top L -> Element of L means
:: LATTICES:def 17

for a being Element of L holds it "\/" a = it & a "\/" it = it;
end;
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The definition of the upper bound for arbitrary upper semilattice structure is permissive:
if the semilattice L is not necessarily upper-bounded, all we can say about Top L is that
is an element of L, but we do not know which one. If the semilattice L is upper-bounded
according to the above definition, i.e. if a suitable element of the carrier of L exists, it plays a
role of the upper bound for L. Obviously, to use the definiens of Top L one has to prove that
L is upper-bounded. Due to permissiveness of the bounds in the definition of the predicate
is_a_complement_of the attribute bounded for one of the variables can be dropped.

definition
let L be non empty LattStr, a, b be Element of L;
pred a is_a_complement_of b means :: LATTICES:def 18

a"\/"b=TopL&b"\/" a=ToplL&
a "/\" b =Bottom L & b "/\" a = Bottom L;
end;

Collecting all previous notions together, we can properly define lattices with the
complementation operator:

definition let IT be non empty LattStr;
attr IT is complemented means :: LATTICES:def 19
for b being Element of IT ex a being Element of IT st a is_a_complement_of b;
end;

Of course, both definitions don’t claim the uniqueness of the complement. MIZAR func-
tors Top and Bottom have been defined previously for bounded lattices. Then, to use the
attribute complemented one had to prove that the underlying object has all these proper-
ties which was obviously a big disadvantage. We added two conjuncts to the first definiens
to get rid of attribute join-commutative for L. The notation a "\ /" b is a short-
hand for (the L_join of L) . [a,bl, i.e. the application of a structure selector to an
ordered pair of elements of the carrier, duallyisa "/\" b.

What is worth noticing at this point is that the classical axiomatics (see e.g. [13]) consists
of 8 axioms and the idempotency laws can be derived from the other axioms (namely absorp-
tion). For any element a of a structure in which both absorption laws hold (a AlavVv a)) Va
is equal to a. These two axioms may be introduced as attributes and the appropriate collec-
tion of adjectives (called a cluster in MIZAR jargon) can be automatically enriched by these
two additional properties. Huntington’s definition of a Boolean algebra agrees with that of
[27], with one exception: according to the definition in [27], the carrier of a lattice may be
a singleton. This contradicts with Huntington’s the first set of postulates for the algebra of
logic, where we have as an axiom:

VI. There are at least two distinct elements in the class K.

“Boolean” is an abbreviation for “bounded complemented distributive” Lattice. A few
explanations are due to the definition of an adjective “bounded”. On the one hand, a
bounded lattice can be seen as a structure with additional 0 and 1. This leads to intro-
ducing three additional structures to make inheritance implemented for MIZAR structures
working. On the other hand, lower and upper bounds can be defined separately, not as selec-
tors in underlying structures, but using adjectives. The latter approach has been chosen in
the MIZAR library. In a private conversation with Andrzej Trybulec we agreed that hav-
ing separate fields for the top and the bottom was a really unfortunate idea; similarly as
with unity or zero for 1-sorted structures. Most of inheritance issues works better if the
existence of the appropriate object (as the bottom element of the lattice) is guaranteed by
the attribute. Some problems with equational characterization can occur, but it’s not that
dangerous.
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5 Lattices with Complementation Operator

We could define new MIZAR modes, e.g. Boolean Algebra (which satisfies com-
mutativity, associativity and Huntington equation) and Robbins Algebra with com-
mutativity, associativity and Robbins axiom. However, introducing individual axioms by
adjectives is more elegant and provide easier generalizations. We work mainly with seven
attributes for OrthoLattStr, that is join-associative, join-commutative,
Boolean, Huntington, Robbins, de Morgan, and well-complemented.
While the first three were described in the previous section, let us cite two
others, which are defined for ComplLattStr and are fundamental for our
formalization:
definition let L be non empty ComplLattStr;

attr L is Robbins means :: ROBBINS1:def 5

for x, y being Element of L holds ((x + y)‘ + (x + y))‘ = x;

attr L is Huntington means :: ROBBINS1:def 6

for x, y being Element of L holds (x¢ + y)¢ + (x° + y)¢ = x;
end;

It is clear that to have the notion of Robbins algebra according to the literature, one has
to define it as Robbins join-commutative join-associative non empty
ComplLattStr. Because the adjective Boolean cannot be used with these attributes
(we have only one binary operation defined), we have to conclude our formalization of this
part of the proof with the following conditional cluster registration:

registration

cluster Robbins -> Huntington

for join-associative join-commutative non empty ComplLattStr;
end;

Conditional registrations [10] significantly enhance our MI1ZAR formalization. To make
use of the whole formal apparatus from [27], we introduced two adjectives of rather techni-
cal nature: if we read OrthoLattStr as (L, V, A, /), then attribute de_Morgan means
that A is properly defined in terms of Vv and ’. In MIZAR text:

definition let L be non empty OrtholLattStr;
attr L is de_Morgan means

for x, y being Element of L holds x "/\" y = (x¢ "\/" y)¢;
end;

Taking into account that in de Morgan algebras the complement operation is involutive,
we can use either the above or the dual form ((x v y)’ = x’ A y/). If L is of the type
non empty OrthoLattStr, all we can say about ¢’ for an arbitrary element a of L
is that @’ is again an element of L. In other words, ’ is an unary operation on the carrier
of L. The second attribute guarantees that ' has properties of a complement as defined
in [27].

definition let L be non empty OrtholLattStr;
attr L is well-complemented means

for a being Element of L holds a‘ is_a_complement_of a;
end;

One of the most important questions which arose during our work was how to establish
a connection between (L, Vv, 'y and (L, Vv, A, /) (orrather (L, v, A)). We wanted to inherit
the carrier, the join and the complement operation in underlying structures and add one
more binary operation of meet which is defined in terms of v and . We decided to define
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a MIZAR functor which transforms a semilattice into the corresponding lattice structure
(CLatt). The main theorem stating that all Robbins algebras are Boolean is expressed as a
conditional cluster registration:
registration
cluster Robbins de_Morgan -> Boolean for preOrtholattice;

cluster Boolean -> Robbins for well-complemented preOrtholattice;
end;

where preOrthoLattice is OrthoLattStr satisfying all six lattice axioms.

As a test of the theory development level we tried to code some further results of
McCune et al. [18] obtained with a help of PROVER9. The 2-basis discovered by Meredith
[18] characterizes also the class of Boolean algebras. The axioms, which in MIZAR article
ROBBINS2 we named (MDj) and (MD), are as follows:

x4y +x=x

@+ +E@+y)=y+(@+x)

Although the original proof (written without computer assistance) of equivalence of this
system and BAs due to Meredith is available, we used PROVERY to produce proofs of equiv-
alence (MD1) and (MD») with Huntington’s set of equations. One of the aims was to test the
efficiency of adjectives and clusters introduced during formalization of the Robbins prob-
lem. The final equivalence of the axiom sets is given by the following two registrations of

clusters:
registration

cluster satisfying MD_1 satisfying MD_2 de_Morgan -> Boolean
for preOrthoLattice;
cluster Boolean -> satisfying MD_1 satisfying MD_2
for well-complemented preOrthoLattice;
end;

The authors of [18] show that the equation (DN)
’ Y !
(((x—l—y)/—i—z) + (x+(z’+(z+u)/) )) =z

is a 1-basis for Boolean algebras in terms of disjunction and negation. The proof shows
direct equivalence of systems based on (DN;) and Robbins axioms.

We had essentially no serious problems during this work. We don’t concentrate here on
the length of the proofs, but essentially they are as long as corresponding PROVERY proof
objects. The special influence on the quality and smoothness of MIZAR-ing had the obser-
vation that if we split the blocks of cluster registrations into parts in order to be accessible
as soon as it was proved, it is more effective and the proofs are less complicated. As an
example, introducing as soon as it was possible the following:

registration
cluster satisfying DN_1 -> join-commutative for non empty ComplLattStr;
end;
we made references for the definition of the attribute “join-commutative” unnecessary since
it became obvious for the MIZAR checker. It results in many lemmas, some of them of only
technical character, but their importance can be automatically measured as we described in
[12].
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6 Nachbin Theorems for Distributive Lattices

Nachbin results deal basically with the correspondence between prime and maximal ideals
in the class of distributive lattices. But originally, if we dig through the proof, it uses bottom
element, which suggests that additionally we have the assumption of boundedness. Partial
explanation of such situation is given in Balbes, Dwinger [2], where we can read often about
“distributive lattices” where 0 and 1 are mentioned later. They claim that if the bottom is
not an element of the structure, it can be easily attached. In fact, the so-called Jaskowski
star-addition operator which adds to arbitrary lattice an external bound is also formalized
in MML (LATSUM_1). In MIZAR, the problem is that if the lattice doesn’t have the adjec-
tive bounded, the functor Bottom L is meaningless (you cannot use it) as we already
described the issues of permissiveness before.
We proved the following variant of the above (in an original spelling from [13]):

Theorem 123 Let L be a bounded distributive lattice with O # 1. Then L is a boolean
lattice iff Spec L is unordered.

where Spec L (the spectrum of L) denotes the set of all prime ideals of L, ordered by
set-theoretic inclusion; unordered means that the spectrum is just an antichain (arbitrary
elements of this set are not comparable w.r.t. €). Note that the notion of an ideal varies in
the literature; especially when primality is taken into account, as ideals of L usually are
proper subsets of the carrier of L. But once in MML ideals can be arbitrary subsets (also
equal to the whole carrier), it should be explicitly stated in the definition of a spectrum that
we deal only with proper ideals.

definition let L be Lattice;

func Spectrum L -> Subset-Family of L equals :: LATTICEA:def 10
{ I where I is Ideal of L : I is prime proper };

end;

In an arbitrary distributive lattice all maximal ideals are prime [13]; if the reverse impli-
cation is true, it makes the lattice Boolean, so for Boolean lattices the following equivalence
holds (in terms of spectra):

theorem :: LATTICEA:34

for L being distributive bounded Lattice holds
L is Boolean iff Spectrum L is unordered;

As in Boolean algebras the notions of prime filters, maximal filters, and ultrafilters coin-
cide (similarly the notions of ideals but this is obvious due to the duality), it is not very
surprising that in the current state of MML the properties of all these subsets were not
fully explored in a general setting. Our initial idea was to formalize certain class of lat-
tices with complementation operator which are more general than Boolean ones (including
Stone and de Morgan algebras; also Nelson algebras where there are two negations) with-
out repeating actually a part of the proving work in every case. Additionally, we noticed
that some parts of the library can be unified even now: as the important example of a Stone
lattice is constructed when proving Stone’s representation theorem, why not to simplify
things? We discovered that the following representation theorems were already formalized
within MML.: for Boolean, Heyting, and modular lattices, for finite distributive lattices (by
Birkhoff), and essentially there is no version for distributive lattices. We constructed the
more general version of Stone mapping which eventually be moved before all aforemen-
tioned articles in the process of MML revision [11] and will cover them all as now we have
the situation where crucial parts of the proofs were repeated. The path was actually opened
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by [8] — our pretty fresh submission to the MML. We proved there e.g. the Prime Ideal The-
orem not as Boolean Prime Ideal, but in the more general setting; we have shown also that
if the notion of maximal and prime filters coincide in the lattice, it is Boolean.

The situation we meet here is essentially distinct than in the previous section: we don’t
have explicit complementation operator given in the signature. But where are complements
there as we deal with only distributive bounded lattices? How can one construct the com-
plementation? The question is actually answered in the proof; we extensively used newly
introduced definition of the set of pseudocomplements (as these elements can be multiple
in arbitrarily chosen lattice):

definition let L be Lattice; let a be Element of L;
func PseudoComplements a -> Subset of L equals :: LATTICEA:def 8
{ x where x is Element of L : a "/\" x = Bottom L };
end;

If this ideal is maximal, its maximal element plays a role of the unique complement of a

in L and as this construction works for arbitrary element of L, it makes it Boolean [8].

7 Conclusions

We presented the uniform algebraic framework developed in the MIZAR Mathematical
Library. The mechanism of structures and cluster of adjectives has been tested e.g. during
the solution of the Robbins problem: the MI1ZAR article [9] stems from at least three papers
covering different steps of the proof that all Robbins algebras are Boolean: in the first one
[15] proofs are done by hand, the second [17] presents proofs as an output straight from
EQP/OTTER theorem prover, in the last one [4] automatically derived proofs have been sim-
plified by introducing some auxiliary functions and concepts. There is no guarantee that all
theorems are at the most general level and any of the assumptions cannot be weakened —
even in original work of Huntington [15] one of the axioms was dependent on the others
and the corrected proof was published later [14].

One of the major problems is that all the lemmas or definitions should be stated for
the minimal collection of conditions under which they are true. Having to reuse theorems
not fulfilling this condition is not easy. This is why MIZAR articles which form a basis of
MML - like [27] had to be revised to enable more convenient formalization. MIZAR still
lacks the tools which significantly restructure proofs (although there is some initial work
available [23, 24]), which effects in low readability of some articles. Implementing fully
functional interface between MIZAR, provers like PROVERY, and other proof assistants [19]
(which can be a powerful tool like a Sledgehammer in case of Isabelle/HOL [22], as massive
work was already done by Urban [26]) could be a quite promising step in the direction
of making proofs in MML shorter, more readable, and easier to understand. We hope that
further improvement of inheritance mechanisms for algebraic structures as well as type
modifiers with more “atomic” attributes offered by MIZAR will allow to make it work.

8 Related and Future Work

The formalization of lattice theory is an example of theory exploration; as it is important
in the interpretation of many areas of mathematics, it is also present in other repositories
of mathematical knowledge. A bunch of axiom systems, although with no hierarchy in the
sense as in MIZAR is available from McCune’s page (although he passed away, the page
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is still there). Also in Isabelle/HOL [22] the set of corresponding theories is available —
“Lattices and orders in Isabelle/HOL” essentially covers LATTICES and LATTICE3 with
the exception of Knaster-Tarski theorem which is formalized in separate KNASTER article
in MIZAR; lattices are partial orders there, and this approach is one of the two available in
MML.

The translation from PROVERY into MIZAR source is not fully automated as yet; we
used e.g. Lisp script written by Urban transforming proof objects into MIZAR formalism.
We have to work out by hand the framework which we plan to use (build appropriate
environment declaration [20], define proper structures or apply used ones, choose and intro-
duce notations, reserve variables and so on). The automatization may serve well to resolve
the type dependencies for a given object [7]. Although our submission [8] is pretty well
self-containing and can be considered closed work, we still see some potential in it: some
work was a kind of generalization effort done mainly with automatic tools offered with the
distribution, however many revisions have to be made [11].

As the MIZAR system doesn’t offer smooth exploration of counterexamples, especially
in case of lattices, where the visualization is really important, we will try to implement
at least a kind of automatic translation of the output given by MACE (Models and Coun-
terexamples) system. Presently, we implement the suggestion of a referee of our article [8]
by constructing the bunch of useful examples of lattices where maximal, prime filters, and
ultrafilters will be enumerated. As the MIZAR checker gets stronger [16], we hope to obtain
more results automatically.
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