J Autom Reasoning (2015) 55:257-268 C
rossMark
DOI 10.1007/s10817-015-9331-7

Definitional Expansions in Mizar

In memoriam of Andrzej Trybulec, a pioneer of computerized
formalization

Artur Kornilowicz!

Received: 14 October 2013 / Accepted: 25 May 2015 / Published online: 30 June 2015
© The Author(s) 2015. This article is published with open access at Springerlink.com

Abstract The MIZAR VERIFIER uses definitional expansions for controlling proof struc-
tures. In this paper we propose another use of definitional expansions—enriching verified
inferences by expansions of definitions of formulae included in the inferences and increas-
ing the number of premises accessible by CHECKER. This introduces more knowledge to
the reasoning, which helps to draw more conclusions. Some statistics about influence of
such expansions on the MIZAR MATHEMATICAL LIBRARY are presented.

Keywords Proof assistant - Formal verification - Definitional expansion - MIZAR

1 Motivation

One of the aspects of the evolution of the language of mathematics is the development of
a conceptual apparatus. An important question is which objects or collections of objects are
worth to have own names. In other words, definitions of which objects should be introduced
to the language. One extreme answer could be that everything should be named. How-
ever, some researchers treat definitions as an investment in mathematics, while theorems
as profits from mathematics. Following this opinion, definitions should be set up carefully.
Another question concerns communication between defined objects and their definitions. It
is an especially important issue in the case of proof assistants, computer systems for formal
proofs management, when their efficiency is desirable. Some related questions are: “How
much automation should be implemented?”, and “Which definitions should be expanded
automatically to facilitate reasonings, but not to burden a given system too much, making it
unusable in practice?”

>4 Artur Kornitowicz
arturk @math.uwb.edu.pl

I TInstitute of Informatics, University of Biatystok, K. Ciotkowskiego 1M, 15-245, Biatystok, Poland

@ Springer

http://crossmark.crossref.org/dialog/?doi=10.1186/10.1007/s10817-015-9331-7-x&domain=pdf
mailto:arturk@math.uwb.edu.pl

258 A. Kornitowicz

So far, in the MIZAR system [11, 23], definitional expansions were understood as
a method of leading reasonings following natural deduction in the Jaskowski style, with so
called fixed variables (local constants) [17].

In this paper we propose another utilization of definitional expansions by the MIZAR
VERIFIER. An enhancement of the computational power of MIZAR CHECKER by automatic
expansions of definitions of the notions included in processed inferences is presented. Some
dangers of using definitional expansions, mainly those related to the efficiency of the sys-
tem, are discussed. Possible solutions and hints how to use and control the new mechanism
effectively are shown as well.

The paper is structured as follows: Section 2 is a brief description of the MIZAR system
focused on its basic modules. Section 3 is a short overview of definitions and redefinitions
in MIZAR. Section 4 shows how using definitional expansions influences proof structures.
Section 5 describes how MIZAR CHECKER processes definitional expansions. Simple
examples are shown. Section 6 presents results of experiments how definitional expan-
sions used by CHECKER impacts the MML. Section 7 presents related efforts in other
systems. Section 8§ discusses directions of further developments of expansions in the
MIZAR system.

2 About Mizar

MizAR [11, 23] is a proof assistant used for computerized verification of mathematical
proofs. MIZAR is also a common name for the components of the system: a formal language
derived from the mathematical vernacular and dozens of computer programs responsible
for formal verification, optimization of proofs [24, 25]. An integrant part of the system
is the Mizar Mathematical Library (MML), a collection of articles written in the MIZAR
language. Knowledge stored in the database is used in various branches of science and
education, e.g. for representing mathematics on WWW [16, 27], as an input for ATP systems
[28], as an input for services classifying mathematics [14], and others.

The main programs of the MIZAR system used at the stage of writing new submissions
are:

— ACCOMODATOR importing resources at the environment level (preamble) of the created
article from the MML;

— VERIFIER checking the correctness of reasoning;

— EXPORTER exporting the results achieved in the given article to the MML for use in
subsequent articles to be written in the future;

— ABSTRACTOR generating a brief representation of all statements in an article without
their justifications.

The most important and most advanced program is VERIFIER consisting of several
modules responsible for verifying different aspects of articles. Its main modules are:

— SCANNER and PARSER doing lexical analysis, checking validity of the article against
the MIZAR grammar and creating parse-tree of a given article, [7, 8];

— ANALYZER doing type-checking, identification and disambiguation of used symbols,
resolving hidden arguments;

— REASONER controlling the structure of reasonings;

— PRECHECKER transforming entry inferences into their disjunctive normal form
and processing Skolem constants (constants generated by basing on existential
premises);

@ Springer

Definitional Expansions in Mizar 259

— EQUALIZER computing the congruence closure of the universe of discourse collected
from the given inference, [19];
— UNIFIER performing unification.

VERIFIER is a standalone program completely designed and implemented by the MIZAR
developers. However, there are successful trials to involve external algorithms provided by
other systems to perform some particular tasks during processing MIZAR texts [20, 21].

3 Definitions and Redefinitions in Mizar

The MIZAR language supports four kinds of expressions: types (e.g. Group), terms (e.g.
x+3), formulae (e.g. x in {x}), and adjectives (e.g. £inite). Every expression is
an instantiation of a particular constructor, which serve for defining new notions extending
the language. Constructors used for defining types are modes, for terms are functors, for
formulae are predicates, and for adjectives are attributes.

All new notions are introduced within a definitional block. Within such a block there
may appear:

— arguments (if required) with their corresponding types, called loci;

— possibly some assumptions for the definition;

— the main part of the definition: notation, result type (required for modes and functors)
and definiens;

— alabel used for referring to the definition;

— correctness conditions if they are needed to guarantee the soundness of the definition;

— properties of the introduced notion (e.g. commutativity of an operation, or reflexivity
of a relation), if applicable.

For example, the inclusion of sets can be introduced as it is shown in Fig. 1 and the
inverse of a relation in Fig. 2.

The main aim of using definitions is defining new objects and notions. Each definition
determines a notation used to write down introduced concepts (the MIZAR language sup-
ports prefix, infix and suffix forms), as well as the meaning of defined notions (definientia).
New definitions can encapsulate information and definiendum can serve for writing more
concise and readable texts. But, the MIZAR system provides also more elaborate usage of
definitions. Information provided by MIZAR definitions can be used by different modules
of the system at different stages of verifying articles. For example, definientia determine
possible proof skeletons controlled by REASONER, and properties increase computational
power of EQUALIZER, [22].

Mathematical practice shows that one notion can be defined in several ways [12]. For
example, lattices can be defined as algebraic structures with two binary operations satisfying
some axioms or as posets with infima and suprema [15]. Moreover, notions declared for
some arguments could be expressed in different ways when the arguments are of more
precise types, e.g. properties of relations could be defined in terms of ordered pairs, but also
in terms of simple elements.

From a technical point of view, every definition introduced in a MIZAR article defines
a new constructor. For example, the inclusion of relations defined in terms of pairs and the
inclusion of relations defined in terms of elements would be two different constructors (two
different notions). Communication between these two constructors (explaining that at the
end they are the same inclusion) could be realized by theorems, which would be explicitly
referred to when such justification is required. In situations when the definiens depends on

@ Springer

260 A. Kornitowicz

Fig. 1 Definition of the definition
inclusion of sets let X,Y be set;
pred X c= Y means :: TARSKI:def 3
for x being object st x in X holds x in Y;
reflexivity;
end;

types of arguments of the defined notion, the MIZAR art recommends using redefinitions.
For example, the inclusion defined for sets (Fig. 1) can be redefined for relations as it is
shown in (Fig. 3):

MIZAR VERIFIER supports some automations of processing of redefined notions.
Admittedly, ANALYZER identifies the redefined version and the original version as two dif-
ferent notions, but CHECKER adjusts the redefinition to the original version making them
equivalent.

Detailed explanation of using redefinitions is given in [11].

4 Definitional Expansions in the Reasoner

The MIZAR system supports logical reasoning in the Jaskowski style of the natural deduc-
tion [17]. Structures of proofs are related to the structures of the formulae to be proven, one
to one correspondence between statements and their proof skeletons can be observed. But
sometimes it is better to trace a reasoning not following the structure of the statement, but
the structure of the definition of the main symbol of the statement, that is to exploit a defi-
nitional expansion. An advantage of using definitional expansions can be seen, for example
while comparing two alternative proofs of the monotonicity of the inverse of relations with
respect to the inclusion of the relations:

P c= R implies P” c= R~ P c= R implies P” c= R~
proof proof

assume assume
Al: P c= R; Al: P c= R;

let x; let a,b;

assume assume [a,b] in P~
A2: x in P~y then [b,a] in P by RELAT_1l:def 7;
then consider a,b such that then [b,al in R by A1l;
A3: x = [a,b] by RELAT_1:def 1; hence thesis by RELAT_1:def 7;
[b,al] in P by A2,A3,RELAT_1:def 7; end;

then [b,al in R by A1l;
hence thesis by A3,RELAT_1:def 7;
end;

where RELAT 1:def 1 [30] is the definition of a relation and RELAT 1:def 7 defines
the inverse of a given relation. The left proof uses the expansion of the inclusion of relations
P and R treated as just sets (Fig. 1), while the right proof uses the expansion of the inclusion

definition
let R be Relation;
func R™ -> Relation means :: RELAT_1:def 7
for x,y being object holds [x,y] in it iff [y,x] in R;
correctness;
involutiveness;
end;

Fig. 2 Definition of the inverse of a relation

@ Springer

Definitional Expansions in Mizar 261

definition
let P,R be Relation;
redefine pred P c= R means
:: RELAT_1:def 3
for a,b being object holds [a,b] in P implies [a,b] in R;
compatibility;
end;

Fig. 3 Definition of the inclusion of relations

of relations P and R treated as pairwise sets (Fig. 3). It is quite obvious that the right proof
is better than the left one, because introduction of variables a and b is forced by the proof
skeleton, while in the left proof they are obtained by decomposition of the variable x.

5 Definitional Expansions in the Checker

As it has been shown in previous sections, MIZAR VERIFIER uses definitional expan-
sions for controlling proof structures. In this section we propose another use of defini-
tional expansions—enriching verified inferences by expansions of definitions of formulae
included in the inferences and increasing the number of premises accessible by CHECKER.

5.1 Inference Checker

One of the basic tasks of proof checkers is checking obviousness of proof steps [9]. In the
M1iZzAR context this relies on checking obviousness of a single inference

o1, 02, ..., Oy
¥

where the formulae ¢; are premises and i is the conclusion. Because MIZAR is a disprover,
the conclusion is negated and added to the premises, so such an inference is translated to

PLAGIN - Ny A=Y
L

Now we are at the stage where the proposed extension of the system—expanding of
formulae—can be applied. The sign of each conjunct, say «, of the above formula is ana-
lyzed. If it is positive, i.e. when « is a premise, then the conjunct is expanded to o A &, and
if the conjunct is negative, i.e. when —« is a premise, then it is expanded to « Vv &, where
@ is the definitional expansion of the or. Expanding a formula conjunctively or disjunctively
depending on its sign (dual instantiation, [5]) creates more premises accessible to VERI-
FIER. Still, the satisfiability of the original formula is preserved, since « is satisfiable if and
only if o A « is satisfiable, and « is satisfiable if and only if o V « is satisfiable.

Now, the question is whether all accessible formulae should be expanded and whether
expansions of initial formulae should be expanded, and so on. Similar questions had been
already asked, for example, by Larry Wos, who considered definitional expansions as one
of the 33 basic research problems of formal verification and automated reasoning [31, 32].
The answer to these questions is not obvious. Expanding everything to primitives introduces
much knowledge to the reasoning, which can help to draw more conclusions. But clearly,
in proof assistants used in practice [26, 29], where their efficiency is one of the crucial
points (users should wait for answers from systems for reasonable amount of time), the
fast growing size of fully expanded theories is an important factor in slowing down the
processing [18].

@ Springer

262 A. Kornitowicz

Taking efficiency issues into account, in the implementation of the proposed algorithm
within VERIFIER we decided to expand only one level and only formulae involving only
constants. This means that general quantified formulae are not expanded.

5.2 Examples

To demonstrate the behavior of VERIFIER let’s analyze two simple examples.
Example 1:

for A being set holds A c= A;

The above formula is translated internally to 34 A $Z A. Next, a Skolem constant A
is introduced. The remaining statement to be proved is A ¢ A. The statement uses only
constants (A), so it can be expanded. Because the statement is negative, its expansion results
in—(A C AVVyx € A= x € A), which is equivalent to A gZ ANTix € AN ¢ A
Another Skolem constant x is introduced. And we get the contradiction x € A A x ¢ A,
which finishes the proof.

Example 2:

ex A being set st A c= A;

The above formula is internally transformed to V4 A Q A. It is a general quantified
formula, so VERIFIER does not expand it, and because there are no other variables around,
it is not verified positively. A proof is required.

ex A being set st A c= A

proof
take A = the set;
thus A c= A; :: (%)
end;

The formula marked () is negated and internally transformed to A ¢ A. It uses only
constants (A is introduced by take), so it can be expanded. From now on, processing
similar to that of Example 1 holds.

5.3 Some Technical Details

In this section we discuss some technical details important for active users of the MIZAR
proof assistant writing MIZAR articles.

5.3.1 Environment Directives

Environment directive definitions is used for importing two different kinds of informa-
tion from the database: definitional expansions used by REASONER and expansions of terms
defined by equals used by EQUALIZER. It would be quite natural for CHECKER to reuse
the same definitional expansions as REASONER, but experiments with using definitional
expansions by CHECKER have shown that in some cases there were too many expansions to
be exploited, which slows down the performance of the system. It was decided to introduce
a new environment directive expansions, which imports definitions only for CHECKER.

@ Springer

Definitional Expansions in Mizar 263

It allows better controlling efficiency of the system. Moreover, the meaning of the original
directive definitions has been changed. Its new version imports definitional expan-
sion for REASONER only. Expansions of terms defined by equals are imported by a new
directive equalities.

5.3.2 Predicative Formulae and Attributive Formulae

MIZAR syntax provides three kinds of atomic formulae: predicative, attributive (of the
structure “ferm is adjective”) and qualified (of the structure “ferm is type”). Because
types can be defined using adjectives as well, in first implementations and tests of the
new treatment of definitional expansions, it was decided not to expand qualified formu-
lae (again for efficiency reasons). Only predicative formulae and attributive formulae are
expanded.

5.3.3 Permissiveness

Another limitation of using definitional expansions by CHECKER are permissive defini-
tions, that is, definitions with assumptions required to prove their correctness conditions.
Expansions of such definitions demand justification of the assumptions. To guarantee that
all conditions of permissive definitions are fulfilled, VERIFIER searches for statements
confirming the definitions among all accessible premises. But in a general case it is not cer-
tain that adequate premises are present in the search space. This is the reason as to why
permissive definitions are not expanded by CHECKER automatically.

5.3.4 Modified Modules

Full implementation of the proposed extension of the system required modification of
several modules of VERIFIER. Because one new word (expansions) has been intro-
duced to the MIZAR language, SCANNER and PARSER implement a new parsing rule
to process the environment directive. Moreover, units preparing XML representation
of articles [27] are adjusted. Creating a new environment directive caused modifica-
tion of ACCOMODATOR importing definitions from the database. Essential changes are
done in PRECHECKER. Procedures selecting definitions which can be expanded (non
permissive definitions of predicates and attributes) from among all definitions acces-
sible at a given part of the article are implemented. Procedures processing attributive
formulae and predicative formulae are modified. Whenever PRECHECKER meets a pred-
icative formula or attributive formula, it expands the used in the formulae notions and
creates appropriate conjunctions or disjunctions in accordance with the description in
Section 5.1. Such formulae are next processed by EQUALIZER and UNIFIER in the standard
way.

6 Experiments
Modules responsible for processing definitional expansions by MIZAR CHECKER were

incorporated into the MIZAR Version 8.1.01. The implemented software was tested on the
MML Version 4.128.1067.

@ Springer

264 A. Kornitowicz

6.1 Profits

Definitional expansions utilized in the MIZAR system have big influence on the MML.
All the improvements resulting from the application of definitional expansions have been
implemented in the library.

In next subsections we describe main gains obtained as a result of using definitional
expansions in CHECKER.

6.1.1 External References

To refer to some facts stored in the MML, authors can use labels of these facts. In all
MIZAR articles there were 603 558 references to external facts. RELPREM, which is a spe-
cial program dedicated to finding unnecessary references, reported 40 689 such cases. It
means that authors had to 40 689 times (6.7% of all references) wonder how to justify some
statements and remember (or search using some tools [2, 3]) the labels of useful theorems
or definitions, whereas now CHECKER can prove these statements automatically.

6.1.2 Trivial Proofs

Proofs of some theorems stored in the MML have similar, and in some cases just the same,
structure. An example is

{} c=4A

proof
let x; :: begins definitional expansion of inclusion
thus thesis; :: thus x in {} implies x in A;

end;

Fixed variable x is introduced just to force using a particular definitional expansion, the
expansion of the inclusion of sets. Such proofs are no longer required. TRIVDEMO, a tool
for detecting unnecessary proofs, reported 2099 such cases.

6.1.3 Obvious Theorems

An important gain from using definitional expansions by CHECKER is that some theorems
became obvious. The information brought by new premises causes activating some mech-
anisms (e.g. generating Skolem constants) of the system that enable us to deduce required
conclusions.

An example of a theorem, which is now obvious, but in the MML was referred to 6061
times, is transitivity of the inclusion of sets. The statement without expansions is

ACB ABCC
ACC

Expanding three inclusions generates the formula

ACB AN (VyxeA=>x€B)
A

BCC AN VyixeB=xe()

ACC VVYixeA=xeC

@ Springer

Definitional Expansions in Mizar 265

which after negating the conclusion and moving it to the premises, the new formula is

ACB AN VyxeA=>x€eB)
A

BCC AN (MyxeB=xe()
A

AZC A GxxeAnrx¢C)
1

The conjunct 3,x € A Ax ¢ C allows introducing a constant x such that x € A and
x ¢ C.Because x € A, then x € B, and then x € C, which results in the contradiction with
x ¢ C.

6.2 Problems and their Possible Solutions

In this section we describe main problems predicted during the design stage of extending
the functionality of MIZAR CHECKER by processing definitional expansions, which were
indeed met during its implementation into the MIZAR system and into the experiments with
the MML.

6.2.1 Redefined Notions

Some mathematical notions can be defined using a different apparatus. For example, equal-
ity or inclusion of functions can be defined in terms of function assignments or ordered
pairs (functions are relations) or simply elements (functions are sets as well). It means that
one definition could be expanded in different ways and could generate several formulae for
each notion. This would cause fast growing of the number of processed statements. Practi-
cal systems should have some mechanisms preventing such time consuming processing. In
the case of the MIZAR system it can be controlled by the environment of articles, described
in Section 5.3.

6.2.2 Better Object Typing

One of the axioms adopted by the MML states that every object is a set. Moreover,
the type set is the root of the type tree of all types defined in the MML. Therefore,
all notions defined or redefined for sets, e.g. inclusion, equality, etc., can be applied to
every term used in the MML. If one writes, for example, % + }—1 = %, the equality is
expanded into two inclusions % + le C % and % C % + %, both definitely true, but rather
meaningless.

To avoid such expansions, a new type (object) was defined in the MML and declared
as the root of the type tree. Moreover, object was put as the default type of objects that
intentionally are not meant as sets (e.g. numbers, structures), which isolates them from

definitions and redefinitions declared for sets.

7 Related Work

Definitional expansions of mathematical concepts, methods and criteria of their exploitation
in theorem provers and proof checkers are one of the important subjects of study in the auto-
mated reasoning domain [31, 32]. Different techniques, such as peeking (where expanding

@ Springer

266 A. Kornitowicz

of the definition of a predicate P used in the conjecture to be proved is based on occurrences
of symbols of predicates used both in the conjecture and in the definiens of the predicate
P [6]) or gazing (an abstraction-based technique for choosing formulae from a theory for
use in a proof, where formulae are selected on the basis of a global plan built in an abstract
space [4, 10]), were implemented and tested in several systems.

A conclusion that could be learned from experiences of all known systems is that defi-
nitional expansions are a very strong mechanism playing an important role in proving and
proof searching. However, they should be used carefully. Too deep expanding can lead to
producing a huge number of premises, make the search space unmanageable and systems
useless in practice [5, 18].

8 Further Work

Further development of the usage of definitional expansions in the MIZAR system can go in
two directions: a) strengthening the power of CHECKER by expansion of greater number of
definitions, and b) exploiting already implemented features in the MML.

Ad a) In the current implementation of using definitional expansions by CHECKER, only
predicative formulae and attributive formulae that are explicitly stated in a given inference
are expanded. A possible extension of CHECKER could analyze types of all variables con-
sidered in the inference and expand all adjectives involved in the types. However, such
an approach could produce too many expansions (in the MML there are known cases when
one type consist of more than 30 adjectives). A prospective protection against too large
enlargement of inferences could be introducing some quantitative parameters controlling
the number of adjectives included in the types.

Ad b) Extensions of functionalities of MIZAR VERIFIER are always tested on every
MIZAR article collected in the MML. As it was shown in Section 6 definitional expan-
sions processed by MIZAR CHECKER have important influence on the MML—some facts
became obvious, some references unnecessary. These circumstances caused quite many
simplifications of proofs. To induce more similar simplifications, a task for the future could
be scanning the entire MML and detecting theorems that could be reformulated as redefi-
nitions of particular notions. Such redefinitions could be then expanded and the expansions
could generate more unnecessary references. On the other hand, when the processing of
definitional expansions causes much of a slowdown of the performance of the system, e.g.
due to over-redefined notions, such notions could be detected and their redefinitions could
be restated as theorems. In both cases, a refactoring of the MML [13] would be required
while maintaining licensing its content [1].

Acknowledgments I would like to thank Professor Andrzej Trybulec’ for 20 years of our cooperation, for
his continuous support of my work, for every inspiring and instructive talk. I thank Him for every lecture and
every seminar, for every visit at His home where we discussed MIZAR issues. I am thankful for promoting
my master thesis and Ph.D. thesis. I thank Him for His sense of humor, for all anecdotes and jokes.

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 Inter-
national License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution,
and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source,
provide a link to the Creative Commons license, and indicate if changes were made.

@ Springer

http://creativecommons.org/licenses/by/4.0/

Definitional Expansions in Mizar 267

References

1.

10.

11.

12.

13.

15.
16.

17.

19.

20.

21

22.

Alama, J., Kohlhase, M., Mamane, L., Naumowicz, A., Rudnicki, P., Urban, J.: Licensing the Mizar
Mathematical Library. In: Davenport, J.H. et al. (eds.) Proceedings of Calculemus/MKM 2011,
LNCS, vol. 6824, pp. 149-163. Springer- Verlag, Berlin, Heidelberg. doi:10.1007/978-3-642-22673-1_11
(2011)

. Bancerek, G.: Information retrieval and rendering with MML query. In: Borwein, J. et al. (eds.)

Mathematical Knowledge Management, LNCS, vol. 4108, pp. 266-279. Springer Berlin Heidelberg.
doi:10.1007/11812289_21 (2006)

. Bancerek, G., Urban, J.: Integrated semantic browsing of the Mizar Mathematical Library for author-

ing Mizar articles. In: Asperti, A. et al. (eds.) MKM 2004, Bialowieza, Poland, September 2004,
Proceedings, LNCS, vol. 3119, pp. 44-57. Springer. doi:10.1007/978-3-540-27818-4_4 (2004)

. Barker-Plummer, D.: Gazing: An approach to the problem of definition and lemma use. J. Autom.

Reasoning 8(3), 311-344 (1992)

. Bishop, M., Andrews, P.B.: Selectively instantiating definitions. In: CADE-15, Lindau, Germany, July,

1998, Proceedings, LNCS, vol. 1421, pp. 365-380. Springer (1998)

. Bledsoe, W.W.: The UT interactive prover. Memo ATP-17B, Mathematics Department. University of

Texas (1983)

. Byliniski, C., Alama, J.: New developments in parsing Mizar. In: Jeuring, J. et al. (eds.) Intelligent Com-

puter Mathematics 11th International Conference LNAI vol. 7362, pp. 427431 Springer-Verlag Berlin
Heidelberg (2012). doi:10.1007/978-3-642-31374-5_30

. Cairns, P, Gow, J.: Using and parsing the Mizar language. Electronic Notes in Theoretical Computer Sci-

ence 93, 60—69 (2004). doi:10.1016/j.entcs.2003.12.028. http://www.sciencedirect.com/science/article/
pii/S1571066104000131

. Davis, M.: Obvious logical inferences. In: Proceedings of the Seventh International Joint Conference on

Artificial Intelligence, pp. 530-531 (1981)

Giunchiglia, F., Walsh, T.: Theorem proving with definitions. In: Proceedings of AISB 89, pp. 433-435
(1989)

Grabowski, A., Naumowicz, A.: Mizar in a nutshell. J. Formal. Reasoning, Special Issue: User Tutorials
13(2), 153-245 (2010)

Grabowski, A., Schwarzweller, C.: Translating mathematical vernacular into knowledge repositories.
In: Proceedings of MKM’05, pp. 49-64. Springer-Verlag, Berlin, Heidelberg. doi:10.1007/11618027_4
(2006)

Grabowski, A., Schwarzweller, C.: Revisions as an essential tool to maintain mathematical reposito-
ries. In: Proceedings of Calculemus 07 / MKM ’07, pp. 235-249. Springer-Verlag, Berlin, Heidelberg.
doi:10.1007/978-3-540-73086-6_20 (2007)

. Grabowski, A., Schwarzweller, C.: Towards automatically categorizing mathematical knowledge. In:

Ganzha, M. et al. (eds.) FedCSIS 2012, Wroclaw, Poland, September 2012, Proceedings, pp. 63—68
(2012)

Gritzer, G.: General Lattice Theory. Academic Press, New York (1978)

Tancu, M., Kohlhase, M., Rabe, F., Urban, J.: The Mizar Mathematical Library in OMDoc Translation
and applications. J. Autom. Reasoning 50(2), 191-202 (2013). doi:10.1007/s10817-012-9271-4
Jaskowski, S.: On the Rules of Suppositions in Formal Logic. Studia Logica. Naktadem Seminarjum
Filozoficznego Wydzialu Matematyczno-Przyrodniczego Uniwersytetu Warszawskiego (1934). http:/
books.google.pl/books?id=6wOvRAAACAAJ

. Kieffer, S., Avigad, J., Friedman, H.: A language for mathematical knowledge management. In:

Grabowski, A. et al. (eds.) Computer Reconstruction of the Body of Mathematics, Studies in Logic,
Grammar and Rhetoric, vol. 18(31), pp. 51-66. Biatystok (2009)

Kornitowicz, A.: On rewriting rules in Mizar. J. Autom. Reasoning 50(2), 203-210 (2013).
doi:10.1007/s10817-012-9261-6

Naumowicz, A.: Interfacing external CA systems for Grobner bases computation in Mizar proof
checking. Int. J. Comput. Math. 87(1), 1-11 (2010). doi:10.1080/00207160701864459

. Naumowicz, A. In: Watt, S.M. et al. (eds.): SAT-enhanced Mizar proof checking (2014).

doi:10.1007/978-3-319-08434-3_37

Naumowicz, A., Byliiiski, C.: Improving Mizar texts with properties and requirements.
In: Asperti, A. et al. (eds.) MKM 2004 Proceedings, LNCS, vol. 3119, pp. 290-301.
doi:10.1007/978-3-540-27818-4_21 (2004)

@ Springer

http://dx.doi.org/10.1007/978-3-642-22673-1_11
http://dx.doi.org/10.1007/11812289_21
http://dx.doi.org/10.1007/978-3-540-27818-4_4
http://dx.doi.org/10.1007/978-3-642-31374-5_30
http://dx.doi.org/10.1016/j.entcs.2003.12.028
http://www.sciencedirect.com/science/article/pii/S1571066104000131
http://www.sciencedirect.com/science/article/pii/S1571066104000131
http://dx.doi.org/10.1007/11618027_4
http://dx.doi.org/10.1007/978-3-540-73086-6_20
http://dx.doi.org/10.1007/s10817-012-9271-4
http://books.google.pl/books?id=6w0vRAAACAAJ
http://books.google.pl/books?id=6w0vRAAACAAJ
http://dx.doi.org/10.1007/s10817-012-9261-6
http://dx.doi.org/10.1080/00207160701864459
http://dx.doi.org/10.1007/978-3-319-08434-3_37
http://dx.doi.org/10.1007/978-3-540-27818-4_21

268 A. Kornitowicz

23. Naumowicz, A., Kornitowicz, A., et al.. A brief overview of Mizar. In: Berghofer, S. (ed.)
Proceedings of TPHOLs 09, LNCS, vol. 5674, pp. 67-72. Springer-Verlag, Berlin, Heidelberg.
doi:10.1007/978-3-642-03359-9_5 (2009)

24. Pak, K.: Methods of lemma extraction in natural deduction proofs. J. Autom. Reasoning 50(2), 217-228
(2013). doi:10.1007/s10817-012-9267-0

25. Pak, K.: Improving legibility of natural deduction proofs is not trivial. Logical Methods in Comput. Sc.
10(3), 1-30 (2014). doi:10.2168/LMCS-10(3:23)2014

26. Trybulec, A., Kornitowicz, A., Naumowicz, A., Kuperberg, K.: Formal mathematics for mathematicians.
J. Autom. Reasoning 50(2), 119-121 (2013). doi:10.1007/s10817-012-9268-z

27. Urban, J.: XML-izing Mizar: Making semantic processing and presentation of MML easy. In:
Kohlhase, M. (ed.) MKM 2005, Bremen, Germany July 2005, LNCS, vol. 3863, pp. 346-360 Springer.
doi:10.1007/11618027_-23 (2005)

28. Urban, J., Hoder, K., Voronkov, A.: Evaluation of automated theorem proving on the Mizar Mathematical
Library. In: Fukuda, K. et al. (eds.) ICMS 2010, Kobe, Japan. LNCS, vol. 6327, pp. 155-166. Springer.
doi:10.1007/978-3-642-15582-6_30 (2010)

29. In: Wiedijk, F. (ed.): The Seventeen Provers of the World, Foreword by Dana S. Scott, LNCS, vol. 3600.
Springer (2006)

30. Woronowicz, E.: Relations and their basic properties. Formalized Mathematics 1(1), 73-83 (1990).
http:/fm.mizar.org/1990- 1/pdf1-1/relat_1.pdf

31. Wos, L.: Automated Reasoning: 33 Basic Research Problems. Prentice-Hall, Englewood Cliffs. N.J
(1987)

32. Wos, L.: The problem of definition expansion and contraction. J. Autom. Reasoning 3(4), 433435
(1987)

@ Springer

http://dx.doi.org/10.1007/978-3-642-03359-9_5
http://dx.doi.org/10.1007/s10817-012-9267-0
http://dx.doi.org/10.2168/LMCS-10(3:23)2014
http://dx.doi.org/10.1007/s10817-012-9268-z
http://dx.doi.org/10.1007/11618027_23
http://dx.doi.org/10.1007/978-3-642-15582-6_30
http://fm.mizar.org/1990-1/pdf1-1/relat_1.pdf

	Definitional Expansions in Mizar
	Abstract
	Motivation
	About Mizar
	Definitions and Redefinitions in Mizar
	Definitional Expansions in the Reasoner
	Definitional Expansions in the Checker
	Inference Checker
	Examples
	Some Technical Details
	Environment Directives
	Predicative Formulae and Attributive Formulae
	Permissiveness
	Modified Modules

	Experiments
	Profits
	External References
	Trivial Proofs
	Obvious Theorems

	Problems and their Possible Solutions
	Redefined Notions
	Better Object Typing

	Related Work
	Further Work
	Acknowledgments
	Open Access
	References

