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Abstract MaleS is an automatic tuning framework for automated theorem provers. It pro-
vides solutions for both the strategy finding as well as the strategy scheduling problem. This
paper describes the tool and the methods used in it, and evaluates its performance on three
automated theorem provers: E, LEO-II and Satallax. On a representative subset of the TPTP
library a MaL.eS-tuned prover solves on average 8.67 % more problems than the prover with
its default settings.
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1 Introduction

Automated theorem proving is a search problem. Many different approaches exist, and most
of them have parameters that can be tuned. Examples of such parameters are clause weight-
ing and selection schemes, term orderings, and sets of inference and reduction rules used.
For a given automated theorem prover (ATP) A, its parameters form A’s parameter space.
A specific choice of parameters is called a strategy,! i.e., strategies are elements of the

Unfortunately, there is no standard terminology for this. In Satallax [4] parameters are called flags, and a
strategy is called a mode. Option can be used as synonym for parameter. Configurations and configuration
space are other alternative names.
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parameter space (Fig. 1). The choice of strategy can often make the difference between
finding a proof within a few milliseconds or not at all (within a reasonable time limit). This
naturally raises to the question: Given a new problem, which search strategy should be used?

This problem has already received a considerable amount of attention. Gandalf [25] pio-
neered strategy scheduling: Instead of running a single strategy for the entire time span
specified by the user, several search strategies are run sequentially for shorter times. This
method is used in most current ATPs, most prominently Vampire [13]. In the SETHEO
project [28], a local search algorithm was used to find better sequences of strategies. Fuchs
[5] employed a nearest neighbor algorithm to determine which strategy/ies to run. Bridge’s
[3] thesis is concerned with machine learning for search heuristic selection in ATPs with a
particular focus on problem features and feature selection. In the SAT community, Satzilla
[29] very successfully used machine learning to decide when to run which SAT solver.
ParamlILS [7] is a general tuning framework that searches for good parameter settings with
a randomized hill climbing algorithm. BliStr [26] uses ParamILS to develop strategies for
E [15] on a large set of interrelated problems.

Despite all this work, most ATPs do not harness the methods available. Search strate-
gies are often manually defined by the developer of the ATP and strategy schedules
are created by a greedy algorithm or very simple clustering. This paper introduces
MaLeS (Machine Learning (of) Strategies), a learning-based framework for automatic
tuning and configuration of ATPs. It is based on and supersedes E-MalLeS 1.0 [10]
and E-MaLeS 1.1 [8]. The goal of MaLeS is to help ATP users fine-tune an ATP to
their problems, and give developers a simple tool for finding good search strategies
and creating strategy schedules. MaleS is implemented in Python and has been tested
with the ATPs E, LEO-II [1] and Satallax [4]. The source code is freely available at
https://github.com/dkuehlwein/males.

1.1 The Strategy Selection Problem
Figure 1 gives an informal overview of the strategy selection problem. Given an ATP prob-

lem p € P, find a strategy s in the parameter space S that can quickly solve p. First, we note
that parameter spaces can be very big. For example, the ATP E supports over 107 different
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strategies. Hence, to simplify the strategy selection problem, strategy selection algorithms
usually consider only a small number of preselected strategies &. Defining G is the first
challenge. There are different criteria to determine which strategies should be selected. The
most common one is to pick strategies that solve a lot of problems, or are very good for a
particular kind of problem.

As a second step, we need a way to characterize problems. This is usually accom-
plished by defining a set of features §. The features must strike a balance between
being fast to compute (via a feature function @) and being expressive enough so
that the ATP behaves similarly on problems with similar features. Once the features
are defined, we need a way to predict how well each preselected strategy performs
on ATP problems with particular features. Finally, the predictions need to be com-
bined into a strategy schedule. Hence, the strategy selection problem consists of three
subproblems:

Finding a good set of preselected strategies &.
Defining features § which are easy to compute, but also expressive enough to
distinguish different types of problems.

e Determining a method which given the features of a problem creates a strategy
schedule.

1.2 Overview

The rest of the paper is organized as follows: Section 2 explains how MalLeS defines
the preselected strategies &. The features and the algorithm that creates the strategy
schedule are presented in Section 3. MalLeS is evaluated against E 1.7, LEO-II 1.6.0
and Satallax 2.7 run with default settings in Section 4. The experiments compare the
performance of running an ATP in default mode versus running the ATP with strategy
scheduling provided by MaLeS. Future work is considered in Section 5, and the paper
concludes with Section 6. The Appendix shows how to install the MalLeS-tuned ver-
sions of the ATPs mentioned above: E-Mal.eS, LEO-MaLeS and Satallax-MaLeS, how
to tune any of those systems for new problems, and how to use MaleS with differ-
ent ATPs. It also includes an overview of the CADE ATP System Competition (CASC)
[24] results.

2 Finding Good Search Strategies with MaLeS

Choosing a good strategy for a problem requires prior information on how the different
strategies behave on different kinds of problems. Acquiring this information for all strate-
gies is often infeasible due to constraints on CPU power available and the number of
possible strategies. Hence, we have to decide which strategies we want to evaluate. ATP
developers often manually define such a set of strategies based on their intuition and experi-
ence. This option is, however, not available when one lacks in-depth knowledge of the inter-
nal workings of the ATP. A local search algorithm can help in these cases, and can even be
combined with the manual approach by taking the predefined strategies as starting points of
the search.
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Algorithm 1 find_strategies: For each problem search for the strategy that

solves it in the least amount of time.

1: procedure FIND_STRATEGIES(Problems,tol,t_max,nS,nC)
initialize Queue Q // See description
3 initialize dictionary bestTime with t_max for all problems
4: initialize dictionary bestStrategy as empty
5: while @ not empty do
6.
7
8

s < pop(Q)
for p € Problems do
oldBestTime <— bestTime[p]

9: proofFound,timeNeeded < run_strategy(s, p,t_max)
10: if proofFound and timeNeeded < bestTime[p| then
11: bestTime[p] + timeNeeded
12: bestStrategy[p] < s
13: end if
14: if proofFound and timeNeeded < bestTime[p]+tol then
15: randomStrategies < create_random_strategies(s,nS,nC)
16: for r in randomStrategies do
17: proofFoundR,timeNeededR <— run_strategy(r, p, timeNeeded)
18: if proofFoundR and timeNeededR<bestTime[p] then
19: bestTime[p] < timeNeededR
20: bestStrategy[p] + r
21: end if
22: end for
23: if bestTime[p] < oldBestTime then
24: Q < put(Q,bestStrategy(p])
25: end if
26: end if
27: end for
28: end while
29: return bestStrategy

30: end procedure

The initialization of @ in Line 2 is done either by randomly creating some strategies, or by
manually defining which strategies to use. Variable tol defines the tolerance of the algorithm,
t_max is the maximal time that may be used by the strategy. nS determines the number of
strategies generated in the create_random_strategies sub-procedure, nC is an upper limit
for the number of different parameters between the new strategies and the original strategy.
bestStrategy is a dictionary that for each problems stores the strategy that solved it in the
least amount of time.

MalLeS employs a basic stochastic local search algorithm which we call find_strategies
(Algorithm 1). The strategies returned by find_strategies define the preselected strategies
G. The difference between find_strategies and existing parameter selection frameworks like
ParamILS and BliStr is that find_strategies searches for the fastest strategy for each problem,
whereas ParamlILS tries to find the best strategy for all problems (i.e. find the strategy that
solves the highest number of problems within some time limit). BliStr searches for the best
strategy for sets of similar problems.

find_strategies takes a list of problems as input. A queue of start strategies is initialized,
either with random or predefined strategies. Each strategy in the queue is then used on all
problems. If a strategy solves a problem faster than any of the previously tried strategies
(within some tolerance range, see Line 14), a local search is performed. If the search yields

2find_strategies is essentially equivalent to running ParamILS on every single problem.
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faster strategies, the fastest of all newly found search strategies is appended to the queue. In
the end, find_strategies returns all strategies that were fastest on at least one problem.

Algorithm 2 create_random_strategies: Returns slight variations of the input
strategy.

1: procedure CREATE_RANDOM_STRATEGIES(Strategy,nS,nC)
2: newStrategies is an empty list

3: da=1

4 while _i < nS do

5: newStrategy is a copy of Strategy
6: gJ=1
7.
8

while _j < nC do
: newStrategy = change_random_parameter(newStrategy)
9: gJ=g+1

10: end while

11: newStrategies.append(newStrategy)
12: dA=di+41

13: end while

14: return newStrategies

15: end procedure

nS determines the number of new strategies, nC is the upper limit for the number of changed
parameters.

The local search part is defined in Algorithm 2 (create_random_strategies). It returns
a predefined number nS of strategies similar to the input strategy. The new strategies are
created by randomly changing the parameters of the input strategy. How many parameters
are changed is determined by nC.

3 Strategy Scheduling with MalLeS

Many current ATPs use some kind of strategy scheduling as a default mode of operation.
Some use the same schedule for every problem (e.g. Satallax 2.7). Others define classes of
similar problems and use different schedules for different classes (e.g. E 1.7, LEO-II 1.6.0).
MalLeS creates an individual strategy schedule for each problem. This is done by learning
which strategies are useful for which type of problems.

3.1 Notation

We use the following notation:

p is an ATP problem. P denotes a set of problems.

Pirain € P is a set of training problems that is used to tune the learning algorithm.

3§ is the feature space. We assume that § is a subset of R” for some n € N.

¢ 1 P — §is the feature function. ¢ (p) is the feature vector of a problem.

S is the parameter space, G is the set of preselected strategies.

The time the ATP running strategy s needs to solve a problem p is denoted by 7(p, s).
If s is obvious from the context or irrelevant, we also use 7(p).

e For a strategy s, ps : P — R its runtime prediction function. For each strategy s in the
preselected strategies G, MaleS defines a runtime prediction function py : P — R.
The prediction function ps uses the features of a problem to predict the time the ATP
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running strategy s needs to solve the problem. The strategy schedule for the problem is
created from these predictions.

3.2 Features

Features provide an abstract description of a problem. Optimally, the features should be
designed in such a way that the ATP behaves similarly on problems with similar fea-
tures, i.e. if two problem p, ¢ have similar features ¢(p) ~ ¢(gq), then for each strategy
s the runtimes should be similar t(p,s) ~ 7(q,s). The similarity function (e.g. cosine
distance between the feature vectors) and set of features heavily influence the quality
of the prediction functions. Indeed, feature selection is an entire subfield of machine
learning [6, 11].

Currently, MaLeS supports two different feature spaces: Schulz’s E features are used for
first order (FOF) problems. The TPTP features designed by Sutcliffe are used for higher
order (THF) problems [22]. Note that the main reason for using these features was that they
were easily available. Evaluating different feature sets and/or introducing new features is
beyond the scope of this paper.

3.2.1 The E Features

Schulz designed a set of features for clause-normal-form and first order problems. They
are used in the strategy selection process in his theorem prover E [15]. Table 1 shows
the features together with a short description of each.> MaLeS uses the same features
for first-order problems.

The features are computed by running Schulz’s classify_problem program which is
distributed with MaLeS.

3.2.2 The TPTP Features

For every problem, the TPTP problem library [17] provides a syntactical description which
can be used as problem features. Figure 2 shows an example. Before normalization, the
feature vector corresponding to the example is

[145,5, 47,31, 1106, ..., 147,0, 0,0, 0]

Sutcliffe’s MakeListStats computes these features and is publicly available as part of the
TPTP infrastructure. A modified version that outputs only the numbers without any text is
also distributed with MaLeS.

3.2.3 Normalization

In the initial form, there can be great differences between the values of different features. In
the THF example (Fig. 2), the number of atoms (1106) is of a different order of magnitude
than e.g. the maximal formula depth (7). Since our machine learning method (like many
other) computes the Euclidean distance between data points, these differences can render
smaller valued features irrelevant. Hence, normalization is used to scale all features to have
values between 0 and 1. First the features for each p € Piain are computed. Then the

3The authors would like to thank Stephan Schulz for the design of the features, the program that extracts
them, and their description in this subsection.
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Table 1 Problem features used for strategy selection in E and in first-order MaLeS

Feature Description

axioms Most specific class (unit, Horn, general) describing all axioms
goals Most specific class (unit, Horn) describing all goals
equality Problem has no equational literals, some equational literals,

non-ground units
ground-goals
clauses

literals
termcells
unitgoals
unitaxioms
horngoals
hornaxioms
eg-clauses
groundunitaxioms
groundgoals
groundpositiveaxioms
positiveaxioms
ng-unit_axioms_part
max-fun_arity
avg_fun_arity
sum_fun_arity
clause_max_depth

clause_avg._depth

or only equational literals
Number (or fraction) of unit axioms that are not ground
Are all goals ground?
Number of clauses
Number of literals
Number of all (sub)terms
Number of unit goals (negative clauses)
Number of positive unit clauses
Number of Horn goals (non-unit)
Number of Horn axioms (non-unit)
Number of unit equations
Number of ground unit axioms
Number of ground goals
Number (or fraction) of positive axioms that are ground
Number of all positive axioms
Number of non-ground unit axioms
Maximal arity of a function or predicate symbol
Average arity of symbols in the problem
Sum of arities of symbols in the problem
Maximal clause depth

Average clause depth

maximal and minimal value of each feature f is determined. These values are then used to
rescale the feature vectors for each problem p via

o(p)r =

__ ¢(p)y —miny
max ; — miny

where @(p)  is the value of feature f for problem p, miny is the minimal and max 7 is the
maximal value for f among the problems in Pip.

% Syntax  : Number of formulae 145 (5 unit; 47 type; 31 defn)

% Number of atoms : 1106 ( 36 equality; 255 variable)

% Maximal formula depth : 11 ( 7 average)

VA Number of connectives : 760 ( 4 ~s 4 l; 8 &; 736 Q)
% ( 0<=>; 8 =>; 0 <=; 0<7>)
% ( 0o ~I; 0 “&; o 'y 0 77)
% Number of type conns : 235 ( 235 >, ] *; 0 +; 0 <)
% Number of symbols 52 (47 )

% Number of variables 147 ( 3 sgn; 29 ' 6 7; 112 )
% ( 147 HH 0 I>; 0 7%)

Y ( 0 @-; 0 @+)

Fig. 2 The TPTP features of the THF problem AGT029"1.p in TPTP-v5.4.0
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3.3 Runtime Prediction Functions

Predicting the runtime of an ATP is a classic regression problem [2]. For each strategy s in
the preselected strategies &, we are searching for a function ps : P — R such that for all
problems p € P the predicted values are close to the actual runtimes: ps(p) ~ t(p, s). This
section explains the learning method employed by MaLeS as well as the data preparation
techniques used.

3.3.1 Timeouts

The prediction functions are learned from the behavior of the preselected strategies on the
training problems Py,in. Each preselected strategy is run on all training problems with a
timeout ¢. Often, strategies will not solve all problems within the timeout. This leads to the
question how one should treat unsolved problems. Setting the time value of an unsolved
problem-strategy pair (p, s) to the timeout, i.e. T(p,s) = t, is one possible solution.
Another possibility, which is used in MaLeS, is to learn on only problems that can be
solved. While ignoring unsolved problems introduces a bias towards shorter runtimes, it also
simplifies the computation of the prediction functions and allows to update the prediction
functions at runtime (Section 3.5).

3.3.2 Kernel Methods

MalLeS uses kernels to learn the runtime prediction function. Kernels are a popular machine
learning method and have successfully been applied in many domains [16]. A kernel can be
seen as a similarity function between feature vectors. Kernels allow the use of nonlinear fea-
tures while keeping the learning problem itself linear. The basic principles will be covered
below. More information about kernel-based machine learning can be found in [16].

Definition 1 (Gaussian Kernel) The Gaussian kernel k& with parameter o of two problems
P, q € P with feature vectors ¢(p), ¢(g) € T € R" for some n € N is defined as

e o(p) =20(») 9(q) + so(q)Tw(q))
o2

k(p.q) :=exp <

@(p)T is the transposed vector, and hence ¢(p)T ¢(q) is the dot product between ¢(p) and
@(g) in R".

In order to apply machine learning, first some data to learn from is required. Let t € R
be a time limit. For each preselected strategy s € &, the ATP is run with strategy s and time
limit # on each problem in Py, Note that the same ¢ is used for all problems. For each
strategy s, Péain C Priain is the set of problems that the ATP can solve within the time limit

t with strategy s.

Definition 2 (The Prediction Function) In kernel based machine learning, the prediction
function oy has the form

ps(p)= > alk(p.q)

qeP’

train

for some oy € R. The o are called weights and are the result of the learning. To define

how exactly this is done, some more notation is needed.
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Definition 3 (Kernel Matrix, Times Matrix and Weights Matrix) For every strategy s € &,
let m be the number of problems in P; .. and (p;)iem be an enumeration of the problems in
P? . . The kernel matrix K% € R™*"™ is defined as

train”
K} ==k(pi, pj)
We define the time matrix Y* € R via
YP = 1(pi,s)
Finally, we set the weight matrix A € R”*! as

S o S8
A} = o,

If it is obvious which strategy is referred to, or the statement is independent of the strategy,
we omit the ¥ in K*,Y" and A®.

A simple way to define values for the weights a;i would be to solve KA = Y. Such a
solution (if it exists) would likely perform very well on known data but poorly on new data,
a behavior called overfitting. As a measure against overfitting, a regularization parameter
A € R is added and least square regression is used to minimize the difference between the
predicted times and the actual times [14]. That means we want

A = arg min ((Y —KAT (Y —KA) + AATKA)
AeRmx1

The first part of the equation (Y — K AT (Y — KA)is the square loss between the predicted
values and the actual time needed. AAT K A is the regularization term. AT K A is a measure
of how complex, in terms of VC dimension [27], our prediction function is. The bigger
A, the more complex functions are penalized. For very high values of A, we force A to be
almost equal to the 0 matrix. This approach can be seen as a kind of Occam’s razor for
prediction functions. A is the matrix that best fits the training data while remaining as simple
as possible.

Theorem 1 (Weight Matrix for a Strategy) For A > 0, the optimal weights for a strategy s
are given by
A=K +rD7'Y

with I being the identity matrix in R™*™,

Proof

L (¥ — KAT(Y — KA) +1ATK A)
—2K(Y —KA)+20\KA
—2KY + QKK +2AK)A

It can be shown that K is a positive-semi definite symmetric matrix and therefore (K + A7)
is invertible for A > 0. To find a minimum, we set the derivative to zero and solve with
respect to A.

K(K + DA = KY
and hence
A= (K+rD7Y

is a solution. O

@ Springer
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3.4 Crossvalidation

Finally, the values for the regularization constant A and the kernel width o need to be
determined. This is done via 10-fold cross-validation on the training problems, a standard
machine learning method for such tasks [9]. Cross-validation simulates the effect of not
knowing the data and picks the values that perform, in general, best on unknown problems.

First a finite number of possible values for A and o is defined. Then, the training set
Péain is split into 10 disjoint, equally sized subsets Py, ... Pjg. Forall 1 < i < 10, each
possible combination of values for A and o is trained on P;ain — P; and evaluated on P;.
The evaluation is done by computing the square-loss between the predicted runtimes and
the actual runtimes. The combination with the least average square loss is used.

3.5 Creating Schedules from Prediction Functions

MalLeS uses the knowledge of how different strategies perform on a set of training problems
to estimate how these strategies will behave on a new problem. This is done by learning
runtime prediction functions as described above using the data gathered with Algorithm 1.
With the runtime prediction functions we can create individual strategy schedules for new
problems, i.e. compute a strategy schedule for every set of features.

Given a new problem, MaleS iterates between computing the predicted runtimes for
each strategy, running the predicted best strategy and updating the prediction models.
Algorithm 3 shows the details.

Algorithm 3 males: Tries to solve the input problem within the time limit.
Creates and runs a strategy schedule for the problem.

1: procedure MALES(problem,time)

2 proofFound,timeUsed < run_start_strategies(problem,time)
3 if proofFound then

4: return timeUsed

5: end if

6 while timeUsed < time do

7 Set times as an empty list

8

for s € G do

9: ts < ps(problem)

10: times.append([ts, s])

11: end for

12: ([tsr, s']) + choose_best_strategy(times)

13: proofFound,timeNeeded < run_strategy(s’,problem,t,)
14: timeUsed = timeUsed + timeNeeded

15: if proofFound then

16: return timeUsed

17: end if

18: for s € & do

19: timeUsed = timeUsed + update_prediction_function(ps,s’,ts)
20: end for

21: end while

22: return timeUsed

23: end procedure

In line 2 the algorithm starts by running some predefined start strategies. The goal of
running these start strategies first is to filter out simple problems, which allows the learning
algorithm to focus on the more difficult problems. The start strategies are picked greedily.
First the strategy that solves the highest number of problems (within some time limit) is
chosen. Then the strategy that solves the highest number of problems that were not solved
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by the strategy picked first (within some time limit) is selected, etc. The number of start
strategies and their runtime are determined via their respective parameters in the setup.ini
file (Table 2). Training problems that are solved by the start strategies are deleted from the

training set. For example, let sq, ..., s, be the starting strategies, all with a runtime of 1
second. Then for all s € S we can set
Plin={pe Pl V1I<i<nt(p,s)>1}

and train ps on the updated P; ; .

The subprocedure choose best_strategy in line 12 picks the strategy with the

minimum predicted runtime among those that have not been run with a bigger or equal
runtime before.* run_strategy runs the ATP with strategy s’ and time limit 7y on the
problem. If the ATP cannot solve the problem within the time limit, this information
is used to improve the prediction functions in update_prediction_function (Line
19). For this, all the training problems that are solved by the picked strategy s’ within the
predicted runtime 7y are deleted from the training set Pyain, i.e. forall s € S’
tiain = {p € Ptiain | ‘L'(p,s/) > 1y}
Afterwards, new prediction functions are learned on the reduced training set. This is done
by first creating a new kernel and time matrix for the new P7; and then computing new
weights as shown in Theorem 1. Due to the small size of the training dataset, this can be
done in real time during a proof. Note that these updates are local, i.e., do not have any
effect on future calls to MALES. If MALES finds a proof, the total time needed is returned to
the user.

4 Evaluation

MalLeS has been evaluated with three different ATPs: E 1.7, LEO-II 1.6 and Satallax 2.7. For
each prover, a set of training and testing problems is defined. MaLeS first searches for good
strategies on the training problems using Algorithm 1 with a 10 second time limit, i.e. fmax =
10. Promising strategies are then run for 300 seconds on all training problems. The resulting
data is used to learn runtime prediction functions and strategy schedules as explained in the
previous section. After the learning, MaLeS uses Algorithm 3 when trying to solve a new
problem. The difference between the different MaleS versions (i.e. E-MalLeS, Satallax-
MalLeS and Leo-MaLeS) is the training data used to create the prediction functions and start
strategies, and the ATP that is run in the run_strategy part of Algorithm 3. The MaLeS
version of the ATP is compared with the default mode on both the test and the training
problems.

4.1 E-MaLeS

E is a popular ATP for first order logic. It is open source, easily available and consistently
performs very well in CASC. Additionally, E is easily tunable with a big parameter space
which suggests that parameter tuning could lead to significant improvements. All compu-
tations were carried out on a 64 core AMD Opteron Processor 6276 with 1.4GHz per CPU
and 256 GB of RAM

“If there are several strategies with the same minimal predicted runtime a random one is chosen.
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102 D. Kiihlwein, J. Urban

4.1.1 E’s Automatic Mode

E’s automatic mode is developed by Stephan Schulz and based on a static partitioning of
the set of all problems into disjoint classes. It is generated in two steps. First, the set of all
training examples (typically the set of all current TPTP problems) is classified into disjoint
classes using some of the features listed in Table 1. For the numeric features, threshold val-
ues have originally been selected to split the TPTP into 3 or 4 approximately equal subsets
on each feature. Over time, these have been manually adapted using trial and error.

Once the classification is fixed, a Python program assigns to each class one of the strate-
gies that solves the highest number of examples in this class. For large classes (arbitrarily
defined as having more than 200 problems), it picks the strategy that additionally is the
fastest for this class on average. For small classes, it picks the globally best strategy among
those that solve the maximum number of problems. A class with zero solutions by all
strategies is assigned the overall best strategy.

4.1.2 The Training Data

The problems from the FOF divisions of CASC-22 [18], CASC-J5 [19], CASC-23 [20]
and CASC-J6 and CASC@Turing [21] were used as training problems. Several problems
appeared in more than one CASC. There are also a few problems from earlier CASCs that
are not part of the TPTP version used in the experiments, TPTP-v5.4.0. Deleting duplicates
and missing problems leaves 1112 problems that were used to train E-MaLeS. The strategy
search for the set of preselected strategies took three weeks on a 64 core server. The majority
of the time was spent running promising strategies with a 300 second time limit. Over 2
million strategies were considered. Of those, 109 were selected to be used in E-MaLeS. E-
MalLeS runs 10 start strategies, each with a 1 second time limit. E 1.7 (running the automatic
mode) and E-MaLeS were evaluated on all training problems with a 300 second time limit.
The results can be seen in Fig. 3.

1000
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3 600}
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£
Q
3
o
< 400}
200p o — E-MaleS 1.2
P -- E17
/ Best Strategy
(o) . . I
10! 10° 10! 10°

Seconds

Fig. 3 Performance graph for E-MaLeS 1.2 on the training problems
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Altogether, 1055, or 94.9 %, of the problems can be solved by E 1.7 with the strategies
considered. E 1.7’s automatic mode solves 856 of the problems (77.0 %), E-MaLeS solves
10.0 % more problems: 942 (84.7 %). Best Strategy shows the best possible result, i.e. the
number of problems solved if for each problem the strategy that solves it in the least amount
of time is selected.

4.1.3 The Test Data

Similar to the way the problems for CASC are chosen, 1000 random FOF problems of
TPTP-v5.4.0 with a difficulty rating [23] between 0.2 and (including) 1.0 were chosen for
the test dataset. 165 of the test problems are also part of the training dataset.

The results are similar to the results on the training problems and can be seen in Fig. 4.
In the first three seconds, E solves more problems than E-MalLeS. Afterwards, E-MaLeS
overtakes E. After 300 seconds, E-MaLeS solves 573 of the problems (57.3 %) and E 1.7
511 (51.1 %), an increase of 12.4 %. Figure 5 shows results for those 835 problems that are
not part of the training set. The graphs are very similar which indicates that E-MaLeS did
not overfit on the training data.

4.2 Satallax-MaLeS

In order to show that MaLeS also works for other ATPs, we picked a very different ATP for
the next experiment: Satallax. Satallax is a higher order theorem prover that has a reputation
of being highly tuned. The built-in strategy schedule of Satallax solves 95.3 % of all solvable
problems in a training dataset (defined in Section 4.2.2) and, with the right parameters,
91.3 % (525) of the training problems can be solved in less than 1 second. The strategy
search for the set of preselected strategies was carried out on a 32 core Intel Xeon with
2.6GHz per CPU and 256 GB of RAM. The evaluations were performed on a 64 core AMD
Opteron Processor 6276 with 1.4GHz per CPU and 256 GB of RAM.
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4.2.1 Satallax’s Automatic Mode

Satallax employs a hard-coded strategy schedule that defines a sequence of strategies
together with their runtimes. The same schedule is used for all problems. It is defined in the
file satallaxmain.ml in the src directory of the Satallax installation. Many modes are only
run for a very short time (0.2 seconds). This can cause problems if Satallax is run on CPUs
that are slower than the one(s) used to create the schedule.

4.2.2 The Training Data

The problems from the THF divisions of CASC-J5 [19], CASC-23 [20] and CASC-J6 [21]
were used as training problems. The THF division at CASC-J5 contained 200 problems, at
CASC-23 300 problem, and at CASC-J6 another 200 problems. After deleting duplicates
and problems that are not available in TPTP-v5.4.0, 573 problems remain. The strategy
search took approximately 3 weeks. In the end, 111 strategies were selected to be used in
Satallax-MaLeS. Satallax-MaLeS runs 20 start strategies, each with a 0.5 second time limit.

533 of the 573 problems are solvable with the appropriate strategy. Satallax and Satallax-
MalLeS were evaluated on all training problems with a 300 second time limit. Satallax solves
508 of the problems (88.7 %). Satallax-MaLeS solves 1.6 % more problems for a total of
516 solved problems (90.1 %).

Figure 6 shows a log-scaled time plot of the results. For low time limits, Satallax-MalLeS
solves significantly more problems than Satallax. It seems that Satallax’s automatic mode is
very suboptimal which might be a result of focusing on only the number of problems solved
after 300 seconds. Best Strategy shows the best possible result, i.e. the number of problems
solved if for each problem the strategy that solves it in the least amount of time is selected.

4.2.3 The Test Data

Similar to the E-MaLeS evaluation, the test dataset consists of 1000 randomly selected
THF problems of TPTP-v5.4.0 with a difficulty rating between 0.2 and (including) 1.0.
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Fig. 6 Performance graph for Satallax-MaLeS 1.2 on the training problems

301 of the test problems are also part of the training dataset. The results are similar to
the results on the training problems and can be seen in Fig. 7. While the end results are
almost the same with Satallax-MaLeS solving 590 (59.0 % ) and Satallax solving 587
(58.7 %) of the problems, Satallax-MaLeS significantly outperforms Satallax for lower time
limits.

Figure 8 shows the results for those 699 problems that are not contained in the training
problems. Here, Satallax-MaleS solves more problems than Satallax in the beginning, but
fewer for longer time limits. After 300 seconds, Satallax solves 344 and Satallax-MalLeS
336 problems.
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Fig. 8 Performance graph for Satallax-MaLeS 1.2 on the unseen test problems

4.3 LEO-MalLeS

LEO-MalLeS is the latest addition to the MaLeS family. LEO-II is a resolution-based higher-
order theorem prover designed for fruitful cooperation with specialist provers for natural
fragments of higher-order logic.” The strategy search for the set of preselected strategies
and all evaluations were done on a 32 core Intel Xeon with 2.6GHz per CPU and 256 GB
of RAM.

4.3.1 LEO-II's Automatic Mode

LEO-II’s automatic mode is a combination of E’s and Satallax’s automatic modes. The
problem space is split into disjoint subspaces and a different strategy schedule is used for
each subspace. The automatic mode is defined in the file strategy_scheduling.ml in the
src/interfaces directory of the LEO-II installation.

4.3.2 The Training and Test Datasets

The same training and test problems as for the Satallax evaluation were used. The strategy
search took 2 weeks. 89 strategies were selected. LEO-II and LEO-MaLeS were run with a
300 second time limit per problem.

Of the 573 training problems 472 can be solved by LEO-II if the correct strategy is
picked. LEO-MalLeS runs 5 start strategies, each with a 1 second time limit. Using more start
strategies only marginally increases the number of problems solved by the start strategies.
LEO-IT’s default mode solves 415 of the training problems (72.4 %), and 367 of the test
problems (36.7 %). LEO-MaLeS improves this to 441 (77.0 %) and 417 (41.7 %) solved
problems respectively. Figures 9 and 10 show the corresponding graphs. Figure 11 shows
the results for those 699 problems that are not contained in the training problems.

SDescription from the LEO-IT website www.leoprover.org.
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Fig. 9 Performance graph for LEO-MaLeS 1.2 on the training problems

Between 7 and 20 seconds, both provers solve approximately the same number of prob-
lems. For all other time limits, LEO-MaLeS solves more. On the test problems, a similar
time frame turned out to be problematic for LEO-MaLeS. Between 5 and 30 seconds, LEO-
II solves more problems than LEO-MaLeS. For other time limits, LEO-MaLeS solves more
problems than LEO-II. This behavior indicates that the initial predictions of LEO-Mal.eS
are wrong. Better features could help remedy this problem. The sudden jump in the number
of solved problems at around 30 seconds on the test dataset seems peculiar. Upon inspec-
tion, we found that 42 out of 43 problems solved in the 30 — 35 seconds time frame are
from the SEU (Set Theory) problem domain. These problems have very similar features and

hence MaLeS creates similar strategy schedules. 34 of the 43 problems were solved by the
same strategy.
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4.4 Further Remarks
There are a few issues to note that are independent of the underlying prover.

Multi-core Evaluations All the evaluations were done on multi-core machines, a 64 core
AMD Opteron Processor 6276 with 1.4GHz per CPU and 256 GB of RAM and a 32 core
Intel Xeon with 2.6GHz per CPU and 256 GB of RAM. All runtimes were measured in
wall-clock time. During the evaluation we noticed irregularities in the runtime of the ATPs.
When running a single instance of an ATP, the time needed to solve a problem often dif-
fered from the result we observed when running several instances in parallel, even when
using less than the maximum number of cores. It turns out that the number of cores used
during the evaluation heavily influences performance. The more cores, the worse the ATPs
performed. We were not able to completely determine the cause of this behaviour, but the
speed of the hard disk drive, shared cache and process swapping are all possible explana-
tions. Reducing the hard disk drive load by changing the behavior of MalLeS from loading
all models at the very beginning to only when they are needed did lead to more (and faster)
solved problems. Eventually, all evaluation experiments (apart from the strategy searches
for the sets of preselected strategies) were redone using only 20 out of 64 / 14 out of 32
cores and the results reported here are based on those runs.

How Good are the Predictions? Apart from the total number of solved problems, the
quality of the predictions is also of interest. The training data of MaLeS is heavily biased
because unsolvable problems are ignored (Section 3.3.1). Reducing the number of training
problems during the update phase makes the predictions even less reliable. For some strate-
gies, the average difference between the actual and predicted runtimes exceeds 40 seconds.
Two heuristics were added to help MaLeS to deal with this uncertainty. First, the predicted
runtime must always exceed the minimal runtime of the training data. This prevents unrea-
sonably low (in particular negative) predictions. Second, if the number of training problems
is less than a predefined minimum (set to 5) then the predicted runtime is the maximum
runtime of the training data.
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The Impact of the Learning Parameters Table 2 shows the learning parameters of
MalLeS. Tolerance, StartStrategies and StartStrategiesTime had the greatest impact in our
experiments. Tolerance influences the number of strategies used in MaLeS. A low value
means more strategies, a high value less. For E and LEO, higher values (1.0 — 15.0 sec-
onds) gave better results since fewer irrelevant strategies were run. Satallax performed
slightly better with a low tolerance which is probably due to the fact that it can solve almost
every problem in less than a second. The values for StartStrategies and StartStrategiesTime
determine how many problems are left for learning. Ten StartStrategies with a 1 second
StartStrategiesTime are good default values for the provers tested. For LEO-II we found
that the number of solved problems barely increased after 5 seconds, and hence changed the
number of StartStrategies to 5.

5 Future Work

Apart from simplifying the installation and set up, there are several other ways to improve
MalLeS. We present the most promising ones.

Automated Parameter Configuration Parameters like Tolerance, StartStrategies and
StartStrategiesTime could and should be set automatically. We hope to implement this in
the next version of MalLeS.

Features The quality of the runtime prediction function is limited by the quality of the
features. Adding new features and/or integrating feature selection algorithms could increase
the prediction capabilities of MaLeS.

Strategy Finding As an alternative to randomized hill climbing, different search algo-
rithms should be supported. In particular simulated annealing and genetic algorithms seem
promising. The biggest problem of the current implementation, the time it requires to find
good strategies, could be improved by using a clusterized local search principle similar to
the one employed in BliStr [26].

Strategy Prediction The runtime prediction functions are the heart of MaLeS. Machine
learning offers dozens of different regression methods which could be used instead of the
kernel methods of MaLeS. A big drawback of the current approach is that it scales badly
due to the need to invert a new matrix after every tried strategy. One possible solution for
eliminating the need for matrix computations and also the dependency on Numpy and Scipy
would be a nearest neighbor algorithm.

6 Conclusion

Finding the best parameter settings and strategy schedules for an ATP is a time consuming
task that often requires in-depth knowledge of how the ATP works. MaleS is an automatic
tuning framework for ATPs that, given the possible parameter settings of an ATP and a set
of problems, finds good search strategies and creates individual strategy schedules. MalLeS
currently supports E, LEO-II and Satallax and can easily be extended to work with other
provers.
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Experiments with the ATPs E, LEO-II and Satallax showed that the MaLeS version per-
forms at least comparably to the respective default strategy selection algorithm. In some
cases, the MaleS optimized version solves considerably more problems than the untuned
ATP.

MalLeS aims to simplify the workflow for both ATP users and developers. It allows ATP
users to fine-tune ATPs to their specific problems and helps ATP developers to focus on
actual improvements instead of time-consuming parameter tuning.
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Appendix
Using MaL.eS

MalLeS aims to be a general ATP tuning framework. In this section, we show how to setup
E-MalLeS, LEO-MaLeS and Satallax-MaleS, tuning any of those provers on new problems,
and how to use MaLeS with a completely new prover. The first step is to clone the MalLeS
git repository via

git clone https://code.google.com/p/males/

MalLeS requires Python 2.7, Numpy 1.6 or later, and Scipy 0.10 or later [12]. Installation
instructions for Numpy and Scipy can be found at http://www.scipy.org/install.html.

E-MalLeS, LEO-MalLeS and Satallax-MaLeS

Setting up any of the presented systems can be done in three steps.

1. Install the ATP (E, LEO-II or Satallax)
Run the configuration script with the location of the prover as argument. For example

EConfig.py --location=../E/PROVER

for E-MaLeS.
3. Learn the prediction function via

MaleS/learn.py
After the installation, MaLeS can be used by running
MaLeS/males.py -t 30 -p test/PUZ001+1.p

where —¢ denotes the time limit and — p the problem to be solved.
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Tuning E, LEO-II or Satallax for a New Set of Problems

Tuning an ATP for a particular set of problems involves finding good search strategies and
learning prediction models. The search behavior is defined in the the file setup.ini in the
main directory. Using the default search behavior, E, LEO-II and Satallax can be tuned for
new problems as follows:

1. Install the ATP (E, LEO-II or Satallax)
Run the configuration script with the location of the prover as argument. For example

EConfig.py --location=../E/PROVER

for E-MalLeS.

3. Store the absolute pathnames of the problems in a new file with one problem per line
and change the PROBLEM parameter in setup.ini to the file containing the problem
paths.

4. Find promising strategies by searching with a short time limit (which is the default
setup)

MaLeS/findStrategies.py

5. (Optional) Run all promising strategies for a longer time. For this several parameters
need to be changed.

(a) Copy the value of ResultsDir to TmpResultsDir.

(b) Copy the value of ResultsPickle to TmpResultsPickle.

(c) Change the value of ResultsDir to a new directory.

(d) Change the value of ResultsPickle to a new file.

(e) Change Time in search to the maximal runtime (in seconds), e.g. 300.
(f) Set FullTime to True.

(g) Set TryWithNewDefaultTime to True.

6. (Optional) Run findStrategies again.

MaLeS/findStrategies.py
7. The newly found strategies are stored in ResultsDir. MaLeS can now learn from these
strategies via

MaLeS/learn.py

For completeness, Table 2 contains a list of all parameters in setup.ini with their
descriptions.

Using a New Prover

The behavior of MalLeS is defined in three configuration files: ATP.ini defines the ATP and
its parameters, setup.ini configures the searching and learning of Mal.eS and strategies.ini
contains the default strategies of the ATP that form the starting point of the strategy search
for the set of preselected strategies. To use a new prover, ATP.ini and strategies.ini need to
be adapted. Table 3 describes the parameters in ATP.ini.

The section Boolean Parameters contains all flags that are given without a value. List
Parameters contains flags which require a value and their possible values. MaleS searches
strategies in the parameter space defined by Boolean Parameters and List Parameters.
Running EConfig.py creates the configuration file for E which can serve an example.
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Table 2 Parameters of MaLeS

Description

Settings Parameter

TPTP

TmpDir

Cores

ResultsDir
ResultsPickle
TmpResultsDir
TmpResultsPickle
Clear

LogToFile
LogFile

Search Parameter

Time
Problems
FullTime

TryWithNewDefaultTime

Walks
WalkLength

Learn Parameter

Features

FeaturesFile
StrategiesFile
KernelFile
RegularizationGrid
KernelGrid

CrossValidate
CrossValidationFolds
StartStrategies
StartStrategiesTime

CPU Bias

Tolerance
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The TPTP directory. Not required.

Directory for temporary files.

How many cores to use.

Directory where the results of the findStrategies are stored.

Directory where the models are stored.

Like ResultsDir, but only used if TryWithNewDefaultTime is True.
Like ResultsPickle, but only used if TryWithNewDefaultTime is True.
If True, all existing results are ignored and MalLeS starts from scratch.
If True, a log file is created.

Name of the log file.

Maximal runtime during search.

File with the absolute pathnames of the problems.

If True, the ATP is run for the value of Time. If False, it is run for
the rounded minimal time required to solve the problem.

If True, findStrategies uses the best strategies from TmpResultsDir
and TmpResultsPickle as a start strategies for a new search.

How many different strategies are tried in the local search step.

Up to this many parameters are changed for each strategy in the

local search step.

Which features to use. Possible values are E for the E features and
TPTP for the TPTP features.

Location of the feature file.

Location of the strategies file.

Location of the file containing the kernel matrices.

Possible values for A.

Possible values for 0.

If False, no crossvalidation is done during learning. Instead the first
values in RegularizationGrid and KernelGrid are used.

How many folds to use during crossvalidation.

Number of start strategies.

Runtime of each start strategy.

This value is added to each runtime before learning. Serves as a
buffer against runtime irregularities.

For a strategy s to be considered as a good strategy, there must be
at least one problem where the difference of the best runtime of

any strategy and the runtime of s is at most this value.
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Table 2  (continued)

Description
Run Parameter
CPUSpeedRatio Predicted runtimes are multiplied with this value. Useful if the
training was done on a different machine.
MinRunTime Minimal time a strategy is run.
Features Either TPTP for higher order features or E for first order features.
StrategiesFile Location of the strategies file.
FeaturesFile Location of the feature file.
OutputFile If not None, the output of MaLeS is stored in this file.

Different ATPs have (unfortunately) different input formats for search parameters.
MalLeS currently supports three formats: E, LEO or Satallax. Each format corresponds to
the format of the respective ATP. Table 4 lists the differences. New formats need to be
hardcoded in the file Strategy.py.

Strategies defined in strategies.ini are used to initialize the strategy queue during the
strategy searching for the set of preselected strategies. The default ini format is used. Each
strategy is its own section with each parameter on a separate line. For example

[NewStrategyl12884]

FILTER.START = 0

ENUM_IMP = 100
INITIAL_SUBTERMS_AS_INSTANTIATIONS = true
E_TIMEOUT = 1

POST_CONFRONT3_DELAY = 1000

FORALL_DELAY = 0

LEIBEQ.TO_PRIMEQ = true

At least one strategy must be defined. After the ini files are adapted, the new ATP can be
tuned and run using the procedure defined in the last two sections.

CASC Results

MalLeS 1.2 is the third iteration of the MaLeS framework. E-MaLeS 1.0 competed at CASC-
23, E-MalLeS 1.1 at CASC@Turing and CASC-J6, and E-MaLeS 1.2 at CASC-24. Satallax-
MalLeS competed for the first time at CASC-24. We give an overview of the older versions,
the CASC performance and the changes over the years.

Table 3 Parameters in ATP.ini

ATP Settings Parameter Description

binary Path to the ATP binary.

time Argument used to denote the time limit.

problem Argument used to denote the problem.

strategy Defines how parameters are given to the ATP. Three styles are supported:
E, LEO and Satallax.

default Any default parameters that should always be used.
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Table 4 ATP Formats

Format Description

E Parameters and their values are joined by = if the parameter starts with --. Else the
parameter is directly joined with its value. For example - - -ordering=3 -sinel3.

LEO Parameters and their values are joined by a space. For example - - -ordering 3.

Satallax The parameters are written in a new mode file M. The ATP is then called with ATP -m M.

Table 5 Results of the FOF division of CASC 23

ATP Vampire 0.6 Vampire 1.8 E-MalLeS 1.0 EP 1.4 pre
Solved 269/300 263/300 233/300 232/300
Average CPU Time 12.95 13.62 18.85 22.55
Table 6 Results of the FOF division of CASC-J6

ATP Vampire 2.6 E-MaleS 1.1 EP 1.6 pre Vampire 0.6
Solved 429/450 377/450 359/450 355/450
Average CPU Time 13.17 17.85 13.46 11.81

Table 7 Results of the FOF division of CASC@Turing

ATP Vampire 2.6 E-MaleS 1.1 EP 1.6 pre Vampire 0.6
Solved 469/500 401/500 378/500 368/500
Average CPU Time 20.26 20.81 14.49 16.40
Table 8 Results of the FOF division of CASC 24

ATP Vampire 2.6 Vampire 3.0 EP 1.8 E-MalLeS 1.2
Solved 281/300 274/300 249/300 237/300
Average CPU Time 12.24 1091 29.02 14.52
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Table 9 Results of the THF division of CASC 24

ATP Satallax-MaLeS 1.2 Satallax Isabelle 2013
Solved 119/150 116/150 108/150
Average CPU Time 10.42 11.39 54.65
CASC-23

E-MaLeS 1.0 [10] was the first MaLeS version to compete at CASC. Stephan Schulz pro-
vided us with a set of strategies and information about their performance on all TPTP
problems. This data was used to train a kernel-based classification model for each strategy.
Given the features of a problem p, the classification models predict whether or not a strat-
egy can solve p. Altogether, three strategies were run. First E’s auto mode for 60 seconds,
then the strategy with the highest probability of solving the problem as predicted by a Gaus-
sian kernel classifier for 120 seconds. Finally the strategy with the highest probability of
solving the problem as predicted by a linear (dot-product) kernel classifier was run for the
remainder of the available time. E-MaLeS 1.0 won third place in the FOF division. Table 5
shows the results.

CASC@Turing and CASC-J6

E-MalLeS 1.1 [8] changed the learning from classification to regression. Like E-Mal.eS
1.0, E-MaLeS 1.1 learned from (an updated version of) Schulz’s data. Instead of predict-
ing which strategy to run, E-MaLeS 1.1 learned runtime prediction functions. The learning
method is the same as the one presented in this chapter, without the updating of the pre-
diction functions. E-MaLeS 1.1 first ran E’s auto mode for 60 seconds. Afterwards, each
strategy was run for its predicted runtime, starting with the strategy with the lowest pre-
dicted runtime. E-MaLeS 1.1 won second place in the FOF divisions of both CASC @ Turing
(Table 6) and CASC-J6 (Table 7). It also came fourth in the LTB division of CASC-J6.

CASC-24

E-MaLeS 1.2 and Satallax-MaLeS 1.2 competed at CASC 24, both based on the algo-
rithms presented in this chapter. E-MaLeS 1.2 used Schulz’s strategies as start strategies for
find _strategies. 1t is the first E-MaLeS that was not based on the CASC version of E (E 1.7
in E-MaLeS 1.2 vs E 1.8). E-MaLeS 1.2 got fourth place in the FOF division, losing to two
versions of Vampire, and E 1.8. Several significant changes were introduced in E 1.8, in
particular new strategies and E’s own strategy scheduling. Satallax-MaLeS won first place
in the THF division before Satallax. The results can be seen in Tables 8 and 9.
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