J Autom Reasoning (2013) 50:217-228
DOI 10.1007/s10817-012-9267-0

Methods of Lemma Extraction in Natural
Deduction Proofs

Karol Pak

Received: 6 December 2011 / Accepted: 10 October 2012 / Published online: 4 November 2012
© The Author(s) 2012. This article is published with open access at Springerlink.com

Abstract The existing examples of natural deduction proofs, either declarative
or procedural, indicate that often the legibility of proof scripts is of secondary
importance to the authors. As soon as the computer accepts the proof script, many
authors do not work on improving the parts that could be shortened and do not
avoid repetitions of technical sub-deductions, which often could be replaced by a
single lemma. This article presents selected properties of reasoning passages that
may be used to determine if a reasoning passage can be extracted from a proof script,
transformed into a lemma and replaced by a reference to the newly created lemma.
Additionally, we present methods for improving the legibility of the reasoning that
remains after the extraction of the lemmas.

Keywords Lemma - Extraction - Natural - Deduction - Legibility

1 Introduction

The databases of formalized mathematics are constantly being enlarged and are
growing into considerable sizes because of adding more and more developments.
Unfortunately, this enlargement of the databases is not always accompanied by
improvement in the quality of formalization (see [4, 8, 12]). The readability is
a subjective notion and a matter of individual taste, but the general idea that
formal reasoning should be as similar as possible to informal mathematical proofs is
unquestionable. However, an analysis of existing formalized proofs, especially long
and more complex ones, leads to the conclusion that the readability of proof scripts
might be very far from the general goal. Often, deductions that are correct for the
verification system, might be very chaotic from the point of view of a human reader,
and require a lot of effort to understand. Many proof authors seem to ignore this

K. Pak (<)
Institute of Informatics, University of Biatystok, Biatystok, Poland
e-mail: pakkarol@uwb.edu.pl

@ Springer

218 K. Pak

problem and hope that maybe in the future there will be automatic tools available
for detecting and shortening reasoning passages, and also for eliminating repetitions
of sub-deductions that could be replaced by a single auxiliary lemma.

Methods of improving proof readability based on finding reasoning passages
which can be shortened and on better linearisation of argument were described in
[7, 8] However, new problems appear while trying to specify formal properties of
deduction passages, which, deserve to be called a lemma. In practice, the choice of
passages to be extracted as auxiliary lemmas depends on the knowledge and experi-
ence of a user rather than on a formal specification. The ability to automatically find
such passages that we call packets, is crucial e.g. for identifying the main idea of a
proof based on lemma extraction from existing deductions (see [9]).

Two independent methods of lemma extraction can be considered, either based
on capsulation of local deduction, or on generating cuts in the reasoning. Preliminary
analysis of the notion of packet shows that the extracted reasoning packets must be
disjoint and have a limited number of assumptions and conclusions. The subject of
this article is to analyse an additional property and the method of introducing cuts in
existing reasonings, which guarantee that the modified reasoning and the generated
auxiliary lemma are correct for the verification system. The experiments are based
on the notion of natural deduction proofs used in the Mizar system (see [2, 5, 10]).

2 The Selected Methods of Extracting Packets from Deductions

A common expectation of many authors who formalize mathematics using Mizar is
that the readability of proofs would be improved if one could automatically divide
the whole reasoning into a minimal number of passages, each of which presents
an important step of the reasoning. This expectation stems from popular methods
of improving the legibility of informal mathematical proofs, where complicated
theorems are proved

— by highlighting main reasoning steps within the proof,
— or by using a series of auxiliary lemmas.

Therefore, highlighting the main idea of a proof based on the methods used for
informal deductions seems to be a desirable direction for improving the legibility
of formal proofs.

We can obtain the described properties in existing deduction in two ways.

Ist method: “Encapsulation” of less important (often technical) passages of sub-
deduction (packets) on the deeper level of a proof in the form of a nested lemma
whose proof is generated on the basis of deduction steps extracted from the
packet. The extracted packet is then replaced in the reasoning by a new step
that describes the information carried by the packet.

2nd method: “Removal” of packets outside of the proof. The packets are replaced by
new steps with references to the external lemmas that were generated from the
removed packets.

In both cases the statement associated with a new step of reasoning is a conjunc-
tion of statements that makes it possible to use the information included inside the
packet outside its area. The necessity of introducing a new step results from the fact

@ Springer

Methods of Lemma Extraction in Natural Deduction Proofs 219

that together with the extracted packet all reference arcs leading from interior of
the packet to outside its area must also be removed. The reference arcs represent
the flow of information between a step—a statement (the head of the arc) and a
previously justified step—a premise (the tail of the arc) used as the justification of
that statement. To ensure the correctness of the modified reasoning, all premises
of external steps originally contained in the packet are replaced by the reference
to the new step. The steps within a packet that contain statements used outside
the packet’s area will be called packet’s conclusion. Similarly, the steps outside the
packet’s area that contain statements used within the packet’s steps will be called
packet’s assumption.

To illustrate how to modify the reasoning, we use an abstract model of proof. The
abstract proof graph was introduced in [8]. Let us recall that the graph is a triple
(V, M, A) such that

1. (V, M) is a forest of arborescences that represent dependencies between a step
justified by a nested lemma (the head of the arc) and a step contained in that
lemma (the tail of the arc),

2. (V, A) represents the flow of information contained in reference arcs, and e.g.,
dependence between steps which introduce variables into the reasoning and
steps which use these variables in the expressions,

3. (V, MU A) is an acyclic digraph with the following properties: for each (u, v) €
A every direct successor of u is a predecessor of v in the forest (V, M).

Let us consider the graph that represents a justification for an example statement of
the form o — ¢ with two indicated packets (Fig. 1) and modifications of the proof
graph that arise from the application of the two extraction methods described above
(Fig. 2). The arrows — in the pictures represent elements of M and the solid arrows
represent elements of A—reference arcs. The additional packet P is analysed in the
further part of this article.

We apply the Ist method here by capsulation of the packets 1 and 2 fragments of
the reasoning. In this case, new intermediary formulas are added, y A §; and ¢, that
represent output of the capsules. When the 2nd method is used, the arcs that lead
to the packets are turned to explicit assumptions of the extracted lemmas, “assume

a— ¢

0
k acket 2

a— ¢

proof
assume A: o}
Bl: 1 by A;
B2: 2 by A;
C: v by Bl1,B2;
D1: 61 by C;

thus D2: 6, by A,B2,C;
) E: eby D1,D2;
thus F': ¢ by E;

end;

packet P

Fig. 1 The abstract proof graph that represents a justification of an example statement of the form
a — ¢ and a proof script written in the Mizar style

@ Springer

220 K. Pak

1st method a—¢

proof
assume A: a;
Newl: v A d2

packet 2 proof

Bl: by A;
B1 by

a— ¢

B2: B2 by A;
thus C': v by B1,B2;
thus D2: 02 by A,B2,C};
end;
thus F': ¢
proof
D1: §1 by Newl;
E: eby D1,Newl;
thus F': ¢ by E;

end;
end;
2nd method
packet 1 packet 2 Lemmal: a — (y A d2)
proof
a— (yAd2) (YAd2) = ¢ assume A’: a;
B1: 81 by A’
B2: B33 by A’

thus C: v by B1,B2;
thus D2: §2 by A,B2,C;
end;

assume
[e%
l

Lemma2: (yAd2) = ¢
proof
assume CAD2: v Ad2;
D1: 61 by CAD2;
E: eby D1,CAD2;
thus F’: ¢ by E;

end;
a— ¢
proof
assume A: «;

Newl: v A d2 by Lemmal;
thus F': ¢ by Newl, Lemma?2;
end;

Fig. 2 The modification of the abstract proof graphs (presented in the Fig. 1) and proof scripts
written in the Mizar style that represent two extraction methods

a” and “assume y A 8,”. As in the Ist method, new intermediary formulas y A §;, ¢
are also added in the second one, but in that case they represent conclusions of the
extracted lemmas in the main reasoning.

The analysis of the modifications to the proof graph leads to the conclusion that
the Ist method of extraction provides a reader only with the information about the
theses obtained within a packet. Finding the assumptions which are necessary to
prove these theses requires that the reader examine all external references existing
in the packet. If the number of assumptions is big—which may become apparent if
the 2nd method is attempted putting them in the statement does not seem to be a
good solution. The application of the 2nd method creates the statements associated
with a lemma generated from the packet; the statement can generally be represented
by the implication “assumptions” — “theses”. However, introducing the explicit
assumptions enlarges the proof by adding one vertex that introduces assumptions

9«

in the proof of the lemma (“assume o”, “assume y A 8,”).

@ Springer

Methods of Lemma Extraction in Natural Deduction Proofs 221

The application of the 2nd method can also be used to find and remove repeated
passages of a sub-deduction by replacing several packets with references to a gener-
ated lemma. This method makes it possible to compare packets independently from
the context of reasoning and chosen proof methods, e.g., by testing the equivalence
of generated lemma statements, which allows further simplification of the proof
structure.

In our analysis, the extracted packets coincided with coherent passages of rea-
soning. The chosen packets were disjoint and had the property of being closed with
respect to directed paths, i.e., directed paths connecting two vertices belonging to
the packet must be included in the packet. To show the correspondence between the
property of closedness and the composition of the packet’s statement, let us consider
the packet P contained in the reasoning presented in Fig. 1 that contains vertices: 8,
Ba, 82, and €. The packet bridges the end of the directed path g — y — §,, which
goes out of the area of P.

Regardless of the chosen extraction method of the packet P, the path generates
a directed cycle that disallows a correct modification of the abstract proof graph.
It yields from the fact that new vertices replacing the extracted packet P uses as
its assumption the statement y that is the conclusion of statement g;, which is
simultaneously the conclusion of the packet P. Note that the application of the 2nd
method generates alemma with the statement (@ A y A 81) — (B1 A B2 A €), which we
can justify on the basis of the reasoning included in the packet P. However, it is not
possible to use this lemma correctly in the modified reasoning, because justification
of one of the implication’s assumptions (y) requires using two conclusions of the
implication (81, B).

Nevertheless, we can correctly extract the packet from the reasoning, because,
in fact, the reasoning included in the packet is represented by two implications
(¢ = (B1 A B2)) A ((a Ay ASy) — €). Generally, the reasoning included in a packet
can be represented by a conjunction of implications, where the consequent of a given
implication is one of the packet’s conclusions t, and the antecedent is a conjunction
of the packet’s assumptions that are predecessors of t in the abstract proof graph. In
the sequel we will call this conjunction of implications the basic packet’s statement.
Naturally, any formula that is equivalent to the basic packet’s statement (e.g.
a— (B1 A B A ((y A8)) — €))) can be the statement that represents reasoning
included in the packet.

The statement of the modified reasoning that replaces the extracted packet has a
modified basic packet’s statement. In this statement these packet’s assumptions that
are predecessors of all the packet’s conclusions (e.g. « in the packet P, Fig. 3) are
omitted.

Extraction of Non-Closed Packets The extraction of the packets that are not closed
with respect to directed paths in an abstract proof graph requires a more advanced
modification of the graph. The reasoning justifying the packet’s statement must
be constructed from a series of independent and separate proofs that justify every
single basic implication. Such a solution is generally accompanied by duplicating
the vertices from the packet, because the proof of each implication contains all
vertices of the packet that in the proof graph are simultaneously the successor
of that implication’s antecedent and the predecessor of that implication’s conse-
quent. Naturally, a proper selection of the statement that will be equivalent to the

@ Springer

222 K. Pak

a% (B1 A B2 A 7/\61%6

(—)

ﬂ1/\52/\(’y/\(51—>6)]

Fig. 3 The modification of the abstract proof graphs (presented in Fig. 1) which represent the
extraction of the packet P

conjunction of implications, where the implications that have identical assumptions
are conjoined (using the law of conjoining antecedent in conjunction), and where
common antecedents of the implications were extracted (using the law of exportation
and the law of conjoining consequent in conjunction) enables minimization of the
number of duplicated vertices.

The modification of the reasoning part that is left after the extraction of such
a packet is more complicated. To each implication included in the basic packet’s
statement

(assumption| A assumption, A ... A assumption,) — statement, (1)
a new reasoning step is assigned:

statement by reference to assumption,,
reference to assumption,, ..., reference to assumption,,, (2)
reference to the step which replaces the packet;

The references that before the modification indicated the packet’s conclusion, in
the modified reasoning indicate the respective reasoning steps obtained using the
basic implications. The modification of the abstract proof graph (Fig. 1) containing
the packet P is presented in Fig. 3.

Naturally, steps generated of the form 2 are sufficient to preserve reasoning
correctness, but some of them could be removed by an appropriate modification
of reasoning. In Fig. 3, the arc from ; A B, to y could be replaced by an arc from
Bi A Ba A (y A8 — €) to y, without affecting the reasoning correctness in the Mizar
system, and then the step 8; A B, could be removed, as a step that is not used in the
reasoning. We can solve this problem with auxiliary tools like RELINFER, INACC
(see [6, 7, 11]), RENINFER (see [8]) available in the Mizar system. These tools
one can first detect the references (which indicate steps of the form 2) that can
be replaced by all references used to justify these steps. Then one can remove all
deduction steps which in consequence are not used in any justification.

The presented group of modifications that consist of partitioning of reasoning into
passages included in the non-closed packet (where every single passage justifies the
implications from basic packet’s statement), does not raise doubts about properties

@ Springer

Methods of Lemma Extraction in Natural Deduction Proofs 223

of an abstract proof graph in the modified proof graph (see [8]). In particular,
the property of an acyclic character of this graph is presented (see [3]). However,
modifications of the part that remains after the packet extraction from the reasoning
are not so intuitive.

Theorem 1 The modification of an abstract proof graph resulting from the extraction
of a packet that is not closed with respect to directed paths, does not generate a directed
cycle in this proof graph.

Proof Let us consider an abstract proof graph 9§ and its modification ‘,T3 Suppose,
contrary to our claim, that there exists a directed cycle a of ‘. By definition, every
abstract proof graphs is acyclic, hence a has to cross new vertices introduced during
modifications. To obtain a contradiction, we show that it is possible to replace every
maximal subpath of a, which is given by new vertices, by a path of ‘3 in such a way
that the modified cycle a will be a cycle of ‘B.

Let us take a subpath a’ = a9 — a; — a — ... = ax — a4 of asuch thata; is a
new vertex of ‘B fori = 1,2, ..., k and ao, ax4; are vertices of ‘3. It is easy to check
that only two cases are possible:

— k=1, ap is an assumption a of the packet; a; is the statement s’ which is a
consequent of the selected basic implication which uses a in justification; a, is
a statement which uses ¢’ in justification,

— k=2, ais an assumption of the packet, which is a predecessor of all packet’s
conclusion; a; is the new step which replaces packet in reasoning; a, is the
statement s which is a consequent of the selected basis implication; a3 is a
statement which uses s in justification.

In both cases, a’ describes a relation between the packet’s assumption and a
conclusion of the packet’s conclusion proved, among others, on the basis of this
packet’s assumption. However, from the construction of the basic packet’s statement
it results that in 3 the packet’s assumption must have been the predecessor of the
packet’s conclusion, so simultaneously it must have been the predecessor of this
conclusion. Consequently, each directed sequence of the new vertices in cycle ¢ of 3
can be replaced by a corresponding directed sequence of vertices of ‘3. The sequence
formed in that way contradicts the assumption of the acyclic character of 3. O

The process of extracting packets that are not closed with respect to directed paths
does not lead to errors in the modified reasoning. Extraction of packets whose basic
packet’s statements consists of too many implications does not improve the legibility,
and even makes the understanding of the proof’s concept more difficult.

3 The Methods of Packet’s Extraction which Consider the Ordering Arc

So far in this article we have consciously ignored the information included in the
abstract proof graph resulting from using variables in the reasoning. Intuitively,
the use of variables in the packet should cause only appearance of the universal
quantifiers in the beginning of the packet’s statement, binding these variables.

@ Springer

224 K. Pak

Now, let us focus on dependencies induced by the variables. Note that these
dependencies can influence the closedness with respect to directed paths used in
the process of packet extraction. Therefore, it is necessary to examine the existence
of a directed path in the abstract proof graph that can be constructed from the
reference arcs and the ordering arcs. Let us remind that the dependencies between
the introduction of the variable and its use in an abstract proof graph are called the
ordering arcs (see [8]).

The process of packet extraction from the reasoning is not modified significantly
if the packets fulfil the following condition: if new variables are introduced to the
packet’s reasoning, then these variables are used only within this packet.

The application of the 2nd method presented in the previous section now gen-
erates analogous packet’s statement preceded by an extra universal quantifier that
binds variables used in the packet’s statement. Additionally, this universal quantifier
creates the need to extend the proof from the packet by adding a new step that
introduces these bound variables to the reasoning.

The Ist method of hiding packets on the deeper nesting level is very similar to
the method which does not consider the variables in the reasoning. The differences
appear if the extracted packet P has an outgoing directed path that contains the
vertices introducing to the reasoning the variable used in the packet’s statement.
More precisely, there is a directed path from x € P, to another y € P that goes
through a vertex z ¢ P and z is the tail of some ordering arc, whose head is the
assumption or the conclusion of the packet P.

In that case, the statement used in the new step replacing the extracted packet,
has to be equivalent to the modified basic packet’s statement and additionally has to
contain all universal quantifiers that bind the variables, introduced in the vertices (as
z) and used in the statement of the packet P.

The ordering of all introduced universal quantifiers in the packet’s statement,
regardless of the chosen extraction method has to coincide with the topological
sorting of verities of the proof graph’s sub-graph (see [3]) that includes all vertices
introducing variables that are bound by the universal quantifiers which are in the
packet’s statement. The arc (x, y) is an arc of this sub-graph if and only if x # y
and there is a directed path from x to y in the proof graph, where the directed
path contains only the ordering arcs. Moreover, the introduced universal quantifiers
must be distributed in a way that they precede only these conjuncts of the packet’s
statement which use the variables bound by these quantifiers. This is possible since
conjunction is distributive over universal quantifiers and then the property that
enables the elimination of quantifiers that involve a variable not occurring within
the scope of a quantification for that variable.

The case when a variable created outside of the area of the packet is used in
the packet’s reasoning but does not occur in any assumption or any conclusion is
noteworthy. In that case only the properties of this variable’s type are used and its
every occurrence can be replaced e.g. by “the global choice” of variable of this type
(see [2]).

The extraction of packets containing the reasoning that has the introduced
variables used outside of the packet, causes much more problems connected with
the reasoning modifications that result from the packet’s extraction.

To simplify further analysis we assume that the extracted packets do not contain
the skeleton steps (see [2]) that introduce the universal and existential quantifiers

@ Springer

Methods of Lemma Extraction in Natural Deduction Proofs 225

and the implications. To this aim we also assume that the packet does not contain
the steps that introduce local functors and local predicates. It also seems reasonable
to expand in the reasoning all abbreviations of terms and variables, defined in the
skeleton steps which introduce the existential quantifiers to the reasoning.

To describe how the packet’s statement is created, let us set the family of the
packet’s steps introducing to the reasoning the variables used from the packet as S =
{s1, 82, ..., sp}; and the family of steps that do not belong to the packet but introduce
to the reasoning the variables used within this packet as R = {ry,r2, ..., ry}. Let us
also set the sub-graf & of the proof graph that contains the steps of families S, R, and
fulfils the following condition: the arc (x, y) is the arc of this sub-graph if and only if
x # y and there is the directed path from x to y in proof graph that contains only the
ordering arcs.

Let us define two recursive families of vertices {&;}2°,, {A;}2,, where & € S, A; C
R,foreachi=1,2,....Mark A as the family of these vertices with R, such that no
vertex in A, is a successor of a vertex in S.

The vertex v is an element of family & (A;y,) if and only if

- veS(weR),

— there is the directed path that leads from some vertex that belongs to A; (&) to
v, and this path is given by concatenating two sequences: the sequence of the
vertices that belong to 4; (&;) and the sequence of the vertices that belong to S
(R),

— and every directed path that leads from some vertices that belongs to A; (&) to v,
is given by concatenating two sequences: the sequence of the vertices that belong
to A; (&) and the sequence of the vertices that belong to S (R),

wherei=1,2,....

Let us fix the ordering of the variables that are introduced by steps from the
families A;, &;, similarly as we ordered all variables bound by the universal quantifiers
using the topological sorting for the packet’s statement. Let us set respectively a;, ¢;
for these ordering, where i = 1, 2, Then we get the statement’s formulation from
the passages of formulas obtained by the successive steps (written in Mizar style):

1° for the ordered variables a, holds the conjunction of the basic packet’s state-
ment that use only variables belong to a,

2° & the packet’s assumptions necessary to justify the existence of the variables that
belong to e (called A2°) implies ex the ordered variables e, st conjunction of
the basic packet’s statement that use only variables which belong to a; and e, but
were not indicated in 1°. Moreover, in the antecedent of each implication of the
basic packet’s statement, the packet’s assumptions A2° were omitted

3° & for the ordered variables a, holds conjunction of the basic packet’s statement
that use only variables which belong to ay, ¢1, and a, that were not indicated in 1°
and 2°. Moreover, similarly as in A2°, in the antecedent of each implication of the
basic packet’s statement, the packet’s assumptions A2° were omitted

4° & the packet’s statement necessary to justify the existence of the variables that
belong to e¢,, where the assumption of packet A2° were omitted (called A4°)
implies ex the ordered variables ¢, st conjunction of the basic packet’s
statement that use only variables which belong to ay, ¢, a», and ¢, but were not

@ Springer

226 K. Pak

indicated in 1°, 2° and 3°. Moreover, in the antecedent of each implication of the
basic packet’s statement, the packet’s assumptions A2°, A4° were omitted

The presented packet’s statement has the necessary information about the reasoning
contained in the packet that suffices to provide the correctness of the reasoning part
remaining after the packet’s extraction. Let us note that the packet’s statement can be
generalized, e.g., if in the packet the variable x of type ® was constructed, such that
P(x) holds, and there is the justified packet’s conclusion Q(x), then the information
about this reasoning is formulated as: ex x be ® st Q (x), despite the possibility of
justification of a more general fact: (ex xbe ® st Q(x)) & (for xbe © st P (x)
holds Q (x)). Such generalization is not necessary to provide the correctness of the
modified reasoning.

The extraction of such packets causes many modifications of the reasoning. In
this article, we will only say that using this packet’s statement requires adding to the
reasoning new steps which introduce the ordering variables ¢y, ¢,, The steps have
the following form:

considerordered variables ¢; such that
the further part of the packet’s statement that occurs after “st” in the step 2i°
by the references to the packet’s assumptions A2i°, the reference to the step’ 3)
introducing the variables ¢;_y (i > 1) or the extracted packet (i = 1);

wherei =1, 2, For a fixed i, this step in the proof graph must be the successor of
the packet’s assumptions A2i° and of the steps that belong to A;.

4 The Methods of Eliminating Hidden Information

It should be noted that the ordering arcs which contain information about the
dependencies between the variable’s introduction and its use, can also describe the
reasoning’s dependence, which intuitively corresponds to the reference arcs. Let us
analyze the reasoning passage written in the Mizar language (Fig. 4) to present the
sort of information that can be transmitted by the ordering arcs in an abstract proof
graph. The statement f is one-to-one & f is onto contained in this reasoning does
not require using label A1 for justification. The information about the function f’s
properties in the Mizar system results from the fact that label A2 is used in the
justification and points to the statement that uses the identifier P (the statement
P is Function-like can be replaced by the trivial P = P).

Finding the ordering arcs in an abstract proof graph that contains information
about these “hidden reference arcs” only on the basis of the proof graph is not possi-
ble. Thus, it is also not possible to determine the set of all of the packet’s assumptions
on the basis of the reference arcs. Naturally, the probability of encountering “hidden

Fig. 4 The reasoning passage let X be non empty set ;

presenting the hidden let f be Function of X, X ;

reference arcs assume Al: f is one-to-one onto ;
reconsider P=f as Permutation of X by Al, FUNCT_2: def 4 ;
A2: P is Function-like ;
A3: f is one-to-one & f is onto by A2 ;

@ Springer

Methods of Lemma Extraction in Natural Deduction Proofs 227

reference arcs” during the extraction of the packets that are not closed with respect
to directed paths is incomparably greater than with the packets that possess this
property.

To avoid problems with “hidden reference arcs”, the modification which removes
the Mizar construction reconsider from the proof is necessary. Generally, this
modification requires two steps. The first step should guarantee that the construction
reconsider does not overwrite variable identifiers. Thus, in this step we replace:

reconsider {Equating-List, } Variable-Identifier {, Equating- List}
as Type-Expression Simple-Justification ;

4)

by

reconsider {Equating-List, } New-Variable-Identifier = Variable-Identifier
{, Equating-List} as Type-Expression Simple-Justification;

©)

and we replace all occurrences of overwritten variables respectively. In the second
step we replace:

reconsider Variable-Identifier = Term-Expression
{, Variable-Identifier = Term-Expression} (6)
as Type-Expression Simple-Justification ;

by

consider Variable-Identifier {, Variable-1dentifier} be Type-Expression
such that New-Label-Identifier : Variable-Identifier = Term-Expression
{ & Variable-1dentifier = Term-Expression}
Simple-Justification;

™)

and write respectively the label (which points to New-Label-Identifier) in the jus-
tification of every step that uses the variables introduced with the construction
consider (see [1,2]).

To check which of the additional labels have to be added, we can use the auxiliary
application RELPREM (see [6, 11]).

The rest of the constructions contained in the Mizar language, e.g. the construction
set that introduces the abbreviations of more complicated terms or the construction
deffunc that introduces to the reasoning local functors, does not conceal reference
arcs as the ordering arcs.

5 Conclusions

The methods of extracting reasoning passages presented in this article which pre-
serve proof correctness showed that the property of packets closure with respect
to directed paths is an important packet feature. We have also shown that this
property, although intuitively it does not seem to be associated with the statement’s
structure describing the packet’s reasoning, can cause a significant enlargement of
this statement and the modified proof. Moreover, we have indicated that the obvious
criteria based on restricting the number of the packet’s assumptions and conclusions
do not reflect the complexity of detecting such packet’s as it happens in the case of
the closure property.

@ Springer

228 K. Pak

There is no doubt that the presented methods of extraction can be used to solve
the main problems arising during the extraction process of any packets, indepen-
dently from the criteria imposed on the chosen packets. Further work should concern
the search of methods to enable automatic selection of packets whose extraction
ensures the improvement of legibility of the modified proof. However, due to the
complexity of this problem, it constitutes a very ambitious challenge.

Open Access This article is distributed under the terms of the Creative Commons Attribution
License which permits any use, distribution, and reproduction in any medium, provided the original
author(s) and the source are credited.

References

1. Bonarska, E.: An Introduction to PC Mizar. Mizar Users Group. Fondation Philippe le Hodey,
Brussels (1990)

2. Grabowski, A., Kornitowicz, A., Naumowicz, A.: Mizar in a nutshell. J. Formal. Reason. 3(2),
153-245 (2010)

3. Jorgen, B., Gregory, G.: Digraphs: Theory, Algorithms and Applications. Springer. ISBN 1-
85233-268-9 (2000)

4. Kornilowicz, A.: Tentative experiments with ellipsis in Mizar. In: AISC/MKM/Calculemus,
pp. 453-457 (2012)

5. Matuszewski, R., Rudnicki, P.: Mizar: the first 30 years. Mech. Math. Its Appl. 4(1), 3-24 (2005)

6. Milewski, R.: New auxiliary software for MML database management. Mech. Math. Its Appl.
5(2), 1-10 (2006)

7. Milewski, R.: Algorithms analyzing formal deduction support systems/Algorytmy analizy sys-
temu wspomagania edukcji formalnej (in Polish). PhD thesis, Faculty of Computer Science,
Biatystok University of Technology (2008)

8. Pak. K.: The algorithms for improving and reorganizing natural deduction proofs. Stud. Log.
Gramm. Rheto. 22(35), 95-112 (2010). ISBN 978-83-7431-273-8, ISSN 0860-150X

9. Rahul, S.P., Necula, G.C.: Proof optimization using lemma extraction. UCB/CSD-01-1143, Com-
puter Science Division (EECS), University of California (2001)

10. Rudnicki, P.: An overview of the Mizar project. In: Proceedings of the 1992 Workshop on Types
for Proofs and Programs, Chalmers University of Technology. Bastad, pp. 311-332 (1992)

11. Rudnicki, P., Trybulec, A.: On the integrity of a repository of formalized mathematics. In:
Proceedings of MKM 2003, Lecture Notes in Computer Science, vol. 2594 (2003)

12. Urban, J.: Xml-izing Mizar: Making semantic processing and presentation of MML easy. In:
Proceedings of MKM 2005, pp. 346-360 (2005)

@ Springer

	Methods of Lemma Extraction in Natural Deduction Proofs
	Abstract
	Introduction
	The Selected Methods of Extracting Packets from Deductions
	The Methods of Packet's Extraction which Consider the Ordering Arc
	The Methods of Eliminating Hidden Information
	Conclusions
	References

