
J Autom Reasoning (2013) 50:203–210
DOI 10.1007/s10817-012-9261-6

On Rewriting Rules in Mizar

Artur Korniłowicz

Received: 8 December 2011 / Accepted: 30 August 2012 / Published online: 14 September 2012
© The Author(s) 2012. This article is published with open access at SpringerLink.com

Abstract This paper presents some tentative experiments in using a special case of
rewriting rules in Mizar (Mizar homepage: http://www.mizar.org/): rewriting a term
as its subterm. A similar technique, but based on another Mizar mechanism called
functor identification (Korniłowicz 2009) was used by Caminati, in his paper on
basic first-order model theory in Mizar (Caminati, J Form Reason 3(1):49–77, 2010,
Form Math 19(3):157–169, 2011). However for this purpose he was obligated to
introduce some artificial functors. The mechanism presented in the present paper
looks promising and fits the Mizar paradigm.

Keywords Proof assistant · Natural deduction · Computer algebra system ·
Term rewriting · Mizar

1 Equalizer

One of the main tasks of proof assistants is checking obviousness of proof steps
[4, 12]. The ideal goal is that inferences obvious for the inference checker should
be obvious for human readers and vice versa.

In Mizar context it comes down to checking obviousness of a single inference

φ1, φ2, . . . , φn

ψ

A. Korniłowicz (B)
Institute of Informatics, University of Białystok,
Sosnowa 64, 15-887 Białystok, Poland
e-mail: arturk@mizar.org

http://www.mizar.org/

204 A. Korniłowicz

where the formulas φi are premises and ψ is the conclusion. Since Mizar is a dis-
prover, the conclusion is negated and added to the premises, so such an inference is
transformed to

φ1, φ2, . . . , φn, ¬ψ

�

where � means falsehood, or rather to

φ1 ∧ φ2 ∧ · · · ∧ φn ∧ ¬ψ

�

The premise is then translated into its disjunctive normal form (DNF), i.e. a dis-
junction of conjunctions of possibly negated propositionally atomic formulas. Here,
a propositionally atomic formula is one whose the principal operator is not a logical
connective. Propositionally atomic formulas include atomic formulas (among them
equalities) and formulas whose the principal operator is a universal quantifier.

Since the acceptance of the original inference is equivalent to the refutation of
the corresponding DNF, i.e. refutation of each disjunct separately, the task of the
inference checker is to check inferences of the form

α1 ∧ α2 ∧ · · · ∧ αk

�

where the αi are possibly negated propositionally atomic formulas.
The module Equalizer dealing with equational calculus [13] has to check such

an inference. When some premises are equalities, computing their congruence clo-
sure can help in the checking process, where the congruence closure of a relation R
defined on a set A is understood as a minimal congruence relation containing the
original relation R. A relation S is called congruence, if it is an equivalence relation
(it satisfies axioms of reflexivity, symmetry, and transitivity) and fulfills the axiom of
monotonicity saying that for every n-ary operation f, if all pairs of arguments are in
the relation S, then results are also in the relation, which we can express as

(∀1≤i≤nxi Syi
) → f (x1, . . . , xn) Sf (y1, . . . , yn) .

A congruence relation is then a monotonic equivalence relation.
A congruence is represented by its equivalence classes [a]R, which are sets of all

b ∈ A such that aRb , that is

[a]R = {b : aRb}.
The a is called the representant of the class. Two elements are called congruent, if
they belong to the same equivalence class. Every equivalence relation defined on A
divides it into disjoint nonempty equivalence classes, whose union gives the entire
set A.

Effective algorithms computing congruence closure can be found in [5, 10, 11, 14].
Congruence closure can be utilized to check if an equality of two expressions is

a consequence of a set of other equalities. An answer is based on the answer to the
question, if the given equality belongs to the congruence closure. If it does, then the
equality is a consequence, and if the equality is not a member of the congruence
closure, it cannot be derived from the set of equalities.

For example, having equalities y = z, f (y) = z, and f (z) = x, one can infer
that x = y. A possible scenario could be: since y = z and f (z) = x, then f (y) = x.

On Rewriting Rules in Mizar 205

Then, by symmetry and transitivity with f (y) = z one knows that x = z and again
by symmetry and transitivity with y = z one can conclude that x = y. In fact, all
equalities among x = y = z = f (y) = f (z) belong to the congruence closure.

Another use of the congruence closure used by Checker is to detect a contradic-
tion. When the congruence closure is created and one of the following cases hold

– there are two premises of the form P[x] and ¬P[y] and x, y are congruent, or
– there is a premise of the form x �= y again when x, y are congruent

the contradiction is reported and the conjunction is refuted.
The input to Equalizer is a fixed collection of terms and all equalities accessible

at the given stage of the proof. In principle, when the collection of terms has been
built, it should never expand—Equalizer works on a closed set of terms named the
universe of discourse. It protects the system from generating unexpected terms which
could increase the amount of time needed to process an inference. For example, the
associativity of multiplication (x ∗ y) ∗ z = x ∗ (y ∗ z) applied to the term a ∗ (b ∗ (c ∗
d)) would generate (a ∗ b) ∗ (c ∗ d) and a ∗ ((b ∗ c) ∗ d), and then (a ∗ (b ∗ c)) ∗ d,

etc.
The universe of discourse is internally represented as a collection of so called

cumulated terms, that is a collection of equivalence classes initialized as trivial
classes containing one term of the universe of discourse each. Complex terms are
expressed in terms of representants of arguments, for example a ∗ b + c ∗ d is stored
as E1 + E2, where E1 represents a ∗ b and E2 represents c ∗ d. Equalizer processes
accessible equalities and when it finds an applicable one, it performs dedicated
actions over adequate equivalence classes. The basic operation on equivalence
classes is merging two classes. Roughly speaking, it joins two classes creating a new
one, chooses its representant, and replaces occurrences of old representants of joined
classes in all terms of the universe of discourse by the new one. The process is
repeated until no merging can be done.

Mizar supports two kinds of proven sentences: theorems and background knowl-
edge (called properties and registrations). To use a theorem one needs to refer
to it explicitly (using by). Accessible background knowledge is used by Checker
automatically. Only sentences of particular shapes (e.g. commutativity) qualify
as background knowledge. Reading articles stored in the Mizar Mathematical
Library (MML) it was observed that quite many theorems contain statements about
equality, and in the current version of Mizar there is no way to promote them to
become background knowledge.

Properties in Mizar are special formulas, which can be registered while defining
new unary or binary operations and used by Equalizer by default. Properties
currently supported in the Mizar language for unary operations are involutiveness
and projectivity and for binary operations commutativity and idempotence, with
their traditional meanings. Looking at structure of formulas corresponding to invo-
lutiveness f (f (x)) = x, projectivity f (f (x)) = f (x), and idempotence f (x, x) = x, it
can be seen that they may be thought of as rewriting rules [1] for which the successor
(right hand side) is a subterm of the predecessor (left hand side).

This observation has led us to extending the Mizar language and enhancing
the Checker with a new mechanism working with terms called reductions, which
increases the deductive power of the Checker.

The details of this mechanism are described in the next section.

206 A. Korniłowicz

2 Reductions

In the sequel, by a reduction we mean an equality for which the successor is a subterm
of the predecessor. This section describes an experimental implementation inside
Mizar of the proposed reduction mechanism.

2.1 Syntax

The syntax of reductions mimics the syntax of registrations with certain
modifications.

Reductions can be introduced in Mizar texts as parts of registration blocks. They
can be mixed with other constructions allowed in such blocks.

The grammar of reductions is:

Registration-Block =
"registration"
{ Loci-Declaration | Cluster-Registration |
Identify-Registration | Properties-Registration |
Reduction-Registration | Canceled-Registration }

"end" .

Reduction-Registration =
"reduce" Term-Expression "to" Term-Expression ";"
Correctness-Conditions .

The correctness condition, called reducibility, generated by the system is the
equality of the two terms. In general a reduction (with pseudo-variables) could look
like:

registration
let x1 be θ1, x2 be θ2, . . . , xn be θn;
reduce τ1(x1, x2, . . . , xn) to τ2(x1, x2, . . . , xn);
reducibility
proof
thus τ1(x1, x2, . . . , xn) = τ2(x1, x2, . . . , xn);
end;
end;

and a simple example taken from the Mizar Mathematical Library is:

registration
let X be set, Y be Subset of X;
reduce X /\ Y to Y;
reducibility
proof
thus X /\ Y = Y;

end;
end;

On Rewriting Rules in Mizar 207

To preserve the rule that Equalizer only considers terms in the given universe of
discourse, the successor has to be a subterm of the predecessor. A simple check of
the structures of the two terms ensures that all components are already collected in
the universe of discourse. As an example, the theorem

for F being Field, v being Vector of F holds v - v = 0.F;

cannot be presented as a reduction, because 0.F is not a subterm of v - v.
Moreover, to avoid introducing trivial reductions, we require that the successor

has to be a proper subterm of the predecessor.
In languages supporting hidden arguments of operations, the notion “subterm”

can have two, slightly different, meanings, depending on whether or not hidden
arguments count as subterms. Because the Mizar language allows hidden arguments,
we decided to regard hidden arguments as subterms. For example, the theorem
saying that the image of the natural homomorphism generated by a normal subgroup
of a given group is the quotient group, in the MML formulated as:

for G being Group, N being normal Subgroup of G holds
Image nat_hom N = G./.N;

where nat_hom N is Homomorphism of G,G./.N can be presented as a re-
duction. In this case, Image is internally represented as Image(G,N,G./.N,
nat_hom(N)), and can be simplified to G./.N.

The way to use reductions defined in other articles is to import them with the
environment directive registrations.

2.2 Possible Errors

This section presents errors related to reductions reported by the Mizar verifier.
Standard errors related to the general syntax, accessibility of symbols, notions, loci,
etc. are not listed here.

registration
let X be set; let Y be Subset of X;
reduce X /\ Y and Y;
::> *404
reducibility;
end;

::> 404: "to" expected

registration
let X,Y be set;
reduce X /\ Y to Y /\ X;
::> *257
reducibility;
end;

::> 257 Right term must be a proper subterm of the left term

208 A. Korniłowicz

registration
let S be empty 1-sorted;
reduce the carrier of S to {};
::> *258
reducibility;
end;

::> 258 Left term must be a standard term

In the above error explanation a standard term is a term of the form F(τ1, . . . , τn),

where F is a defined functor applied to terms, so, for example, selector terms like
the carrier of are not allowed.

3 Experiments

The implemented software was tested on Mizar Version 7.12.01 working with MML
Version 4.128.1067.

3.1 Detection

An important part of the reduction package is a tool (to be included in official
distributions of the Mizar system to help authors to detect possible reductions during
their work) which detects theorems stored in the MML, that could be rewritten as
reductions. In the current version of the MML, 1579 cases were found. The Library
Committee, who is responsible for management, developing and revisions of the
MML, decided not to introduce all reductions detected as they are, but to analyze
their complexity (how complex are predecessors and successors), usability, degree of
obviousness, or whether there are better ways of formulating these facts available in
Mizar.

3.2 Kinds of Reductions

Analyzing the list of detected theorems it was observed that they can be classified
into several groups depending on different criteria based on the structure of terms
involved in equalities.

3.2.1 Empty Set

The first group of theorems (106 cases) are reductions of some terms to the empty
set. They are typically equalities where one of the arguments is the empty set,
like R | {} = {} (a restriction of a relation to the empty set). An argument
against introducing reductions for such facts is that they all can be formulated as
functorial registrations—registrations saying that a term fulfills some properties—
like cluster R | {} -> empty, which could also be processed by Analyzer
(a modul of Checker responsible for type checking and reconstruction of hidden
arguments) when processing adjectives in term types.

On Rewriting Rules in Mizar 209

Table 1 Properties Property Number

projectivity 34
involutiveness 66
idempotence 39

3.2.2 Requirements-Like Reductions

Another type of possible reductions are facts processed by the mechanism called
requirements, which are special modules implemented in the system for automatiza-
tion of reasonings within particular theories, like arithmetic over complex numbers,
[8]. An example of such reductions is complex multiplication by zero (z * 0 = 0,
requirements ARITHM).

3.2.3 Properties-Like Reductions

In mathematics there are unary operations, say f , satisfying the property f m(x) =
f n(x). Such equalities fulfill the condition we imposed on reductions (one term is
a subterm of another, when m �= n). Some of them have commonly used names,
like projectivity for m = 2, n = 1, that is f (f (x)) = f (x); involutiveness when m =
2, n = 0, that is f (f (x)) = x; and automatic processing of these properties is already
implemented in Mizar.

Table 1 presents numbers of theorems which could be rewritten as properties
supported by Mizar.

In the MML there are also theorems about operations satisfying the property for
other values of m and n, for example: for x being Nat holds abs x = x.
They could be reductions, or it would be worth introducing other properties to the
Mizar language, at least for small values of m and n.

4 Conclusions and Further Work

Analyzing possibilities offered by reductions, a couple of questions have arisen:

– Should Mizar still support properties projectivity, involutiveness,
idempotence?

– Should other properties be introduced to the language?
– Which requirements should be rewritten as reductions, if any?
– How complex terms could be used in reductions?

Since reductions constitute a new construction, the Library Committee suggests
not to remove existing features of the Mizar system and language, and postpone
a decision giving authors the opportunity to use both and wait for the feedback from
them.

Further development of reductions can go in different directions. Better inte-
gration with the congruence engine would allow application of more reductions.
Furthermore development of other relations between predecessors and successors
(other than being a subterm) would increase their usability.

210 A. Korniłowicz

Moreover, the Mizar Mathematical Library requires revisions to exploit reduc-
tions. Introducing new reductions to the already stored Mizar articles can possibly
produce irrelevant references and unnecessary proof steps. Then, revisions of articles
with tools like Relprem and Reliters [6, 9] should be performed.

Acknowledgement Special thanks to Andrzej Trybulec for his continuous support of my work.

Open Access This article is distributed under the terms of the Creative Commons Attribution
License which permits any use, distribution, and reproduction in any medium, provided the original
author(s) and the source are credited.

References

1. Baader, F., Nipkow, T.: Term Rewriting and All That. Cambridge University Press (1998)
2. Caminati, M.B.: Basic first-order model theory in Mizar. J. Form. Reason. 3(1), 49–77 (2010)
3. Caminati, M.B.: Preliminaries to classical first-order model theory. Form. Math. 19(3), 157–169

(2011)
4. Davis, M.: Obvious logical inferences. In: Proceedings of the Seventh International Joint

Conference on Artificial Intelligence, pp. 530–531 (1981)
5. Downey, P.J., Sethi, R., Tarjan, R.E.: Variations on the common subexpression problem. J. ACM

27, 758–771 (1980). doi:10.1145/322217.322228
6. Grabowski, A., Korniłowicz, A., Naumowicz, A.: Mizar in a nutshell. J. Form. Reason., Special

Issue: User Tutorials I 3(2), 153–245 (2010)
7. Korniłowicz, A.: How to define terms in Mizar effectively. In: Grabowski, A., Naumowicz, A.

(eds.) Computer Reconstruction of the Body of Mathematics. Studies in Logic, Grammar and
Rhetoric, vol. 18(31), pp. 67–77. University of Białystok (2009)

8. Naumowicz, A., Byliński, C.: Improving Mizar texts with properties and requirements. In:
A. Asperti (ed.) MKM-2004. LNCS, vol. 3119, pp. 290–301. Springer, Berlin Heidelberg (2004)

9. Naumowicz, A., Korniłowicz, A.: A brief overview of Mizar. In: Berghofer, S., Nipkow, T.,
Urban, C., Wenzel, M. (eds.) Proc. 22nd International Conference, TPHOLs, Munich, Germany.
LNCS, vol. 5674, pp. 67–72. Springer, Berlin Heidelberg (2009)

10. Nelson, G., Oppen, D.C.: Fast decision procedures based on congruence closure. J. ACM 27,
356–364 (1980). doi:10.1145/322186.322198

11. Nieuwenhuis, R., Oliveras, A.: Proof-producing congruence closure. In: Giesl, J. (ed.) 16th Inter-
national Conference on Term Rewriting and Applications, RTA’05. Lecture Notes in Computer
Science, vol. 3467, pp. 453–468. Springer (2005)

12. Rudnicki, P.: Obvious inferences. J. Autom. Reasoning 3(4), 383–393 (1987). doi:10.1007/
BF00247436

13. Rudnicki, P., Trybulec, A.: Mathematical knowledge management in Mizar. In: Proc. of MKM
2001 (2001)

14. Shostak, R.E.: An algorithm for reasoning about equality. Commun. ACM 21, 583–585 (1978).
doi:10.1145/359545.359570

http://doi.acm.org/10.1145/322217.322228
http://doi.acm.org/10.1145/322186.322198
http://dx.doi.org/10.1007/BF00247436
http://dx.doi.org/10.1007/BF00247436
http://doi.acm.org/10.1145/359545.359570

	On Rewriting Rules in Mizar
	Abstract
	Equalizer
	Reductions
	Syntax
	Possible Errors

	Experiments
	Detection
	Kinds of Reductions
	Empty Set
	Requirements-Like Reductions
	Properties-Like Reductions

	Conclusions and Further Work
	References

