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Abstract Knuth–Bendix completion is a classical calculus in automated deduction
for transforming a set of equations into a confluent and terminating set of directed
equations which can be used to decide the induced equational theory. Multi-
completion with termination tools constitutes an approach that differs from the
classical method in two respects: (1) external termination tools replace the reduction
order—a typically critical parameter—as proposed by Wehrman et al. (2006), and
(2) multi-completion as introduced by Kurihara and Kondo (1999) is used to keep
track of multiple orientations in parallel while exploiting sharing to boost efficiency.
In this paper we describe the inference system, give the full proof of its correctness
and comment on completeness issues. Critical pair criteria and isomorphisms are
presented as refinements together with all proofs. We furthermore describe the
implementation of our approach in the tool mkbTT, present extensive experimental
results and report on new completions.
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1 Introduction

In a landmark paper, Knuth and Bendix [12] introduced a completion procedure
which aims to transform a set of input equalities into a terminating and confluent
rewrite system. If successful, the resulting system allows to decide the associated
equational theory. However, success of a completion run critically depends on the
reduction order that is required as additional input.

Kurihara and Kondo [15] introduced the calculus of multi-completion which
supports completion with multiple reduction orders at the same time. Basically, a
deduction simulates parallel completion runs with the orders under consideration
but gains efficiency by sharing inference steps among the parallel deductions. Since
multi-completion succeeds as soon as one of the mimicked runs achieves a result, this
approach partially tackles the problem of choosing an appropriate reduction order.
Still, concrete reduction orders have to be provided as input.

Wehrman et al. [32] proposed a different approach. Instead of relying on a reduc-
tion order supplied by the user, rewrite rules are oriented by a termination prover
internally. In this way an appropriate reduction order is implicitly developed along
the deduction. Since modern termination provers employ many more sophisticated
techniques than plain reduction orders, this approach allows to construct convergent
systems that cannot be obtained with classical completion procedures. One such
system is the theory of two commuting group endomorphisms CGE2 [26], which can
be completed by the tool Slothrop described in [32] without user interaction.

Multi-completion with termination tools [21, 22, 36] constitutes a combination
of these two approaches. While the use of termination tools allows for automatic
completion without user interaction, multi-completion enables to keep track of
multiple combinations of orientations in parallel, thereby exploiting sharing for
efficiency reasons. The implementation of our technique thus yields a powerful tool
for automatic completion with a high flexibility concerning orientations. In this paper
we describe the underlying inference system, and present simulation and correctness
results along with the proofs that were omitted in [21, 22] due to reasons of space.
After detecting a flaw in the fairness definition of [15], we newly contribute a cor-
rected and explicit definition for MKBtt. We also present a novel completeness result
for a variant of the MKBtt calculus that (to our knowledge) has not been achieved
by previous completion approaches. Refinements such as critical pair criteria and
isomorphisms that were already outlined in [36] are described in more detail along
with proofs showing their correctness. In a section on implementation details, besides
the basic control loop we present optimizations such as term indexing techniques
and selection strategies and explain how various options can be controlled by the
user. Recent optimizations led to the completion of novel systems such as CGE5.
By conducting thorough benchmark tests on a considerably extended database
we assessed the different enhancements. Extending the experiments presented in
previous papers, we also compare with maximal completion as developed by Klein
and Hirokawa [11]. In short, this article constitutes a comprehensive report of the
MKBtt approach and subsumes earlier contributions.

The paper is structured as follows. We start by summarizing preliminaries in
Section 2. In Section 3 we present the inference system underlying MKBtt, simulation
and correctness results as well as a completeness result concerning a modified
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version of the calculus. As optimizations, critical pair criteria and isomorphisms are
presented in Sections 4 and 5. Section 6 comments on some implementation details of
our completion tool before experimental results are described in Section 7. Finally,
Section 8 adds some concluding remarks and lists issues for future work.

2 Preliminaries

We consider terms T (F ,V) over a finite signature F and a set of variables V .
For some term t we denote by Pos(t) its set of positions, which is partitioned into
function symbol positions PosF (t) and variable positions PosV (t). If p ∈ Pos(t) then
t|p denotes the subterm of t at position p and t[s]p is the term obtained from t when
replacing t|p by s. A term t encompasses a term s, denoted by t ·�s, if t = t[sσ ]p holds
for some substitution σ and position p ∈ Pos(t). The strict part ·� \ ·� of this relation
is denoted by ·� . We call two terms s and t variants and write s .= t if there exists a
variable renaming σ such that sσ = tσ .

Sets of equations between terms will be denoted by E and are assumed to be
symmetric. The associated equational theory is denoted by ≈E . As usual a set of
directed equations � → r is called a rewrite system and denoted by R, where →R

is the associated rewrite relation. We write s
�→r−−→p t to express that s →R t was

achieved by applying the rule � → r ∈ R at position p. The relations →+
R, →∗

R and
↔R denote the transitive, transitive-reflexive and symmetric closure of →R. The
smallest equivalence relation containing →R, which coincides with the equational
theory ≈R if R is considered as a set of equations, is denoted by ↔∗

R. Subscripts are
omitted if the rewrite system or the set of equations is clear from the context.

A rewrite system R is terminating if it does not admit infinite rewrite sequences.
It is conf luent if for every peak t ∗← s →∗ u there exists a term v such that t →∗
v ∗← u. An overlap is a triple 〈u → v, p, � → r〉 where u → v and � → r are rewrite
rules without common variables such that p ∈ PosF (u), u|p and � are unifiable with
most general unifier σ , and if � → r and u → v are variants then p 
= ε. The term
uσ = uσ [�σ ]p can be rewritten in two different ways, resulting in the critical pair
vσ ≈ uσ [rσ ]p. The set of critical pairs among rules in R is denoted by CP(R). A
rewrite system R which is both terminating and confluent is called convergent. If R
has the property that for every rewrite rule � → r the right-hand side r is in normal
form and the left-hand side � is in normal form with respect to R \ {� → r} then R
is called reduced. We call R convergent for a set of equations E if R is convergent
and ↔∗

R coincides with ≈E . A convergent and reduced rewrite system is called
canonical.

A proper order � on terms is a rewrite order if it is closed under contexts and
substitutions. A well-founded rewrite order is called a reduction order. The relation
→+

R is a reduction order for every terminating rewrite system R.
In the context of completion, we often consider a pair (E,R) of equations E and

rewrite rules R. An equational proof step s ↔p
e t in (E,R) is an equality step if e is an

equation � ≈ r in E or a rewrite step if e is a rule � → r in R, and either s = u[�σ ]p

and t = u[rσ ]p or s = u[rσ ]p and t = u[�σ ]p hold for some substitution σ and term
u with position p. We sometimes write s ↔ t to express the existence of some proof
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step, omitting the position p and equation or rule e. An equational proof P of an
equation t0 ≈ tn is a finite sequence

t0
p0←→
e0

t1
p1←→
e1

· · · pn−1←−→
en−1

tn (1)

of equational proof steps. Note that (E,R) admits an equational proof of s ≈ t if and
only if s ↔∗

E∪R t holds. A sequence Q of the form ti ↔ · · · ↔ t j with 0 � i � j � n is
a subproof of P. We write P[Q] to express that P contains Q as a subproof. If P is
an equational proof and σ a substitution then Pσ denotes the instantiated proof

t0σ
p0←→
e0

t1σ
p1←→
e1

· · · pn−1←−→
en−1

tnσ

For a term u with position q and a proof P of the shape (1) we write u[P]q to denote
the sequence

u[t0]q
qp0←→
e0

u[t1]q
qp1←→
e1

· · · qpn−1←−→
en−1

u[tn]q

which is again an equational proof. Proofs of the shape t0 → · · · → ti ← · · · ← tn are
called rewrite proofs. They play a special role in the context of completion. A proof
order �� is a well-founded order on equational proofs such that

1. P �� Q implies u[Pσ ]p �� u[Qσ ]p for all terms u, positions p ∈ Pos(u) and
substitutions σ ,

2. if P and P′ prove the same equation then P �� P′ implies Q[P] �� Q[P′] for all
proofs Q.

A proof reduction relation ⇒ additionally satisfies

3. P ⇒ Q holds only if P and Q prove the same equation.

2.1 Standard Completion

The classical completion procedure proposed by Knuth and Bendix [12] was refor-
mulated as an inference system by Bachmair [2], as depicted in Fig. 1. The inference
system (in the sequel referred to as KB) works on pairs (E,R) consisting of a set
of equations E and a set of rewrite rules R, and is parameterized by a reduction
order �. The inference rules of KB induce a proof transformation relation on the
level of equational proofs. For example, if deduce adds a critical pair between

rules � → r and u → v that overlap on a term w, the peak s
�←r←−− w

u→v−−→ t can be

replaced by the proof s
s≈t←→ t. Similarly, the other inference rules allow to replace

patterns in equational proofs. In the sequel, we denote by ⇒�
KB the (transitive)

proof transformation relation induced by KB using reduction order �. This relation
terminates and constitutes a proof reduction relation [2].

A KB inference sequence of the form (E0,R0) � (E1,R1) � (E2,R2) � · · · is in
the sequel referred to as a run with persistent equations Eω = ⋃

i

⋂
j>i E j and rules

Rω = ⋃
i

⋂
j>i R j. A run fails if Eω is not empty, it succeeds if Eω is empty and

Rω is confluent and terminating. Moreover, a run is called simplifying if Rω is
reduced. Since every inference step is reflected by one or more steps in the proof
reduction relation ⇒�

KB and this relation terminates, in non-failing runs every identity
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Fig. 1 System KB of standard completion

is eventually connected by a rewrite proof, provided that required inference steps are
not indefinitely ignored. This property is captured by the notion of fairness.

Definition 1 A run (E0,R0) � (E1,R1) � (E2,R2) � · · · is fair with respect to a proof
reduction relation ⇒ if for every non-rewrite proof P in (Eω,Rω), for which there
exists an inference step (Eω,Rω) � (E ′

ω,R′
ω) and a proof P′ in (E ′

ω,R′
ω) satisfying

P ⇒ P′, there also exists a proof Q in (Ei,Ri) for some i � 0 such that P ⇒ Q holds.

A simpler and sufficient condition states that any run satisfying CP(Rω) ⊆ ⋃
i Ei

is fair. Finally, we recall the main theorems stating correctness and completeness of
the inference system KB [4].

Theorem 1 Any non-failing KB run using a reduction order � that is fair with respect
to ⇒�

KB succeeds.

Theorem 2 Assume there exists a f inite convergent system R which has the same
equational theory as a set of equations E and is contained in �. Then any non-failing
run from E using � which is fair with respect to ⇒�

KB will produce a convergent system
in f initely many steps.

With a suitable reduction order a run is thus guaranteed to produce a convergent
system, provided that no persistent unorientable equations are encountered. How-
ever, a different reduction order might induce an infinite run, or even lead to failure.
The choice of the order is thus highly critical for success, but hard to determine in
advance. Different approaches have been proposed to tackle this problem. In the
following sections we outline two of them. Multi-completion increases the chance for
success by keeping track of multiple runs using different orders whereas completion
with termination tools attempts to develop a suitable order in the course of the
deduction by using modern termination provers, thereby considerably widening the
class of applicable orders.
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Fig. 2 The orient rule in MKB

2.2 Multi-Completion

Completion with multiple reduction orders—referred to as multi-completion in the
sequel—was proposed by Kondo and Kurihara [15]. For a set O = {�1, . . . ,�n} of
orders, it simulates the parallel execution of corresponding completion runs, but
shares common inference steps to gain efficiency. The key idea to sharing is a data
structure called node.

Definition 2 A node is a tuple 〈s : t, R0, R1, E〉 where the data s : t consist of terms s,
t and the labels R0, R1, E are subsets of O. The node condition requires that R0, R1

and E are mutually disjoint, s �i t holds for all �i ∈ R0, and t �i s for all �i ∈ R1.

Intuitively, a node 〈s : t, R0, R1, E〉 captures the state of the term pair s : t in all
simulated completion processes. All orders in the equation label E regard the data as
an equation s ≈ t while orders in the rewrite labels R0 and R1 consider it as rewrite
rules s → t and t → s, respectively. Hence the node 〈s : t, R0, R1, E〉 is identified with
〈t : s, R1, R0, E〉.

Multi-completion can be described by an inference system MKB which operates
on sets of nodes and consists of five rules. Figure 2 shows the orient inference rule.
An MKB run γ of the form N0 � N1 � N2 � · · · can be projected to a valid KB run
γi for every order �i ∈ O, and conversely every KB run using �i can be modelled by
an MKB run. Due to these simulation properties also correctness and completeness
results are obtained for MKB. For this purpose, a run γ is called fair if it is either
finite and γi is a fair and nonfailing1 KB run for some i, or if it is infinite and all γi are
either fair or failing.

2.3 Completion with Termination Tools

Standard completion procedures depend critically on the choice of the reduction
order supplied as input, thus requiring a careful decision by the user. The evolution of
powerful modern termination provers exploiting a variety of sophisticated methods
thus suggests to guarantee termination by employing respective tools instead of
a fixed order. Such an approach was proposed by Wehrman, Stump and West-
brook [32] and implemented in the tool Slothrop. Some care has to be taken because
it is known [23] that changing the reduction order during a completion run may result
in a non-confluent rewrite system. The inference system KBtt underlying Slothrop
thus operates on triples (E,R, C) consisting of a set of equations E , a rewrite system
R and an additional rewrite system C. This extra constraint system ensures that

1Note that our definition differs from the original definition in [15] in that we require γi to be
nonfailing; otherwise, a finite nonfailing and fair MKB run need not generate a convergent system if
it is only fair for γi.
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Fig. 3 The orient rule in KBtt

orientations are never reversed throughout a run, thereby guaranteeing confluence
of the derived system.

The system KBtt consists of the orient rule depicted in Fig. 3 together with
the remaining KB rules where the constraint component is not modified. Again,
� denotes the inference relation and �= its reflexive closure. An empty step
(E,R, C) �= (E,R, C) is also called an equality step. Since constraint rules are
only added if termination is preserved, all constraint systems C0 ⊆ C1 ⊆ C2 ⊆ · · ·
developed during a deduction terminate. Thus the relations →+

Ci
constitute a se-

quence of subsequently refined reduction orders with respect to which completion
is performed, naturally exploiting the incrementality of reduction orders defined by
a rewrite relation. In this respect the method resembles the approach adopted by the
tool REVE [16] where the advantages of an incremental order are emphasized. Any
KB run using � can obviously be simulated in KBtt since the required termination
checks of the constraint systems succeed when employing �. Conversely, finite KBtt
runs deriving the final constraint system C are reflected by KB runs that use the
reduction order →+

C . Hence a KBtt run is called fair, successful, failing and simplifying
whenever the respective definition applies to the simulated KB run. This entails finite
correctness of KBtt [30], although this result does not extend to infinite runs as the
infinite union of terminating rewrite systems need not terminate.

Theorem 3 Any f inite non-failing and fair KBtt run succeeds.

3 Multi-Completion with Termination Tools

In an orient step of KBtt, termination of a new rule s → t together with the set
C of all previously oriented rules is checked. If both orientations s → t and t → s
terminate together with C, an implementation encounters the challenge how to deal
with this choice. Slothrop uses a best-first strategy to decide which branch to explore
further. In contrast, MKBtt keeps track of both orientations but avoids an explosion
of the search space by integrating the concept of multi-completion to share common
inferences.

Since every simulated KBtt branch corresponds to a sequence of decisions on how
to orient nodes, a process p is modeled by a bit string in (0 + 1)∗. A set of processes
P is called well-encoded if there are no pairs of processes p and p′ in P such that p′
is a proper prefix of p. The initial process is represented by the empty string ε.
MKBtt is described by an inference system operating on a set of nodes. In contrast

to MKB, labels are now sets of processes instead of reduction orders, and in order
to account for the constraint systems required in KBtt, nodes are extended with two
additional constraint labels.
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Definition 3 An MKBtt node 〈s : t, R0, R1, E, C0, C1〉 contains as data two terms s
and t and as labels sets of processes R0, R1, E, C0, C1, where the node condition
requires that R0 ∪ C0, R1 ∪ C1 and E are mutually disjoint.

The process sets R0, R1 are called rewrite labels, E is the equation label and C0, C1

are the constraint labels. As in the case of MKB, the node 〈s : t, R0, R1, E, C0, C1〉 is
identified with 〈t : s, R1, R0, E, C1, C0〉. The sets of all processes occurring in a node
n or a node set N are denoted by P(n) and P(N), respectively. To relate a node set
N to the corresponding states of the simulated KBtt processes, projections are used.

Definition 4 For a node n = 〈s : t, R0, R1, E, C0, C1〉 and a process p, the equation
and rule projection of n to p are defined as

E[n, p] =
{

{s ≈ t} if p ∈ E

∅ otherwise
R[n, p] =

⎧
⎪⎨

⎪⎩

{s → t} if p ∈ R0

{t → s} if p ∈ R1

∅ otherwise

The constraint projection C[n, p] is defined analogous to R[n, p]. These projections
are naturally extended to node sets by defining E[N, p] = ⋃

n∈N E[n, p], R[N, p] =⋃
n∈N R[n, p] and C[N, p] = ⋃

n∈N C[n, p].

The inference rules of MKBtt are depicted in Fig. 4. Note that all rules preserve
well-encodedness of labels and the disjointness condition on nodes. The following
paragraphs add some clarifying remarks on the inference rules.

– The orient rule applied to a node 〈s : t, R0, R1, E, C0, C1〉 attempts to turn the
equation s ≈ t into a rule for as many processes as possible. This is modelled in
the node structure by moving processes p ∈ E to rewrite labels. More precisely,
the respective inference rule in KBtt is modelled by checking for every process
p ∈ E whether its current constraint system C[N, p] terminates when extended
with s → t or t → s. If C[N, p] ∪ {s → t} terminates then p is added to the
set Elr, and if C[N, p] ∪ {t → s} terminates then p is added to the set Erl .
The set Elr \ Erl (Erl \ Elr) thus collects processes which can only perform the
orientation s → t (t → s). These processes are added to R0 and C0 (R1 and C1).
The set S = Elr ∩ Erl collects processes that allow both orientations. Thus every
p ∈ S is split into two child processes p0 and p1, and pi is added to Ri and Ci,
for i ∈ {0, 1}. Finally, splitS(N) replaces every occurrence of a process in S by its
descendants: the operation splitS(P) = (P \ S) ∪ {p0, p1 | p ∈ P ∩ S} is applied
to every process set P occurring in N.

– If the current node set N contains nodes with data � : r and �′ : r′ such that the
rules � → r and �′ → r′ give rise to a critical pair s ≈ t, deduce adds a respective
node for all processes p that have both rules present in their current rewrite
system R[N, p].
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– In standard completion, given a term pair s : t and a rewrite step t
�→r−−→ u, the

rules compose, simplify and collapse create a term pair s : u. If t and � are
variants, the MKBtt rule rewrite1 allows to combine respective compose and
simplify steps. If t ·� � holds, rewrite2 simulates all three rules at once.

– To increase efficiency, the optional gc rule deletes nodes with empty labels.
– The rule subsume is optional as well, it merges pairs of nodes which have the

same data up to renaming.

As usual, a sequence of MKBtt inference steps N0 � N1 � N2 � · · · is referred to
as a run. Given a set of equations E , the initial node set N0 = NE consists of all nodes
〈s : t, ∅, ∅, {ε}, ∅, ∅〉 such that s ≈ t is in E .

Fig. 4 Inference rules of MKBtt
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3.1 An Example

In this section we illustrate multi-completion with termination tools on the example
system CGE2, which consists of the following equations:

e · x ≈ x f(x · y) ≈ f(x) · f(y)

i(x) · x ≈ e g(x · y) ≈ g(x) · g(y)

x · (y · z) ≈ (x · y) · z f(x) · g(y) ≈ g(y) · f(x)

An MKBtt run starts with the initial node set

〈e · x : x, ∅, ∅, {ε}, ∅, ∅〉 (2)

〈i(x) · x : e, ∅, ∅, {ε}, ∅, ∅〉 (3)

〈x · (y · z) : (x · y) · z, ∅, ∅, {ε}, ∅, ∅〉 (4)

〈f(x · y) : f(x) · f(y), ∅, ∅, {ε}, ∅, ∅〉 (5)

〈g(x · y) : g(x) · g(y), ∅, ∅, {ε}, ∅, ∅〉 (6)

〈f(x) · g(y) : g(y) · f(x), ∅, ∅, {ε}, ∅, ∅〉 (7)

When applying orient to nodes (2) and (3), only the direction from left to right yields
valid and terminating rewrite rules. For node (4), both orientations are possible such
that process ε is split into 0 and 1. These three nodes are thus modified as follows:

〈e · x : x, {0, 1}, ∅, ∅, {0, 1}, ∅〉 (8)

〈i(x) · x : e, {0, 1}, ∅, ∅, {0, 1}, ∅〉 (9)

〈x · (y · z) : (x · y) · z, {0}, {1}, ∅, {0}, {1}〉 (10)

Nodes (5) and (6) can be oriented in both directions, independent of the orientation
of associativity. Now the current node set contains eight processes (constraint labels
are omitted for the sake of readability; at this point they coincide with the respective
rewrite labels):

〈e · x : x, {000, . . . , 111}, ∅, ∅, . . . 〉 (11)

〈i(x) · x : e, {000, . . . , 111}, ∅, ∅, . . . 〉 (12)

〈x · (y · z) : (x · y) · z, {000, 001, 010, 011}, {100, 101, 110, 111}, ∅, . . . 〉 (13)

〈f(x · y) : f(x) · f(y), {000, 001, 100, 101}, {010, 011, 110, 111}, ∅, . . . 〉 (14)

〈g(x · y) : g(x) · g(y), {000, 010, 100, 110}, {001, 011, 101, 111}, ∅, . . . 〉 (15)

〈f(x) · g(y) : g(y) · f(x), ∅, ∅, {000, . . . , 111}, . . . 〉 (16)

We abbreviate {000, 001, 010, 011} to P0 and {100, 101, 110, 111} to P1. The overlap
i(x) · (x · y) ← (i(x) · x) · y → e · y between nodes (13) and (12) allows to deduce the
additional node

〈i(x) · (x · y) : e · y, ∅, ∅, P1, ∅, ∅〉 (17)
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A rewrite1 step with node (11) simplifies this node to

〈i(x) · (x · y) : e · y, ∅, ∅, ∅, ∅, ∅〉 (18)

and adds

〈i(x) · (x · y) : y, ∅, ∅, P1, ∅, ∅〉 (19)

The former is removed by gc and the latter is oriented to

〈i(x) · (x · y) : y, P1, ∅, ∅, P1, ∅〉 (20)

In a similar way, for processes in P0 the overlap (x · i(y)) · y ← x · (i(y) · y) → x · e
between (13) and (12) yields a node

〈(x · i(y)) · y : x · e, P0, ∅, ∅, P0, ∅〉 (21)

Additionally, there are critical peaks (x · e) · y ← x · (e · y) → x · y between nodes
(13) and (11), i(i(x)) · e ← (i(i(x)) · i(x)) · x → e · x between nodes (21) and (12), and
x ← i(i(x)) · (i(x) · x) → i(i(x)) · e between nodes (20) and (12). Orienting the ensuing
nodes yields

〈(x · e) · y : x · y, P0, ∅, ∅, P0, ∅〉 (22)

〈i(i(x)) · e : e · x, P0, ∅, ∅, P0, ∅〉 (23)

〈i(i(x)) · e : x, P1, ∅, ∅, P1, ∅〉 (24)

Applying rewrite1 with (11) to node (23) creates a node with the same data as (24)
also for processes in P0, such that a subsume step results in the updated node

〈i(i(x)) · e : x, P1 ∪ P0, ∅, ∅, P1, ∅〉 (25)

Now the peak i(i(x)) · y ← (i(i(x)) · e) · y → x · y between (22) and (24) adds

〈i(i(x)) · y : x · y, P0, ∅, ∅, P0, ∅〉 (26)

after a subsequent orient step. At this point overlaps between (26) and (25) and (26)
and (12) trigger the creation of nodes that are oriented as

〈x · e : x, P0, ∅, ∅, P0, ∅〉 (27)

〈x · i(x) : e, P0, ∅, ∅, P0, ∅〉 (28)

We obtain the modified node

〈(x · i(y)) · y : x · e, ∅, ∅, ∅, P0, ∅〉 (29)

when using node (27) in a rewrite1 step, together with a new node with data (x · i(y)) ·
y : x, which is oriented as

〈(x · i(y)) · y : x, P0, ∅, ∅, P0, ∅〉 (30)

Node (27) can also be used in rewrite2 steps to modify (22) and (25) to

〈(x · e) · y : x · y, ∅, ∅, ∅, P0, ∅〉 (31)

and

〈i(i(x)) · e : x, P1, ∅, ∅, P0, ∅〉 (32)



328 S. Winkler et al.

while adding

〈x · y : x · y, ∅, ∅, P0, ∅, ∅〉 (33)

and

〈i(i(x)) : x, ∅, ∅, P0, ∅, ∅〉 (34)

to the current node set. The latter is oriented into

〈i(i(x)) : x, P0, ∅, ∅, P0, ∅〉 (35)

while node (33) is subject to a delete inference. The overlaps i(e) ← i(e) · e → e
between (27) and (12) and (x · y) · i(y) ← x · (y · i(y)) → x · e between (13) and (28)
add

〈i(e) : e, P0, ∅, ∅, P0, ∅〉 (36)

and

〈(x · y) · i(y) : x, P0, ∅, ∅, P0, ∅〉 (37)

to the node set (in the latter case, after rewrite1 using (27) simplifies x · e to x).
To make a long story short, we will only sketch the remainder of the run. After

some additional deduce steps, the last node concerning plain group theory

〈i(x · y) : i(y) · i(x), ∅, ∅, P1 ∪ P0, ∅, ∅〉

is derived, and can again be oriented in both directions, resulting in a split of all
current processes. To complete the theory of homomorphisms, new nodes with
data f(x) · (f(y) · z) : f(x · y) · z, f(e) : e, and f(i(x)) : i(f(x)) and similar ones for g are
derived. The last kind of nodes gives again rise to process splits. It remains to orient
node (16) and consider the critical pair f(x) · (g(y) · z) : g(y) · (f(x) · z) before e.g.
process 011110 succeeds with a convergent system after joining all remaining critical
pairs:

e · x → x f(x) · f(y) → f(x · y) x · (y · z) → (x · y) · z

x · e → x f(e) → e (x · y) · i(y) → x

i(x) · x → e i(f(x)) → f(i(x)) (x · i(y)) · y → x

x · i(x) → e g(x) · g(y) → g(x · y) f(x) · (f(y) · z) → f(x · y) · z

i(e) → e g(e) → e g(x) · (g(y) · z) → g(x · y) · z

i(i(x)) → x i(g(x)) → g(i(x)) g(x) · (f(y) · z) → f(x) · (g(y) · z)

i(x · y) → i(y) · i(x) g(x) · f(y) → f(y) · g(x)

The sequence of orientations gives rise to a process tree, where every branching point
corresponds to a process split in an orient step. Part of the process tree developed
during the described completion run is sketched in Fig. 5.
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Fig. 5 Part of a CGE2 process tree with all branching points leading to process 011110

3.2 Correctness

Before we can state properties of MKBtt runs, notions to track process splits in the
course of a deduction are required.

Definition 5 Consider an MKBtt inference step N � N′. If orient was applied the set
of processes S which was split into two child processes is called the step’s split set.
For all other inference rules the split set is empty. For a step with split set S and
p′ ∈ P(N′), we define the predecessor of p′ as

predS(p′) =
{

p if p′ = p0 or p′ = p1 for some p ∈ S

p′ otherwise

In Lemmas 1 and 2 we prove that an MKBtt step corresponds to a (possibly non-
proper) KBtt step for every process occurring in some node, and every KBtt step can
be modelled by MKBtt. Here, �= denotes the reflexive closure of the KBtt inference
relation �.

Lemma 1 For an MKBtt step N � N′ with split set S the KBtt step

(E[N, p], R[N, p], C[N, p]) �= (E[N′, p′], R[N′, p′], C[N′, p′]) (38)

is valid for all p′ ∈ P(N′) such that p = predS(p′). Moreover, there exists at least one
process p′ ∈ P(N′) for which the step is not an equality step if the rule applied in
N � N′ is not gc or subsume.
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Proof By case analysis on the MKBtt rule applied in (38).

– Assume orient with split set S replaced the node n = 〈s : t, R0, R1, E, C0, C1〉
by n′ =〈s : t, R0 ∪ Rlr, R1 ∪ Rrl, E′, C0 ∪ Rlr, C1 ∪ Rrl〉. Let p′ be a process in
P(N′) and p = predS(p′) be its predecessor with respect to S. We thus have
E[N \ {n},p]= E[N′ \ {n′},p′], R[N \ {n},p]= R[N′ \ {n′},p′] and C[N\ {n},p] =
C[N′ \ {n′}, p′]. These sets will in the sequel be denoted by Ei, Ri and Ci,
respectively. A further case distinction reveals three possibilities:

i. If p′ ∈ Rlr, by definition of orient R[n′, p′] = C[n′, p′] = {s → t} and
E[n′, p′] = ∅. Inference (38) is thus a valid orient step in KBtt if p happens
to be in E. Since p′ occurs in Rlr, either p′ ∈ Elr \ Erl or p′ = p0 for
some p ∈ S. If p′ ∈ Elr \ Erl then p ∈ E follows from p = predS(p′) = p′
and Elr ⊆ E. Otherwise p = predS(p′) entails p′ = p0 such that p ∈ S
and because of S ⊆ E also p ∈ E holds. Hence one has E[n, p] = {s ≈ t}
and—because of the node condition—R[n, p] = C[n, p] = ∅. Hence the
KBtt inference step

(Ei ∪ {s ≈ t}, Ri, Ci) �KBtt (Ei, Ri ∪ {s → t}, Ci ∪ {s → t})
is valid since Ci ∪ {s → t} = C[N, p] ∪ {s → t} terminates according to the
side condition of orient in MKBtt.

ii. If p′ ∈ Rrl , similar reasoning as in the previous case shows that the simu-
lated inference step is

(Ei ∪ {s ≈ t}, Ri, Ci) �KBtt (Ei, Ri ∪ {t → s}, Ci ∪ {t → s})
iii. Finally, if p′ /∈ Rlr ∪ Rrl then process p′ was not affected in this inference

step, so p = p′ and we have E[n, p] = E[n′, p′], R[n, p] = R[n′, p′] and
C[n, p] = C[n′, p′]. The projection of the considered MKBtt inference to
process p′ is thus an identity step.

In all remaining cases p = p′ holds as no process splitting occurs.

– Whenever delete removes some node 〈s : s, ∅, ∅, E, ∅, ∅〉 then s ≈ s ∈ E[N, p]
for all p ∈ E, and hence delete also applies in KBtt. For all p /∈ E an identity step
is obtained.

– If deduce adds a node 〈s : t, ∅, ∅, R ∩ R′, ∅, ∅〉 then for all p ∈ R ∩ R′ both
� → r and �′ → r′ occur in R[N, p]. Hence deduce can also be applied in KBtt,
yielding s ≈ t which is also contained in E[N′, p].

– Next, assume rewrite1 was used. For every process p /∈ (R0 ∪ E) ∩ R an identity
step is obtained. Otherwise, two cases can be distinguished which are distinct due
to the node condition.

i. If p ∈ R0 ∩ R then R[N, p] contains rules s → t and � → r with t
�→r−−→ u.

Hence compose can be applied to replace s → t by s → u, which is mod-
elled in MKBtt by moving p from the rewrite label of a node with data s : t
to a node with data s : u.

ii. If p ∈ E ∩ R there is an equation s ≈ t in E[N, p] and a rule � → r in

R[N, p] such that t
�→r−−→ u. Thus simplify can turn s ≈ t into s ≈ u, and

indeed s ≈ u instead of s ≈ t occurs in E[N′, p].
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– In the case where rewrite2 was applied, the inference is an identity step for
every process p /∈ (R0 ∪ R1 ∪ E) ∩ R. Otherwise, three distinct possibilities can
be distinguished. If p ∈ R0 ∩ R or p ∈ E ∩ R then compose or simplify can be
applied, as argued in the case for rewrite1.

iii. If p ∈ R1 ∩ R then there are rules � → r and t → s in R[N, p] such that the
latter can be collapsed into an equation s ≈ u because t ·� �. Hence s ≈ u
belongs to E[N′, p] and t → s is not in R[N′, p].

– If gc was applied the step obviously corresponds to an identity step on the level
of KBtt for every process p ∈ P(N′), and the same holds for subsume.

Finally, for every inference rule the non-emptiness requirement for the set of affected
labels ensures that the strict part � holds for at least one p′ ∈ P(N′). ��

Lemma 2 Assume for a KBtt inference step (E,R, C) � (E ′,R′, C ′) there exist a node
set N and a process p such that E = E[N, p], R = R[N, p] and C = C[N, p]. Then
there is some inference step N � N′ with split set S and a process p′ ∈ P(N′) such that
p = predS(p′), E ′ = E[N′, p′], R′ = R[N′, p′] and C ′ = C[N′, p′].

Proof In the following case analysis on the applied KBtt rule, (∗) refers to the proof
obligations

E ′ = E[N′, p′], R′ = R[N′, p′], C ′ = C[N′, p′]
– Assume orient was applied to replace an equation s ≈ t ∈ E by the rule s → t ∈ R′.

Then there must be an node n = 〈s : t, R0, R1, E, C0, C1〉 in N such that p ∈ E
and C ∪ {s → t} terminates. We distinguish two further cases. If C ∪ {t → s}
terminates as well, we set S = {p}. For Rlr = {p0} and Rrl = {p1} an application
of orient yields

N′ = split{p}(N \ {n}) ∪ {〈s : t, R0 ∪ {p0}, R1 ∪ {p1}, E \ {p}, C0 ∪ {p0}, C1 ∪ {p1}〉}
For p′ = p0 we have p = predS(p′), and (∗) is satisfied. If C[N, p] ∪ {t → s} does
not terminate, we apply orient with S = ∅ and Rlr = {p}, which yields

N′ = (N \ {n}) ∪ {〈s : t, R0 ∪ {p}, R1, E \ {p}, C0 ∪ {p}, C1〉}
Thus we have p′ = p which trivially satisfies p = predS(p′), and again (∗) holds.

In all remaining cases we can set p′ = p since no splitting occurs.

– If compose rewrites s → t to s → u using a rule � → r, N contains nodes n =
〈s : t, R0, R1, E, C0, C1〉 and 〈� : r, R, . . . 〉 such that p ∈ R0 ∩ R. Thus rewrite1 or
rewrite2 applies, depending on whether t .= � or t ·� �. We obtain

N′ = (N \ {n}) ∪ {〈s : t, R0 \ R, R′
1, E \ R, C0, C1〉, 〈s : u, R0 ∩ R, ∅, E′, ∅, ∅〉}

where R′
1 is R1 or R1 \ R, and E′ is E ∩ R or (E ∪ R1) ∩ R, determined by

whether rewrite1 or rewrite2 is applied, respectively. Note that (∗) is satisfied.
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– If simplify reduces an equation s ≈ t to s ≈ u using a rule � → r, there are nodes
n = 〈s : t, R0, R1, E, C0, C1〉 and 〈� : r, R, . . . 〉 in N such that p ∈ E ∩ R. If t is a
variant of � we can therefore use rewrite1 and otherwise rewrite2 to infer

N′ = (N \ {n}) ∪ {〈s : t, R0 \ R, R′
1, E \ R, C0, C1〉}

∪ {〈s : u, R0 ∩ R, ∅, E′, ∅, ∅〉}
where R′

1 and E′ depend on which inference rule applies. Since p ∈ E ∩ R, (∗)
holds.

– Assume collapse is applied to turn a rule t → s into an equation u ≈ s using
� → r. Then t ·� � must hold, and N contains nodes n = 〈s : t, R0, R1, E, C0, C1〉
and 〈� : r, R, . . . 〉 such that p occurs in R1 ∩ R. To satisfy (∗) we can thus apply
rewrite2 to obtain

N′ = (N \ {n}) ∪ {〈s : t, R0 \ R, R1 \ R, E \ R, C0, C1〉}
∪ {〈s : u, R0 ∩ R, ∅, (E ∪ R1) ∩ R, ∅, ∅〉}

– If delete removes some equation s ≈ s from E then N must contain a node n =
〈s : s, R0, R1, E � {p}, C0, C1〉. Since the equation s ≈ s cannot be oriented into
a terminating rule, the sets R0, R1, C0 and C1 must be empty. Thus n can be
removed by delete in MKBtt.

– Finally, in the case where deduce generates s ≈ t from an overlap involving rules
� → r and �′ → r′, there are nodes 〈� : r, R, . . . 〉 and 〈�′ : r′, R′, . . . 〉 in N such
that p ∈ R ∩ R′. Applying deduce in MKBtt thus yields

N′ = N ∪ {〈s : t, ∅, ∅, R ∩ R′, ∅, ∅〉}
such that (∗) is satisfied. ��

Since MKBtt steps are reflected in KBtt, an MKBtt run γ of the form N0 �∗ N
corresponds to a valid KBtt run γp for every process p ∈ P(N).

Definition 6 Consider an MKBtt run γ of the form N0 � N1 � · · · � Nk and some
process p ∈ P(Nk). We inductively define the sequence p0, . . . , pk of ancestors of
p by setting pk = p and pi = predSi

(pi+1) for 0 � i < k, where Si is the split set
of the step Ni � Ni+1. Let Ei, Ri and Ci denote E[Ni, pi], R[Ni, pi] and C[Ni, pi],
respectively. Then the projected run γp is the sequence

(E0,R0, C0) �= (E1,R1, C1) �= · · · �= (Ek,Rk, Ck)

According to Lemma 1, γp is a valid KBtt run for every process p.

Using projections, the definitions of success, failure and fairness given for KBtt can
be naturally extended to MKBtt.

Definition 7 A finite MKBtt run γ of the form N0 �∗ N

– is fair if γp is fair and nonfailing for some process p ∈ P(N),
– succeeds if E[N, p] = ∅ for some process p ∈ P(N), and
– fails if γp fails for all processes p ∈ P(N).
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It is easy to see that MKBtt is sound in the sense that the equational theory is
preserved.

Lemma 3 Consider an MKBtt step N � N′ with split set S and a process q ∈ P(N′)
with p = predS(q). The relations ↔∗

E[N,p]∪R[N,p] and ↔∗
E[N′,q]∪R[N′,q] coincide.

As the simulation of KBtt with MKBtt is sound (Lemma 1) and complete
(Lemma 2), it is straightforward to establish correctness and completeness using the
corresponding results for KBtt. We call an MKBtt run γ : N0 �∗ N simplifying if the
resulting system R[N, p] is reduced whenever γ succeeds for some process p.

Theorem 4 Let NE be the initial node set for a set of equations E and let γ be a f inite
non-failing MKBtt run of the form NE �∗ N which is fair for some p ∈ P(N). Then
R[N, p] is convergent.

Proof According to Lemma 1 there is a corresponding KBtt run γp which is non-
failing and fair. Since finite runs of KBtt are correct (Theorem 3), R[N, p] is
convergent. ��

3.3 Completeness

Theorem 2 states the completeness of KB in the following sense: If a set of equations
E admits an equivalent finite convergent rewrite system R, any fair KB run will
produce an equivalent finite convergent system if a reduction order compatible with
R is used, provided the run does not fail. The following example shows that MKBtt
might even fail if one uses a termination tool T that can prove the termination of R.

Example 1 The convergent rewrite system R consisting of the rules

f(h(x, y)) → f(i(x, x)) h(a,a) → c

g(i(x, y)) → g(h(x, x)) i(a,a) → c

is derived from the input equalities E

f(h(x, y)) ≈ f(i(x, x)) h(a,a) ≈ c h(a,a) ≈ i(a, a)

g(i(x, y)) ≈ g(h(x, x)) i(a,a) ≈ c

in any fair run of standard completion that uses the reduction order →+
R. The system

R is easily shown to be terminating with a matrix interpretation of dimension 2;
e.g. the termination tool TTT2 using the strategy matrix -ib 2 -d 2 -direct
immediately outputs a termination proof. However, if a KBtt run uses TTT2 with this
strategy and starts by orienting h(a,a) ≈ i(a,a) then no matter which orientation is
chosen, one of the equations in the leftmost column remains unorientable. Similarly,
if MKBtt starts by applying orient to h(a,a) ≈ i(a,a) then process ε gets split into 0
and 1. But in subsequent steps neither process can orient both of the equations in the
leftmost column, so the run fails.
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This example shows that the order in which nodes are processed has considerable
influence: orienting nodes too early can prevent KBtt and MKBtt from producing a
convergent system even if a successful run exists. Nevertheless, completeness in this
sense can be partially obtained in a slightly modified version of MKBtt which we will
refer to as MKBttc. In contrast to the previous version, a process can now also keep
an equation unoriented. For this purpose, processes are now viewed as strings in
(0 + 1 + −)∗. We write T � R if the termination tool T can verify termination of the
rewrite system R. The orient rule in MKBttc is given in Fig. 6. Here, split′(Elr, Erl, N)

replaces every occurrence of a process p ∈ Elr ∩ Erl in a node of N by {p−, p0, p1},
every occurrence of p ∈ Elr \ Erl by {p−, p0} and every occurrence of p ∈ Erl \ Elr

by {p−, p1}. The notion of a split set in MKBtt is replaced by split tuple, which refers
to the pair of process sets (Elr, Erl). For all inference steps that use a different rule
than orient, the split tuple is (∅, ∅).

Example 2 If an MKBttc run on the input equalities from Example 1 starts by ori-
enting h(a,a) ≈ i(a,a), the resulting node is 〈h(a,a) : i(a, a), {0}, {1}, {−}, {0}, {1}〉.
In contrast to MKBtt, a descendant of process − can deliver a convergent system.

To obtain a completeness result for MKBttc, we require a stronger notion of
fairness which requires to equally advance all processes at some point.

Definition 8 Consider an equational proof P, a run N0 � N1 � N2 � · · · with p ∈
P(Nk), and let � denote →+

C[Nk,p]. Then p eventually simplif ies P starting from Nk if

– there is a proof Q in (E[Nk, p], R[Nk, p]) such that P ⇒�
KB Q, or

– all direct successors q ∈ P(Nk+1) of p eventually simplify P starting from Nk+1.

Thus a run γ with process p ∈ P(Nk) eventually simplifies a proof P if all
successors of p in γ allow for a smaller proof at some point.

Definition 9 (Strong fairness) A run γ : N0 � N1 � N2 � · · · is strongly fair if for
every k � 0, p ∈ Nk, and equational proof P in (E[Nk, p], R[Nk, p]) which is not
in normal form, the following conditions hold:

– If Nk admits a step Nk � N such that p ∈ P(N) and there is an equational
proof Q in (E[N, p], R[N, p]) satisfying P ⇒�

KB Q, then p eventually simplifies
P starting from Nk.

– If there exists an orient step Nk � N applied to node n such that N contains
a successor p′ of p and there is an equational proof Q in (E[N, p′], R[N, p′])

Fig. 6 The orient rule in MKBttc
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satisfying P ⇒�
KB Q, then every successor q of p either performed an orient step

on n and got extended by − in this step, or eventually simplifies P from Nk.

Here � denotes the reduction order →+
C[Nk,p].

Intuitively, a strongly fair run requires all processes to simplify an equational proof
if this simplification can be done without process splits (case i). Moreover, if an
orient step on, say, a node with data s : t allows for a simplification then all processes
except the one that does not orient s : t are required to perform this step (case ii).
A sufficient condition for a run to be strongly fair is that all processes are advanced
using a breadth-first strategy.

A termination tool T covers some reduction order � if for any rewrite system R
that is compatible with �, T � R holds.

Lemma 4 Consider an MKBttc run γ : N0 � N1 � N2 � · · · which employs a termina-
tion tool T covering some reduction order �.

1. For every node set Nk there exists a process pk such that C[Nk, pk] ⊆ � and the
sequence (E[Nk, pk], R[Nk, pk])k�0 is a valid KB run γp using �.

2. If γ is strongly fair then γp is fair.

Proof

1. We construct the process sequence (pk)k�0 inductively such that

(E[Nk, pk], R[Nk, pk], C[Nk, pk])
�= (E[Nk+1, pk+1], R[Nk+1, pk+1], C[Nk+1, pk+1]) (∗)

is a valid KBtt inference step and C[Nk, pk] ⊆ �.
We start by setting p0 = ε. Now consider an inference step Nk � Nk+1 with
split tuple (S0, S1). If pk /∈ S0 ∪ S1 then we take pk+1 = pk. By a straightforward
adaptation of Lemma 1 to MKBttc a corresponding KBtt (or empty) step (∗) is
possible, and C[Nk, pk] ⊆ � follows from the induction hypothesis. Otherwise,
we must have pk ∈ E for an inference step orienting a term pair s : t (adopting
the notation used in Fig. 6). If s � t then T � C[Nk, pk] ∪ {s → t} as T covers �.
In this case we set pk+1 = pk0. Due to the side condition of orient, pk ∈ S0 and
hence pk+1 ∈ P(Nk+1). Again (∗) is a KBtt step and by the choice of pk+1 also
C[Nk+1, pk+1] ⊆ � holds. The argument for the case t � s is symmetric. If s and t
are incomparable in �, we may choose pk+1 = pk−. Then (∗) is an equality step
and C[Nk+1, pk+1] ⊆ � follows from the induction hypothesis.
As the constructed sequence (E[Nk, pk], R[Nk, pk], C[Nk, pk])k�0 constitutes a
KBtt run which satisfies C[Nk, pk] ⊆ � for all k � 0, there is also a valid KB run
(E[Nk, pk], R[Nk, pk])k�0 which uses � as reduction order.

2. Let Eω and Rω denote the persistent sets of γp. Suppose P is a proof in (Eω,Rω)

which is not a rewrite proof and there exists an inference (Eω,Rω) � (E,R) such
that (E,R) admits a proof Q satisfying P ⇒�

KB Q. Then there must be a node
set N j in γ such that (E[N j, pj], R[N j, pj]) contains all equations and rules that
are used in P together with those used when simplifying P to Q. By adapting
Lemma 2 to MKBttc, it follows that there is an inference step N j � N such that
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E ′ = E[N, p′], R′ = R[N, p′], and C[N, p′] ⊆ � holds for some successor p′ of
pj, and (E ′,R′) admits proof Q.
We distinguish two cases. If (E[N j, pj], R[N j, pj]) � (E ′,R′) and therefore
N j � N does not apply orient then no process splitting occurs and pj ∈ P(N).
By strong fairness, pj eventually simplifies P. In particular, some successor
pm in the process sequence (pk)k�0 with m � j has to provide a proof Q′ in
(E[Nm, pm], R[Nm, pm]) such that P ⇒�

KB Q′. Therefore also γp allows for this
simplified proof.
Now suppose (E[N j, pj], R[N j, pj]) � (E ′,R′) applied orient to some equation
s ≈ t and s � t holds. By construction of the sequence (pk)k�0 no successor of
pj can have obtained − as part of its label when orienting a node with data
s : t. Hence, according to strong fairness all successors of pj have to eventually
simplify P. So some pm in (pk)k�0 with m � j has to provide a proof Q′ in
(E[Nm, pm], R[Nm, pm]) with P ⇒�

KB Q′. Again this proof is reflected in γp,
which proves fairness of this KB run. ��

The following completeness result shows that an MKBttc run employing a
sufficiently powerful termination prover can produce any convergent system which
is derivable in a KB run.

Theorem 5 Consider a f inite canonical rewrite system R which can be constructed
from E in a fair KB run using �. If T covers � then any strongly fair and simplifying
MKBttc run N0 � N1 � N2 � · · · which uses T and does not have a failing process
develops some process p ∈ P(Nn) which satisf ies E[Nn, p] = ∅ and R[Nn, p] = R
(up to renaming variables).

Proof According to Lemma 4 there is a sequence of processes (pk)k�0 such that
(E[Nk, pk], R[Nk, pk])k�0 is a fair KB run using �. By repeating the following
argument of [4, Theorem 3.9], we will see that this run succeeds with system R. Each
rule � → r in R is a theorem in E and therefore will have a persisting rewrite proof
after a finite number of steps in every fair and unfailing run. Let R′ ⊆ ⋃

i R[Ni, pi]
be the set of rules required for proofs of all rules in R. Both R and R′ are contained
in �. Hence all these proofs must be of the form � →∗

R′ r: Suppose r was reducible
in R′ to a term r′ such that r � r′. Then there must also be a proof r ↔∗

R r′ as R is
a convergent presentation of the theory. But r � r′ implies that r is reducible in R,
contradicting the assumption that R is canonical.

Thus →R ⊆ →+
R′ holds. As R and R′ have the same equational theory, R′ must

be convergent and hence canonical since it was constructed by a simplifying run. Thus
R and R′ have to be equal, because the canonical rewrite system compatible with a
given reduction order is unique (up to variable renaming) [19]. ��

Note that even if T covers �, an MKBttc run might still fail if the wrong strategy is
chosen. For example, a run on the equations E

a ≈ b a ≈ c f(b) ≈ b f(a) ≈ d

where T covers the lexicographic path order (LPO) with a precedence that satisfies
a > b, a > c, b > d and c > d may succeed with the convergent rewrite system R

a → d b → d c → d f(d) → d
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if a suitable strategy is adopted, but fail with the unorientable equation b ≈ c if the
equations are processed in an unfortunate order [7]. This example also illustrates
that for completeness it is not sufficient to require that T can prove termination of
R, or covers →+

R; any run on E where T only supports the reduction order →+
R fails

immediately.

4 Critical Pair Criteria

In order to limit the number of deduced equations during a completion run, several
critical pair criteria were proposed as a means to filter out critical pairs that can be
ignored without compromising completeness [3, 10, 14, 33]. In a later work, Bachmair
and Dershowitz [4] showed that these criteria match the more general pattern of
compositeness. Before describing the use of critical pair criteria inMKBtt, the relevant
definitions and some concrete criteria are recalled. We consider a fixed reduction
order �, a proof order �� and a proof reduction relation ⇒. For details the reader
is referred to [4].

4.1 Critical Pair Criteria in Standard Completion

A critical pair criterion CPC is a mapping from sets of equations to sets of equations
such that CPC(E) is a subset of CP(E). Intuitively, CPC(E) contains those critical
pairs that are considered redundant. A run (E0,R0) � (E1,R1) � (E2,R2) � · · · using
reduction order � is fair with respect to CPC if for every peak P associated with
a critical pair in CP(Rω) \ ⋃

i CPC(Ri ∪ Ei) there exists a proof Q in (Ei,Ri) for
some i > 0 such that P ⇒ Q. A critical pair criterion CPC is correct if a nonfailing
run is fair in the general sense whenever it is fair with respect to CPC. Clearly,
correct critical pair criteria allow to filter out unnecessary critical pairs without
compromising completeness.

An equational proof P that has the form of a peak s ← u → t is composite if there
exist terms u0, . . . , un+1 where s = u0 and t = un+1 and proofs P0, . . . , Pn such that
Pi proves ui ≈ ui+1 and P �� Pi holds for all 1 � i � n. The compositeness criterion
returns all critical pairs among equations in E for which the associated overlaps
are composite, which was proven to be correct [3]. This very general criterion is
hard to apply in practice. However, some of the earlier proposals to filter out
superfluous critical pairs in completion procedures actually capture special cases of
compositeness.

Kapur et al. [10] introduced the notion of primality for critical pairs. An overlap
tσ ← sσ = sσ [uσ ]p → sσ [vσ ]p between rules s → t and u → v in R is prime if sσ
is not reducible at some position strictly below p. The primality criterion PCP(R)

returns all critical pairs among rules in R for which the associated overlaps are not
prime. A special case of PCP is captured by the unblockedness criterion BCP [3]. A
critical pair originating from an overlap tσ ← sσ = sσ [uσ ]p → sσ [vσ ]p is blocked if
xσ is irreducible in R for all variables x ∈ Var(s) ∪ Var(u). The set BCP(R) contains
all unblocked critical pairs among rules in R.

Küchlin [14] introduced the notion of connectedness to limit equational conse-
quences deduced in a completion procedure. A critical pair s ≈ t originating from
an overlap s ← u → t is connected below u if there exists an equational proof
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s = u0 ↔ u1 ↔ · · · ↔ un = t such that u � ui for all 1 � i < n. Clearly, if a critical
pair s ≈ t is connected below u such that n > 1 then it is also composite. For
a practical criterion, Küchlin assumes → ⊆ � and concentrates on finding con-
necting sequences u1, . . . , un−1 such that u →+ ui. As a special case the following
weak connectivity test is proposed. Given an overlap tσ ← sσ = sσ [uσ ]p → sσ [vσ ]p

between rules s → t and u → v, the associated critical pair is connected if there
exists a reduction step sσ → w using a rule � → r at position q fulfilling the (non-
exclusive) properties: (1) if q ∈ PosF (s) then the critical overlap 〈s → t, q, � → r〉
is already considered, (2) if q = pq′ and q′ ∈ PosF (u) then 〈� → r, q′, u → v〉 is
already considered, and (3) if p = qp′ and p′ ∈ PosF (l) then 〈u → v, p′, � → r〉 is
already considered. This criterion is generalized to a full connectivity test where
the critical pair is connected via an arbitrary sequence w0, . . . , wn instead of a single
intermediate term w. In the sequel the connectedness criterion returning connected
critical pairs among rules in R will be referred to as CCP(R).

Since both CCP and PCP are special cases of compositeness, these criteria can also
be combined. This mixed criterion that filters out critical pairs that are redundant
according to one of the criteria will in the sequel be referred to as MCP.

4.2 Critical Pair Criteria in MKBtt

In the following paragraphs we describe how critical pair criteria can be integrated
into MKBtt.

Definition 10 Given a KB critical pair criterion CPC, the corresponding MKBtt
critical pair criterion CPCm maps an overlap o with associated critical pair s ≈ t, a
set of processes E and a node set N to a process set CPCm(o, E, N) = E′ such that
E′ ⊆ E and s ≈ t ∈ E[N, p] \ CPC(E[N, p]) for all p ∈ E′.

Intuitively, the set E′ contains all processes in E for which the critical pair derived
from o is not superfluous. Thus, in the deduce rule for MKBtt the equation label of
the new node is filtered by the criterion as shown in Fig. 7.

Consider a finite MKBtt run γ of the form N0 �∗ Nk and a process p ∈ Nk. Let pi

denote the ancestor of p in Ni and let � denote the reduction order →+
C[Nk,p]. Then

we call γ fair with respect to CPCm and p if the following condition holds: Whenever
a node set Ni gives rise to an overlap o with critical pair s ≈ t as described in Fig. 7 and
pi ∈ E \ CPCm(o, E, Ni) then there exists a proof Q in some (E[N j, pj], R[N j, pj])
for j > 0 such that s ≈ t ⇒�

KB Q holds. The run γ is fair with respect to CPCm if it
is fair with respect to CPCm and some process p ∈ P(Nk). An MKBtt critical pair

Fig. 7 The deduce inference rule using a critical pair criterion



Multi-Completion with Termination Tools 339

criterion CPCm is correct if every finite non-failing run γ that is fair with respect to
CPCm is also fair in the sense of Definition 7.

Lemma 5 Every MKBtt critical pair criterion CPCm obtained from a correct criterion
CPC is correct.

Proof Let γ be a finite non-failing run of the form N0 �∗ Nk which is fair with respect
to CPCm and some process p ∈ P(Nk), and let pi denote the ancestor of p in Ni.
Assume a critical overlap o where pi ∈ E \ CPCm(o, E, Ni) for some ancestor pi of
p. By definition there exists a proof Q in some (E[N j, pj], R[N j, pj]) such that we
have s ≈ t ⇒�

KB Q. Hence the projected run γp is fair with respect to CPC and by
correctness of CPC it is also fair. Thus γ is fair as well. ��

Thus the use of MKBtt criteria obtained from correct standard criteria does not
compromise completeness, and the chance of a run to succeed is not influenced. The
following example illustrates the use of critical pair criteria in MKBtt.

Example 3 An MKBtt run on CGE2 encounters the nodes

〈e · x : x, P0 ∪ P1, . . . 〉 (39)

〈i(x) · x : e, P0 ∪ P1, . . . 〉 (40)

〈x · e : x, P0, . . . 〉 (41)

〈i(e) : e, P0, . . . 〉 (42)

〈y · i(x · y) : i(x), P0 ∪ P1, . . . 〉 (43)

The overlap 〈y · i(x · y) → i(x), ε, e · x → x〉 produces the critical pair i(x) ≈ i(x · e)
for the set of processes P0 ∪ P1. When PCPm is applied, it is checked whether
there exists a node which allows to reduce the term u = e · i(x · e) at some position
below the root. Since node (41) can reduce u at position 21, the critical pair is
recognized as redundant for all processes in P0 such that the deduced node is
〈i(x) : i(x · e), ∅, ∅, P1, ∅, ∅〉.

Furthermore, the overlap 〈i(x) · x → e, 1, i(e) → e〉 between nodes (40) and (42)
gives rise to the critical pair e ≈ e · e for the process set P0. To reduce the term i(e) · e
also node (41) can be applied at the root position. While PCPm is not applicable since
the overlap position is below ε, CCPm requires to check the critical pairs involved
in the decomposition. Indeed, the critical pair e ← i(e) · e → i(e) between nodes
(40) and (41) is already covered by node (42) and the peak involving nodes (41)
and (42) can be ignored since it is just a variable overlap. Hence the deduce step is
superfluous.

The critical pair criteria PCP, BCP, and CCP require to check whether an
overlapped term can be reduced in a certain way other than indicated by the overlap
itself. Since MKBtt allows to check reducibility for multiple processes at once, the
redundancy checks required for the respective multi-completion criteria can be
shared among multiple processes.
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5 Isomorphisms

The performance of our tool mkbTT is significantly affected by the number of
simulated processes. On some input problems, runs exhibit similar process pairs
which have the same probability of success.

Example 4 A run onCGE2 may generate a node set N with process p where E[N, p]
consists of the equations

(x · y) · z ≈ x · (y · z) f(e) ≈ e

g(x) · f(y) ≈ f(y) · g(x) g(e) ≈ e

and R[N, p] = C[N, p] consists of the rewrite rules

e · x → x f(x · y) → f(x) · f(y)

i(x) · x → e g(x · y) → g(x) · g(y)

If an inference step N � N′ applies orient to the equation g(x) · f(y) ≈ f(y) · g(x), the
process p is split as both orientations are possible. But the states of the emerging
child processes p0 and p1 are the same up to interchanging f and g. Hence further
deductions of these processes will be symmetric.

Such similarities between processes are generally captured by isomorphisms.

Definition 11 A bijection θ : T (F ,V) → T (F ,V) extends to an isomorphism be-
tween rewrite systems R and R′ if R′ = {θ(�) → θ(r) | � → r ∈ R} such that s →R t
if and only if θ(s) →R′ θ(t) for all terms s and t. Two sets of equations E and E ′
are isomorphic with respect to θ if E ′ = {θ(u) ≈ θ(v) | u ≈ v ∈ E} and for all terms
s and t, s ≈E t if and only if θ(s) ≈E ′ θ(t). These concepts are expressed by writing
R ∼=θ R′ and E ∼=θ E ′, respectively. Two MKBtt processes p and q are isomorphic
in a node set N if there exists some isomorphism θ such that E[N, p] ∼=θ E[N, q],
R[N, p] ∼=θ R[N, q] and C[N, p] ∼=θ C[N, q].

Lemma 6 Let Np and Nq be node sets containing processes p and q such that

(E[Np, p], R[Np, p], C[Np, p]) ∼=θ (E[Nq, q], R[Nq, q], C[Nq, q])
If there is a step Np � N′

p such that p is the predecessor of p′ ∈ P(N′
p) then there is also

an inference step Nq �= N′
q and a process q′ ∈ P(N′

q) such that q is the predecessor of
q′ and

(E[N′
p, p′], R[N′

p, p′], C[N′
p, p′]) ∼=θ (E[N′

q, q′], R[N′
q, q′], C[N′

q, q′])

Proof If p was not affected by the step Np � N′
p, that is (E[Np, p], R[Np, p],

C[Np, p]) coincides with (E[N′
p, p], R[N′

p, p], C[N′
p, p]) and p ∈ P(N′

p), then we
can set N′

q = Nq. Otherwise a mirror step Nq � N′
q using the same inference rule can

model the step for q. More precisely, the mirror step is defined by case distinction on
the rule applied in Np � N′

p.

– Assume orient turned a node n = 〈s : t, R0, R1, E, C0, C1〉 into 〈s : t, R0 ∪
Rlr, R1 ∪ Rrl, E′, C0 ∪ Rlr, C1 ∪ Rrl〉 using split set S. Then a node n′ with data
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θ(s) : θ(t) has to occur in Nq since E[Nq, q] ∼= E[Np, p] holds by assumption.
Three further possibilities can be distinguished:
Assume p = p′ and p ∈ Elr \ S because C[Np, p] ∪ {s → t} terminates, but
C[Np, p] ∪ {t → s} does not. Thus also C[Nq, q] ∪ {θ(s) → θ(t)} terminates, but
C[Nq, q] ∪ {θ(t) → θ(s)} does not. So the mirror step Nq � N′

q can apply orient
to node n′ with Elr = Rrl = {q} and Erl = Rrl = ∅. In the second case where
p = p′ and p ∈ Erl \ S, we reason symmetrically to the preceding case. For the
final case, let p ∈ S. We orient n′ to obtain the mirror step Nq � N′

q. Because
C[Np, p] ∼= C[Nq, q] holds, both orientations terminate, so q gets split into q0
and q1 which are then isomorphic to p0 and p1, respectively.

All remaining inference rules do not split processes so p = p′ and thus q = q′.

– Assume delete was applied to a node 〈s : s, ∅, ∅, E, ∅, ∅〉 where p ∈ E. Then
there must be a node n′ of the form 〈θ(s) : θ(s), ∅, ∅, E′, ∅, ∅〉 in Nq such that
q ∈ E′, and Nq � N′

q will be a delete step removing n′.
– If deduce created a node with data 〈s : t, ∅, ∅, R ∩ R′, ∅, ∅〉 originating from

a critical pair involving nodes with terms � : r and �′ : r′, due to R[Np, p] ∼=
R[Nq, q], there must be two nodes with respective data 〈θ(�) : θ(r), R, . . .〉 and
〈θ(�′) : θ(r′), R′, . . .〉 in Nq which allow in a mirror step Nq � N′

q to deduce a
node 〈θ(s) : θ(t), ∅, ∅, R ∩ R′, ∅, ∅〉.

– If rewrite1 or rewrite2 was applied to a node 〈s : t, R0, R1, E, C0, C1〉 using a rule
node 〈� : r, R, . . .〉 to create 〈s : u, R′

0, ∅, E′, ∅, ∅〉, then the mirror step Nq � N′
q

can apply the same rule to nodes with data θ(s) : θ(t) and θ(�) : θ(r), which exist
by assumption. Then q is removed from the rewrite or equation label of the node
with data θ(s) : θ(t), and occurs now in a node with data θ(s) : θ(u). ��

Theorem 6 Let Ni be a set of nodes containing isomorphic processes pi, qi ∈ P(Ni).
Assume there exists an MKBtt completion run γ of the form Ni �∗ Nk and a process
pk ∈ P(Nk) such that pi is the ancestor of pk in Ni, and the projected run γpk is fair
and successful. Then there is also a fair deduction γ ′ of the form Ni �∗ N′

k producing a
process qk ∈ P(N′

k) such that qi is an ancestor of qk, and also γ ′
qk

is fair and successful.

Proof We show by induction on the length of γ : Ni �∗ Nk that there exists a
sequence γ ′ : Ni = N′

i �∗ N′
k with processes q j ∈ N′

j such that (E[Nk, pk], R[Nk, pk],
C[Nk, pk]) is isomorphic to (E[N′

k, qk], R[N′
k, qk], C[N′

k, qk]). For the case where
k = i the processes pk and qk are by assumption isomorphic via some mapping
θ . If k > i we consider a sequence Ni �∗ Nk−1 � Nk where pi is the ancestor
of pk in Ni. By the induction hypothesis there is a sequence Ni = N′

i �∗ N′
k−1

with processes qk−1 ∈ N′
k−1 such that (E[Nk−1, pk−1], R[Nk−1, pk−1], C[Nk−1, pk−1])

is isomorphic with respect to θ to (E[N′
k−1, qk−1], R[N′

k−1, qk−1], C[N′
k−1, qk−1]).

By Lemma 6, the last step Nk−1 � Nk can be mirrored by N′
k−1 �= N′

k such
that N′

k contains a process qk for which (E[Nk, pk], R[Nk, pk], C[Nk, pk]) and
(E[N′

k, qk], R[N′
k, qk], C[N′

k, qk]) are again isomorphic via θ . Note that N′
k−1 = N′

k
if Nk−1 � Nk did not affect pk−1.

Hence given γ : Ni � Ni+1 � · · · � Nk with pk ∈ P(Nk) there is a run γ ′ : Ni �=
N′

i+1 �= · · · �= N′
k with qk ∈ P(N′

k) such that (E[Nk, pk], R[Nk, pk], C[Nk, pk]) is
isomorphic to (E[N′

k, qk], R[N′
k, qk], C[N′

k, qk]). As pk succeeds in Nk we must have
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E[Nk, pk] = ∅ and thus also E[N′
k, qk] = ∅. Since all intermediate states of pk and

qk are isomorphic, γ ′ is fair for qk. ��

If our tool mkbTT detects two isomorphic processes in the current node set N
then one process is deleted from all nodes in N. We exploit two concrete shapes of
symmetries. Renaming isomorphisms swap function symbols as in Example 4, where
p0 and p1 are isomorphic under the mapping θ that exchanges f and g. Argument
permutations associate with every function symbol f of arity n a permutation π f

of the set {1, . . . , n}. Then the mapping on terms which is defined by θ(x) = x
and θ( f (t1, . . . , tn)) = f (θ(tπ f (1)), . . . , θ(tπ f (n))) also induces an isomorphism. For
example, when completing SK90-3.02 [25] a process with state

(x + y) + z ≈ x + (y + z)
f(f(x)) → x

f(x + y) → f(x) + f(y)

has to orient the associativity axiom. Both orientations preserve termination, but the
two child processes emerging from a process split are isomorphic under the argument
permutation π+ = (1 2).

6 Implementation

The inference system described in the previous sections is implemented in our tool
mkbTT. The tool is written in the programming language OCaml. Binaries and
sources are available from the tool’s website http://cl-informatik.uibk.ac.at/mkbtt/
where also a web interface can be found. In the following sections we provide
implementation details which were found to be of special importance.

6.1 Control

The basic control of mkbTT is a multi-completion variant of a discount loop,
very similar to the one originally proposed for completion with multiple reduction
orders [15]. Pseudo-code describing the control loop is given in Fig. 8. The procedure
advances two node sets containing open nodes No and closed nodes Nc, correspond-

Fig. 8 Procedure
implementing MKBtt

http://cl-informatik.uibk.ac.at/mkbtt/
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ing to passive and active facts. Intuitively, closed nodes have been fully exploited
with respect to the orient and rewrite1,2 inference rules, and to every pair of closed
nodes deduce has been applied exhaustively. Therefore, at the beginning of a run Nc
is empty whereas No contains the set of initial nodes.

We briefly describe the components occurring in the main control loop. At the
beginning of each recursive call it is checked whether some process succeeded. For
this purpose, a process p is considered successful if it does not occur in an open
node or in a closed equation label, i.e., all of E[Nc, p], R[No, p] and E[No, p] are
empty. If no successful process exists but there are open nodes left, choose selects
a node n from the set of open nodes. Different selection strategies are considered
for this purpose (see Section 6.4). The function rewrite(N, N′) applies rewrite1,2 to
nodes in N by employing nodes in N′ as rules. Nodes are implemented as mutable
structures, so the original objects are modified and only newly created nodes are
returned. The function call orient(n, No, Nc) is used to apply the orient inference to
node n. It returns the modified node along with the node sets No and Nc adapted
by the split operation. Immediately after rewrite and deduce calls, delete is invoked
to filter out nodes with equal terms. After having been subjected to rewrite, all
labels in a node might become empty. The purpose of gc is to filter out such
nodes. The call deduce(n, Nc) returns all equational consequences originating from
deduce inference steps involving node n together with some node from Nc. To avoid
redundant nodes, the union operation � exploits the subsume inference.

6.2 Termination Checking

Our tool supports two possibilities for termination checks in orient inference steps.
They can either be performed internally by interfacing TTT2 [13] with the user’s
favourite termination strategy supplied in TTT2’s strategy language. Alternatively,
any external termination checker can be used which complies to a minimal interface:
It must take as argument the name of a file specifying the termination problem in
TPDB format2 and print YES on the first line of the output if termination could be
established.

6.3 Term Indexing

Automated deduction tools typically spend a major part of computation time on
deducing equational consequences and rewriting. A variety of sophisticated term
indexing techniques [24] have been developed in order to speed up filtering out
matching and unifiable terms. Also mkbTT relies on indexing techniques to quickly
sift through nodes that are applicable for inferences. For instance, for deduce
inferences the retrieval of unifiable (sub)terms is needed. For rewrite1 steps, variants
have to be retrieved and rewrite2 requires encompassment retrieval, where the
latter can be achieved by repeatedly retrieving subsumptions (also referred to as
generalizations in the literature). To select unifiable terms, mkbTT implements path
indexing and discrimination trees [9, 18], for variant and subsumption retrieval also
code trees [28] are supported.

2http://www.lri.fr/~marche/tpdb/

http://www.lri.fr/~marche/tpdb/
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6.4 Selection Strategies

An iteration of mkbTT’s main control loop starts by selecting a node to process
next. For this purpose a choice function picks the node where a given cost heuristic
evaluates to a minimal value. The measure applied in this selection has significant
impact on performance. To allow for a variety of possibilities, a strategy language is
defined that is general enough to cover selection strategies that proved to be useful,
but also captures some concepts used in choice strategies of other tools. A strategy is
specified by the grammar rule

strategy ::= ? | (node,strategy) | float(strategy: strategy)

Here node refers to a node property, which is in turn defined via properties of process
sets, processes, sets of equations, rewrite systems and term pairs:

node ::= data(term_pair) | el(process_set) | - node | node + node | *
process_set ::= min(process) | sum(process) | #

process ::= process + process | e(eqs) | r(trs) | c(trs)
eqs ::= sum(term_pair) | #
trs ::= sum(term_pair) | cp(eqs) | #

term_pair ::= smax | ssum
The properties forming the basic elements of strategies are captured by integer
values. The following paragraphs explain the different components.

– A node property of a node n = 〈s : t, . . . , E, . . .〉 can be its creation time (denoted
by *), a property of the node’s data s : t, or a process set property pp of its
equation labels E, which is written as el(pp). Node properties can also be added
or inverted.

– A process set property takes either the sum or the minimum over a property of
the involved processes, or may simply be the number of processes it contains,
which is denoted by #.

– Given a current node set N, a process property of a process p may be an equation
set property ep of its equation projection E[N, p] or a rewrite system property
tp of either its rule projection R[N, p] or its constraint projection C[N, p], which
is expressed by writing e(ep), r(tp) and c(tp), respectively. Process properties
can also be added.

– An equation set property of a set of equations E can be its cardinality (#) or
the sum over a term pair property of the contained equations. A rewrite system
property of a rewrite system R can additionally be a property of its set of critical
pairs CP(R).

– A term pair property of s : t can be the sum |s| + |t| or maximum max{|s|, |t|} of
the sizes of the involved terms, which is specified by writing ssum and smax.

– Finally, properties are combined to obtain selection strategies. The simplest
possible strategy is ?, which is implemented by picking a node randomly.
Alternatively, a strategy may combine a node property np with another strategy
s to a tuple (np,s). By using this rule multiple times, a node property list of the
form (np1, . . .(npk,?) . . .) can be constructed. To mix strategies, a strategy
can also be of the shape r(s1:s2), where r is assumed to be a rational value
in the closed interval [0, 1]. Node property lists are evaluated by mapping each
node to the corresponding tuple of integer values, its cost, and choosing the
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(lexicographic) minimum. In case of a mixed strategy r(s1:s2), the strategy s1

is applied with probability r, and s2 is used in the remaining cases.

As selection measures have considerable impact, many different strategies for
automated reasoning tools have been reported in the literature. For instance, Vam-
pire [29] employs a size/age ratio when deciding on a fact to be processed next. If this
ratio is (e.g.) 2 : 3 then out of 5 selections 2 will pick the oldest and 3 the smallest
node, i.e., the node where the sum of its term sizes |s| + |t| is minimal. In mkbTT this
approach can be achieved with the strategy

ssize/age(r) = r((data(ssum),?):(*,?))

where the parameter r ∈ [0, 1] controls the ratio of size-determined selections, e.g., a
size/age ratio of 2 : 3 corresponds to r = 0.6.

The “best-first” selection approach applied in Slothrop [32] corresponds to ad-
vancing a process for which |E[N, p]| + |CP(R[N, p])| + |C[N, p]| is minimal. When
combined with, for example, a size/age ratio, this is expressed as follows:

sslothrop(r) = (el(min(e(#)+r(cp(#))+c(#))),ssize/age(r))

In mkbTT, the strategies smax and ssum turned out to be beneficial. These strategies
first restrict attention to processes where the number of symbols in E[N, p] and
C[N, p] is minimal, then select nodes with minimal data and finally go for a node
which has the greatest number of processes in its equation label:

ssum = (el(min(e(sum(ssum))+c(sum(ssum)))),

(data(ssum),(-el(#),?))))

The strategy smax differs from ssum only in that ssum is replaced by smax. To use
mkbTT with other heuristics than those just described, a user-defined strategy can be
specified via a command line option.

6.5 Command Line Interface

The tool mkbTT is equipped with a simple command line interface. It expects an
input problem in TPTP3 [27] or TPDB format, where in the latter case both the old
textual and the newer XML format3 are supported.

A number of options allow to configure the tool. Both a global and a local timeout
in seconds can be specified using -t and -T. The termination prover is given as
argument to the -tp option. Alternatively, if TTT2 is used internally a termination
strategy can be supplied with the -s option. A selection strategy can be given with
the option -ss, using the grammar described in Section 6.4.

The critical pair criteria BCP, PCP, CCP and MCP can be applied by supplying
-cp with arguments blocked, prime, connected, and all, respectively. Isomor-
phism checks are to be specified via the option -iswith optional arguments rename,
rename+, perm, or perm+. With the suffix + we compare processes pairs in every
iteration, otherwise checks are only performed when a process is split. By default
mkbTT applies a heuristic to determine which isomorphism is potentially applicable.

3http://www.termination-portal.org/

http://www.termination-portal.org/
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Term indexing techniques used for rewriting and unification may be selected
with the options -ix and -ui together with one of nv, pi, dt, or—in the case
of rewriting—ct, referring to naive search, path indexing, discrimination trees, and
code trees respectively.

The option -kp expects a floating point value larger than 1 and allows to give
a process filtering rate. For example, mkbtt -kp 1.2 deletes all processes that
exceed the cost of the best process by 20%.

To control output, the flags -ct, -st and -p require mkbTT to print the
completed system, statistics and a proof in case of success. Furthermore, the tool
offers a checking mode where a file containing a rewrite system supplied via the
option -ch is tested for termination, confluence and for allowing rewrite proofs for
the the input equalities.

As an example, the call

mkbtt -t 600 -T 5 -tp aprove -cp prime WSW06_CGE2.trs

Fig. 9 Web interface of mkbTT
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runs the tool on CGE2 for at most 600 s using a script calling AProVE [8] for
termination checks with a timeout of 5 s, and employs the critical pair criterion PCP.

6.6 Web Interface

Besides a command line interface, mkbTT can also be executed via a web interface.
The screenshot in Fig. 9 provides an impression. Various options may be configured
by the user. A global timeout and a timeout for each termination check can be
specified. Termination may be either checked inside mkbTT using TTT2 functions
or by applying an external tool. If TTT2 is used internally, different predefined
termination strategies can be selected. This includes basic reduction orders as well
as predefined strategies combining dependency pairs, a dependency graph approx-
imation, the subterm criterion, and reduction pairs, which proved to be powerful
and fast. In addition, also a user-defined strategy may be supplied in the strategy
language of TTT2. Alternatively, termination checks can be performed externally
with AProVE or MuTerm [1]. For the retrieval of encompassments and variants,
one of the implemented term indexing techniques can be selected (path indexing,
discrimination trees, code trees or naive search in the node set). To restrict the
deduced equational consequences, one of the implemented critical pair criteria PCP,
BCP, CCP or MCP can be selected. In case of CCP, the weak connectivity test
as described in Section 2 is performed. Users can control isomorphism checks by
selecting symbol renamings or term permutations, and specify whether these checks
are performed repeatedly or only when processes are split.

7 Experimental Results

We ran experiments on a server equipped with eight dual-core AMD Opteron®

processors 885 running at a clock rate of 2.6GHz with 64GB of main memory.
Our test set comprises 101 problems collected from various papers. In the following
paragraphs we summarize results obtained for the whole test set, and illustrate our
conclusions with selected examples from that database. For this purpose, systems
with prefix TPTP refer to theories underlying unit equality problems in TPTP
3.6.0 [27], prefix SK90 refers to [25, Section 3], WSW06 refers to the Slothrop [32]
distribution, and BGK94 and C89 indicate systems stemming from [5] and [6],
respectively. The whole testbench as well as the full experimental data can be
obtained from the website. All experiments described in the following tables featured
a timeout of 600 s. If a successful completion could not be achieved within that period
this is marked by ∞, whereas ⊥ indicates failure. If not stated otherwise, in all of the
following experiments the following default settings of mkbTT were used: We inter-
face TTT2 internally with termination strategy dp-lpo-kbo and a termination timeout
of 2 s, apply selection strategy smax, and use the critical pair criterion MCP. We use
only renaming isomorphisms, controlled by the auto heuristic. As term indexing
techniques code trees and discrimination trees allow to retrieve encompassments and
unifiable terms, respectively.

Table 1 compares mkbTT with Slothrop, listing the time required for a successful
completion in seconds. The last two lines give the number of successes and the
average time required to compute a convergent system, respectively. Overall, mkbTT
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Table 1 Comparing mkbTT
with Slothrop

mkbTT Slothrop

BGK94-D8 75.9 ∞
BGK94-M8 ∞ 12.1
SK90-3.27 30.4 446.2
TPTP-GRP496-1 63.6 281.1
WS06-proofreduct 183.4 ∞
WSW06-CGE2 6.7 460.4
WSW06-CGE3 45.2 ∞
successes 80 67
average time 18.3 65.8

solves about 15% more problems than Slothrop, and achieves completion on average
about three times faster. Nevertheless, due to different selection strategies which
are favourable for different problems there are also examples where Slothrop can
produce a convergent system but our tool (with its default strategy) cannot, such as
the system BGK94-M8.

Termination Table 2 shows results obtained with different termination strategies
when interfacing TTT2 internally. The strategies dp-kbo, dp-lpo, and dp-lpo-kbo
combine dependency pairs, a dependency graph approximation, the subterm cri-
terion and some simple counting techniques with reduction pair processors using
KBO, LPO, and both, respectively. The first three strategies apply plain LPO, KBO
(with weights of two bits) and linear polynomial interpretations (with coefficients of
two bits). Columns (1) show the time required for completion and columns (2) the
percentage of time spent on termination.

The use of plain reduction orders such as LPO or KBO often results in compar-
atively fast completions (as e.g. in the cases of SK90-3.04 and SK90-3.27 for LPO
and TPTP-GRP493-1 for KBO) because little time is spent on termination checks
as can be seen from the bottom line. On the other hand, plain reduction orders
have comparatively limited power when it comes to orienting equations, which can
prevent success as in case of WS06-proofreduct or the CGE systems. Overall, this
results in fewer completions than obtained with more complex strategies that offer
a higher flexibility. We could not find a system where polynomial interpretations

Table 2 Different termination strategies

lpo kbo poly dp− lpo dp− kbo dp− lpo− kbo

(1) (2) (1) (2) (1) (2) (1) (2) (1) (2) (1) (2)

C89-A3 ∞ 234.0 17 ∞ 65.0 48 71.8 50 74.8 51
SK90-3.04 0.7 52 ∞ ∞ 2.6 53 ∞ 2.7 54
SK90-3.27 5.6 21 23.4 7 446.8 31 34.8 29 27.9 21 29.7 27
TPTP-GRP493-1 ∞ 37.5 15 ∞ ∞ 92.4 29 93.1 32
TPTP-GRP496-1 66.0 15 60.0 19 ∞ ∞ 60.0 32 63.4 37
WS06-proofreduct ∞ ∞ ∞ 174.9 93 179.5 92 182.4 92
WSW06-CGE3 ∞ ∞ ∞ 43.7 80 42.5 80 44.3 81

successes 69 67 41 76 78 80
average time 13.8 19.1 20.7 13.2 17.5 18.1
termination % 18 23 60 55 49 51
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are beneficial, and the overall success rate is considerably worse. The overall success
rate turned out to be best with dp-lpo-kbo, supposedly since a combined strategy
can cope best with problems where LPO is beneficial and problems where KBO is
preferable. There are systems that can be completed with a plain reduction order but
not with a strictly more powerful termination strategy employing dependency pairs,
like TPTP-GRP496-1 using KBO. This illustrates that more termination power does
not necessarily result in a higher chance for success because many possibilities for
orienting equations also induce many processes, which can deteriorate performance
significantly.

Selection Strategies Table 3 demonstrates the crucial impact of selection strategies
in mkbTT. Columns (1) give the time required for completion and columns (2)
the number of control loop iterations (i.e., selected nodes). In line with previous
observations from the theorem proving literature, we found that the selection
strategy is critical for the success of a run. While for some systems such as SK90-
3.07, TPTP-GRP490-1 or the CGE examples it is beneficial to use smax, there are
also systems like BGK94-M8 which can only be solved using ssum, and problems like
SK90-3.22 for which a mere size/age ratio works best. It thus seems impossible to
determine a single best strategy. Since overall smax could complete most systems and
is fastest on average, it is used by default in a specialized and faster implementation.

Critical Pair Criteria Table 4 compares results obtained with mkbTT using the
primality criterion PCP, the connectedness criterion CCP and the mixed criterion
MCP. Columns (1) list the time required for completion, columns (2) the number of
redundant critical pairs for the successful process and columns (3) the total number
of created nodes.

We found a single system, TPTP-GRP490-1, which could only be completed when
using PCP, CCP or MCP. For a number of systems the use of critical pair criteria
results in a considerably smaller number of nodes and consequently some speedup, as
in the cases of C89-A3, TPTP-GRP457-1 or TPTP-GRP496-1. This is also reflected
in the reduced average time for completion with CCP and MCP. However, there are
also examples such as BGK94-D12 which can no longer be completed when using PCP
(although CCP and MCP work), and examples such as TPTP-GRP484-1where a less
powerful criterion results in less control loop iterations and thus a shorter completion

Table 3 Different selection strategies

smax ssum sslothrop ssize/age sold
(1) (2) (1) (2) (1) (2) (1) (2) (1) (2)

BGK94-D8 195.0 112 ∞ 370.4 161 352.2 352 158.8 149
BGK94-D16 45.2 102 117.8 132 ∞ ∞ 152.1 151
BGK94-M8 ∞ 14.6 22 ∞ ∞ ∞
C89-A2 28.1 108 165.6 270 ∞ ∞ 138.8 109
SK90-3.07 86.2 161 ∞ ∞ ∞ ∞
SK90-3.22 ∞ ∞ ∞ 25.0 99 ∞
TPTP-GRP490-1 130.9 218 ∞ 564.0 182 ∞ ∞
WSW06-CGE3 46.8 49 439.1 325 232.0 87 138.2 136 132.0 85

successes 79 68 68 71 68
average time 22.6 31.2 61.8 52.8 35.7
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Table 4 Different critical pair criteria

none PCP CCP MCP

(1) (3) (1) (2) (3) (1) (2) (3) (1) (2) (3)

BGK94-D12 78.4 4,884 ∞ 23.6 24 1,946 23.1 38 1,877
C89-A2 96.3 2,168 73.7 24 2,098 93.5 24 2,045 76.4 54 2,009
TPTP-GRP457-1 7.9 777 2.8 17 460 4.8 29 590 4.0 33 512
TPTP-GRP484-1 343.6 15,874 53.0 35 4,225 111.2 76 5,815 105.1 80 5,571
TPTP-GRP490-1 ∞ 130.8 67 5,371 80.0 155 3,683 90.4 174 3,600
TPTP-GRP496-1 80.3 5,444 77.4 60 4,702 65.3 100 3,998 64.8 104 3,927
WSW06-CGE3 44.0 2,240 45.2 14 2,217 44.8 29 2,141 44.8 29 2,129

successes 79 78 80 80
average time 21.6 23.5 18.7 18.4
redundant CPs 834 1529 1605
time to check 5.1 32.7 28.4

time. In these cases the selection strategy smax seems to be influenced by the critical
pair criterion in an unfortunate way: the effect of critical pair criteria for a certain
system was generally found to depend on the selection strategy. When comparing
the three criteria, it turns out that PCP detects the least number of critical pairs, but
performs redundancy checks very fast (see the bottom line). When summing up all
critical pairs filtered out for successful processes, CCP is twice as effective as PCP.
The criterion BCP is a little less effective than PCP, relevant results can be obtained
from the website. Overall MCP turned out to be most beneficial.

Term Indexing Table 5 compares the term indexing techniques implemented in
mkbTT to retrieve variants and encompassments. Here nv abbreviates naive filtering
of the node database, pi refers to path indexing, dt refers to discrimination trees and
ct to code trees. Columns (1) list the time required for completion while columns
(2) and (3) give the percentage of time spent on retrieval and rewrite operations,
respectively. While all indexing techniques allow to complete the same number of
systems, the time consumed by retrieval operations can be reduced significantly when
using discrimination trees or code trees. Table 5 singles out some examples where the
gain is especially significant. When comparing the time required for rewrite steps,
discrimination trees fall back behind code trees since the retrieved candidate nodes

Table 5 Different term indexing techniques

nv pi dt ct

(1) (2) (3) (1) (2) (3) (1) (2) (3) (1) (2) (3)

BGK94-D8 173.9 6 19 180.8 3 21 160.1 1 15 151.8 <1 13
C89-A2 29.3 6 17 29.6 4 16 27.5 1 12 25.5 <1 11
SK90-3.07 48.6 13 33 50.8 6 33 44.4 2 26 40.8 1 24
TPTP-GRP481-1 40.7 12 36 42.0 7 42 34.8 2 33 32.9 1 28

successes 79 79 79 79
average time 21.1 21.1 19.0 17.9
time/variants 4.2 3.9 3.8 4.1
time/encompassment 104.8 51.5 11.5 6.8
time/maintenance 0.8 1.2 0.8 0.5
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still have to be checked for subsuming the query term. This is not required when
using a technique achieving perfect filtering such as code trees.

The bottom lines sum up retrieval times over the whole database and show that
although there is little difference concerning variant retrieval (which is negligible
anyway) the time for encompassment retrieval can be reduced by more than 90%
using discrimination trees or code trees. As expected, maintenance operations such
as insertion and removal consume hardly any time.

Concerning the retrieval of unifiable terms in deduce operations, the use of term
indexing techniques turned out to be less influential. Compared to naive filtering,
discrimination trees decrease the average share of time spent on retrieval from 1
to 0.3%.

Isomorphisms Isomorphism checks can be performed either only on process splits,
or repeatedly for every process pair. Table 6 compares both possibilities for renam-
ings (ren) and argument permutations (ap) with the setting where no isomorphism
checks are used (a + indicates repeated checks). The setting auto refers to mkbTT’s
default strategy, which determines at the beginning of a completion run whether the
initial equations allow for a nontrivial renaming or argument permutation. In this
case repeated checks are performed throughout the deduction. Columns (1) give the
time required for completion in seconds, and columns (2) the number of processes
emerging in the course of a run.

Renaming checks, especially when performed repeatedly, turned out to be useful
for a number of problems, in particular the CGE systems. Also for some string sys-
tems like SK90-3.28 and SK90-3.29, and TPTP-GRP011-4 the number of processes
could be reduced, although this does not always result in faster completions due to
the time required for checking. Argument permutations were useful for just two
small systems in the benchmark set, one of which is SK90-3.02 where the number
of processes could be halved.

On the other hand, especially repeated checks for isomorphisms can be costly if
no isomorphic process pairs appear. This is for example the case for SK90-3.28 and
the CGE systems when used with argument permutations. Overall the auto setting
prevails concerning number of successes and average time, although the heuristic
does not always go for the best choice.

Table 6 Different isomorphisms

none ren ren+ ap ap+ auto

(1) (2) (1) (2) (1) (2) (1) (2) (1) (2) (1) (2)

C89-A3 64.8 174 65.6 174 77.1 161 65.4 174 86.4 174 77.4 161
SK90-3.02 0.1 7 0.1 7 0.1 7 0.1 3 0.1 3 0.1 7
SK90-3.28 101.7 499 102.8 499 157.6 385 102.4 499 116.2 499 156.3 385
SK90-3.29 3.5 128 2.6 97 3.0 73 3.5 128 4.5 128 3.0 73
TPTP-GRP011-4 3.0 13 1.8 6 1.8 6 3.0 13 3.1 13 1.8 6
WSW06-CGE2 37.7 50 37.6 50 7.0 11 37.5 50 48.7 50 7.0 11
WSW06-CGE3 175.1 163 176.6 163 46.0 35 176.8 163 204.9 163 46.0 35

successes 80 80 80 80 80 80
average time 18.3 18.3 23.1 18.3 27.3 17.8
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Novel Completions While Slothrop was the first completion tool to handle CGE2

(in more than 200 s), mkbTT can also complete the systems CGE3, CGE4 and CGE5

describing the theory of 3, 4 and 5 commuting group endomorphisms within 18, 145
and 35,796 s, respectively. Our tool also produced the first convergent TRS for the
proof reduction system presented in [31].

8 Conclusion

The present paper reports on multi-completion with termination tools, a completion
approach that combines the use of automatic termination provers with completion
using multiple reduction orders. The resulting method offers a novel degree of
automation as users do not have to supply a suitable order, and provides increased
flexibility concerning the orientation of rules. We described the inference system,
illustrated the approach by means of an example run, and formally proved its
correctness. We also commented on new insights into the method’s completeness.
Critical pair criteria, a classical means to filter equational consequences in stan-
dard completion procedures, were carried over to the present setting. As further
improvement isomorphisms were described, and shown to not compromise com-
pleteness. We gave a detailed account of the implementation of our approach in
the tool mkbTT, reporting on its control flow and implementation issues such as
term indexing techniques and selection strategies. An outline of both the web and
command line interface provides insight into the tool’s usage. We concluded with
detailed experimental results which prove the power of multi-completion when
comparing to Slothrop and show how the improvements allowed mkbTT to achieve
new completions of challenging problems such as systems of the CGE family.

Very recently, the tool Maxcomp took a novel approach to completion by encod-
ing the whole process as a satisfiability problem [11]. Although currently restricted to
reduction orders like LPO, KBO and MPO where orientability can be encoded as a
satisfaction problem, the resulting tool is fully automatic in that users do not need to
supply a concrete order. Moreover, Maxcomp circumvents the choice of a concrete
selection strategy, which is a critical parameter for both mkbTT and Slothrop. It can
thus also never fail due to premature orientation, in contrast to mkbTT as illustrated
by Example 1. This is reflected in the results presented in Table 7, where Maxcomp
solves more problems than our tool when restricting the termination strategy to LPO.

Table 7 Comparison of
mkbTT and Maxcomp

mkbTT Maxcomp

standard LPO KBO LPO KBO

BGK94-D8 76.0 24.3 238.8 0.5 ∞
C89-A3 74.8 ∞ 234.0 2.3 407.6
OKW95-dt1 2.1 1.5 2.7 40.8 ∞
SK90-3.22 ∞ ∞ ∞ 3.2 5.7
WS06-proofreduct 182.4 ⊥ ∞ ⊥ ∞
WSW06-CGE2 6.7 ∞ ∞ ∞ ∞
WSW06-equiv-proofs 5.5 ∞ ∞ ∞ ∞
successes 80 69 67 77 61
average time 18.1 13.8 19.1 3.6 8.6
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Table 8 Comparison of mkbTT and Maxcomp on a subset of TPDB

mkbTT Maxcomp with LPO Maxcomp with KBO

successes 1,109 821 812

Even with its more complex standard termination strategy, mkbTT can complete
only a few more problems, although Maxcomp of course fails on challenging prob-
lems like WSW06-CGE2 and WS06-proofreduct which cannot be completed using
plain LPO or KBO. However, the difference grows when a benchmark set requiring
more sophisticated termination techniques is considered, as shown in Table 8. Here
the 3061 problems in TPDB 7.0 were considered which are not already confluent and
could be completed by at least one of the tools within 600 s.

The approach underlying mkbTT has been extended to ordered completion [34]
although a ground-confluent system is in this setting only obtained when restricting
to termination techniques that entail total termination. Completion modulo theories
also benefits from a multi-completion approach. Termination tools that support
termination analysis modulo theories can be used here. For the important AC case,
this approach is implemented in the tool mascott [35]. It is to be investigated
whether termination tools can be used in other variants of completion, such as
normalized completion [17]. The extension to other calculi of automated reasoning
which classically depend on reduction orders, for example paramodulation [20], is
subject to future work, too.
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