J Autom Reasoning (2012) 49:111-114
DOI 10.1007/s10817-011-9217-2

Preface: Theory and Applications of Abstraction,
Substitution and Naming

Maribel Fernandez - Christian Urban

Received: 1 February 2011 / Accepted: 1 February 2011 / Published online: 2 March 2011
© Springer Science+Business Media B.V. 2011

Mathematical treatments of concrete syntax have always been a central concern in
symbolic computation, programming language implementation and computer-aided
reasoning. Formal treatments of abstract syntax have proved harder to develop,
especially those addressing properties related to substituting structures for variables,
binding of names and fresh name generation.

The A-calculus, a paradigmatic calculus of functions, includes a binder—Aa. It is
therefore quite natural that some of the first treatments of abstract syntax with
binders have been based on extensions of first-order syntax that use the A-calculus
as meta-language. Recently, other approaches to the formalisation of syntax with
binders have been proposed, for instance, based on set theories with atoms such as
Zermelo-Fraenkel sets with atoms, or Fraenkel-Mostowski’s set theory.

The wealth of recent results and the opening of new, exciting, research directions
in the area led to the introduction of several dedicated international workshops.
The first International Workshop on Theory and Applications of Abstraction,
Substitution and Naming (TASSN) took place in Edinburgh in 2007, followed by
a second workshop in York in 2009, associated to ETAPS.

This special issue is devoted to papers describing recent advances in this area. It
came out of a call for papers issued after the second TASSN workshop, with the
aim of including a selection of extended versions of workshop papers in addition to
opening it up to other authors. Seven articles were selected for this special issue,
covering the following topics:

M. Ferndndez
Department of Informatics, King’s College London, Strand, London WC2R 2LS, UK
e-mail: Maribel.Fernandez@kcl.ac.uk

C. Urban (X)

Institute for Computer Science at the TU Munich (IV), Boltzmannstrasse 3,
85748 Garching, Germany

e-mail: urbanc@in.tum.de

@ Springer



112 M. Fernandez, C. Urban

1 New Formalisation Techniques for Languages Involving Binders

Nominal techniques for the representation of languages with binding rely on a
syntactical distinction between bindable variables (called atoms in the terminology of
nominal syntax) and non-bindable variables, called meta-variables or just variables in
nominal syntax. The article by Lakin and Pitts, Encoding abstract syntax without fresh
names, introduces a variant of nominal abstract syntax in which bindable names are
represented by normal meta-variables as opposed to a separate class of atoms. Since
bindable names are represented by normal meta-variables, distinct meta-variables
can be instantiated with the same concrete name, and explicit constraints are used
to control this kind of aliasing. The nominal meta-programming language alphaML,
designed by the same authors, is based on this approach. In Encoding abstract syntax
without fresh names, Lakin and Pitts recall the main features of the language and
develop a theory of contextual equivalence for it. The central result of the paper is
that abstract syntax trees involving binders can be encoded into alphaML in such
a way that their alpha-equivalence corresponds with contextual equivalence of their
encodings. Unlike previous results on contextual equivalence using standard nominal
terms, this new encoding does not rely on the existence of globally fresh names and
fresh name generation.

An alternative technique for the representation of languages with binding is
presented by Pollack and Sato in the article A canonical locally named representation
of binding. The approach is based on a variant of first-order syntax which uses
different syntactic classes for locally bound variables and global (or free) variables.
A key ingredient in Pollack and Sato’s approach is the choice of names to obtain a
canonical representation of terms. In previous work, the authors used a particular
concrete function for canonically choosing the names of binders, whereas in A
canonical locally named representation of binding they show that the properties of
such a choice function can be defined in an abstract way, and they develop the
metatheory of the representation.

2 Categorical Theories of Names and Binding

Denotational semantics is one method of specifying meaning of languages. A
presheaf category is presented as a denotational semantics for the calculus of explicit
fusions by Bonchi et al. in the article A presheaf environment for the explicit fusion
calculus. They extend Turi and Plotkin’s ideas on category theoretic modelling of
structural operational semantics to a presheaf category over an index category.
With this they can deal with naming aspects of the fusion calculus, a variant of the
w-calculus including asynchronous broadcasting of name equivalences.

3 Properties of Substitutions in Calculi that Support Binding

A well-known technique to describe in an abstract way implementations of calculi
that include binding operators is based on the definition of capture-avoiding sub-
stitutions explicitly. This requires an extended syntax, where substitutions are first-
class citizens, and additional rules to specify the action of substitutions on terms. In

@ Springer



TAASN Preface 113

the article On Explicit Substitution with Names, Rose, Bloo and Lang describe the
origins of the family of calculi of explicit substitution with variable names known
as Ax, and study the properties of preservation of strong normalisation, confluence,
and confluence on terms that include meta-variables. Moreover, the article discusses
the relationship with other versions of explicit substitution calculi using names and
garbage collection rules.

4 Mechanised Meta-Theory of Calculi Involving Binding

Many proofs about calculi that support binding are arduous, but often this is due to
the length of the proof rather than conceptual difficulties. Since there are usually
many cases to check, the subtle ones may easily be overlooked amongst the many
straightforward cases. Thus, interactive proof assistants can be a very useful tool in
the study of the meta-theory of calculi involving binding.

To formalise a typed calculus or programming language in a proof assistant two
approaches are available. In the first one, usually called extrinsic, one first defines a
type that encodes untyped object expressions and then makes a separate definition
of typing judgements over the untyped terms. In the second one, the intrinsic ap-
proach, only well-typed object expressions are defined (ill-typed expressions cannot
be expressed). Intrinsic encodings naturally enforce the required properties, for
instance, metalanguage operations on object expressions respect object types, but
the downside is that the metalanguage types of intrinsic encodings and operations
involve dependency. In the article Strongly Typed Term Representations in Coq,
Benton, Kennedy, Hur and McBride describe intrinsic encodings of simply-typed
and polymorphic languages using the Coq proof assistant. The Coq types encoding
object-level variables and terms are indexed by both type and typing environment. In
the simply typed case, the definitions are free of any use of type equality coercions.
In the polymorphic case, some substitution operations still require type coercions but
the treatment is simplified by the uniform use of heterogeneous equality.

When developing or checking proofs, adequacy is an important criterion for
judging the correctness of formal reasoning. In the article Formalizing adequacy
for higher-order abstract syntax, Cheney, Norris and Vestergaard investigate and
formalise connections between nominal and higher-order abstract syntax techniques
in Isabelle/HOL using the Nominal Datatype Package. The article clarifies some
subtle issues that were overlooked in the past in informal proofs of adequacy, and
proposes a library of useful results as well as a model proof of adequacy, which can
be used as a basis for automating adequacy proofs.

5 Meta-Languages and Tools for the Formalisation of Systems that Involve Binding

Programming languages and theorem provers are the standard examples of systems
that involve binding. To formalise their properties, Gacek, Miller and Nadathur pro-
pose, in A two-level logic approach to reasoning about computations, a specification
logic that can explicitly deal with binding in object languages. To prove theorems
about specifications written in this logic, a second logic, called the reasoning logic,
is proposed. Since the specification logic includes various notions of binding, the

@ Springer



114 M. Fernandez, C. Urban

reasoning logic supports the encoding of binding structures as well as their associated
notions of scope, free and bound variables, and capture-avoiding substitution. In
addition, the reasoning logic includes mechanisms for constructing proofs by induc-
tion and co-induction. The article describes the specification and reasoning logics
and shows how provability in the specification logic can be transparently encoded
in the reasoning logic. It also describes the implementation of this approach in the
interactive theorem prover Abella and gives examples to illustrate the advantages of
Abella to reason about computations.

@ Springer



	Preface: Theory and Applications of Abstraction, Substitution and Naming
	New Formalisation Techniques for Languages Involving Binders
	Categorical Theories of Names and Binding
	Properties of Substitutions in Calculi that Support Binding
	Mechanised Meta-Theory of Calculi Involving Binding
	Meta-Languages and Tools for the Formalisation of Systems that Involve Binding


