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Abstract After fresh or frozen ovary transplantation, FSH
levels return to normal, and menstrual cycles resume by
150 days, coincident with anti-Miillerian hormone rising to
higher than normal levels. AMH then returns to well below
normal levels by 240 days, remaining as such for many years
with nonetheless normal ovulation and fertility. To date, 20
babies have been born in our program from 11 fresh and 13
cryopreserved ovary transplant recipients with a live baby rate
of over 70 % (11 babies from fresh and 9 from frozen).
Globally, over 70 live births have been reported for both fresh
and frozen ovary transplants with an approximate 30 % live
birth rate. Given the rapid rise of AMH after the fall of FSH,
with a subsequent AMH decrease with retention of ovarian
function, it is tempting to speculate the existence of a shared
mechanism controlling primordial follicle recruitment, fetal
oocyte meiotic arrest, and recruitment in the adult ovary.
With the massive recruitment of primordial follicles observed
after human ovarian cortical tissue transplantation, which sub-
sides to an extremely low recruitment rate, we will discuss
how this phenomenon suggests a unifying theory implicating
ovarian cortical tissue rigidity in the regulation of both fetal
oocyte arrest and recruitment of follicles in the adult ovary. As
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the paper by Winkler-Crepaz et al. in this issue demonstrates,
our in vivo results are consistent with the in vitro demonstra-
tion that primordial follicles in the fetal cortex are “locked” in
development, resulting in meiotic arrest, which spares the oo-
cytes from being rapidly lost all at once (Winkler-Crepaz
et al., J Assist Reprod Genet, 1). Winkler-Crepaz et al. dem-
onstrate that follicle loss after ovarian cortex transplantation is
unlikely due to ischemic apoptosis, but rather from a “burst”
of primordial follicle recruitment. In vivo, primordial follicles
are normally resistant to further development or activation to
prevent oocyte depletion. The dense fibrous ovarian cortex,
through as yet unresolved mechanisms, arrests the further con-
tinuation of meiosis and also prevents a sudden depletion of
all resting follicles in the adult ovary. Intrinsic tissue pressure
is released after cortical tissue transplantation, temporarily
resulting in a rapid follicle depletion. These results are consis-
tent with the observation that once the ovarian reserve is re-
duced in the graft, the rate of recruitment diminishes and the
ovarian tissue exhibits a relatively long duration of function.

Keywords Primordial follicle - Oocyte recruitment - Oocyte
arrest - Ovary transplant - Cryopreservation - Fertility
preservation - In vitro oogenesis

Introduction

The developed world is in the midst of a widespread infertility
epidemic. Economies in Japan, the USA, southern Europe,
and even China are threatened by a decreasing population of
young people having to support an increasing population of
elderly and retirees [1]. Infertility clinics are popping up
throughout the world in huge numbers because of a world-
wide decline in fertility as women age and become less fertile
[2]. In her teen years, a woman has a 0.2 % chance of being
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infertile, and by her early twenties, it is up to 2 %. By her early
thirties, it is up to 20 % [2, 3]. Many modern women today do
not consider having children until their mid-thirties, by which
time nearly 20 % are infertile, simply due to the age-related
decline in the number and quality of their oocytes. This is
clearly demonstrated by the high pregnancy rate using donor
oocytes from young women placed into the uterus of older
women [2—12].

As important for reproductive medicine as is aging of the
population and the subsequent worldwide epidemic of infer-
tility, is the high incidence of cancer in girls and young wom-
en, curable in the majority of cases at the cost of rendering
them sterile. Almost 6 % of women of reproductive age are
cancer survivors. They will eventually have been sterilized by
their chemotherapy or radiation [13-21].

Until recently, oocyte freezing had very poor to no success,
and thus ovary tissue slow freezing was the only cryopreser-
vation method we could rely upon [22-24]. More commonly
now, vitrification is used instead of slow freeze for oocyte
cryopreservation [25-34]. However, many programs do not
have follow-up results with oocyte freezing especially in can-
cer patients undergoing sterilizing chemotherapy and radia-
tion. Furthermore, it may require several cycles of ovarian
stimulation to obtain enough oocytes to give women some
level of comfort, because even with fresh oocytes, there is
only a 5 % pregnancy rate per egg [35].

As an alternative strategy for cancer patients, ovarian tissue
freezing has benefits over egg freezing. In some patients,
freezing ovarian tissue obviates the need to delay treatment
for a stimulation cycle. Furthermore, transplanting ovarian
tissue not only restores fertility but also restores endocrine
function.

As important as these clinical benefits afforded by ovary
cryopreservation and transplantation are, there may be even
more important basic science implications to be learned about
the ovary, as is evident in the current paper by Winkler et al.,
as well as recent papers by Silber et al. and by Hayashi et al.
[36—42]. The purposes of this review are to explain the clinical
employment of ovary freezing and transplantation and to de-
lineate what we have learned about primordial follicle arrest
and recruitment.

Ovarian cortex cryopreservation
and transplantation

Cryopreservation and transplantation of ovarian tissue has a
long history in animal studies and in early human studies. In
1960, Parrott and colleagues showed that ovarian tissue could
be successfully frozen and autografted in mice, and similar
studies by Gunasena and colleagues 37 years later verified
live births of mice after autologous transplantation of cryopre-
served mouse ovaries, originally shown in rats in 1954
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[43—45]. Others have shown that mice have a normal repro-
ductive lifespan after autografts of fresh tissue [46].
Researchers in the 1990s showed that in both mice and sheep,
frozen ovarian tissue could be successfully thawed and
autotransplanted leading to normal ovarian function and live
births [22, 47]. We reported in 2004 the first live birth from
fresh human ovarian tissue transplanted between identical
twins discordant for premature ovarian failure [37] (Fig. la—
d). Donnez and colleagues reported what is deemed to be the
first human live birth from orthotropic transplantation of fro-
zen human ovarian tissue in 2004, with another successful live
birth achieved by Meirow in 2005 [48, 49].

Our large series of 11 fresh ovary transplants resulted in 14
pregnancies and 11 healthy babies, and a remarkably consis-
tent return of menstrual cycling and normal day 3 follicle-
stimulating hormone (FSH) concentrations by 4 to 5 months
in all patients, which gave hope that a large series of cryopre-
served transplants might also provide robust results [39,
50-52]. In fact, the use of similar surgical techniques with
cryopreserved ovarian tissue for patients with cancer led to
10 pregnancies, and 9 healthy babies from 13 cryopreserved
transplants, in addition to the 14 pregnancies after fresh ovar-
ian cortex transplants between twins (11 live babies) for a total
of 20 healthy babies. Our unusual series of fresh and frozen
ovary transplants allowed us to evaluate the effect, if any of
cryopreservation versus the transplant itself. In fact, cryopres-
ervation had no significant impact on ovarian reserve, but
over-recruitment of primordial follicles did (Figs. 2 and 3).
The finding that as FSH decreases and ovulation resumes,
with AMH initially rising to high levels followed by a return
to very low levels, indicated that a massive over-recruitment
of primordial follicles led to a subsequent depletion in the
ovarian reserve. Interestingly, despite low AMH levels, the
grafts nonetheless sustained ovarian function for long periods
of time (Figs. 4 and 5).

The question was raised of what effect ovary donation
might have on the donors’ reproductive lifespan. This ques-
tion is not just an ethical one. It impacts the whole scientific
issue of primordial follicle recruitment rate related to a de-
crease in ovarian reserve. The potential effect of unilateral
oophorectomy on both fertility and age of onset of menopause
is crucial for understanding how these ovarian grafts can last
so long despite a very low AMH. Gosden and colleagues in
1989 described a compensatory mechanism of follicle rescue
in mice that prevented any major effect on fertility [53]. A
later study in 1992 noted that long-term ovarian function is
not substantially affected by reduction of ovarian mass [54].
Other more clinical papers also support a lack of major effect
on fertility of unilateral oophorectomy in human beings, with
menopause occurring only 1 or 2 years earlier than in controls.
Only one study has disputed this view in rats and suggested an
earlier onset of menopause after unilateral oophorectomy than
in controls [55-63]. However, if the traditional view is correct,
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Fig. 1 Steps in the procedure of
ovarian transplantation between
MZ twin sisters: a preparation of
donor ovarian cortex by
dissection in a Petri dish on ice; b
preparation of recipient ovarian
medulla; ¢ attaching donor
cortical tissue to recipient ovarian
medulla; d attaching thawed
donor cortical tissue for
retransplant to the recipient
medulla [37]

in which unilateral oophorectomy does not negatively affect
fertility and does not hasten the onset of menopause, this
would support partial or complete oophorectomy and ovarian
tissue cryopreservation to expand the reproductive lifespan of
normal women who wish to delay childbearing but do not
want to lose their current reproductive potential. Thus, we felt
comfortable in undertaking a series of fresh ovary transplants,

which led the way toward improving our ovarian freezing
transplantation methods [64—66]. Also, we feel confident that
removing an ovary will not harm long-term fertility.
Contrarily, it follows that transplanting the removed ovary
could extend a woman'’s reproductive lifespan.

Several techniques have been described for transplantation
of the ovarian cortex [37, 43, 48-50]. In mice, Parrot used

Fig. 2 Serum FSH returns to
normal consistently by

4.5 months after fresh transplant
[391]
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Fig.3 Similar to fresh transplant,
the FSH returns to normal about
5 months after frozen transplant
[39]
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sliced little pieces of ovarian cortex. Others prepared perito-
neum near the ovary but then switched to a technique similar
to that described for fresh ovarian tissue [37]. Ovarian cortical
slices can also be transplanted under the surface of the cortex
in the nonfunctional ovary [49]. All these techniques have
resulted in babies and there is no consensus on which is best.

The key to successful transplantation of frozen ovarian tis-
sue is to consider it as though it were a skin graft (Fig. 6a, b).
Microhematoma formation under the graft is avoided by
microbipolar cautery pulsatile irrigation and micropressure
stitches of 9-0 nylon. Constant pulsatile irrigation with hepa-
rinized saline prevents adhesions, improving chances of spon-
taneous pregnancy with no need for IVF, difficult in these
cases due to a reduced ovarian reserve yielding few oocytes
after ovarian hyperstimulation. The transplant is best if
orthotropic, and adhesions are minimized [67, 68] (Fig. 1a—d).

(20 y.o.) Transplant of Thawed Ovarian TiSSue #7.
June 17, 2011
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Fig. 4 As the FSH returns to normal, the AMH rises very high and then
goes down to very low levels
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Initially, there were only a few case reports, some very
recently, of successful cryopreserved ovary transplantation
but no unified single series [68—76]. However, it appears
now that there is a worldwide live birth rate of over 30 to
70 %, with more than 70 babies, and long-term function of
the transplant has been observed despite very low AMH.
Robust results are seen in series from St. Louis, Brussels,
Paris, Spain, Denmark, Israel, Japan, Italy, Germany,
Australia, and Russia [77, 78]. Cryopreserved ovarian tissue
grafts with the slow-freezing method as well as with vitrifica-
tion are functional for more than 5 years, and many spontane-
ous pregnancies have been reported with no need for in vitro
fertilization or other ancillary treatment. Most pregnancies
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Fig. 5 Composite dot graph summarizing the return of FSH to normal
and the rise of AMH and subsequent decline after frozen transplant [38]
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a

Fig. 6 a, b All of the resting follicles are located in the outer 1 mm of the
fibrous ovarian cortex

were achieved without the need for in vitro fertilization and
resulted instead from regular intercourse with no other
treatment.

With this in mind, the remarkable long-term hormonal and
ovulatory function of these cortical grafts despite extremely
low AMH after the initial primordial follicle over-recruitment
emphasizes the compensatory relationship of a low remaining
ovarian reserve to a slower recruitment rate of primordial fol-
licles [73].

The most common benefit of ovarian transplantation was
previously thought to be the preservation of fertility and future
endocrine function in young women undergoing cancer treat-
ment. However, in the absence of pelvic irradiation for cancer
treatment, why not use ovarian tissue cryopreservation in oth-
erwise healthy women who wish to preserve their fertility for
nonmedical reasons? With vitrification methods, there is no
difference in the viability or integrity of cryopreserved ovarian
tissue compared with fresh ovarian tissue [66]. Furthermore,
with cryopreserved ovarian tissue transplantation, hormonal
function is restored in addition to fertility [73—77].

Ovarian cryopreservation techniques

In the past, all of the frozen ovary cases transplanted back to
the patient have utilized the slow freeze approach [22-24, 79].
However, we now use vitrification exclusively for cryopres-
ervation in humans because of the results of in vitro viability
analysis in humans, as well as in vivo transplant studies in the
bovine and human [65, 66]. Three of our successful eight
pregnancies were from vitrified ovarian tissue. Five were from
ovarian tissue that was frozen long ago (as early as 1996) with
slow freeze.

The high viability (92 %) of oocytes in control (fresh) and
vitrified specimens indicates virtually no damage to the eggs
from ovarian tissue vitrification [66]. Overall, 2301 oocytes
were examined from 16 specimens. There was no significant
difference between fresh and vitrified tissue, but the viability
of slow freeze-cryopreserved tissue was less than one half that
of vitrified tissue or controls (42 %) (P<0.01) (Fig. 7a, b).
Transmission electron microscopy also has been used to

Fig. 7 a, b There is no discernible difference between fresh ovarian
tissue and vitrified [66]
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analyze ovarian tissue that had been either cryopreserved by
slow freezing or vitrified by ultra-rapid freezing, showing vit-
rification to be superior [64]. Standard H&E histology showed
no difference between prefreeze ovarian tissue and
postvitrification ovarian tissue. Finally, quantitative histologic
study of primordial follicles in the bovine after vitrification
and transplantation back to the cow 2 months later remarkably
showed no follicle loss [65]. Nonetheless, for clinical use,
slow freeze gives pregnancy results as good as vitrification.
The only advantage of vitrification, and why we prefer it, is
the ease of use.

Using the vitrification technique, cortex tissue of
each ovary is cut into slices 10 mm by 10 mm X
I mm. Ovarian tissues are initially equilibrated in
7.5 % ethylene glycol (EG) and 7.5 % dimethyl sulfox-
ide (DMSO) in handling medium (HM: HEPES-buffered
TCM-199 solution supplemented with 20 % serum for
25 min, followed by a second equilibration in 20 % EG
and 20 % DMSO with 0.5 mol/l sucrose for 15 min).
Ovarian tissues are then placed in a minimum volume
of solution (virtually “dry”) onto a thin metal strip
(Cryotissue: Kitazato BioPharma, Japan) and submerged
directly into sterile liquid nitrogen [65], after which the
strip is inserted into a protective container and placed
into a liquid nitrogen storage tank (Fig. 8).

For thaw, the protective cover is removed and the
Cryotissue metal strip is immersed directly into 40 ml of
37 °C HM solution supplemented with 1.0 mol/1 sucrose for
1 min. Then, ovary tissues are transferred into 40 ml of
0.5 mol/1 sucrose HM solution for 5 min at room temperature
and washed twice in HM solution for 10 min before viability
analysis or transplantation. No ice crystal formation occurs
during any of these vitrification procedures [65, 66].

PREPARATION OFEG

Fig. 8 Thin slices of ovarian cortical tissue preserve all of the resting
follicles
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Clinical benefit of ovarian tissue freezing: cancer,
ovarian reserve, and long-term function

The most common benefit of ovarian transplant is not the
unusual case of fresh grafting in identical twins but rather to
protect the fertility and future endocrine function of young
women undergoing treatment for cancer or other diseases that
result in ovotoxicity. Since 1996, we have frozen ovary tissue
for over 100 young women with cancer, or at risk for POF, of
whom 16 had spare frozen tissue subjected to detailed viabil-
ity testing before cryopreservation and after thaw.

None of our cases who were cured of cancer have had any
tumor cells in their ovary. There have been no cases reported
of transmission of cancer via transplant of frozen ovarian cor-
tex [77, 78, 80] (Fig. 9). The reason for the remarkable ab-
sence of ovarian metastasis might possibly be due to the fi-
brous avascular nature of the ovarian cortex [81]. The reason
why fetal ovarian tubules (which in the male become seminif-
erous tubules) invade the fibrous cortex and become follicles
is that the dense fibrous tissue of the cortex (which in the fetal
and adult testis is just tunica albuginea) is needed to suppress
the resting follicles from developing all at once prematurely
by forming primordial follicles. Primordial follicles arrest the
fetal oocytes from continuing meiosis to completion and sub-
sequent apoptosis. The dense fibrous tissue of the ovarian
cortex not only controls follicle development but also repre-
sents a relatively inhospitable location for cancer cells.

The return of FSH to normal at 4 to 5 months indicates that
this is the period of time required for primordial follicles, once
recruited, to develop on to the antral and ovulatory stage. The
concomitant rise of AMH to well over normal levels followed
by a drop to very low levels indicates a massive over-
recruitment of follicles and subsequent depletion. This is sub-
stantiated by the current report of Winkler-Crepaz et al.
transplanting human ovarian tissue into SCID mice, demon-
strating no ischemic apoptosis of follicles, but rather a massive

Fig. 9 No metastasis in ovary
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over-recruitment [36]. However, these transplanted slices of
ovarian cortex continue to function normally for many years
because of a decreased rate of primordial follicle recruitment
that occurs when there is decreased ovarian reserve [82].

After ovarian transplantation, all patients were able to at-
tempt natural conception every month without medical assis-
tance. In fact, the commonly held view that egg freezing is a
proven technique and ovary tissue transplantation is
“experimental” is belied by the fact that most of the successful
pregnancies resulting from fertility preservation in cancer pa-
tients thus far have been from frozen ovary tissue, and few at
the date of this writing have come from frozen oocytes [77,
78].

At the time of this submission, we are aware of numerous
other births after implanting ovarian tissue for a total of over
70 live births thus far [68]. To date, no reports of transmission
of cancer from ovarian transplants have appeared (Fig. 9). One
reason for the lack of transmission may be because the dense
ovarian cortical fibrous tissue, like the tunica albuginea of the
testis, is an inappropriate location for cancer cells to lodge.

Another plausible clinical benefit of the massive over-
recruitment occurring after ovarian cortex transplantation is
the recruitment of “trapped” follicles in menopausal ovaries
[83, 84]. As we have shown, a reduced ovarian reserve results
in a reduced rate of primordial follicle recruitment. The point
at which the ovarian reserve is so low as to preclude recruit-
ment, a state of POF is obtained (or ovarian POI), i.e., prema-
ture ovarian failure. We speculate that autotransplanting this
tissue can result in recruitment and ovulation of these few
remaining follicles.

Primordial follicle recruitment and in vitro oogenesis

The ovarian cortex participates in the locking and the
unlocking of the primordial follicle, and until the transplant
is healed, we suspect this underlying mechanism to be
disrupted. Intrinsic tissue pressure may be one mechanism at
work to control primordial follicle status. The study by
Winkler-Crepaz et al. provides evidence to suggest that the
over-recruitment of follicles after ovarian cortical transplanta-
tion may be mediated by a biochemical mechanism via PTEN
[36]. FOXO 3 translocation into the nucleus is already recog-
nized as one mediator of primordial follicle arrest possibly
induced by intrinsic pressure gradients established in the fi-
brous ovarian cortex.

Going beyond this, why should the oocyte begin meiosis
and then be locked for a lifetime, while sperm are constantly
produced by spermatogenic stem cells? What is the benefit to
the species of such a dichotomy? The benefit of this dichoto-
my between spermatogenesis and oogenesis is that most of the
mutations that occur in a species over many years occur dur-
ing spermatogenesis in the testis, as “xeroxing” errors. The

oocyte is spared that risk by not having to undergo recurrent
mitosis. But of course the oocyte unfortunately ages, causing
infertility. These two mechanisms are wedded to each other
evolutionarily. Without the mutations caused by spermatogen-
esis and thus constant germ cell error-prone duplication, there
would be no evolution. However, without the locking of the
oocyte and avoidance of constant duplication errors as what
occurs in the sperm, the species would have no stability.

The oocyte’s problem clinically is that it ages. The sperm’s
problem is that it is constantly making errors during cell cycle
duplication. Thus, in this view, the oocyte genetically stabi-
lizes the species, while the sperm allows for evolution by
encouraging the acquisition of a mutational load. These two
opposing mechanisms have to strike a balance with each other.
Men remain fertile as they age but threaten the genetic stability
of the species, whereas women become infertile as they age
but genetically stabilize the species. Primordial follicles were
designed to resist oocyte development, in order to save the
oocyte, and stabilize the species.

Primordial follicle arrest is the key to saving the oocyte from
disappearing after the fetal initiation of meiosis and the continua-
tion all the way through meiosis with subsequent apoptosis. It is
also the key to the cautious gradual release every month in the
young adult of an average of 1000 oocytes (30 per day) to develop
over 4 months into gonadotropin-sensitive antral and Graffian
follicles, sparing the resting oocytes from sudden total depletion,
such as what occurs briefly after ovarian transplantation.

After this depletion of resting follicles is halted, the ovarian
transplant then proceeds to function for years quite well de-
spite a very low AMH and a low remaining number of folli-
cles. That is because as the ovarian reserve goes down, the rate
of primordial follicle recruitment in a compensatory way also
goes down. That is why unilateral oophorectomy does not
cause much of an earlier menopause (perhaps 1 year earlier
in the human) [63]. The less the number of remaining oocytes,
the better able primordial follicles are at maintaining their
locking mechanism and, as a result, limiting the number of
resting follicles allowed to activate and hence maintaining the
follicle reserve [38—42].

Open Access This article is distributed under the terms of the Creative
Commons Attribution 4.0 International License (http://
creativecommons.org/licenses/by/4.0/), which permits unrestricted use,
distribution, and reproduction in any medium, provided you give appro-
priate credit to the original author(s) and the source, provide a link to the
Creative Commons license, and indicate if changes were made.
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