Skip to main content
Log in

Cryopreservation of gametophytic thalli of Ulva prolifera (Ulvales, Chlorophyta) from Korea

  • Published:
Journal of Applied Phycology Aims and scope Submit manuscript

Abstract

Cryopreservation is needed to ensure long-term storage without any genetic drift and contamination. To conserve Ulva species, gametophytic thalli of Ulva prolifera (Chlorophyta) were first cryopreserved at −196 °C using the two-step cooling method with cooling rate of 1 °C min−1 to −40 °C. Three cryoprotectants (dimethyl sulfoxide (DMSO), glycerol, and proline) at five concentrations (5, 10, 15, 20, and 25 %) and mixed cryoprotectants were assessed to determine the optimal solution. The mixture of cryoprotectants with the highest viability was 10 % glycerol in combination with 5 % DMSO and 5 % proline, with a viability of 89.2 %. The cryoprotectant treated singly with the highest viability was 20 % glycerol with a viability of 91.6 %. However, there was no statistically significant difference between 20 % glycerol and the mixed treatment. An evaluation of long-term storage in liquid nitrogen showed very high viability of 91.2–92.1 % with no statistically significant effect from storage time up to 120 days. The specimens developed normally in culture after cryopreservation for 120 days with the rate of gametogenesis reaching 95.7 % on the fourth day of culture. The released gametes developed normally into gametothalli. In conclusion, the use of glycerol as a cryoprotectant was very effective for cryopreservation of the gametothalli of U. prolifera. With 20 % glycerol, viability was very high as 91.6 %. The results suggest that gametothalli of U. prolifera can be cryopreserved completely by a treatment with 15–25 % glycerol singly as well as by a mixture of cryoprotectants with usual efficiency as a cryoprotectant.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Cañavate JP, Lubian LM (1995) Relationship between cooling rates, cryoprotectant concentrations and salinities in the cryopreservation of marine microalgae. Mar Biol 124:325–334

    Article  Google Scholar 

  • Cho JY, Kwon EH, Choi JS, Hong SY, Shin HW, Hong YK (2001) Antifouling activity of seaweed extracts on the green alga Enteromorpha prolifera and the mussel Mytilus edulis. J Appl Phycol 13:117–125

    Article  Google Scholar 

  • Choi YH, Nam TJ, Kuwano K (2013) Cryopreservation of gametophytic thalli of Porphyra yezoensis (Rhodophyceae) by one-step fast cooling. J Appl Phycol 25:531–535

    Article  CAS  Google Scholar 

  • Dan A, Hiraoka M, Ohno M, Critchley AT (2002) Observations on the effect of salinity and photon fluence rate on the induction of sporulation and rhizoid formation in the green alga Enteromorpha prolifera (Müller) J. Agardh (Chlorophyta, Ulvales). Fish Sci 68:1182–1188

    Article  CAS  Google Scholar 

  • Fenwick C, Day JG (1992) Cryopreservation of Tetraselmis suecica cultured under different nutrients regimes. J Appl Phycol 4:105–109

    Article  Google Scholar 

  • Helliot B, Mortain-Bertrand A (1999) Accumulation of proline in Dunaliella salina (Chlorophyceae) in response to light transition and cold adaptation. Effect on cryopreservation. Cryo-Lett 20:287–296

  • Hiraoka M, Oka N (2008) Tank cultivation of Ulva prolifera in deep seawater using a new “germling cluster” method. J Appl Phycol 20:97–102

    Article  Google Scholar 

  • Hubálek Z (2003) Protectants used in the cryopreservation of microorganisms. Cryobiology 46:205–229

    Article  PubMed  Google Scholar 

  • Kono S, Kuwano K, Ninomiya M, Onishi J, Saga N (1997) Cryopreservation of Enteromorpha intestinalis (Ulvales, Chlorophyta) in liquid nitrogen. Phycologia 36:76–78

    Article  Google Scholar 

  • Kono S, Kuwano K, Saga N (1998) Cryopreservation of Eisenia bicyclis (Laminariales, Phaeophyta) in liquid nitrogen. J Mar Biotech 6:220–223

    Google Scholar 

  • Kuwano K, Saga N (2000) Cryopreservation of marine algae: Applications in Biotechnology. In: Fingerman M, Nagabhushanam R (eds) Recent advances in marine biotechnology, vol 4, Aquaculture. Science, New Hamsphire, pp 23–40

    Google Scholar 

  • Kuwano K, Aruga Y, Saga N (1993) Cryopreservation of the conchocelis of the marine alga Porphyra yezoensis Ueda (Rhodophyta) in liquid nitrogen. Plant Sci 94:215–225

    Article  Google Scholar 

  • Kuwano K, Aruga Y, Saga N (1994) Cryopreservation of the conchocelis of Porphyra (Rhodophyta) by applying a simple prefreezing system. J Phycol 30:556–570

    Google Scholar 

  • Kuwano K, Aruga Y, Saga N (1996) Cryopreservation of clonal gametophytic thalli of Porphyra (Rhodophyta). Plant Sci 116:117–124

    Article  CAS  Google Scholar 

  • Kuwano K, Kono S, Jo YH, Shin JA, Saga N (2004) Cryopreservation of the gametophytic cells of Laminariales (Phaeophyta) in liquid nitrogen. J Phycol 40:606–610

    Article  Google Scholar 

  • Lin A, Shen S, Wang J, Yan B (2008) Reproduction diversity of Enteromorpha prolifera. J Integr Plant Biol 50:622–629

    Article  PubMed  Google Scholar 

  • Mantri VA, Singh RP, Bijo A, Kumari P, Reddy C, Jha B (2011) Differential response of varying salinity and temperature on zoospore induction, regeneration and daily growth rate in Ulva fasciata (Chlorophyta, Ulvales). J Appl Phycol 23:243–250

    Article  Google Scholar 

  • Mazur P (1984) Freezing of living cells: mechanisms and implications. Am J Physiol 247:C125–C142

    CAS  PubMed  Google Scholar 

  • Mortain-Bertrand A, Etchart F, Boucaud MTD (1996) A method for the cryoconservation of Dunaliella salina (Chlorophyceae): effect of glycerol and cold adaptation. J Phycol 32:346–352

    Article  CAS  Google Scholar 

  • Nakanishi K, Deuchi K, Kuwano K (2012) Cryopreservation of four valuable strains of microalgae, including viability and characteristics during 15 years of cryostorage. J Appl Phycol 24:1381–1385

    Article  CAS  Google Scholar 

  • Poncet JM, Véron B (2003) Cryopreservation of the unicellular marine alga, Nannochloropsis oculata. Biotech Lett 25:2017–2022

    Article  CAS  Google Scholar 

  • Provasoli L (1968) Media and prospects for the cultivation of marine algae. In: Watanabe A, Hattori A (eds) Cultures and collections of algae. Jpn Soc Plant Physiol, Hakone, Japan, pp 63–75

    Google Scholar 

  • Saga N, Sakanishi Y, Ogishima T (1989) Method for quick evaluation of cell viability in marine macroalgae. Jpn J Phycol 37:129–136

    Google Scholar 

  • Taylor R, Fletcher RL (1998) Cryopreservation of eukaryotic algae—a review of methodologies. J Appl Phycol 10:481–501

    Article  Google Scholar 

  • Taylor R, Fletcher RL (1999) A simple method for the freeze-preservation of zoospores of the green macroalga Enteromorpha intestinalis. J Appl Phycol 11:257–262

    Article  Google Scholar 

  • Van den Hoek C, Mann DG, Jahns HM (1995) Algae: an introduction to phycology. Cambridge University Press, Cambridge

    Google Scholar 

  • Van der Meer JP, Simpson FJ (1984) Cryopreservation of Gracilaria tikvahiae (Rhodophyta) and other macrophytic marine algae. Phycologia 23:195–202

    Article  Google Scholar 

  • Wichard T, Oertel W (2010) Gametogenesis and gamete release of Ulva mutabilis and Ulva lactuca (Chlorophyta): regulatory effects and chemical characterization of the “swarming inhibitor”. J Phycol 46:248–259

    Article  Google Scholar 

  • Zhang QS, Cong YZ, Qu SC, Luo SJ, Li XJ, Tang XX (2007) A simple and highly efficient method for the cryopreservation of Laminaria japonica (Phaeophyceae) germplasm. Eur J Phycol 42:209–213

    Article  CAS  Google Scholar 

  • Zhang XW, Mao YZ, Zhuang ZM, Liu SF, Wang QY, Ye NH (2008) Morphological characteristics and molecular phylogenetic analysis of green tide Enteromorpha sp. occurred in the Yellow Sea. J Fish Sci China 15:822–829

    CAS  Google Scholar 

  • Zhang X, Wang H, Mao Y, Liang C, Zhuang Z, Wang Q, Ye N (2010) Somatic cells serve as a potential propagule bank of Enteromorpha prolifera forming a green tide in the Yellow Sea, China. J Appl Phycol 22:173–180

    Article  Google Scholar 

  • Zhang J, Huo Y, Yu K, Chen Q, He Q, Han W, Chen L, Cao J, Shi D, He P (2013) Growth characteristics and reproductive capability of green tide algae in Rudong coast, China. J Appl Phycol 25:795–803

    Article  Google Scholar 

  • Zhuang Y, Guo J, Chen L, Li D, Liu J, Ye N (2012) Microwave-assisted direct liquefaction of Ulva prolifera for bio-oil production by acid catalysis. Bioresour Technol 116:113–139

    Google Scholar 

  • Zhuang Y, Gong X, Zhang W, Gao W (2015) Cryopreservation of filaments of Scytosiphon lomentaria by vitrification. J Appl Phycol 27:1337–1342

Download references

Acknowledgments

This work was supported by a grant from Marine Biotechnology Program funded by Ministry of Oceans and Fisheries of Korean Government.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ki Wan Nam.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lee, Y.N., Nam, K.W. Cryopreservation of gametophytic thalli of Ulva prolifera (Ulvales, Chlorophyta) from Korea. J Appl Phycol 28, 1207–1213 (2016). https://doi.org/10.1007/s10811-015-0620-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10811-015-0620-7

Keywords

Navigation