Skip to main content
Log in

Effect of temperature on the development of Saccharina japonica gametophytes

  • Published:
Journal of Applied Phycology Aims and scope Submit manuscript

Abstract

Spores (collected at 10 ± 1 °C, 2 h after releasing) and young gametophytes (newly generated from spores cultured at 10 ± 1 °C for 8 days) of Saccharina japonica were first cultured at 15 ± 1, 19 ± 1, and 23 ± 1 °C for various times (2, 5, and 8 days) and then at 10 ± 1 °C (culturing patterns S and G, respectively). Spores were also cultured at a constant of 10 ± 1 °C (pattern C) and used as the control. The length and percentage of young gametophytes, size and percentage of gametophytes, and ratio of female to male gametophytes were measured in order to determine the effect of temperature on the development of gametophytes. Temperature and exposure time of spores and young gametophytes at the first culturing temperature significantly affected the development of gametophytes as were indicated by all biological parameters except the ratio of female to male gametophytes. The spores were more sensitive to temperature than young gametophytes. Gametophytes developed from the spores that survived temperature stress can recover their growth. High temperature selection at the early developmental stages of gametophytes was effective for screening gametophytes applicable for breeding high temperature-resistant varieties and hybrids.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Bajaj M, Cresti M, Shivanna KR (1992) Effects of high temperature and humidity stresses on tobacco pollen and their progeny. In: Ottaviano E, Mulcahy DL, Sari Gorla M, Mulcahy GB (eds) Angiosperm pollen and ovules. Springer, New York, pp 349–354

    Chapter  Google Scholar 

  • Bartsch I, Wiencke C, Bischof K, Buchholz CM, Buck BH, Eggert A, Feuerpfeil P, Hanelt D, Jacobsen S, Karez R (2008) The genus Laminaria sensu lato: recent insights and developments. Eur J Phycol 43:1–86

    Article  Google Scholar 

  • Chang Y-K, Blischak L, Veilleux R, Iqbal M (2010) Effect of temperature on gametophytic selection in a Phalaenopsis F1 population. Euphytica 171:251–261

    Article  Google Scholar 

  • Clarke HJ, Khan TN, Siddique KHM (2004) Pollen selection for chilling tolerance at hybridisation leads to improved chickpea cultivars. Euphytica 139:65–74

    Article  Google Scholar 

  • Coelho SM, Rijstenbil JW, Brown MT (2000) Impacts of anthropogenic stresses on the early development stages of seaweeds. J Aquat Ecosys Stress Recovery 7:317–333

    Article  CAS  Google Scholar 

  • Darakov OB (1995) Gametophyte selection of tomatoes for resistance to early blight disease. Sex Plant Reprod 8:95–98

    Article  Google Scholar 

  • Davison IR (1987) Adaptation of photosynthesis in Laminaria saccharina (Phaeophyta) to changes in growth temperature. J Phycol 23:273–283

    Article  Google Scholar 

  • Davison IR, Greene R, Podolak E (1991) Temperature acclimation of respiration and photosynthesis in the brown alga Laminaria saccharina. Mar Biol 110:449–454

    Article  Google Scholar 

  • Domínguez E, Cuartero J, Fernández-Muñoz R (2005) Breeding tomato for pollen tolerance to low temperatures by gametophytic selection. Euphytica 142:253–263

    Article  Google Scholar 

  • Fang TC, Wu CY, Jiang BY, Li JJ, Ren GZ (1962) The breeding of a new variety of HAIDAI (Laminaria japonica Aresch.) and its preliminary genetic analysis. J Integr Plant Biol 10:197–209, in Chinese with English abstract

    Google Scholar 

  • Fang ZX, Ou YL, Cui JJ, Dai JX (1978) Success in culturing clones of the gametophytes of Laminaria japonica. Chin Sci Bull 23:115–116, in Chinese with English abstract

    Google Scholar 

  • Frova C, Portaluppi P, Villa M, Goria MS (1995) Sporophytic and gametophytic components of thermotolerance affected by pollen selection. J Hered 86:50–54

    Google Scholar 

  • Funano T (1983) The ecology of Laminaria religiosa Miyabe, 1: the life history and the alternation of nuclear phases of Laminaria religiosa, and the physiological ecology of the gametophytes and the embryonal sporophytes. Sci Rep Hokkaido Fish Exp Station 25:61–109

    Google Scholar 

  • Gerard VA (1997) The role of nitrogen nutrition in high temperature tolerance of the kelp Laminaria saccharina (Chromophyta). J Phycol 33:800–810

    Article  CAS  Google Scholar 

  • Henry EC, Cole KM (1982) Ultrastructure of swarmers in the Laminariales (Phaeophyceae). I. Zoospores. J Phycol 18:550–569

    Article  Google Scholar 

  • Hormaza JI, Herrero M (1996) Male gametophytic selection as a plant breeding tool. Sci Hortic 65:321–333

    Article  Google Scholar 

  • Izquierdo J, Pérez-Ruzafa I, Gallardo T (2002) Effect of temperature and photon fluence rate on gametophytes and young sporophytes of Laminaria ochroleuca Pylaie. Helgoland Mar Res 55:285–292

    Article  Google Scholar 

  • Koval VS (2000) Male and female gametophyte selection of barley for salt tolerance. Hereditas 132:1–5

    Article  PubMed  CAS  Google Scholar 

  • Lee J, Brinkhuis BH (1988) Seasonal light and temperature interaction effects on development of Laminaria saccharina (Phaeophyta) gametophytes and juvenile sporophytes. J Phycol 24:181–191

    Google Scholar 

  • Li H (1990) Notes on the Laminaria raft cultivation method. Mariculture 1990(1/2):41–48

    Google Scholar 

  • Li X (2008) Breeding and application of hybrid Laminaria. Dissertation, Ocean University of China (in Chinese with English abstract)

  • Li D, Zhou Z, Liu H, Wu C (1999) A new method of Laminaria japonica strain selection and sporeling raising by the use of gametophyte clones. Hydrobiologia 398:473–476

    Article  Google Scholar 

  • Li X, Wang G, Zhang Q, Zhang Z, Luo S (2004) Effect of temperature on growth of gametophyte clones of variety “901” of Laminaria japonica. Fisheries Sci Technol Inform 31:166–168 (in Chinese)

    Google Scholar 

  • Li X, Cong Y, Yang G, Shi Y, Qu S, Li Z, Wang G, Zhang Z, Luo S, Dai H, Xie J, Jiang G, Liu J, Wang T (2007) Trait evaluation and trial cultivation of Dongfang no. 2, the hybrid of a male gametophyte clone of Laminaria longissima (Laminariales, Phaeophyta) and a female one of L. japonica. J Appl Phycol 19:139–151

    Article  PubMed  Google Scholar 

  • Li X, Liu J, Cong Y, Qu S, Zhang Z, Dai H, Luo S, Han X, Huang S, Wang Q, Liang G, Sun J, Jin Y, Wang D, Yang G (2008) Breeding and trial cultivation of Dongfang no. 3, a hybrid of Laminaria gametophyte clones with a more than intraspecific but less than interspecific relationship. Aquaculture 280:76–80

    Article  Google Scholar 

  • Machalek K, Davison I, Falkowski P (1996) Thermal acclimation and photoacclimation of photosynthesis in the brown alga Laminaria saccharina. Plant Cell Environ 19:1005–1016

    Article  CAS  Google Scholar 

  • Mulcahy DL (1979) The rise of the angiosperms: a genecological factor. Science 206:20–23

    Article  PubMed  CAS  Google Scholar 

  • Oliveira L, Walker D, Bisalputra T (1980) Ultrastructural, cytochemical, and enzymatic studies on the adhesive “plaques” of the brown algae Laminaria saccharina (L.) Lamour. and Nereocystis luetkeana (Mert.) Post. et Rrupr.1. Protoplasma 104:1–15

    Article  CAS  Google Scholar 

  • Robert T, Lamy F, Sarr A (1992) Evolutionary role of gametophytic selection in the domestication of Pennisetum thyphoides (pearl millet): a two-locus asymmetrical model. Heredity 69:372–381

    Article  Google Scholar 

  • Roleda MY, Wiencke C, Hanelt D, Van De Poll WH, Gruber A (2005) Sensitivity of Laminariales zoospores from Helgoland (North Sea) to ultraviolet and photosynthetically active radiation: implications for depth distribution and seasonal reproduction. Plant Cell Environ 28:466–479

    Article  Google Scholar 

  • Seoighe C, Gehring C, Hurst LD (2005) Gametophytic selection in Arabidopsis thaliana supports the selective model of intron length reduction. PLoS Genet 1(2):0154–0158

    Article  CAS  Google Scholar 

  • Sokal RR, Rohlf FJ (1995) Biometry, 3rd edn. W.H. Freeman, New York, p 807

    Google Scholar 

  • Steinhoff F, Wiencke C, Müller R, Bischof K (2008) Effects of ultraviolet radiation and temperature on the ultrastructure of zoospores of the brown macroalga Laminaria hyperborea. Plant Biol 10:388–397

    Article  PubMed  CAS  Google Scholar 

  • Tala F, Véliz K, Gómez I, Edding M (2007) Early life stages of the South Pacific kelps Lessonia nigrescens and Lessonia trabeculata (Laminariales, Phaeophyceae) show recovery capacity following exposure to UV radiation. Phycologia 46:467–470

    Article  Google Scholar 

  • Tseng CK (2001) Algal biotechnology industries and research activities in China. J Appl Phycol 13:375–380

    Article  Google Scholar 

  • Tseng CK, Sun KY, Wu CY (1955) On the cultivation of Haidai (Laminaria japonica Aresch) by summering young sporophytes at low temperature. Acta Bot Sinica 4(3):255–264 (in Chinese with English abstract)

    Google Scholar 

  • Véliz K, Edding M, Tala F, Gómez I (2006) Effects of ultraviolet radiation on different life cycle stages of the south Pacific kelps Lessonia nigrescens and Lessonia trabeculata (Laminariales, Phaeophyceae). Mar Biol 149:1015–1024

    Article  Google Scholar 

  • Voskoboinikov GM, Kamnev AN (1991) Morphofunctional changes of the chloroplasts during the seaweed ontogenesis. Nauka, Leningrad, p 96

    Google Scholar 

  • Wang ML (1987) Adaptability of female Laminaria clone to high temperatures for several different species. J Shandong College Oceanol 17(2):72–76 (in Chinese with English abstract)

    Google Scholar 

  • Wang Y (2003) The physiological and biochemical responses to heat stress and the preliminary study on heat-resistant mechanisms in Laminaria japonica. Dissertation, Ocean University of China (in Chinese with English abstract)

  • Zamir D, Gadish I (1987) Pollen selection for low temperature adaptation in tomato. Theor Appl Genet 74:545–548

    Article  Google Scholar 

  • Zamir D, Tanksley SD, Jones RA (1982) Haploid selection for low temperature tolerance of tomato pollen. Genetics 101:129–137

    PubMed  CAS  Google Scholar 

  • Zhang QS, Tang XX, Cong YZ, Qu SC, Luo SJ, Yang GP (2007) Breeding of an elite Laminaria variety 90-1 through inter-specific gametophyte crossing. J Appl Phycol 19:303–311

    Article  Google Scholar 

Download references

Acknowledgments

This study was financially supported by National High Technology Research and Development Program of China (863 Program) (grant no. 2012AA10A406).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Linan Zhang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, L., Cui, C., Li, X. et al. Effect of temperature on the development of Saccharina japonica gametophytes. J Appl Phycol 25, 261–267 (2013). https://doi.org/10.1007/s10811-012-9860-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10811-012-9860-y

Keywords

Navigation