Skip to main content
Log in

Biofiltering efficiency, uptake and assimilation rates of Ulva clathrata (Roth) J. Agardh (Clorophyceae) cultivated in shrimp aquaculture waste water

  • Published:
Journal of Applied Phycology Aims and scope Submit manuscript

Abstract

The growth, biofiltering efficiency and uptake rates of Ulva clathrata were studied in a series of outdoor tanks, receiving waste water directly from a shrimp (Litopenaeus vannamei) aquaculture pond, under constant aeration and two different water regimes: (1) continuous flow, with 1 volume exchange a day (VE day-1) and (2) static regime, with 1 VE after 4 days. Water temperature, salinity, pH, dissolved inorganic nitrogen (DIN), phosphate (PO4), chlorophyll-a (chl-a), total suspended solids (TSS), macroalgal biomass (fresh weight) and tissue nutrient assimilation were monitored over 12 days. Ulva clathrata was highly efficient in removing the main inorganic nutrients from effluent water, stripping 70–82% of the total ammonium nitrogen (TAN) and 50% PO4 within 15 h. Reductions in control tanks were much lower (Tukey HSD, P < 0.05). After 3 days, the mean uptake rates by the seaweed biomass under continuous flow were 3.09 mg DIN g DW day−1 (383 mg DIN m−2 day−1) and 0.13 mg PO4 g DW day−1 (99 mg PO4 m−2 day−1), being significantly higher than in the static regime (Tukey HSD, P < 0.05). The chl-a decreased in seaweed tanks, suggesting that U. clathrata inhibited phytoplankton growth. Correlations between the cumulative values of DIN removed from the water and total nitrogen assimilated into the seaweed biomass (r = 0.7 and 0.8, P < 0.05), suggest that nutrient removal by U. clathrata dominated over other processes such as phytoplankton and bacterial assimilation, ammonia volatilization and nutrient precipitation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Aminot A, Chaussepied M (1983) Manuel des analyses chimiques en milieu marin. CNEXO, Brest

    Google Scholar 

  • Atkinson MJ, Smith SV (1983) C:N:P ratios of benthic marine plants. Limnol Oceanogr 28:568–574

    Article  CAS  Google Scholar 

  • Baumgarten MGZ, Niencheski LFH, Kuroshima KN (1995) Qualidade das águas estuarinas que margeiam o município do Rio Grande (RS, BRASIL): nutrientes e detergente dissolvidos. Atlantica 17:17–34, Rio Grande.

    Google Scholar 

  • Bendschneider K, Robinson RJ (1952) A new spectrophotometric method for determination of nitrite in seawater. J Mar Res 11:87–96

    CAS  Google Scholar 

  • Chopin T, Buschmann AH, Halling C, Troell M, Kautsky N, Neori A et al (2001) Integrating seaweeds into aquaculture systems: a key towards sustainability. J Phycol 37:975–986 doi:10.1046/j.1529–8817.2001.01137.x

    Article  Google Scholar 

  • Cohen I, Neori A (1991) Ulva lactuca biofilters for marine fishponds effluents. 1. Ammonia uptake kinetics and nitrogen-content. Bot Mar 34:475–482

    Article  Google Scholar 

  • Collén J, Pedersén M (1996) Production, scavenging and toxicity of H2O2 in the green seaweed Ulva rigida. Eur J Phycol 31:265–271 doi:10.1080/09670269600651471

    Article  Google Scholar 

  • Collén J, Del Rio MJ, García-Reina G, Pedersén M (1995) Photosynthetic production of H2O2 by Ulva rigida C. Ag. (Chlorophyta). Planta 196:225–230 doi:10.1007/BF00201378

    Article  Google Scholar 

  • Coutinho R, Seeliger U (1986) Seasonal occurrence and growth of benthic algae in the Patos Lagoon estuary. Brazil. Estuar Coast Shelf Sci 23:889–900 doi:10.1016/0272-7714(86)90079-X

    Article  Google Scholar 

  • Dan A, Hiraoka M, Ohno M, Critchley AT (2002) Observations on the effect of salinity and photon fluence rate on the induction of sporulation and rhizoid formation in the green alga Enteromorpha prolifera (Müller) J. Agardh (Chlorophyta, Ulvales). Fish Sci 68:1182–1188 doi:10.1046/j.1444-2906.2002.00553.x

    Article  CAS  Google Scholar 

  • De Wit R, Leibreich J, Vernier F, Delmas F, Beuffe H, Maison PH et al (2005) Relationship between land-use in the agro-forestry system of les Landes, nitrogen loading to and risk of macro-algal blooming in the Bassin d’Arcachon coastal lagoon (SW France). Estuar Coast Shelf Sci 62(3):453–465 doi:10.1016/j.ecss.2004.09.007

    Article  CAS  Google Scholar 

  • Duke CS, Litaker W, Ramus J (1989a) Effects of the temperature, nitrogen supply and tissue nitrogen on ammonium uptake rates of the Chlorophyte seaweeds Ulva curvata and Codium decorticatum. J Phycol 25:113–120 doi:10.1111/j.0022-3646.1989.00113.x

    Article  CAS  Google Scholar 

  • Duke CS, Litaker W, Ramus J (1989b) Effect of temperature on nitrogen limited growth rate and chemical composition of Ulva curvata (Ulvales, Chlorophyta). Mar Biol (Berl) 100:143–150 doi:10.1007/BF00391953

    Article  CAS  Google Scholar 

  • Fitzgerald WJ (1978) Environmental parameters influencing growth of Enteromorpha clathrata (Roth) J. Ag. in inter-tidal zone on Guam. Bot Mar 21:207–220

    CAS  Google Scholar 

  • Flower EM, Neori A (2008) Effect of water aeration and nutrient load level on biomass yield, N uptake and protein content of the seaweed Ulva lactuca cultured in seawater tanks. J Appl Phycol, doi:10.1007/s10811-007-9300-6

  • Fong P, Donohoe RM, Zedler JB (1994) Nutrient concentration in tissue of the macroalga Enteromorpha as a function of nutrient history: an experimental evaluation using field macrocosms. Mar Ecol Prog Ser 106:273–281 doi:10.3354/meps106273

    Article  Google Scholar 

  • Friedlander M (1991) Growth-rate, epiphyte biomass and agar yield of Gracilaria conferta in an annual outdoor experiment 1 irradiance and nitrogen. Bioresour Technol 38:203–208 doi:10.1016/0960-8524(91)90155-D

    Article  Google Scholar 

  • Fujita RM, Wheeler PA, Edwards RL (1989) Assessment of macroalgal nitrogen limitation in a seasonal upwelling region. Mar Ecol Prog Ser 53:293–303 doi:10.3354/meps053293

    Article  Google Scholar 

  • Grasshoff K, Johannsen H (1972) A new sensitive and direct method for the automatic determination of ammonia in sea-water. J Cons Int Explor Mer 34:516–521

    CAS  Google Scholar 

  • Hanisak MD (2005) Tank cultivation of Ulva in Florida. Phycologia 44:43

    Google Scholar 

  • Hayden HS, Blomster J, Maggs CA, Silva PA, Stanhope MJ, Waaland JR (2003) Linnaeus Was Right All Along: Ulva and Enteromorpha are not distinct genera. Eur J Phycol 38:277–294 doi:10.1080/1364253031000136321

    Article  Google Scholar 

  • Hernández I, Martinez-Aragón JF, Pérez-Llorens JL, Vázquez R, Vergara JJ (2002) Biofiltering efficiency in removal of dissolved nutrients by three species of estuarine macroalgae cultivated with sea bass (Dicentrarchus labrax) waste waters 1. phosphate. J Appl Phycol 14:365–374

    Article  Google Scholar 

  • Hernández I, Pérez-Pastor A, Vergara J J, et al. (2006) Studies on the biofiltration capacity of Gracilariopsis longissima: from microscale to macroscale. Aquaculture 252:43–53

    Google Scholar 

  • Hiraoka M, Oka N (2008) Tank cultivation of Ulva prolifera in deep seawater using a new “germling cluster” method. J Appl Phycol 20:97–102 doi:10.1007/s10811-007-9186-3

    Article  Google Scholar 

  • Hirata H, Kohirata E, Guo F, Xu BT, Danakusumah E (1993) Culture of the sterile Ulva sp. (Chlorophyceae) in a mariculture farm. Suisanzoshoku 1:541–545

    Google Scholar 

  • Hurd CL (2000) Water motion, marine macroalgal physiology and production. J Phycol 36:453–472 doi:10.1046/j.1529-8817.2000.99139.x

    Article  CAS  Google Scholar 

  • Hurd CL, Dring MJ (1990) Phosphate-uptake by intertidal algae in relation to zonation and season. Mar Biol (Berl) 107:281–289 doi:10.1007/BF01319827

    Article  Google Scholar 

  • Jiménez del Río M, Ramazanov Z, García Reina G (1994) Optimization of yield and biofiltering efficiencies of Ulva rigida cultivated with Sparus aurata waste water. Sci Mar 58:329–335

    Google Scholar 

  • Jin Q, Dong S (2003) Comparative studies on the allelopathic effects of two different strains of Ulva pertusa on Heterosigma akashiwo and Alexandrium tamarense. J Exp Mar Biol Ecol 293:41–55 doi:10.1016/S0022-0981(03)00214-4

    Article  Google Scholar 

  • Jones AB, Dennison WC, Preston NP (2001a) Integrated treatment of shrimp effluent by sedimentation, oyster filtration and macroalgal absorption: a laboratory scale study. Aquaculture 193:155–178 doi:10.1016/S0044-8486(00)00486-5

    Article  Google Scholar 

  • Jones AB, O’Donohue MJ, Udy J, Dennison WC (2001b) Assessing ecological impacts of shrimp and sewage effluent: biological indicators with standard water quality analyses. Estuar Coast Shelf Sci 52:91–109 doi:10.1006/ecss.2000.0729

    Article  CAS  Google Scholar 

  • Kamer K, Boyle KA, Fong P (2001) Macroalgal bloom dynamics in a highly eutrophic southern California estuary. Estuaries 24:623–635 doi:10.2307/1353262

    Article  Google Scholar 

  • Kinne PN, Samocha TM, Jones ER, Browdy CL (2001) Characterization of intensive shrimp pond effluent and preliminary studies on biofiltration. N Am J Aquaculture 63:25–33 doi:10.1577/1548-8454(2001)063<0025:COISPE>2.0.CO;2

    Article  Google Scholar 

  • Koroleff F (1969) Direct determination of ammonia in natural waters as indophenol blue. ICES, C.M.1969/C:9 Hydr Comm

  • Lacerda LD, Vaisman AG, Parente LP, Cunha E, Silva CAR (2006) Relative importance of nitrogen and phosphorus emissions from shrimp farming and other anthropogenic sources for six estuaries along the NE Brazilian coast. Aquaculture 253:433–466 doi:10.1016/j.aquaculture.2005.09.005

    Article  CAS  Google Scholar 

  • Lehnberg W, Schramm W (1984) Mass culture of brackish-water-adapted seaweeds in sewage-enriched seawater I. Productivity and nutrient accumulation. Hydrobiol 116/117:276–281 doi:10.1007/BF00027684

    Article  Google Scholar 

  • Littler MM, Littler DS (1980) The evolution of thallus form and survival strategies in benthic marine macroalgae: field and laboratory tests of a functional form model. Am Nat 116:25–44 doi:10.1086/283610

    Article  Google Scholar 

  • Lobban CS, Harrison P (1997) Seaweed ecology and physiology. Cambridge Univ. Press, Cambridge

    Google Scholar 

  • Lombardi JV, Marques HLA, Pereira R, Lima T, Barreto OJS, Paula EJ (2006) Cage polyculture of the Pacific white shrimp Litopenaeus vannamei and the Philippines seaweed Kappaphycus alvarezii. Aquaculture 258:412–425 doi:10.1016/j.aquaculture.2006.04.022

    Article  Google Scholar 

  • Lu K, Lin W, Liu J (2008) The characteristics of nutrient removal and inhibitory effect of Ulva clathrata on Vibrio anguillarum 65. J Appl Phycol, doi:10.1007/s10811-007-9307-z

  • Lüning K, Pang S (2003) Mass cultivation of seaweeds: current aspects and approaches. J Appl Phycol 15:115–119 doi:10.1023/A:1023807503255

    Article  Google Scholar 

  • MacIntosh DJ, Philips MJ (1992) Environment issues in shrimp farming. In Saram H, Singh T (eds) Shrimp’92. INFOFISH and EUROFISH, Hong Kong, pp 118–145

  • Marinho-Soriano E, Morales C, Moreira WSC (2002) Cultivation of Gracilaria (Rhodophyta) in shrimp pond effluents in Brazil. Aquacult Res 33:1081–1086 doi:10.1046/j.1365-2109.2002.00781.x

    Article  Google Scholar 

  • Martínez-Aragón JF, Hernández I, Pérez-Llorens JL, Vázquez R, Vergara JJ (2002) Biofiltering efficiency in removal of dissolved nutrients by three species of estuarine macroalgae cultivated with sea bass (Dicentrarchus labrax) waste waters 1. Ammonium. J Appl Phycol 14:375–384 doi:10.1023/A:1022178417203

    Article  Google Scholar 

  • Mata L, Silva J, Schuenhoff A, Santos R (2006) The effects of light and temperature on the photosynthesis of Asparagopsis armata tetrasporophyte (Falkenbergia rufolanosa), cultivated in tanks. Aquaculture 252:12–19 doi:10.1016/j.aquaculture.2005.11.045

    Article  CAS  Google Scholar 

  • Miller RG Jr (1981) Simultaneous statistical inference. MacGraw-Hill, New York

    Google Scholar 

  • Moll B, Deikman J (1995) Enteromorpha clathrata: a pontential seawater-irrigated crop. Bioresour Technol 52:255–260 doi:10.1016/0960-8524(95)00036-E

    Article  Google Scholar 

  • Moll B, Leon A (2007) Enteromorpha clathrata is a sustainable aquaculture crop. Meeting abstract. The World Aquaculture Society. https://www.was.org/Meetings/AbstractData.asp?AbstractId=14383. Accessed 5 May 2008.

  • Murphy J, Riley J (1962) A modified single solution for the determination of phosphate in natural waters. Anal Chim Acta 27:31–36 doi:10.1016/S0003-2670(00)88444-5

    Article  CAS  Google Scholar 

  • Nelson TA, Lee DJ, Smith BC (2003) Are “Green tides” harmful algal blooms? Toxic properties of water-soluble extracts from two bloom-forming macroalgae, Ulva fenestrate and Ulvaria obscura (Ulvophyceae). J Phycol 39:874–879

    CAS  Google Scholar 

  • Neori A (2008) Essential role of seaweed cultivation in integrated multi-trophic aquaculture farms for global expansion of mariculture: an analysis. J Appl Phycol. doi:10.1007/s10811-007-9206-3

  • Neori A, Cohen I, Gordin H (1991) Ulva lactuca biofilters for marine fish-pond effluents: II. Growth rate, yield and C:N ratio. Bot Mar 34:483–489

    Google Scholar 

  • Neori A, Krom MD, Ellner SP, Boyd CE, Popper D, Rabinovitch R et al (1996) Seaweed biofilters as regulators of water quality in integrated fish-seaweed culture units. Aquaculture 141:183–199 doi:10.1016/0044-8486(95)01223-0

    Article  Google Scholar 

  • Neori A, Ragg NLC, Shpigel M (1998) The integrated culture of seaweed, abalone, fish and clams in modular intensive land-based systems: II. Performance and nitrogen partitioning within an abalone (Haliotis tuberculata) and macroalgae culture system. Aquacult Eng 17:215–239 doi:10.1016/S0144-8609(98)00017-X

    Article  Google Scholar 

  • Neori A, Shpigel M, Ben-Ezra D (2000) A sustainable integrated system for culture of fish, seaweed and abalone. Aquaculture 186:279–291 doi:10.1016/S0044-8486(99)00378-6

    Article  Google Scholar 

  • Neori A, Msuya FE, Shauli L, Schuenhoff A, Kopel F, Shpigel M (2003) A novel three-stage seaweed (Ulva lactuca) biofilter design for integrated mariculture. J Appl Phycol 15:543–553 doi:10.1023/B:JAPH.0000004382.89142.2d

    Article  CAS  Google Scholar 

  • Neori A, Chopin T, Troell M, Buschmann AH, Kraemer GP, Halling C et al (2004) Integrated aquaculture: rationale, evolution and state of the art emphasizing seaweed biofiltration in modern maricultura. Aquaculture 231:361–391 doi:10.1016/j.aquaculture.2003.11.015

    Article  Google Scholar 

  • Paéz-Osuna F (2001) The environmental impact of shrimp aquaculture: Causes, effects, and mitigating alternatives. Environ Manag (N Y) 28:131–140 doi:10.1007/s002670010212

    Article  Google Scholar 

  • Pang SJ, Lüning K (2006) Tank cultivation of the red alga Palmaria palmata: year-round induction of tetrasporangia, tetraspore release in darkness and mass cultivation of vegetative thalli. Aquaculture 252:20–30 doi:10.1016/j.aquaculture.2005.11.046

    Article  Google Scholar 

  • Pereira R, Yarish C, Sousa-Pinto I (2006) The influence of stocking density, light and temperature on the growth, production and nutrient removal capacity of Porphyra dioica (Bangiales, Rhodophyta). Aquaculture 252:68–78 doi:10.1016/j.aquaculture.2005.11.050

    Article  CAS  Google Scholar 

  • Poersch LH (2004) Aquacultura no estuário da Lagoa dos Patos e sua influência sobre o Meio Ambiente. PhD Thesis. Fundação Universidade Federal do Rio Grande

  • Poersch L, Cavalli R, Wasielesky W, Castello JP, Peixoto S (2006) Perspectivas para o desenvolvimento dos cultivos de camarões marinho no estuário da Lagoa dos Patos, RS. Cienc Rural 36(4):1337–1343 Santa Maria doi:10.1590/S0103-84782006000400051

    Article  Google Scholar 

  • Primavera JH (1994) Environmental and socioeconomic effects of shrimp farming: the Philippine experience. INFOFISH Int 1/94:44–49

    Google Scholar 

  • Santos R (2006) Special issue opening comments: seaweed-based integrated mariculture. Aquaculture 252:1–2 doi:10.1016/j.aquaculture.2005.12.004

    Article  Google Scholar 

  • Sato K, Ueno Y, Egashira R (2006a) Uptake of nitrate-nitrogen in intensive shrimp culture ponds by sterile Ulva sp. J Chem Eng of Jpn 39:1128–1131 doi:10.1252/jcej.39.1128

    Article  CAS  Google Scholar 

  • Sato K, Eksangsri T, Egashira R (2006b) Ammonia-nitrogen uptake by seaweed for water quality control in intensive mariculture ponds. J Chem Eng of Jpn 39:247–255 doi:10.1252/jcej.39.247

    Article  CAS  Google Scholar 

  • Schuenhoff A, Shpigel MBB, Lupatsch I, Ashkenazi L, Msuya FE, Neori A (2003) A semi-recirculating, integrated system for the culture of fish and seaweed. Aquaculture 21:167–181 doi:10.1016/S0044-8486(02)00527-6

    Article  Google Scholar 

  • Shellem BH, Josselyn MN (1982) Physiological ecology of Enteromorpha clathrata (Roth) Grev. on a salt-marsh mudflat. Bot Mar 25:541–549

    CAS  Google Scholar 

  • Shpigel M, Neori A, Popper DM, Gordin H (1993) A proposed model for “environmentally clean” land based culture of fish, bivalves and seaweeds. Aquaculture 117:115–128 doi:10.1016/0044-8486(93)90128-L

    Article  Google Scholar 

  • Sieburth JM (1960) Acrylic acid, an “antibiotic” principle in Phaeocystis blooms in Antartic waters. Science 132:676–677 Medline. doi:10.1126/science.132.3428.676

    Article  PubMed  CAS  Google Scholar 

  • Smith DW, Horne AJ (1988) Experimental-measurement of resource competition between planktonic microalgae and macroalgae (seaweeds) in mesocosms simulating the San-Franciso Bay-estuary, California. Hydrobiologia 159:259–268

    Article  Google Scholar 

  • Stefels J (2000) Physiological aspects of the production and conversion of DMSP in marine algae and higher plants. J Sea Res 43:183–197 doi:10.1016/S1385-1101(00)00030-7

    Article  CAS  Google Scholar 

  • Steinke M, Kirst GO (1996) Enzymatic cleavage of dimethysulfoniopropionate (DMSP) in cell-free extracts of the marine macroalga Enteromorpha clathrata (Roth) Grev., (Ulvales, Clorophyta). J Exp Mar Biol Ecol 201:73–85 doi:10.1016/0022-0981(95)00207-3

    Article  CAS  Google Scholar 

  • Troell M, Halling C, Neori A, Chopin T, Buschmann AH, Kautsky N et al (2003) Integrated mariculture: asking the right questions. Aquaculture 226:69–90 doi:10.1016/S0044-8486(03)00469-1

    Article  Google Scholar 

  • UNEP (1991) United Nations Environment Programme. A workbook for trainers: cleaner production in leather tanning

  • Vandermeulen H, Gordin H (1990) Ammonium uptake using Ulva (Chlorophyta) in intensive fishpond systems-Mass-Culture and treatment of effluent. J Appl Phycol 2:363–374 doi:10.1007/BF02180927

    Article  CAS  Google Scholar 

  • Wang R, Xiao H, Wang Y, Zhou W, Tang X (2007a) Effects of three macroalgae, Ulva linza (Chlorophyta), Corallina pilulifera (Rhodophyta) and Sargassum thumbergii (Phaeophyta) on the growth of the red microalga Prorocentrum donghaiense under laboratory conditions. J Sea Res 58:189–197 doi:10.1016/j.seares.2007.03.002

    Article  Google Scholar 

  • Wang Y, Yu Z, Song X, Tang X, Zhang S (2007b) Effects of macroalgae Ulva pertusa (Chlorophyta) and Gracilaria lemaneirformis (Rhodophyta) on growth of four species of bloom-forming dinoflagellates. Aquat Bot 86:139–147 doi:10.1016/j.aquabot.2006.09.013

    Article  Google Scholar 

  • Welschmeyer NA (1994) Fluorometric analysis of chlorophyll-a in the presence of chlorophyll-b and pheopigments. Limnol Oceanogr 39:1985–1992

    CAS  Google Scholar 

  • Zar JH (1984) Biostatistical analysis, 2nd edn. Prentice Hall, Englewood Cliffs

    Google Scholar 

  • Zemke-White WL, Ohno M (1999) World seaweed utilisation: an end-of-century summary. J Appl Phycol 11:369–376 doi:10.1023/A:1008197610793

    Article  Google Scholar 

Download references

Acknowledgments

The authors are grateful to Carcibras Farm, for the availability of space, infrastructure and staff support given during experiments; to Aquaculture Marine Station, Hydrochemistry Laboratory, Laboratory of Phytoplankton and Marine Microorganisms Ecology (all from Federal University of Rio Grande), for technical and scientific support; to R. Pollery (University of Santa Ursula, Brazil), for the water chemical analysis; to M.O. Lanari and A. Rodrigues, for helping during experiments. Thanks to A. Neori and an anonymous reviewer for many contributions and substantial improvements to the manuscript. This research was supported by Fundação de Amparo a Pesquisa do Rio Grande do Sul (ARD 03/0120.1 and BIC 0550574, Fapergs, Brazil) and Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (PRODOC 117/2003, CAPES, Brazil), granted to M. Copertino.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Margareth da Silva Copertino.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Copertino, M.S., Tormena, T. & Seeliger, U. Biofiltering efficiency, uptake and assimilation rates of Ulva clathrata (Roth) J. Agardh (Clorophyceae) cultivated in shrimp aquaculture waste water. J Appl Phycol 21, 31–45 (2009). https://doi.org/10.1007/s10811-008-9357-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10811-008-9357-x

Keywords

Navigation