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Abstract
Let k be a field and R = k[x1, . . . , xn]/I = S/I a graded ring. Then R has a
t-linear resolution if I is generated by homogeneous elements of degree t , and all
higher syzygies are linear. Thus, R has a t-linear resolution if TorSi, j (S/I , k) = 0 if
j �= i + t−1. For a graph G on {1, . . . , n}, the edge algebra is k[x1, . . . , xn]/I , where
I is generated by those xi x j for which {i, j} is an edge in G. We want to determine
the Betti numbers of edge rings with 2-linear resolution. But we want to do that by
looking at the edge ring as a Stanley–Reisner ring. For a simplicial complex � on
[n] = {1, . . . , n} and a field k, the Stanley–Reisner ring k[�] is k[x1, . . . , xn]/I ,
where I is generated by the squarefree monomials xi1 . . . xik for which {i1, . . . , ik}
does not belong to �. Which Stanley–Reisner rings that are edge rings with 2-linear
resolution are known. Their associated complexes has had different names in the
literature. We call them fat forests here. We determine the Betti numbers of many fat
forests and compare our result with what is known. We also consider Betti numbers
of Alexander duals of fat forests.
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1 Background

The simplicial complexes we will consider have had different names. They are called
generalized forests [12], quasiforests [23], or fat forests [2]. We will call them fat
forests. They are recursively defined as follows. A d-simplex F1 of dimension ≥ 0
(i.e. with d + 1 vertices) is a fat forest. If Fi , i = 1, . . . , k, are simplices and Gk−1 =
F1 ∪ · · · ∪ Fk−1 is a fat forest, then Gk−1 ∪ Fk is a fat forest if H = Gk−1 ∩ Fk is a
simplex, dim H ≥ −1. (If dim H = −1, then Gk−1 and Fk are disjoint.)A fat forest a
called a fat tree if it is connected, so if dimGk−1 ∩ Fk ≥ 0 for all k, but here it is not
necessary to treat fat trees separately.
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Let G be a graph on [n] and let S = k[x1, . . . , xn], where k is a field. The edge ring
of G is S/I ,where I is generated by all xi x j for which {i, j} is an edge of G. Let Gc

be the complement graph to G, i.e. the graph on [n] with edges {k, l} for which {k, l}
is not an edge ofG. It is shown in [12] that the edge ring ofG has a 2-linear resolution,
meaning TorSi, j (S/I , k) = 0 if j �= i + 1, if and only if the complementary graph Gc

(having those edges which are not edges in G) is chordal. A graph is chordal if every
k-cycle, k ≥ 4, has a chord. This theorem has been reproved in different ways in [10,
11, 13, 21].

An edge ring k[x1, . . . , xn]/I can also be seen as a Stanley–Reisner ring k[�].
Then I is generated by those squarefree monomials that do not belong to a simplicial
complex �. The 1-skeleton of a simplicial complex � consists of all faces of � that
have dimension≤ 1.Dirac has shown in [8, Theorem1 and 2], that a graphG is chordal
if and only if it is the 1-skeleton of a fat forest. There is an algebraic proof of Dirac’s
theorems in [15]. Dirac’s theorem gives easily, see [12], that the Stanley–Reisner ring
k[�] has a 2-linear resolution if and only if � is a fat forest.

Edge rings of Ferrer’s graphs have 2-linear resolution. Their resolution has been
determined in [6]. Other classes of monomial rings with 2-linear resolution are treated
in, for example, [1, 7, 16, 17]. Finallyminimal resolution of all edge rings with 2-linear
resolution was determined in [5]. This gives a (rather complicated) way to determine
the Betti numbers. In this note we will show that if one is only interested in the Betti
numbers of edge rings with 2-linear resolution, there is in many cases a very easy
way to determine them using the description of the rings as Stanley–Reisner rings.
Monomial rings with 2-linear resolution are also treated in, for example, [14, 18, 22].

2 Hilbert series and Betti numbers of fat forests

If S/I has a 2-linear resolution it looks like this:

0 ← S/I ← S ← S[−2]b1 ← S[−3]b2 ← · · · ← S[−p − 1]bp ← 0

where S[−i]means that we have shifted degrees of S i steps. Using that the alternating
sum of the k-dimensions in each degree is 0, we get that the Hilbert series of k[�]with
2-linear resolution equals

1−β1,2t2+β2,3t3−···(−1)pβp,p+1t p+1

(1−t)n , where βi, j are the graded

Betti numbers dimk TorSi, j (k[�], k), and n is the number of vertices in �. We are

primarily interested in the Betti numbers βi, j = dimk TorSi, j (S/I , k) of Stanley–
Reisner rings of fat trees, but the Hilbert series contains the same information as the
set of Betti numbers.

Example Let� be the simplicial complex with facets (maximal faces) {1, 2}, {2, 3, 4},
and {5}. This is a fat forest which can be built in the following way. Start with the
simplex {2, 3, 4} which has Hilbert series 1

(1−t)3
. Then adjoin {1, 2} in {2}. We add

the Hilbert series 1
(1−t)2

for the face {1, 2} and subtract 1
1−t for the face {2} which has

been counted twice. Finally adjoin {5} in ∅, that is, we add 1
1−t and subtract 1. Thus,

the Hilbert series of � is 1
(1−t)3

+ 1
(1−t)2

− 1
1−t + 1

1−t −1 = 1−6t2+9t3−5t4+t5

(1−t)5
, and the
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Betti numbers of k[�] are b1,2 = 6, b2,3 = 9, b3,4 = 5, and b4,5 = 1. This ring can
also be seen as the edge ring of a graph with edges {1,3}, {1,4}, {1,5}, {2,5}, {3,5},
and {4,5}.

Theorem 1 Let F = F1 ∪ · · · ∪ Fk be a fat tree with Fi a simplex of dimension di and
(F1 ∪ · · · ∪ Fj−1) ∩ Fj a simplex of dimension r j . Then the Hilbert series of k[F] is
∑k

i=1
1

(1−t)di+1 − ∑k
i=2

1
(1−t)ri+1 . The projective dimension is

∑k
i=1 di − ∑k

i=2 ri +
1 − min{ri } − 2. The depth of k[F] is min{ri } + 2, and F is CM (Cohen–Macaulay)
if and only if there is a d such that di = d for all i and ri = d − 1 for all i .

Proof The definition of fat forests directly gives the Hilbert series. The number of
vertices of F is

∑k
i=1(di + 1) − ∑k

i=2(ri + 1) = ∑k
i=1 di − ∑k

i=2 ri + 1 = n, so the
degree of the numerator p(t) of the Hilbert series p(t)

(1−t)n of k[F] is n−min{ri }− 1 so
the projective dimension is n − min{ri } − 2, and the depth of k[F] is min{ri } + 2 by
the Auslander–Buchsbaum formula. We have dim k[F] = 1+max{di }, depth k[F] =
min{ri } + 2, and di > ri for all i . The only possibility for dim k[F] = depth k[F] is
that there is a d such that di = ri + 1 = d for all i .

Remark The characterization of CM fat trees is not new. With another (more compli-
cated) proof it is found in [12].

In the remaining part of this section, we give some examples of results we can
achieve.

Jacques has determined the Betti numbers of the complete bipartite graph Km,n ,
[17]. The result is that the only nonzero Betti numbers are βi,i+1(Km,n) =∑

j+l=i+1
j,l≥1

(m
j

)(n
l

)
. We give an alternative proof.

Theorem 2 The edge ring of Km,n has a 2-linear resolution and βi,i+1(Km,n) =(m+n
i+1

) − ( m
i+1

) − ( n
i+1

)
.

Proof The edge ring of Km,n is the Stanley–Reisner ring of Km 	 Kn , the disjoint
union of two complete graphs, so the resolution is 2-linear. The Hilbert series is

1
(1−t)m + 1

(1−t)n − 1 = (1−t)n+(1−t)m−(1−t)m+n

(1−t)m+n . Thus, βi,i+1 = (n+m
i+1

) − ( n
i+1

) − ( m
i+1

)
.

Corollary 1
∑

j+l=i+1
j,l≥1

(m
j

)(n
l

) = (n+m
i+1

) − ( n
i+1

) − ( m
i+1

)
.

Also the completemultipartite graph Kn1,...,ns with parts of size n1, . . . , ns is treated
in [17]. The result there is

βi,i+1(Kn1,...,ns ) =
s∑

l=2

(l − 1)
∑

α1+···+αl=i+1
α1,...,αl≥1 j1<···< jl

(
n j1

α1

)

· · ·
(
n jl

αl

)

.

With our method we get

Theorem 3 βi,i+1(Kn1,...,ns ) = ∑s
i=1

(N−ni
i+1

) − ( N
i+1

)
, where N = ∑s

i=1 ni .

123



1026 Journal of Algebraic Combinatorics (2022) 56:1023–1030

Proof The edge ring of Kn1,...,ns is the Stanley–Reisner ring of the disjoint union of

Kn1, . . . , Kns with Hilbert series
∑s

i=1
1

(1−t)ni −(s−1) =
∑s

i=1(1−t)N−ni −(s−1)(1−t)N

(1−t)N
.

The result follows as before.

Corollary 2

s∑

l=2

(l − 1)
∑

α1+···+αl=i+1
j1<···< jl α1,...,αl≥1

(
n j1

α1

)

· · ·
(
n jl

αl

)

=
s∑

i=1

(
N − ni
i + 1

)

−
(

N

i + 1

)

.

In [1], squarefree lexsegments ideal with q-linear resolution are studied. They
show that ideals generated by initial segment of squarefree monomials in degree q in
lexicographic order have q-linear resolution. For q = 2, this means that ideals L(a, b)
generated by all squarefree monomials of degree 2 that are larger than or equal to xaxb
for some (a, b) have 2-linear resolution.

Theorem 4 The Betti numbers of k[x1, . . . , xn]/L(a, b), a ≤ b, are βi,i+1 = a
( b
i+1

)−
a
(b−1
i+1

) − ( a
i+1

)
, 1 ≤ i ≤ b − 1.

Proof L(a, b) is the Stanley–Reisner ideal of a simplicial complexwithmaximal faces
{1}, {2}, . . . , {a}, {a+1, a+2, . . . , b}. Thus, theHilbert series is a

(1−t)+ 1
(1−t)b−a −a =

a(1−t)b−1+(1−t)a−a(1−t)b

(1−t)b
.

Corollary 3 a
( b
i+1

) − a
(b−1
i+1

) − ( a
i+1

) = ∑a−1
k=0(k + 1)

( k
i−1

) + a
∑b−2

k=a

( k
i−1

)
.

Proof In [1], it is shown that βi,i+1 = ∑
xi x j≥xa xb

( j−2
i−1

)
, i ≤ j .

Also final squarefree segment define ideals with linear resolution. For d = 2, this
means that ideals F(a, b) = ({xi x j ; xi x j ≤ xaxb}) have 2-linear resolution.
Theorem 5 The Hilbert series of k[x1, . . . , xn]/F(a, b), a < b, is

n − b − 1

(1 − t)N−a
+ b − a − 1

(1 − t)N−a+1 − b − a − 2

(1 − t)N−a
− n − b + 1

(1 − t)N−a+1 ,

where N = (n−a−1
2

) + n − b + 1.

Proof F(a, b) is the Stanley–Reisner ideal of a simplicial complexwithmaximal faces
{1, 2, . . . , a − 1, i}, b ≤ i ≤ n, and {1, 2, . . . , a, j}, a + 1 ≤ j ≤ b − 1.

Now we treat some examples of Ferrer’s ideals. A Ferrer’s ideals can be indexed
by a tableau (λ1, λ2 . . . , λm), λ1 ≥ λ2 · · · ≥ λm ≥ 1. Here

I(λ1,...,λm ) = (x1y1, x1y2, . . . , x1yλ1 , x2y1, . . . , x2yλ2 , . . . , xm y1, . . . , xm yλm ).

We start with an example from [6], namely k[x1, . . . , x5, y1, . . . , y6]/I(6,4,4,2,1). The
fat tree with Stanley–Reisner ideal I(6,4,4,2,1) can be constructed like this. (We denote
the simplex on a1, . . . , ak by [a1, . . . , ak].)

123



Journal of Algebraic Combinatorics (2022) 56:1023–1030 1027

Startwith [y1, . . . , y6] and attach [x5, y2, y3, y4, y5, y6] in [y2, y3, y4, y5, y6]. Then
attach [x4, x5, y3, y4, y5, y6] in [x5, y3, y4, y5, y6]. Then attach [x2, x3, x4, x5, y5, y6]
in [x4, x5, y5, y6]. Finally attach [x1, x2, x3, x4, x5] in [x2, x3, x4, x5].

The Hilbert series of k[x1, . . . , x5, y1, . . . , y6]/I(6,4,4,2,1) is

1

(1 − t)6
+ 1

(1 − t)6
− 1

(1 − t)5
+ 1

(1 − t)6
− 1

(1 − t)5
+ 1

(1 − t)6

− 1

(1 − t)4
+ 1

(1 − t)5
− 1

(1 − t)4
= 4(1 − t)5 − (1 − t)6 − 2(1 − t)7

(1 − t)11
.

Thus,

βi (k[x1, . . . , x5, y1, . . . , y6]/I(6,4,4,2,1)) = 2

(
7

i + 1

)

+
(

6

i + 1

)

− 4

(
5

i + 1

)

.

The formula in [6] gives

βi (k[x1, . . . , x5, y1, . . . , y6]/I(6,4,4,2,1)) =
(
6

i

)

+
(
5

i

)

+
(
6

i

)

+
(
5

i

)

+
(
5

i

)

−
(

5

i + 1

)

= 2

(
6

i

)

+ 3

(
5

i

)

−
(

5

i + 1

)

.

Denote a sequence a, a, . . . , a of length b with ab. A Ferrer’s graph with tableau
μ
l1
1 , . . . , μ

lk
k corresponds to a simplicial complex with maximal faces [xL−lk−···−li+1,

. . . , xL , yμi+1, . . . , yμ1 ], where L = ∑k
i=1 li , for i = 0, . . . , k. One could generalize

themethod above to any tableau, but the result becomes a bit complicated, sowe refrain
from doing so. Instead we give some concrete examples and compare the formulas for
the Betti numbers.

First consider Imn which is the edge ring of the complete bipartite graph Km,n . Here
we have yet another expression from [6], βi,i+1 = ∑n+m−1

j=n

( j
i

)− ( m
i+1

)
. Thus, we get

Corollary 4
(n+m
i+1

) − ( n
i+1

) − ( m
i+1

) = ∑n+m−1
j=n

( j
i

) − ( m
i+1

)
.

Now consider

In,1m−1 = (x1y1, x1y2, . . . , x1yn, x2y1, x3y1, . . . , xm y1).

The fat tree with this Stanley–Reisner ideal has a maximal face [y1, . . . , yn]. Then
another maximal face [x2, . . . , xm, y2, . . . , yn] is attached in [y2, . . . , yn]. Finally the
maximal face [x1, . . . , xm] is attached in [x2, . . . , xm].
Theorem 6 The Hilbert series of k[x1, . . . , xm, y1, . . . , yn]/In,1m−1 is

1

(1 − t)n
+ 1

(1 − t)m
+ 1

(1 − t)m+n−2 − 1

(1 − t)n−1 − 1

(1 − t)m−1 ,
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so the Betti numbers are

βi =
(
n + 1

i + 1

)

+
(
m + 1

i + 1

)

−
(

n

i + 1

)

−
(

m

i + 1

)

−
(

2

i + 1

)

.

Corollary 5
(
n + 1

i + 1

)

+
(
m + 1

i + 1

)

−
(

n

i + 1

)

−
(

m

i + 1

)

−
(

2

i + 1

)

=
(
n

i

)

+
m∑

j=2

(
j

i

)

−
(
m + 1

i + 1

)

.

Proof The right-hand side is the formula for βi from [6]. We can do the same in higher
dimension. Consider the ideal

I (m, n, o) = (x1yi , x1z j , y1xk, y1z j , z1xk, z1yi , 1 ≤ k ≤ m, 1 ≤ i ≤ n, 1 ≤ j ≤ o).

In this case, the complex has four maximal faces,

[x2, . . . , xm, y2, . . . , yn, z2, . . . , zo], [x1, . . . , xm], [y1, . . . , yn], [z1, . . . , zo].

The three last are attached in [x2, . . . , xm], [y2, . . . , yn], [z2, . . . , zo], respectively.
Then k[x1, . . . , xm, y1, . . . , yn, z1 . . . , zo]/I (m, n, o) has a 2-linear resolution. The
Hilbert series of k[x1, . . . , xm, y1, . . . , yn, z1 . . . , zo]/I (m, n, o) is

1

(1 − t)m+n+o−3 + 1

(1 − t)m
+ 1

(1 − t)n
+ 1

(1 − t)o

− 1

(1 − t)m−1 − 1

(1 − t)n−1 − 1

(1 − t)o−1 ,

so the Betti numbers are

βi =
(
m + n + 1

i + 1

)

+
(
m + o + 1

i + 1

)

+
(
n + o + 1

i + 1

)

−
(
m + n

i + 1

)

−
(
m + o

i + 1

)

−
(
n + o

i + 1

)

−
(

3

i + 1

)

.

Example Consider the Ferrer’s ideal with tableau n, n − 1, n − 2, . . . , 1. Using the
formula in [6] the Betti numbers are n

(n
i

) − ( n
i+1

)
. The fat tree giving this ideal is

constructed like this. Startwith [y1, . . . , yn] and attach [xn, y2, . . . , yn] in [y2, . . . , yn].
Then attach [xn−1, xn, y3, . . . , yn] in [xn, y3, . . . , yn]. Continue like this until: Attach
[x2, . . . , xn, yn] in [x3, . . . , xn, yn], and finally attach [x1, . . . , xn] in [x2, . . . , xn].
The Hilbert series is n+1

(1−t)n − n
(1−t)n−1 , so the Betti numbers are βi,i+1 = n

(n+1
i+1

) −
(n + 1)

( n
i+1

)
and we get

n
(n+1
i+1

) − (n + 1)
( n
i+1

) = (n
i

) + ∑m
j=2

( j
i

) − ( n
i+1

)
.
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3 Uniform fat forests

We will now concentrate on “uniform" fat forests. If F = F1 ∪ · · · ∪ Fk , where Fi is a
d-simplex for i = 1, . . . , k and (F1∪· · ·∪Fi−1)∩Fi is an r -simplex for i = 2, . . . , k,
we call F a (d, r)-forest.

Corollary 6 The Hilbert series of a (d, r)-forest � with k facets is k
(1−t)d+1 − k−1

(1−t)r+1 .
The depth of k[�] is r + 2, so k[�] is CM if and only if r = d − 1. We have that the
Betti numbers bi (k[�]) = bi,i+1(k[�]) = |k((k−1)(d−r)

i+1

) − (k − 1)
(k(d−r)

i+1

)|.
For a simplicial complex � on [n], the Alexander dual �∨ is defined as {F; Fc /∈

�}, where Fc = [n] \ F . Alexander duals are well described in [3, 4, 9, 19]. We will
now determine the Betti numbers of the Alexander dual to fat forests.

Theorem 7 Let� be a (d, r)-forest with k facets. The nonzero Betti numbers of k[�∨]
are b0 = b0,0 = 1, b1 = b1,(k−1)(d−r) = k and b2 = b2,k(d−r) = k − 1. All k[�∨]
are CM, and k[�∨] has a linear resolution if and only if � is a (d, d − 1)-forest.

Proof We have that
∏m

j=1 xi j is a minimal generator of I , where k[�∨] =
k[x1, . . . , xn]/I , if and only if [n] \ {i1, . . . , im} is a facet in �. Thus, �∨ has k
minimal generators of degree k(d − r) + r + 1 − (d + 1) = (k − 1)(d − r), so
b1(k[�∨]) = b1,(k−1)(d−r)(k[�∨]) = k. The regularity of k[�] equals the projec-
tive dimension of k[�∨] and vice versa, [19, 20]. The projective dimension of k[�]
is k(d − r) − 1 and bk(d−r)−1,k(d−r) = k − 1. This is an extremal Betti number
for k[�]. (We have that bk,l(R) is an extremal Betti number for R if bi, j (R) = 0
for {(i, j); i ≥ k, j ≥ l} \ {(k, l)}.) Then b2,k(d−r)−1(�

∨) = k − 1 is an extremal
Betti number, see [3]. Since

∑2
i=0(−1)i bi = 0 we have b2 = k − 1, so b2, j = 0 if

j �= k(d − r) − 1. We have that k[�∨] has a linear resolution if and only if k[�] is
CM, [9].
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