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Abstract
We introduce the concept of alternate-edge-colourings for maps and study highly sym-
metric examples of such maps. Edge-biregular maps of type (k, l) occur as smooth
normal quotients of a particular index two subgroup of Tk,l , the full triangle group
describing regular plane (k, l)-tessellations. The resulting colour-preserving automor-
phism groups can be generated by four involutions. We explore special cases when
the usual four generators are not distinct involutions, with constructions relating these
maps to fully regular maps. We classify edge-biregular maps when the supporting
surface has non-negative Euler characteristic, and edge-biregular maps on arbitrary
surfaces when the colour-preserving automorphism group is isomorphic to a dihedral
group.

Keywords Symmetric map · Automorphism · Triangle group · Regular · 2-Orbit map

1 Introduction

A map is an embedding of a connected graph in a surface such that the image of
the graph divides the surface into regions which we call faces, while the interior of
each face is homeomorphic to an open disc. This paper addresses maps with alternate-
edge-colourings and introduces the algebraic theory underlying the most symmetric
examples of such maps.

Section 2 introduces the concept of an alternate-edge-colouring for a map, a condi-
tion which is equivalent to the medial map being bipartite. We present the monodromy
group for this type of map and relate it to the colour-preserving automorphism group.
We then study some properties arising from the algebraic background, focussing on
the subclass of these maps which have the largest possible colour-preserving automor-
phism group, maps which we call edge-biregular.
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Section 3 addresses special cases of edge-biregular maps, for example when there
are semi-edges or boundary components, including constructions relating these to
fully regular maps.

A classification of edge-biregularmaps supported by surfaces of non-negative Euler
characteristic is shown in Sect. 4.

Section 5 is devoted to a classification of edge-biregular maps on surfaces of
negative Euler characteristic where the colour-preserving automorphism group is iso-
morphic to a dihedral group, while Sect. 6 contains concluding remarks.

2 Preliminaries

2.1 Alternate-edge-colourings

Amap has an alternate-edge-colouringwhen it is possible to colour the edge set using
two colours such that consecutive edges around any given face will be differently
coloured and so also two consecutive edges in the cyclic order of edges around any
vertex will be assigned different colours. This property is equivalent to the map having
a bipartite medial graph. In our diagrams, we will use a bold line to denote an edge
of one colour (which we call shaded) and dashed lines to indicate edges of the other
colour (unshaded).

We note that a map having an alternate-edge-colouring is also equivalent to being
able to define an orientation on the set of corners of a map such that adjacent corners
have the opposite orientation. The orientations on the corners can then be defined to
be consistent with sweeping the corners always in the same direction with respect to
the colouring, for example from the shaded edge to the unshaded edge. In this last
sense, it is a similar definition to the pseudo-orientable maps introduced by Wilson in
[14], but we are assigning the orientations to corners of the map rather than vertices.

An example of a map with an assigned alternate-edge-colouring is shown in Fig. 1.

Fig. 1 A map on a sphere with
an assigned alternate-edge-
colouring
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Fig. 2 A toroidal map (edges of the rectangle identified in the usual way) with no alternate-edge-colouring

In general, unless stated otherwise, we will assume we are working with maps
supported by closed surfaces, that is, maps without boundary components. In this case,
every vertex of a map with an alternate-edge-colouring must have even valency and
all the faces will have even length closed boundary walks. However, having even face
lengths and valencies is not sufficient for a map to have an alternate-edge-colouring.
An example of a map which has only even length faces, and only even degree vertices,
is shown in Fig. 2. Any attempt to form an alternate-edge-colouring will result in a
contradiction. For example, the (single) edge with the double arrow would “want” to
be coloured with both colours, which is clearly impossible. The same is true for the
single arrow edge.

Both examples and non-examples of such maps exist on non-orientable surfaces
too. If the left and right edges of the rectangle in Fig. 2 are identified in the opposite
direction from each other, then we have a non-orientable map with even valency and
even face length for which there is still no alternate-edge-colouring. However, the
Klein bottle does support maps with alternate-edge-colourings, as we will see later, in
Sect. 4.2.2.

2.2 The corner-monodromy group

We define flags of a map to be the faces of its barycentric subdivision. We refer to the
vertices of the barycentric subdivision as labels. Each flag thus has three labels, one
for each dimension 0, 1 and 2, respectively, corresponding to the vertex, edge and face
of the map with which that flag is associated.

In a map with an assigned alternate-edge-colouring, that is a map which has been
given an alternate-edge-colouring, each flag will inherit a natural colouring, shaded
or unshaded, according to the colour of the edge with which it associated. The pair of
flags which together form a corner (that is, the two neighbouring flags from one face
which meet in a natural way at a corner of that face) will therefore have one flag of
each colour, and the whole map can be decomposed into the set C of ready-coloured
corners, that is corners with an assigned colouring.

The gluing instructions for the elements of the set C for a map with an assigned
alternate-edge-colouring are in a sense the ready-coloured-corner-monodromy group
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Fig. 3 The action of R0,R2 and P0,P2 on certain corners of a map with alternate-edge-colouring

G. The group G acts on the right of C and is generated by four involutions as follows.
Following well-established notation, see [9], we define the involutions R0,R2 to be
the operations which swap every shaded flag with its neighbour, respectively, along
and across a shaded edge. The subscripts in this notation indicate the dimension of the
labels of the adjacent shaded flags which are interchanged by the involution. But the
action of this group is on the set of two-coloured corners, not flags, so we seeR0,R2
swaps every ready-coloured-corner with its unique neighbour, respectively, along and
across a shaded edge, while we define P0,P2 to be the involutions which interchange
every ready-coloured-corner with its unique neighbour, respectively, along and across
an unshaded edge.

Figure 3 shows the action of R0,R2,P0,P2 on a selection of ready-coloured-
corners. Each corner in the diagram is outlined by a bold line, a long-dashed line and
two short-dashed lines, and consists of one flag of each colour. The two corners c
and cR0 are thus adjacent along a shaded edge, while c and cR2 are adjacent across
a shaded edge and c is adjacent to cP0 and cP2, respectively, along and across an
unshaded edge.

The group G = 〈R0,R2,P0,P2〉 for a map with an assigned alternate-edge-
colouring which is decomposed into its ready-coloured-corners is then isomorphic
to a quotient group of � := 〈R0,R2〉 ∗ 〈P0,P2〉 ∼= V4 ∗ V4 defined by the natural
epimorphism φ : � → G where φ : Ri → Ri and φ : Pi → Pi . The group � is the
ready-coloured-corner-monodromy group of a universal map for the class of alternate-
edge-colourable maps, from which any map with this property can be determined by
the natural epimorphism φ.
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2.3 The colour-preserving automorphism group

We consider the group H of automorphisms acting on the (left of the) set C which
preserve both the structure and the colouring of the map. By this, we mean all auto-
morphisms which act such that the images of two neighbouring corners will share the
same type of adjacency as their pre-images, that is along or across either a shaded or
an unshaded edge. The group H thus consists of all permutations of the set C which
commute with all the gluing instructions in G. Hence, H = {h ∈ SymC | h(c)Ri =
h(cRi ) and h(c)Pi = h(cPi ) for all c ∈ C, i ∈ {0, 2}}, that is, H is the centraliser of
G in the symmetric group acting on the set C.

2.4 Edge-biregular maps

We will always assume that all our maps are connected, and hence, the structure-
preserving condition for ourmap automorphisms forces the (left) action of H onC to be
semi-regular, that is fixed-point free. The largest possible automorphism group H act-
ing on C, the set of (coloured) corners of amapwith assigned alternate-edge-colouring,
will be when H acts transitively on the set C. The action being both fixed-point free
and transitive means the action is regular and this allows us to identify the elements
of the group H with the corners in the set C. We mark an arbitrary corner C which
is labelled as the identity element and refer to the structures incident to this cor-
ner as distinguished. The automorphisms in H are then generated by the involutions
〈r0, r2, ρ0, ρ2〉 which act locally as reflections in the boundaries of this marked cor-
ner, (respectively, along or across the distinguished shaded edge and along or across
the distinguished unshaded edge), while preserving all the adjacency relationships
between corners. See Fig. 4.

When H acts regularly on the set C of corners of a map with an assigned alternate-
edge-colouring, we say the map is edge-biregular. Henceforth, except in some special
cases, we will be considering edge-biregular maps with even valency k and even
face length l which we describe with the canonical form (H ; r0, r2, ρ0, ρ2) where the
generators act as described above, and H is a group with the partial presentation

H =〈 r0, r2, ρ0, ρ2 | r20 , r22 , ρ2
0 , ρ2

2 , (r0r2)
2, (ρ0ρ2)

2, (r2ρ2)
k/2, (r0ρ0)

l/2, . . . 〉.

The exceptional cases, which we address in Sect. 3, occur when the supporting
surface has non-empty boundary components and the resulting edge-biregular maps
can then have non-even valency or face length. For example, if in an edge-biregular
map a vertex and its incident bold edge, and hence all bold edges, lie on the boundary
of the surface, then the vertices will necessarily have odd degree, 3. See Bryant and
Singerman [3] for “Foundations of the theory of maps on surfaces with boundary”.

Each edge-biregular mapM = (H ; r0, r2, ρ0, ρ2) has a twinmapwhich is the same
as the original map in every respect except the colouring of the edge orbits is switched.
Since each generator is associated with one of the colours of the edges, the twin map
of M is denoted W = (H ; ρ0, ρ2, r0, r2). This is just a matter of relabelling and does
not imply or demand any further relationship between the two structures.
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Fig. 4 The hyperbolic lines of reflection for the generating automorphisms r0, r2, ρ0 and ρ2, shown on part
of the infinite edge-biregular map (hyperbolic tessellation) of type (8, 4). Themarked corner, corresponding
to the identity element of H , is shaded darker than the others

The map automorphisms in H of an edge-biregular map are those which are gener-
ated by the four reflections along and across each of two particular adjacent edges of
the map, as shown in Fig. 4. As we have seen the group H acts regularly on the set of
corners of the map. It is possible that the map has further symmetries, and the estab-
lished definition for the full automorphism group of a map is defined with respect to
its action on the set of flags of the map, with no reference to the colouring of edges, see
[9]. When considered as acting in the natural way on the flags of the map, the group
H = 〈r0, r2, ρ0, ρ2〉 partitions the flag set of a given edge-biregular map into two
orbits, one containing shaded flags, and the other containing unshaded flags. As such,
it is possibly a 2-orbit map, one of those classified by Hubard, Orbanić and Weiss [8].
However, an edge-biregular map may not be a 2-orbit map, since there is no structure
within our definition which disallows a colour-reversing automorphism of the map.
Such an automorphism, if it exists, would fuse the two edge orbits together and the
full automorphism group for the map would then be transitive on flags, making it a
fully regular map, and in this case the full automorphism group would then contain H
as an index two subgroup. The edge-biregular map M = (H ; r0, r2, ρ0, ρ2) is thus a
fully regular map if and only if there is an involutory automorphism ψ of the group
H such that ψ : ri ↔ ρi for each i ∈ {0, 2}.

Two edge-biregular maps M = (H ; r0, r2, ρ0, ρ2) and M ′ = (H ′; r ′
0, r

′
2, ρ

′
0, ρ

′
2)

are isomorphic to each other if and only if the mapping ri → r ′
i and ρi → ρ′

i for
i ∈ {0, 2} extends to an isomorphism of the group H . Thus, an edge-biregular map M
is a fully regular map if and only if it is isomorphic to its twin.
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Fig. 5 Part of the Cayley map

Any edge-biregular map which is not fully regular is an example of a k-orbit map
for k = 2, see [12]. Edge-biregular maps which are not fully regular are the two-orbit
maps of type 20,2 classified in [8]. In [9], Jones also makes special mention of this
class of maps as it is the only non-edge-transitive class which arises very naturally
in the process of determining the 14 classes of edge-transtitive maps. These types of
edge-transitive maps were classified in different terms by Graver and Watkins in [7]
and Wilson in [15].

The choice of notation indicates some connection between the corner-monodromy
group G and H , and indeed there is a very natural relationship between the two. The
groups H and G are regular permutation representations on the set of corners of the
coloured map acting, respectively, on the left and right. The embedded Cayley map
illustrates this in Fig. 5. This is a Cayley graph for the automorphism group H , so each
of the dark vertices represents an element in H , naturally identified with the corners
of the edge-biregular map, and the coloured lines are the generating automorphisms
r0, r2, ρ0 and ρ2. Take the vertex in the corner marked C as the identity element of
the group H and consider the element (for example) h = ρ2r2r0ρ0 ∈ H . Now, H acts
on the left, so h corresponds to the flag which is the image of C after the reflections
ρ0, r0, r2 and ρ2 are applied in that order. Applying these automorphisms in turn can
be a somewhat laborious exercise.

However, one arrives at the same corner as when going from C to CP2R2R0P0.
This is no coincidence. Notice that the coloured lines, when looked at in the context
of the underlying map shown in grey, indicate the gluing instructionsR0,R2,P0,P2
between the corners. An automorphism hx ∈ H for some x ∈ {ρ2, r2, r0, ρ0} acts
on the marked corner C as follows. Being an automorphism, x commutes with the
monodromy group, and C is our marked corner, so x(C)X = x(CX ) = C where X
is the corresponding capital of x . This implies that x(C) = CX and hence, hx(C) =
h(C)X . By induction, we can conclude that, where the corner C is identified with

123



1314 Journal of Algebraic Combinatorics (2022) 55:1307–1329

the identity of H , the automorphism h = x1x2...xn ∈ H is identified with the flag
CX1X2...Xn .

2.5 Algebraic context

Maps of a given type (k, l) can be obtained as quotients of the universalmap of the same
type. This universal map consists of the regular tessellation of l-gons, k of which meet
at each corner, on a simply connected surface. The corresponding (k, l) tessellation is
described as hyperbolic, Euclidean or spherical, the name describing the geometry of
the underlying simply connected surface.

The universal map of type (k, l) is known [13] to have automorphism group as
follows:

Tk,l = 〈 R0, R2, R1 | R2
0, R

2
2, R

2
1, (R0R2)

2, (R1R2)
k, (R0R1)

l 〉

The group Tk,l is called the full triangle group of type (k, l), and it is finite only for
maps of the spherical type, where 1/k + 1/l > 1/2. Quotients of the full triangle
group by torsion-free normal subgroups of finite index give rise to finite fully regular
maps, that is maps where the automorphism group acts transitively on the finite set of
flags.

When k and l are both even, there are seven index two subgroups of Tk,l , each
of which is a source of maps with a given property. These index two subgroups can
be identified by listing which of the three generators are included, and we use bar
notation to indicate when the corresponding element is not contained in the subgroup.
Well-known, and widely studied are the rotary maps which occur as quotients of
the index two subgroup in which none of the generators are included, that is T+

k,l =
〈R0R1, R2R1〉 = 〈R̄0, R̄1, R̄2〉. Recently, Breda, Catalano and Širáň [5] have partially
classified the bi-rotary maps which come from quotients of 〈R0, R̄2, R̄1〉. The maps
which are the focus of this paper, that is edge-biregular maps of type (k, l), arise as
quotients of the index two subgroup 〈R0, R2, R̄1〉.

We note that edge-biregular maps can occur as a special case of the 2-regular
hypermaps in the “edge-bipartite” class as described in Duarte’s thesis [6], where
there is a classification for some surfaces of small Euler characteristic. In this paper,
we allow for maps with semi-edges, making our work more general in this sense.

3 Special cases of edge-biregular maps

An edge-biregular map is usually described in terms of the four generating automor-
phisms r0, r2, ρ0, ρ2, but there are degenerate cases where either one or more of these
is “missing” (contributing nothing to the group, and indicating a boundary to the sur-
face) or when the four involutions are not distinct. These possibilities are explored in
this section.
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(a) (b) (c) (d)

Fig. 6 A corner, and corners meeting the surface boundary, types (a), (b), (c), and (d)

Fig. 7 Corner regions meeting the surface boundary in two ways (up to colouring)

3.1 Edge-biregular maps with semi-edges

A way in which the four involutions might not be distinct would be if r0 = r2 and/or
ρ0 = ρ2. This would indicate that the orbit of edges of the corresponding colour
consists of semi-edges.

If both orbits of edges are semi-edges, then we have a semistar. These maps have
only one vertex, and, assuming there are more than two corners in the map, the group
H = 〈r2, ρ2〉 will be dihedral. The supporting surface, if without boundary, must be
a sphere, and these even valency semistar spherical maps are both edge-biregular and
also fully regular. Examples of semistar edge-biregular maps also exist on a disc, and
we explore surfaces with boundary components in the following section.

Henceforth, we will assume, up to twinness, that at least one of the orbits of edges
does not consist of semi-edges. When there are no semi-edges in an edge-biregular
map, we say it is a proper edge-biregular map.

3.2 Edge-biregular maps with boundary components

If a map is on a surface which is not closed, that is when the surface has non-empty
boundary components, then at least one of the edges of a corner region will lie on the
boundary of the supporting surface. The resulting maps are reminiscent of maps with
holes, see page 109 in [4], and holeymaps, see [2]. Figure 6 shows a corner region, and
ways that corner regions canmeet the boundary of a surface. Any given corner region is
the union of two adjacent flags and so can be represented by a quadrangle in the natural
way. Hence, a corner region could have up to four of its edges along the boundary, see
Figs. 7 and 8. For clarity of the diagrams, we have drawn the boundary lines extending
beyond the corner regions. In actuality, due to the map being on a 2-manifold with
boundary (where every point on a boundary has a neighbourhood homeomorphic to
a half-disc), wherever two boundaries apparently cross, the boundary will in fact be
one continuous boundary around this part of the corner region.
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Fig. 8 Corners meeting the surface boundary in three (up to colouring) or four ways

Fig. 9 Edge-biregular maps with unshaded edges along the surface boundary

Edge-biregular maps with boundary occur when one or more of the generators
(and hence also the relators including them) collapse and hence are missing from the
usual group presentation H = 〈 r0, r2, ρ0, ρ2 | r20 , r22 , ρ2

0 , ρ2
2 (r0r2)2, (ρ0ρ2)

2,

(r2ρ2)k/2, (r0ρ0)l/2, . . . 〉. For some x ∈ {r , ρ} if x0 ismissing, then the corresponding
coloured edge (and so all such edges) will in fact be a semi-edge to the boundary, while
if x2 is missing, then all the edges with the corresponding colour will be along the
surface boundary. If, for example, the unshaded edges are on the surface boundary, then
ρ2 ismissing andwewould denote the edge-biregularmap byM = (H ; r0, r2, ρ0, ρ̄2).

Considering an edge-biregular map M = (H ; r0, r2, ρ0, ρ̄2), like type (a) in Fig. 6,
we have, by regularity of the action of H on corners of the map, all the unshaded
edges must be on the boundary of the map. Let us assume, for the moment, that this
is the only way in which corner regions meet the surface boundary. When the bold
edges are semi-edges, which means that r0 = r2, the group H = 〈r0, ρ0〉 is dihedral,
and the edge-biregular map has a single face with the supporting surface being a disc.
This is illustrated in Fig. 9, on the left. When the bold edges are not semi-edges, then
l = 4 and the underlying graph is a ladder so the surface is homeomorphic to either
an annulus or a Möbius strip. These maps can have any number of bold (semi)edges,
and generalisations are shown in Fig. 9, where the orientability of the second surface
is dependent on the identification of edges (and the relators in the group presentation)
where the dots are.
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Notice that the vertices of these edge-biregular maps have odd valency. This is
no surprise since having the vertices on the surface boundary destroys any hope of a
non-trivial rotation around a vertex being an automorphism of the map.

Thinking about these edge-biregular maps in terms of their group presentations
yields something evenmore interesting.Type (a) has the followingpartial presentation:

H = 〈 r0, r2, ρ0 | r20 , r22 , ρ2
0 , (r0r2)

2, (r0ρ0)
l/2, . . . 〉

and we are left with H being a group which is generated by three involutions, two of
which commute. This phrase, in italics, will be very familiar to those who study fully
regular maps, as this is precisely how the automorphism group of a fully regular map is
often described. The group H is, in this case, the automorphism group of a fully regular
map. While the above presentation of the group H describes an edge-biregular map of
type (a), it also resembles the usual partial presentation for the automorphism group
of a fully regular map, with ρ0 in place of r1. This indicates a very close relationship
between the two corresponding maps which is as follows.

Construction 1 Starting with a fully regular map (G; r0, r2, r1) of type (k, l), see [13]
for details, choose an arbitrary vertex v and cut out a small disc neighbourhood around
v (the disc must be small enough not to include any other vertices nor edges that are
not incident to v). Place new vertices where edges meet this new surface boundary and
draw unshaded edges between the new vertices all along this new surface boundary.
Repeating this process for all vertices of the original fully regular map will yield the
well-defined edge-biregular map (H ; r0, r2, ρ0, ρ̄2) of type (3, 2l) with ρ0 = r1. In
the other direction, starting with an edge-biregular map with the unshaded edges along
a surface boundary, the related regular map can be built by contracting each unshaded
edge down into a single vertex. By letting all the unshaded edges (and hence, flags, and
indeed boundaries) disappear in the process, the reflections which used to act along
the unshaded edges (conjugates of ρ0) now simply act as the reflections across the
resulting new corners (that is, conjugates of r1) of the implicit fully regular map.

An edge-biregular map with boundary of type (b) is the twin of a map of type
(a), while edge-biregular maps with boundary types (c) and (d) also form twin pairs.
Figure 10 shows some edge-biregular maps of type (c), the oppositely coloured twins
of type (d) edge-biregular maps.

If one of the edges of a particular colour, let us say unshaded, meets the boundary,
like (d) in Fig. 6, then this edge, and hence, all edges of this type are semi-edges to a
boundary of the surface. This is an edge-biregular map (H ; r0, r2, ρ̄0, ρ2, ). Assuming
that a corner region meets the boundary only this way, and the shaded edges are not
semi-edges (otherwise, we would end up with a semistar), then each face region of
the map must have as its boundary: one shaded edge; two unshaded semi-edges;
and a section of the surface boundary. This type (d) edge-biregular map thus has
presentation:

H = 〈 r0, r2, ρ2 | r20 , r22 , ρ2
2 , (r0r2)

2, (r2ρ2)
k/2, . . . 〉
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Fig. 10 Edge-biregular maps of type (c) with semi-edges meeting the surface boundaries

and we are again left with H being a group which is generated by three involutions,
two of which commute. This timewe have ρ2 instead of r1, and this yields the following
construction.

Construction 2 Starting from a regular map, (G; r0, r2, r1), drawn with all its edges
shaded,wecanobtain thewell-defined implied edge-biregularmap (H ; r0, r2, ρ̄0, ρ2, )
by cutting a disc out from the interior of each face and drawing an unshaded semi-edge
from this new surface boundary to each of the surrounding vertices, thereby letting
r1 = ρ2. Conversely, given an edge-biregular map with unshaded semi-edges to the
surface boundary, we can obtain a regular map by deleting all the unshaded semi-
edges and contracting each of the boundaries in the surface to ensure the interior of
each resulting face is homeomorphic to an open disc. This valid since the boundary
component which a semi-edge meets must be the same as the boundary component
which the semi-edge from the adjacent corner within the same face meets.

If a corner meets the boundary in more than one of the ways listed (as in the
diagrams in Figs. 7 and 8), then options are severely restricted: there are at most two
involutory generators and so the group H is dihedral or cyclic. The interested reader
may wish to verify that these include the single faced maps on a disc H = 〈r0, ρ0〉,
the edge-biregular maps on an orientable band H = 〈r2, ρ0〉, the 4-cornered map on a
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disc H = 〈r0, r2〉 ∼= V4 and the semistar on a disc H = 〈r2, ρ2〉 as well as their twins,
and the more trivial maps on a disc which have only one or two corners.

3.3 Edge-biregular maps with non-distinct generators

There is another natural, if somewhat trivial way of building an edge-biregular map
from any given fully regular map, this time without introducing any boundaries, and
that is as follows.

Construction 3 Given a fully regular map (G; r0, r2, r1) of type (k, l) drawn with all
its edges shaded. At every vertex draw k unshaded semi-edges, so that there is one
semi-edge in every corner of the original map. This is thus the edge-biregular map
(H ; r0, r2, ρ, ρ) where ρ = ρ0 = ρ2 = r1.

Figure 11 shows a cube (a fully regular map) drawn with all shaded edges, along
with the edge-biregular maps as described in the three constructions above. If you
draw the embedded Cayley graphs for each of these maps, the close relationships
between this collection of four maps becomes very clear. We could of course include
the corresponding twin maps too, as well as the dual maps, and hence, each fully
regular map has many edge-biregular related maps.

Having addressed maps with non-empty boundary components in the previous
section, henceforth we will assume that the supporting surfaces for our edge-biregular
maps are closed, that is without boundary.

There are other degeneracies arising from non-distinct generators, and we will now
address these in turn. Up to duality and twinness, we may assume that one of the
non-distinct generators is r0, and so as to avoid bold semi-edges, we assume the other
is in {ρ0, ρ2}.

In the casewhen r0 = ρ0, we have H = 〈r0, r2, ρ2〉, the group for an edge-biregular
map which has digonal faces. Maps of type (k, 2) are known to be fully regular and
are supported by either the sphere or the projective plane.

Construction 4 The edge-biregular map (H ; ρ, r2, ρ, ρ2) where ρ = r0 = ρ0 has an
implied regular map (G; r0, r2, r1) where r1 = ρ2 which is an embedding of the bold
edges of the edge-biregular map, with the dashed edges deleted. This implied fully
regular map also has digonal faces. In the other direction, a fully regular map with
digonal faces can be made into an edge-biregular map by the addition of unshaded
edges, each cutting each original digonal face into two alternate-edge-coloured digons.

Remark 3.1 It may be tempting to think that any edge-biregular map with non-distinct
generators corresponds to a fully regular map with the same automorphism group and
supported by the same surface. However, this is not the case as will now become clear.

In the case where r0 = ρ2 = ρ, we have the edge-biregular map (H ; ρ, r2, ρ0, ρ)

while the group H = 〈r0, r2, ρ0〉. Geometrically, r0 = ρ2 implies that (all) the edges
in the bold orbit are loops. Also, r0r2 = ρ2r2 has order dividing two and hence the
vertices all have degree (2 or) 4. Similarly, ρ0ρ2 = ρ0r0 has order dividing two,
and so (assuming no further degeneracies occur) we have an edge-biregular map of
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Fig. 11 A fully regular map and some of its associated edge-biregular maps

type (4, 4). Now, the tessellation of type (4, 4) is Euclidean, indicating that the maps
(H ; ρ, r2, ρ0, ρ) supported by a closed surface must be, depending on orientability,
on either the Klein bottle or the torus. Note: We present a classification of proper
edge-biregular maps on the torus and the Klein bottle in Sects. 4.2.1 and 4.2.2.

Treating r0 and r2 in the usual way, we consider the implications of ρ0 being
thought of as r1, the reflection in a corner of a regular map. Informally, this is like
reducing (themarked one, and hence all) the dashed edges to negligible length, thereby
identifying the endpoints of each dashed edge and stitching the remaining shaded flags
together in the correspondingly natural way. The resulting fully regular map would
therefore have faces which are digons and the underlying graph would consist of just
one vertex. Thus, the underlying graph has become a bouquet of loops, but this process
has also drastically changed the underlying surface, as we might have expected if we
remembered that the Klein bottle has no regular map. In the case of the Klein bottle,
the resulting surface is the projective plane. However, in the case of a toroidal map, the
object created by this process (which is equivalent to contracting a non-contractible
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cycle) is in fact a pseudo-surface, a sphere with one pair of antipodal points identified,
in which case the resulting map is an example of a regular pinched map, see [1] for
further details.

4 Edge-biregular maps on closed surfaces where � ≥ 0

4.1 Euler’s formula

Consider the edge-biregular map (H ; r0, r2, ρ0, ρ2) which has type (k, l), and no
semi-edges.

The stabiliser for the distinguished face is denoted Dl := 〈r0, ρ0〉 and is isomorphic
to the dihedral group with l elements, while the stabiliser for the distinguished vertex
is called Dk := 〈r2, ρ2〉 and is isomorphic to the dihedral group with k elements. The
map thus has |H |

l faces and |H |
k vertices.

The stabiliser group of an edge is isomorphic to V4 and, for the distinguished shaded
edge is 〈r0, r2〉, while for the distinguished unshaded edge the stabiliser is 〈ρ0, ρ2〉.
Hence, the map has 2|H |

4 edges.
Supposing that the map (H ; r0, r2, ρ0, ρ2) lies on a surface of Euler characteristic

χ , we apply the well-known Euler–Poincaré formula, which is useful when we come
to classifying these maps on particular surfaces:

χ = |H |
(
1

k
− 1

2
+ 1

l

)
(1)

When applying Euler’s formula to a map with semi-edges, one should realise that
the existence of semi-edges contribute nothing to the value of χ .

4.2 Edge-biregular maps of non-negative Euler characteristic

In this section, we classify all edge-biregular maps on surfaces for whichχ ∈ {0, 1, 2}.
We note that Duarte’s thesis [6] includes a classification of 2-restrictedly-regular edge-
bipartite hypermaps, that includes all proper edge-biregular maps, for the sphere, the
projective plane and the torus. Here, we allow for the possibility of semi-edges, and
we present a different approach for Euclidean edge-biregular maps. While Duarte’s
work allows formany different group presentationswhich describe the sameEuclidean
map, our approach standardises the presentation for such an edge-biregular map and
extends to include a classification for such maps on the Klein bottle.

Theorem 4.1 If the proper edge-biregular map M = (H ; r0, r2, ρ0, ρ2) has non-
distinct generators, then it is supported by a surface which has non-negative Euler
characteristic. Up to duality, the surfaces, maps and their groups H are listed below:

1. Sphere: dipoles of even degree with H = 〈r2, ρ2〉×〈ρ0〉 = Dk ×〈ρ0〉 and r0 = ρ0.
2. Projective plane: single vertex maps, the degree k being a multiple of 4, with

H = 〈r2, ρ2〉 = Dk and r0 = ρ0.
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3. Torus: Maps of type (4, 4) with m quadrangular faces and (at least) one edge orbit
consisting of loops such that H = 〈r2, ρ0〉 × 〈r0〉 ∼= D2m × C2 and r0 = ρ2.

4. Klein bottle: Maps of type (4, 4) with m/2 quadrangular faces and (at least) one
edge orbit consisting of loops such that H = 〈r2, ρ0〉 ∼= D2m and r0 = ρ2.

Proof Suppose we have a proper edge-biregular map M = (H ; r0, r2, ρ0, ρ2) such
that the generators r0, r2, ρ0, ρ2 are not distinct. The map is assumed to be proper, so
there are no semi-edges which forces r0 
= r2 and ρ0 
= ρ2. Up to duality, we may
assume that one of the redundant generators is labelled r0. This leaves two options,
r0 = ρ0, or r0 = ρ2, which we will address in turn.

If r0 = ρ0, then the element r0ρ0 is the identity which means l = 2 and the faces
of the map are digons. Also note that H = 〈r0, r2, ρ0, ρ2〉 = 〈r2, ρ0, ρ2〉 and we have
[ρ0, r2] as well as [ρ0, ρ2] so ρ0 is central. Hence, either H = Dk or H = Dk ×
〈ρ0〉. Applying the Euler–Poincaré formula, we see that these two cases correspond,
respectively, to a single-vertex degree-k map on the projective plane (remembering
4|k), and a degree-k dipole embedded in the sphere (for any even k).

If r0 = ρ2, then the bold edges must be loops. Also, we have [ρ0, ρ2] = [ρ0, r0] so
l = 4 and [r0, r2] = [ρ2, r2] so k = 4 and hence, the map type is (4, 4). This implies
we are on a surface with Euler characteristic χ = 0. If the surface is orientable, then
the map is on the torus, otherwise the map is supported by the Klein bottle. Going
further, in the case where r0 = ρ2, notice that r0 is central, H = 〈r0, r2, ρ0〉, and
also that 〈r2, ρ0〉 is a dihedral group, with order, say, 2m. Now, if r0 ∈ 〈r2, ρ0〉, then
H = 〈r2, ρ0〉 ∼= D2m where m is even. Also, being central, r0 = (r2ρ0)m/2 which
yields a relator of odd length, forcing the supporting surface to be non-orientable, the
Klein bottle. If, on the other hand, r0 /∈ 〈r2, ρ0〉 then H = 〈r2, ρ0〉×〈r0〉 ∼= D2m ×C2
and, as the direct product of a dihedral group (with the presentation generated by two
involutions) and a copy of C2, there can be no relators of odd length. These maps
are therefore supported by an orientable surface of Euler characteristic 0, namely the
torus. ��

The workings in the above proof have shown that when H has non-distinct gener-
ators r0, r2, ρ0, ρ2, then the closed supporting surface for the edge-biregular map has
non-negative Euler characteristic χ ∈ {0, 1, 2}. This yields the following corollary on
which we will rely later.

Corollary 4.2 A proper edge-biregular map M = (H ; r0, r2, ρ0, ρ2), embedded on a
surface where χ < 0, has distinct generators r0, r2, ρ0, ρ2.

4.2.1 Edge-biregular maps on the torus

Each regular map on the torus will have associated edge-biregular maps each created
by inserting a semi-edge into each corner. Thus, there will be edge-biregular maps
of types (12, 6), (6, 12) and (8, 8) derived by construction 3, respectively, from the
well-known toroidal regular maps of types (6, 3), (3, 6) and (4, 4).

Turning our attention to proper edge-biregular maps supported by the torus, the
requirement for even valency and face length makes it clear that they must all have
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type (4, 4). The infinite group

� = 〈 R0, R2, P0, P2 | R2
0, R

2
2, P

2
0 , P2

2 , (R0R2)
2, (P0P2)

2, (R0P0)
2, (R2P2)

2 〉

describes the colour-preserving automorphism group of the alternate-edge-coloured
infinite square grid, a tessellation of type (4, 4) on the Euclidean plane. Following
the work in the seminal paper by Jones and Singerman [10], the colour-preserving
automorphism group H for any given finite proper edge-biregular map of type (4, 4)
arises as a smooth quotient of � by a torsion-free normal subgroup N of finite index
giving H ∼= �/N .

Using an analogue of the example found in Section 7 of [10], to assist in identifying
subgroups of finite index in �, we now define T := 〈R0P2, R2P0〉 ≤ �, noting that
the two generators, each of which has infinite order, commute and so T is itself a
free abelian group of rank two, T ∼= Z × Z . Conjugation by any one of the elements
R0, R2, P0, or P2 fixes the subgroup T so it is easy to see that T is normal in �. For
example, R0 inverts R0P2 and fixes R2P0, while conjugation by R2 fixes R0P2 and
inverts R2P0, and this yields � = T � 〈R0, R2〉 ∼= (Z × Z) � V4.

This presentation of � makes it clear that any rank two (torsion-free) subgroup
of T will be of finite index in �. Geometrically speaking, the group T describes all
the translations which map the aforementioned infinite square grid to itself. It will
be helpful later to have the following visualisation in mind: if we mark an arbitrary
vertex of the infinite grid, any subgroup of T generated by a given pair of independent
translations creates a two-dimensional lattice of equivalent vertices, all of which cor-
respond to a single vertex on the associated toroidal map. It is well-known that two
linearly independent translations of the plane determine a fundamental region for a
torus. Drawing this all together, we have that NT , a given rank two subgroup of T ,
gives rise to an edge-biregular map on a torus if and only if NT � �.

Although theremay bemany equivalent presentations of the group H , each ofwhich
describes a particular given edge-biregular map on a torus, the following proposition
seeks to identify a uniquely defined presentation corresponding to each toroidal edge-
biregular map.

Proposition 4.3 Every proper toroidal edge-biregular map is determined by the group
H... with one of the two following presentations:

HRect = 〈r0, r2, ρ0, ρ2 | r20 , r22 , ρ2
0 , ρ

2
2 , (r0r2)

2, (ρ0ρ2)
2, (r0ρ0)

2, (r2ρ2)
2, (r0ρ2)

a, (r2ρ0)
c〉

or

HRhomb = 〈r0, r2, ρ0, ρ2 | r20 , r22 , ρ2
0 , ρ

2
2 , (r0r2)

2, (ρ0ρ2)
2, (r0ρ0)

2, (r2ρ2)
2,

(r0ρ2)
2b, (r0ρ2)

b(r2ρ0)
c〉

where a, b and c are positive integers.
A toroidal edge-biregular map is fully regular if and only if one of the following is

the case: H = HRect and a = c; or H = HRhomb and b = c.

123



1324 Journal of Algebraic Combinatorics (2022) 55:1307–1329

Proof Suppose (H ; r0, r2, ρ0, ρ2) is a given edge-biregular map whose supporting
surface is a torus. Thus, H is necessarily finite, corresponding to a map of type (4, 4),
and H will have canonical partial presentation:

H = 〈 r0, r2, ρ0, ρ2 | r20 , r22 , ρ2
0 , ρ

2
2 , (r0r2)

2, (ρ0ρ2)
2, (r0ρ0)

2, (r2ρ2)
2, . . . 〉

where the dots indicate some unknown extra relators which are yet to be determined.
These necessary extra relators arise from NT , the kernel of the epimorphism φ : � →
H where φ : Ri → ri and φ : Pi → ρi for each i ∈ {0, 2}; below, we determine all
possibilities for the group NT .

Since a map on the torus must be finite, each element of H must have finite order.
Specifically r0ρ2 must have finite order in H , let us say a. Thus, (r0ρ2)a is a relator in
the group H and since a is, by definition, as small as possible, we may force (r0ρ2)a

to be one of the two uniquely defined relators which are missing in the above partial
presentation. Hence, (R0P2)a ∈ NT and, by the minimality of a, we may assume it
is one of a pair of generating elements in the rank two subgroup NT ≤ T . Geometric
reasoning implies there must be another (independent, and also uniquely determined)
translation generating NT which has the form (R0P2)b(R2P0)c where 0 ≤ b < a and
c > 0 is minimised.

The group NT = 〈(R0P2)a, (R0P2)b(R2P0)c〉 is normal in the group � if and
only if all conjugates of each of the generators of NT are themselves members of the
subgroup NT . It is clear that this is the case for the generator (R0P2)a . It remains to
consider conjugates of the element (R0P2)b(R2P0)c in�.We split this into twodistinct
cases. When b = 0, all conjugates of (R0P2)b(R2P0)c = (R2P0)c are also within NT ,
the lattice of equivalent points is rectangular, and NT = 〈(R0P2)a, (R2P0)c〉. This
yields HRect in the statement of the Proposition. However, in the casewhen b 
= 0, then
NT is normal if and only if we have both ((R0P2)b(R2P0)c)R0 = (R0P2)−b(R2P0)c ∈
NT or equivalently (R0P2)2b ∈ NT , and also (R2P0)2c ∈ NT . This implies a|2b but
0 < b < a so we must have 2b = a, meaning that the lattice of points, which is now
equivalently generated by NT = 〈(R0P2)b(R2P0)c, (R0P2)b(R2P0)−c〉, is rhombic.
This gives rise to the toroidal edge-biregular maps with presentations of the form
HRhomb.

By construction, each of the above presentations HRect and HRhomb is uniquely
determined from a given edge-biregular toroidal map which has an assigned alternate-
edge-colouring, and there can be no other toroidal proper edge-biregular maps.

These maps are fully regular if and only if the lattice is in fact a square lattice,
that is, in the case of HRect when a = c, and in the case of HRhomb when b = c.
Informally, this can be observed by looking at Fig. 12 and noting the need for all closed
straight-ahead walks to have the same length in a fully regular map. More formally,
the map is fully regular if and only if ψ : ri ↔ ρi for i ∈ {0, 2} is an automorphism,
and inspection of the presentations of the groups quickly yields the same necessary
and sufficient condition.

��
The reason for the use of the descriptors “rectangular” and “rhombic” is illustrated

with an example of each of the corresponding maps shown in the diagrams in Fig. 12.
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Fig. 12 Toroidal edge-biregular maps when a = 4, c = 3: The lattice is rectangular, as shown on the left,
when b = 0, and rhombic when b = 2

4.2.2 Edge-biregular maps on the Klein bottle

It is known that the Klein bottle supports no regular maps, so it follows that any
edge-biregular map on this surface cannot have any semi-edges.

Since the Klein bottle is also Euclidean, an edge-biregular map on this surface is
determined by forming the quotient of the infinite group � by a finite-index normal
subgroup which in this case we denote NK .

Proposition 4.4 Up to duality and twinness, edge-biregular maps on the Klein bottle
are in one-to-one correspondence with groups H with presentation:

H = 〈r0, r2, ρ0, ρ2 | r20 , r22 , ρ2
0 , ρ

2
2 , (r0r2)

2, (ρ0ρ2)
2, (r0ρ0)

2, (r2ρ2)
2, (r2ρ0)

ar0, (r0ρ2)
b〉

where a is a positive integer and b ∈ {1, 2}.
Outline of proof The fundamental region for a Klein bottle is determined by a glide
reflection and a translation in the direction perpendicular to the axis of reflection. See
Coxeter and Moser, pp 40-43 in [4], or for further details of all uniform maps on this
surface, see Wilson [16]. For an edge-biregular map, the grid must be mapped to itself
by the glide reflection, maintaining the same colouring of edges. Thus, the axis of
reflection must be orthogonal to the square grid and so, up to duality and twinness, we
may assume the glide reflection is (R2P0)a R0 and the translation is (R0P2)b where a
and b are positive integers and as small as possible.

Suppose NK = 〈(R2P0)a R0, (R0P2)b〉 has finite index and is normal in �. When
this is the case, the quotient of � by NK will define an edge-biregular map on the
Klein bottle. Conjugates of the translation (R0P2)b by elements of � are certainly in
NK , whereas ((R2P0)a R0)

P2 = (R2P0)a P2R0P2 ∈ NK if and only if (R0P2)2 ∈ NK ,
that is, if and only if b|2. By an analogue of the proof of Proposition 4.3, for a given
edge-biregular map on a Klein bottle, this yields the uniquely determined presentation
for H as given in the above Proposition, with the condition that b ∈ 1, 2. ��
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Fig. 13 Edge-biregular maps on the Klein bottle for a = 5 where b = 1 and b = 2

Examples of these edge-biregular maps which are supported by the Klein bottle are
shown in Fig. 13.

4.2.3 Edge-biregular maps on the sphere and the projective plane

We will consider edge-biregular maps on these surfaces according to the number of
orbits of semi-edges.

As we have seen earlier, any semistar of even valency can be embedded in the
sphere to form an edge-biregular map.

An edge-biregular map with exactly one semi-edge orbit must come from a fully
regular map by construction 3. It is well-known that the sphere supports fully regular
maps of type (3, 3), (3, 4), (4, 3), (3, 5), (5, 3), (2,m) and (m, 2) and so, by attaching a
semi-edge at each corner, there are edge-biregular maps on the sphere of types (6, 6),
(6, 8), (8, 6), (6, 10), (10, 6), (4, 2m) and (2m, 4). Similarly the projective plane
supports fully regular maps of type (3, 4), (4, 3), (3, 5), (5, 3), (2,m) and (m, 2) so
on this surface therewill be edge-biregularmaps of types (6, 8), (8, 6), (6, 10), (10, 6),
(4, 2m) and (2m, 4).

Finally, if an edge-biregular map contains no semi-edges, then (as now both the
valency and the face length must be even) Euler’s formula implies that on a sphere or
a projective plane proper edge-biregular maps can only be embedded even cycles and
their duals, of types (2, 2m) and (2m, 2), respectively.

5 Classification of proper edge-biregular maps when H is dihedral
and � < 0

Afull classificationof edge-biregularmaps for surfaces ofEuler characteristicχ = −p
where p is primewill appear in a forthcoming paper by Širáň and the author [11]. Here,
we will conclude with a “dihedral classification”. Henceforth, we will be focussing
on surfaces with negative Euler characteristic and so we may assume that k ≥ 4 and
l ≥ 4.

Dihedral groups canbegeneratedby two involutions, so it seemsnatural that someof
our groups H will themselves bedihedral. The followingworkinggives a classification,
up to twinness and duality, of edge-biregular maps on surfaces for which χ < 0 when
the group H = 〈r0, r2, ρ0, ρ2〉 ∼= D2m .

Since we know V4 ∼= 〈r0, r2〉 ≤ H (because there are no semi-edges), it is clear
that m is even. Therefore, H has a central involution, which we will call z. We also
know that V4 ∼= 〈ρ0, ρ2〉 ≤ H . Having dealt with special cases in the previous section,
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an assumption we can now make is that the generators of H , namely r0, r2, ρ0, and
ρ2, are distinct. For a dihedral group D2m to have at least four distinct involutions, we
must havem ≥ 4, which forces the group to be non-abelian. Also, note that every copy
of V4 as a proper subgroup in a dihedral group contains the unique central involution
z and, taking account of the generators being distinct, this means z ∈ {r0r2, ρ0ρ2}.

By our choice of colouring for the edge orbits, that is up to twinness, wemay assume
z = r0r2. We also have z ∈ {ρ0, ρ2, ρ0ρ2} which gives options which we address in
turn.

1. Suppose z = ρ0ρ2.

In this case, r0r2 = ρ0ρ2 and soρ0r0 = ρ2r2 which forces k = l. Also,ρ2 = ρ0r0r2
so H = 〈ρ0, r0, r2〉 = 〈ρ0, r0, r0r2〉. But we know that 〈ρ0, r0〉 = Dl and so this
leaves us with two possibilities:

Firstly, if z = r0r2 ∈ Dl , then H = Dl = 〈ρ0, r0〉 ∼= D2m and the type is (2m, 2m).
Notice, this map has just one face and one vertex and is supported by a surface with
Euler characteristic χ = 2 − m. By the fact the map has a single vertex, we also
have H = 〈r2, ρ2〉;

Second, if z = r0r2 /∈ Dl , then, since z is central, we get H ∼= Dl × 〈z〉 ∼= D2m .
By the uniqueness of the central involutory element, this can only happen if Dl

has trivial centre, that is if the order of ρ0r0 is odd, which happens when l
2 =

m
2 is odd. By considering the order of (ρ0r0)z, we see that H = 〈ρ0, r0〉〈z〉 =
〈ρ0, r0z〉 = 〈ρ0, r2〉. We also get, by remembering ρ2 = ρ0z, that H = 〈r0, ρ2〉.
These presentations yield a map of type (m,m) which thus has two faces and two
vertices, supported by a surface where χ = 4 − m.

2. Now, let z ∈ ρ0, ρ2. Up to duality assume that z = ρ0.

In this case, we have r0r2 = ρ0 so r0ρ0 = r2 which is an involution. Thus, l = 4.
Also, we get H = 〈ρ2, r2, r0r2〉. By similar reasoning to above, this gives us two
possibilities:

Firstly, if z ∈ Dk , we have H = Dk = 〈ρ2, r2〉 ∼= D2m , the map has a single
vertex with quadrangular faces, it is of type (2m, 4) and exists on a surface where
χ = 1

2 (2 − m);

Second, by the centrality of z = r0r2 /∈ Dk we have H = Dk×〈z〉 = 〈r2, ρ2〉×〈z〉.
Also, by our assumption, H ∼= D2m and so the order of r2ρ2 must be odd and
H = 〈zr2, ρ2〉 = 〈r0, ρ2〉. The map is of type (m, 4) where m

2 is odd, and thus, the
map has two vertices. This map occurs on a surface with χ = 1

2 (4 − m).

Note that these (non-orientable) maps are not regular since regularity would require
an automorphism of the group H which swaps ρ0, which is central in H , with r0
which is not central.
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These results can be tabulated as follows giving a classification, up to duality and
twinness, of edge-biregular maps on surfaces for which χ < 0 when the group H is
dihedral, H = 〈r0, r2, ρ0, ρ2〉 ∼= D2m where m is even and m ≥ 4. For completeness,
we note that dihedral edge-biregular maps on the sphere, projective plane, torus and
Klein bottle also exist, and they are included in our earlier analysis.

Type H ∼= D2m Relations Conditions χ < 0 V F Regular

(2m, 2m)
〈r0, ρ0〉
〈r2, ρ2〉 r0r2 = ρ0ρ2 = (r0ρ0)

m
2 = (r2ρ2)

m
2 None 2 − m 1 1 Yes

(m,m)
〈r2, ρ0〉
〈r0, ρ2〉 r0r2 = ρ0ρ2 = (r2ρ0)

m
2 = (r0ρ2)

m
2 m

2 is odd 4 − m 2 2 Yes

(2m, 4) 〈r2, ρ2〉 r0r2 = ρ0 = (r2ρ2)
m
2 None 1

2 (2 − m) 1 m
2 No

(m, 4) 〈r0, ρ2〉 r0r2 = ρ0 = (r0ρ2)
m
2 m

2 is odd 1
2 (4 − m) 2 m

2 No

Remark 5.1 It is worth noting that this classification, along with the earlier work,
ensures that there is no closed surface which does not support edge-biregular maps.
Specifically, all non-orientable surfaces with negative Euler characteristics support an
edge-biregular map of type (4(1 − χ), 4), as well as its dual map of type (4, 4(1 −
χ)), and their twins, while the orientable surface with negative Euler characteristic χ

supports an edge-biregular map of type (2(2 − χ), 2(2 − χ)).

6 Concluding remarks

This paper presents the background of edge-biregularmaps and addresses the existence
of these maps on surfaces with boundary components and surfaces with non-negative
Euler characteristic as well as, for other closed surfaces, a classification for edge-
biregular maps with dihedral colour-preserving automorphism groups.

Edge-biregularmaps on surfaces of negative primeEuler characteristic are classified
in an upcoming paper by Širáň and the author [11]. Further research into edge-biregular
maps is planned, and the author also hopes to investigate the lesser-studied types of
maps which arise from other index two subgroups of the full triangle groups.
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