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Received: 13 December 2020 / Accepted: 6 October 2021 / Published online: 23 October 2021
© The Author(s) 2021

Abstract
Let g1H1, . . . , gnHn be cosets of subgroups H1, . . . , Hn of a finite group G such that
g1H1 ∪ . . . ∪ gnHn �= G. We prove that |g1H1 ∪ . . . ∪ gnHn| ≤ γn|G| where γn < 1
is a constant depending only on n. In special cases, we show that γn = (2n − 1)/2n is
the best possible constant with this property and we conjecture that this is generally
true.
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Mathematics Subject Classification 20D30 · 20D60 · 05E16

1 Introduction

It is well known that a finite group G cannot be the union of two proper subgroups. In
fact, an easy counting argument shows that such a union covers at most three quarters
of the elements of G. It is equally well known that G is never a union of conjugates
of a proper subgroup H . Cameron–Cohen [4] have shown more precisely that there
are at least |H | elements outside such a union. On the other hand, it may happen that
G is covered by n ≥ 3 arbitrary proper subgroups H1, . . . , Hn ≤ G. While many
authors classified such groups for a given n (the interested reader is referred to the
survey [2]), we are interested in the situation where H1 ∪ . . . ∪ Hn �= G. We show
that a portion of elements, depending only on n, lies outside this union. In fact, this
holds more generally for union of cosets of subgroups. To the authors’ knowledge,
this has apparently not been observed in the literature. In the first part of the paper,
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we prove more precisely that |G|/(2n!) elements lie outside such a coset union. In
the second part, we investigate our conjecture that even |G|/2n elements lie outside
the union. For elementary abelian groups, we obtain in Theorem 6 the best possible
boundof that kind by using a linear algebra approach due toAlon–Füredi [1]. For cyclic
groups, our results are closely related to a number theoretical problem by Erdős [5]
(the details are outlined at the end of the paper). We like to mention that there are other
open conjectures on union of cosets such as the long-standing Herzog–Schönheim
Conjecture [6,8].

2 Main result

Theorem 1 For every positive integer n, there exists a constant γn < 1 with the
following property: For every finite group G and every n subgroups H1, . . . , Hn ≤ G
and g1, . . . , gn ∈ G either g1H1 ∪ . . . ∪ gnHn = G or |g1H1 ∪ . . . ∪ gnHn| ≤ γn|G|.
Proof We argue by induction on n. For n = 1, the claim holds with γ1 = 1

2 by
Lagrange’s Theorem. Now let n ≥ 2, H1, . . . , Hn ≤ G and g1, . . . , gn ∈ G such that
g1H1 ∪ . . . ∪ gnHn �= G. Let si := |G : Hi | for i = 1, . . . , n. We may assume that
s1 ≤ . . . ≤ sn . Let αn be the smallest positive integer such that γn−1 + 1

αn
< 1. If

sn ≥ αn , then induction yields

|g1H1 ∪ . . . ∪ gnHn| ≤ |g1H1 ∪ . . . ∪ gn−1Hn−1| + |gnHn|
≤

(
γn−1 + 1

sn

)
|G| ≤

(
γn−1 + 1

αn

)
|G|.

Now let sn ≤ αn and H := H1∩. . .∩Hn . Using Poincaré’s formula |G : Hi∩Hj | ≤
|G : Hi ||G : Hj | repeatedly,we get |G : H | ≤ s1 . . . sn ≤ αn

n . Since g1H1∪. . .∪gnHn

is a union of H -cosets, it follows that

|g1H1 ∪ . . . ∪ gnHn| ≤ |G| − |H | ≤
(
1 − 1

αn
n

)
|G|.

Hence, the claim holds with

γn := max
{
γn−1 + 1

αn
, 1 − 1

αn
n

}
< 1.

�	
The proof of Theorem 1 yields only a very crude bound on γn . With some more

effort, we can prove an effective bound as follows.

Proposition 2 Theorem 1 holds with γn = 2n!−1
2n! .

Proof We reuse the notation from the proof of Theorem 1. We already know that the
claim holds for n = 1. Thus, let n ≥ 2. If n + 1 ≤ s1 ≤ . . . ≤ sn , then

|g1H1 ∪ . . . ∪ gnHn| ≤ |H1| + · · · + |Hn| ≤ n

n + 1
|G| ≤ 2n! − 1

2n! |G|
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as desired.
Now let s1 ≤ n. SinceG is the union of all cosets of H1, there exists a coset gH1 such

that gH1 � g1H1∪. . .∪gnHn . Since |g1H1∪. . .∪gnHn| = |g−1(g1H1∪. . .∪gnHn)|,
we may replace gi by g′

i := g−1gi for i = 1, . . . , n. Then, H1 � g′
1H1 ∪ . . . ∪ g′

nHn

and H1 ∩ g′
1H1 = ∅. It follows that

g′
1H1 ∪ . . . ∪ g′

nHn ⊆ (G \ H1) ∪̇
n⋃

i=2

(g′
i Hi ∩ H1).

If g′
i Hi ∩ H1 �= ∅, then g′

i Hi ∩ H1 = hi (Hi ∩ H1) for some hi ∈ H1. By induction
on n, we conclude that

∣∣∣(G \ H1) ∪̇
n⋃

i=2

(g′
i Hi ∩ H1)

∣∣∣ ≤ s1 − 1

s1
|G| + γn−1|H1| ≤ s1 + γn−1 − 1

s1
|G|.

Since γn−1 − 1 < 0, it follows that

s1 + γn−1 − 1

s1
≤ n + γn−1 − 1

n
= 2n! + 2(n − 1)! − 1 − 2(n − 1)!

2n! = γn

as desired. �	
In most cases, cosets can cover more elements than subgroups. For instance, if G is

a p-group, then two distinct cosets of a maximal subgroup cover 2
p |G| elements while

two distinct maximal subgroups only cover 2p−1
p2

|G| elements (see also Theorem 6).
In order to compute a lower bound on γn , let us consider an elementary abelian

2-group G = 〈x1, . . . , xn〉 rank n. Let Hi := 〈x j : j �= i〉. Then, H1 ∪ . . . ∪ Hn =
G \ {x1 . . . xn}, and therefore, γn ≥ (2n − 1)/2n for all n ≥ 1. If we restrict ourselves
to union of subgroups, we can show that this bound is indeed optimal for small n.

Proposition 3 For every finite group G and every set of subgroups H1, . . . , Hn ≤ G
with n ≤ 5 either H1 ∪ . . . ∪ Hn = G or |H1 ∪ . . . ∪ Hn| ≤ 2n−1

2n |G|. Equality can
only hold if |G : H1 ∩ . . . ∩ Hn| = 2n.

Proof We may assume that n ≥ 2, H1 ∪ . . . ∪ Hn �= G and Hi �
⋃

j �=i H j for
i = 1, . . . , n. Let N := {1, . . . , n} and HI := ⋂

i∈I Hi for I ⊆ N . Suppose first
that L := HN\{i} � Hi for some i , say i = 1. Let U := G \ ⋃n

i=2 Hi . By induction
on n, we have |U | ≥ |G|/2n−1. Moreover, U is a union of L-cosets. If g ∈ G and
x ∈ gL ∩ H1, then

|gL ∩ H1| = |x(L ∩ H1)| = |L ∩ H1| = |HN |.

Hence, |U ∩ H1| ≤ ∑
gL⊆U |HN | = |U |

|L| |HN |. It follows that
∣∣∣G \

n⋃
i=1

Hi

∣∣∣ = |U \ H1| = |U | − |U ∩ H1| ≥ |U |
(
1 − 1

|L : HN |
)

≥ |G|
2n
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as desired. Equality can only hold if |U | = |G|/2n−1 and |L : HN | = 2. In this case,
induction yields |G : L| = 2n−1 and |G : HN | = 2n .

Hence, in the following we will assume that HN\{i} ⊆ Hi for i = 1, . . . , n. In
particular, n ≥ 3. Since H1 ∪ . . . ∪ Hn is a union of HN -cosets, we may also assume
that |G : HN | > 2n as in the proof of Theorem 1.We need to show the strict inequality
|H1 ∪ . . . ∪ Hn| < 2n−1

2n |G|. Using

|H1 ∪ . . . ∪ Hn| ≤ |H1 ∪ . . . ∪ Hn−1| + |Hn| − |H1 ∩ Hn| ≤
(
γn−1 + 1

sn
− 1

s2n

)
|G|

and induction, the indices si := |G : Hi | can be bounded. In particular, there are only
finitely many choices. By using

|G : HI |
∣∣ |G : HI∪J | ≤ |HI∩J : HI ||G : HJ | = |G : HI ||G : HJ |

|G : HI∩J |

for I , J ⊆ N , we can enumerate all possible indices |G : HI | for I ⊆ N by computer.
The claim can then be checked with the exclusion-inclusion principle. Note that for
n = 3 this becomes

|H1 ∪ H2 ∪ H3| =
( 1

s1
+ 1

s2
+ 1

s3
− 2

|G : HN |
)
|G|

where 9 ≤ |G : HN | = |G : H1 ∩ H2| ≤ s1s2 and s1 ≤ s2 ≤ s3. It is easy to see that
this implies |H1 ∪ H2 ∪ H3| ≤ 7

9 |G| with equality if and only if s1 = s2 = s3 = 3.
For n = 4, we obtain similarly

|H1 ∪ . . . ∪ H4| ≤
( 1

s1
+ · · · + 1

s4
− 1

s1s2
− 1

s1s3
− . . . − 1

s3s4
+ 3

|G : HN |
)
|G|

where |G : HN | ≥ 17 (in fact, |G : HN | ≥ 18 since |G : HN | cannot be a prime).
By induction, we get s4 ≤ 15. The maximum for the estimate above is assumed for
s1 = s2 = 2, s3 = s4 = 15 (checked by computer). This maximum is again strictly
less than 15

16 |G|.
Finally, let n = 5. Here we first estimate the union of four out of five subgroups.

This leaves us with a short list of exceptional cases. In all those cases, there exist
subgroups A, B,C, D ∈ {H1, . . . , H5} with the following indices

|G : A ∩ B| = 4, |G : C ∩ D| = |G : C ||G : D|,
|G : A ∩ B ∩ C | = 2|G : C |, |G : A ∩ B ∩ D| = 2|G : D|.

From |G : A ∩ B| = 4, we obtain |G : A| = |G : B| = 2 and A ∩ B � G (the proof
of Proposition 2 now already yields γ5 = 31/32, but we need a strict inequality here).
In particular, (A∩ B)C ≤ G with |(A∩ B)C : A∩ B| = |C : A∩ B ∩C | = 2. Thus,
A, B, (A ∩ B)C are the maximal subgroups of G containing A ∩ B, and therefore,
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G = A∪B∪(A∩B)C . From |G : A∩B∩D| = 2|G : D| = |G : D∩A| = |G : D∩B|
we obtain D ∩ A = D ∩ B. It follows that

D = (D ∩ A) ∪ (D ∩ B) ∪ (D ∩ (A ∩ B)C) = (D ∩ A) ∪ (D ∩ (A ∩ B)C).

Since D is not the union of two proper subgroups, we conclude that D ⊆ (A ∩ B)C .
But also C ⊆ (A ∩ B)C . Now G = CD ⊆ (A ∩ B)C , because |G : C ∩ D| = |G :
C ||G : D|. Contradiction. �	

We remark that the following alternative procedure applies more generally to union
of cosets. Note that G acts on

⋃n
i=1 G/Hi by left multiplication. The kernel N of this

action is contained in H1∩ . . .∩Hn . Since g1H1∪ . . .∪gnHn is the union of the cosets
in g1(H1/N ) ∪ . . . ∪ gn(Hn/N ), we may replace G by G/N . Then G is isomorphic
to a subgroup of a direct product of symmetric groups

∏n
i=1 S|G:Hi |. In principle, we

can enumerate those subgroups by computer, but doing so becomes impractical when
n is large.

3 Nilpotent groups

In order to extend Proposition 3 to other cases, we provide a reduction theorem for
nilpotent groups. Let δn(G)be the largest constant such that |G\(g1H1∪. . .∪gnHn)| ≥
δn(G)|G| whenever g1H1 ∪ . . . ∪ gnHn �= G. We wish to show that δn(G) ≥ 1/2n .

Lemma 4 Let n ≥ 1. Suppose that for every p-group P and every m ≤ n we have
δm(P) ≥ 1/2m. Then, δn(G) ≥ 1/2n for every nilpotent group G.

Proof Let G be a nilpotent group. Let p1, . . . , pk be the distinct prime divisors of
|G|. Let Pi := Opi (G) be the Sylow pi -subgroup and Qi := Op′

i
(G) its normal

complement. Note thatG = P1×· · ·×Pk . Let g1H1, . . . , gnHn be cosets of subgroups
ofG such that g1H1∪ . . .∪gnHn �= G. Suppose that |G : H1| is divisible by pi and p j

with i �= j . Let K := H1NPi (H1) and L := H1NPj (H1). Then, g1H1 = g1(K ∩L) =
g1K ∩g1L and g1K ∪g2H2∪. . .∪gnHn �= G or g1L∪g2H2∪. . .∪gnHn �= G. Thus,
we may replace H1 by K or L , respectively. Since every subgroup of G is subnormal,
we may continue in this way until |G : H1| is a prime power. We repeat this process
with Hi for i = 2, . . . , k. Then, every Hi contains a unique Q j .

Let Hi := {Hj : Qi ⊆ Hj } for i = 1, . . . , k. Then, {H1, . . . , Hn} is the disjoint
union of H1, . . . ,Hk . In particular, n = |H1| + · · · + |Hk |. Moreover, an element
(x1, . . . , xk) ∈ P1 × · · · × Pk does not lie in g1H1 ∪ g2H2 ∪ . . . ∪ gnHn if and only
if xi Qi does not lie in

⋃
Hj∈Hi

g j (Hj/Qi ) for i = 1, . . . , k. If we regard Hj/Qi as
subgroups of Pi ∼= G/Qi , it follows that

|G \ (g1H1 ∪ . . . ∪ gnHn)| ≥
k∏

i=1

δ|Hi |(Pi )|Pi | ≥
k∏

i=1

|Pi |
2|Hi | = 1

2n
|G|.

�	
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Unfortunately, we are unable to prove δn(P) ≥ 1/2n for p-groups in general. Nev-
ertheless, we provide an optimal bound for elementary abelian p-groups bymaking use
of combinatorial theorems of Alon–Füredi [1] (see also Theorem [9]). The following
variant of the Schwartz–Zippel Lemma is an explicit version of [1, Theorem 5].

Lemma 5 Let p be a prime, and let α ∈ Fp[X1, . . . , Xk] be a polynomial of total
degree d = a + b(p − 1) where 0 ≤ a ≤ p − 2. If α does not vanish identically on
Fk
p, then α is non-zero on at least pk−b−1(p − a) points of Fk

p. This bound is best
possible for d ≤ k(p − 1).

Proof We argue by induction on k. Without loss of generality, we may assume that
k > b. If k = 1, then α has at most d = a roots in Fp, so it is nonzero on at least p−a
points. Now let k ≥ 2. By Fermat’s little theorem, x p = x for all x ∈ Fp. Hence, we
can reduce all powers of X1 such that the degree of α in X1 is at most p − 1. This
might decrease d, so the bound will be even stronger. For x ∈ Fp, let

γx := α(x, X2, . . . , Xk) ∈ Fp[X2, . . . , Xk].

Let C ⊆ Fp be the set of x ∈ Fp such that γx does not vanish identically on Fk−1
p . By

hypothesis, C �= ∅. Let p′ := p − |C |. Let

α = α1X
p−1
1 + α2X

p−2
1 + · · · + αp

with αi ∈ Fp[X2, . . . , Xk] and deg(αi ) ≤ d − p + i for i = 1, . . . , p. We arrange
the elements of Fk−1

p in some fixed order, say Fk−1
p = {v1, v2, . . . , vpk−1}, and define

αi := (αi (v1), αi (v2), . . . , αi (vpk−1))t ∈ Fpk−1×1
p . For x ∈ Fp \C , we obtain a linear

equation x p−1α1 + x p−2α2 +· · ·+αp = 0. The Vandermonde matrix A := (xi : i =
0, . . . , p′ − 1, x ∈ Fp \ C) is invertible and

(αp, αp−1, . . . , α|C|+1)A = −(x p−1α1 + · · · + x p′
α|C| : x ∈ Fp \ C).

Therefore, we can express the vectors α|C|+1, . . . , αp as linear combinations of
{x p−1α1 + · · · + x p′

α|C| : x ∈ Fp \ C}. Hence, we may replace each αi with
|C | < i ≤ p by a linear combination of α1, . . . , α|C| without changing the val-
ues on Fk−1

p . Eventually, deg(αi ) ≤ d − p′ for all i and deg(γx ) ≤ d − p′ for
x ∈ C . By induction, γx is non-zero on at least pk−b′−2(p− a′) points of Fk−1

p where
d − p′ = a′ + b′(p− 1) with 0 ≤ a′ ≤ p− 2. Consequently, α is nonzero on at least

|C |pk−b′−2(p − a′) = pk−b′−2(p − a′)(p − p′)

points of Fk
p.

Suppose first that p′ ≤ a. Then, a′ = a − p′ and b′ = b. It follows that

pk−b−2(p − a + p′)(p − p′) ≥ pk−b−2(p − a + p′)(p − a) ≥ pk−b−1(p − a)
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and we are done. Now let a < p′ ≤ p− 1. Then, a′ = a− p′ + p− 1 and b′ = b− 1.
Since (p′ − a)(p − p′) ≥ p′ − a, we obtain (p′ − a + 1)(p − p′) ≥ p − a. This
yields pk−b′−2(p − a′)(p − p′) ≥ pk−b−1(p − a) as desired.

To see that the bound is best possible, just consider

α =
b∏

i=1

(X p−1
i − 1)

a∏
j=1

(Xb+1 − j)

where j is interpreted as 1 + · · · + 1 ∈ Fp ( j summands). �	

Theorem 6 Let G be an elementary abelian p-group, H1, . . . , Hn ≤ G and
g1, . . . , gn ∈ G such that g1H1 ∪ . . . ∪ gnHn �= G. Let n = a + b(p − 1) where
0 ≤ a ≤ p − 2. Then,

|g1H1 ∪ . . . ∪ gnHn| ≤ pb+1 − p + a

pb+1 |G| ≤ 2n − 1

2n
|G|

and the first inequality is best possible.

Proof We regard G as the Fp-vector space Fk
p. Each coset gi Hi is the set of solutions

of a linear system Ai x = bi . By hypothesis, there exists x ∈ G \ (g1H1 ∪ . . .∪ gnHn).
For each i , we choose a row ai of Ai such that ai x �= βi where βi ∈ Fp is the
corresponding entry of bi . Then, the polynomial

α(X1, . . . , Xk) :=
n∏

i=1

(ai (X1, . . . , Xk)
t − βi ) ∈ Fp[X1, . . . , Xk]

of degreen does not vanish on x . ByLemma5,α is nonzero on at least pk−b−1(p−a) =
p−a
pb+1 |G| points of G. All these points lie outside of g1H1 ∪ . . . ∪ gnHn . This implies
the first inequality. For the second, we may assume that a = p − 2 and b + 1 =
n−a
p−1 + 1 = n+1

p−1 . It suffices to show that 2n+1 ≥ pb+1, i. e. (n + 1) logp(2) ≥ n+1
p−1 .

This is true since 2p−1 ≥ p.
In order to show that the first inequality is optimal, we choose H1 = . . . = Hp−1

as a maximal subgroup of G and g1, . . . , gp−1 ∈ G such that G \ H1 = g1H1 ∪ . . . ∪
gp−1H1. Similarly, choose Hp = . . . = H2p−1 as a maximal subgroup of H1 and
gp, . . . , g2p−1 ∈ H1 such that H1 \ Hp = gpHp ∪ . . . ∪ g2p−1Hp and so on. This
will certainly yield the exact bound. �	

Weremark that Theorem6extends to arbitrary finite p-groups as long as n ≤ 2p−2.
To see this, consider g1H1 ∪ . . . ∪ gnHn �= G where G is a finite p-group. If all
H1, . . . , Hn are maximal subgroups of G, then, by the remark at the end of Sect. 2,
we can go over to the elementary abelian group G/�(G) where �(G) is the Frattini
subgroup of G. In this case, the claim follows from Theorem 6. Otherwise, we may
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assume that Hn is not maximal. Then, the claim follows by induction on n, because

|g1H1 ∪ . . . ∪ gnHn| ≤ |g1H1 ∪ . . . ∪ gn−1Hn−1| + |Hn|
≤ |g1H1 ∪ . . . ∪ gn−1Hn−1| + 1

p2
|G|.

On a different note, we mention that the subgroup lattice of some (but not all) p-
groups can be embedded into the subgroup lattice of an elementary abelian p-group
(see [3]). For instance, Theorem 6 carries over to cyclic p-groups (here, two cosets are
either disjoint or one lies in the other). By virtue of Lemma 4, the bound δn(G) ≥ 1/2n

now holds for all cyclic groups. The reviewer pointed out that this is connected to the
following arithmetical theoremof Erdős [5]: Suppose that a1+m1Z, . . . , an+mnZ are
pairwise disjoint residue classes such that 0 < m1 < . . . < mn .Wemay consider these
residue classes as cosets insideZ/MZwhereM := lcm(m1, . . . ,mn). Then, the union
of these (disjoint) cosets is M

m1
+· · ·+ M

mn
. Erdős showed that M

m1
+· · ·+ M

mn
≤ 2n−1

2n M
which is precisely our bound.

On the basis of these examples, the following general conjecture seems reasonable.

Conjecture 7 The best possible bound in Theorem 1 is γn = (2n − 1)/2n for all n.
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