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Abstract
The directed power graph �G(G) of a groupG is the simple digraph with vertex setG in
which x → y if y is a power of x , and the power graph is the underlying simple graph
G(G). In this paper, three versions of the definition of the power graph are discussed,
and it is proved that the power graph by any of the three versions of the definition
determines the other two up to isomorphism. It is also proved that ifG is a torsion-free
group of nilpotency class 2 and if H is a group such that G(H) ∼= G(G), then G and
H have isomorphic directed power graphs, which was an open problem proposed by
Cameron, Guerra and Jurina [9].
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1 Introduction

The directed power graph of a group is the simple digraph whose vertex set is the
universe of the group and in which x → y if y ∈ 〈x〉; the power graph of a group
is the underlying simple graph. The directed power graph of a group was introduced
by Kelarev and Quinn [17]. As explained in [2], the definition given in [17] also
covers undirected graphs, and it applies to semigroups, too. The power graphs of
semigroups were first studied in [18–20] and were also considered by Chakrabarty,
Ghosh and Sen [11]. The power graph has been studied by many authors, including
[1,3–5,7–10,12,13,23–27]. The reader is referred to the survey [2] formore details. The
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investigation of graphs associated with various algebraic constructions is important
because graphs of this type have many useful applications (see [16,21]) and are related
to automata theory (see [14,15]).

Besides the above-mentioneddefinitionof the power graph,manyauthors, including
[17], often define the power graph as the graph in which two vertices are adjacent if
there exists a positive integer n such that y = xn or x = yn ; we call this graph
the N -power graph of the group. Besides this definition, authors of [9] brought the
definition of the power graph by which two vertices are adjacent if there is a nonzero
integer n such that y = xn or x = yn , and the graph defined in this manner we call
the Z±-power graph. All three of these definitions of the power graph produce the
same graph. It is also easily seen that, in the case of torsion-free groups, the power
graph and the Z±-power graph determine each other. In Sect. 3, it is proved that the
power graph, the N -power graph and the Z±-power graph of any group determine
each other.

In Sect. 4, the power graph of a torsion-free group is investigated. Cameron, Guerra
and Jurina [9] showed that, if in a torsion-free group G every element is contained
in a unique maximal cyclic subgroup, and if G(G) ∼= G(H), then G and H have
isomorphic directed power graphs. They also showed that, ifG and H are both torsion-
free groups of nilpotency class 2, and if G and H have isomorphic power graphs, then
they have isomorphic directed power graphs too. The authors of [9] asked whether this
implication also holds when at least one of the groups is torsion-free and of nilpotency
class 2, and Sect. 4 answers this question affirmatively. Besides, in [9] it was proved
that there is no group non-isomorphic to Z whose power graph is isomorphic to G(Z).
In Sect. 4, it is proved that, if a group G has the power graph isomorphic to G(Q),
then G is isomorphic to the group of rationals.

2 Basic notions and notations

Graph Γ is a structure
(
V (Γ ), E(Γ )

)
, or simply (V , E), where V is a set, and

E ⊆ V [2]; here, V [2] denotes the set of all two-element subsets of V . The set V is
called the set of vertices, and E is called the set of edges of Γ . We say that vertices x
and y are adjacent inΓ if {x, y} ∈ E , in which casewewrite x ∼Γ y, or simply x ∼ y.
Graph Δ = (V1, E1) is said to be a subgraph of graph Γ = (V2, E2) if V1 ⊆ V2 and
E1 ⊆ E2. Δ is an induced subgraph of Γ if V1 ⊆ V2 and E1 = E2 ∩ V 2

1 . In this
case, we also say that graph Δ is induced by V1 in Γ , and we write Δ = Γ [V1]. The
strong product of graphs Γ and Δ is the graph Γ � Δ such that

(x1, y1) ∼ �Γ �Δ (x2, y2) if (x1 = x2 ∧ y1 ∼Δ y2)

∨ (x1 ∼Γ x2 ∧ y1 = y2)

∨ (x1 ∼Γ x2 ∧ y1 ∼Δ y2).

Directed graph (or digraph) �Γ is a structure
(
V ( �Γ ), E( �Γ )

)
, or simply (V , E),

where V is a set, and E is an irreflexive relation on V . Here V and E are the set of
vertices and the set of directed edges, respectively. A directed edge of a digraph is also
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called an arc. For vertices x and y of Γ such that (x, y) ∈ E , we say that there is a
directed edge from x to y, and we denote this fact by x → �Γ y, or simply by x → y. In
this case, we also say that y is a direct successor of x , and that x is a direct predecessor
of y.

For x, y ∈ G, where G is a group, we shall write x ≈G y, or simply x ≈ y,
if 〈x〉 = 〈y〉. Also, o(x) denotes the order of an element x of a group. A loop is a
groupoid which has the identity element, and in which equations ax = b and xa = b
have unique solutions for every a and b. We say that a loop is power-associative if
each of its subloops generated by a single element is a group. A groupoid is said to
be power-associative if each of its subgroupoids generated by a single element is a
semigroup; notice that a loop being power-associative is a stronger property than it
being power-associative as a groupoid. Moufang loops, Bol loops and Bruck loops
are some examples of power-associative loops. For more information about power-
associative loops, the reader is referred to [6].

Definition 1 The directed power graph of a group G is the digraph �G(G) whose
vertex set is G, and in which there is a directed edge from x to y, x = y, if there exists
n ∈ Z such that y = xn . If there is a directed edge from x to y in �G(G), we write
x →G y or simply x → y.

The power graph of a groupG is the graph G(G)whose vertex set isG, and whose
vertices x and y, x = y, are adjacent if there exists n ∈ Z such that y = xn or x = yn .

If x and y are adjacent in G(G), we write x
p∼G y or simply x

p∼ y.

It is easily seen that the directed power graph of a group determines the power graph.
Cameron [7] proved that the power graph of a finite group determines its directed power
graph too. Cameron, Guerra and Jurina [9] proved the same result for some classes of
torsion-free groups as well.

For a graph Γ and its vertex x , NΓ (x) denotes the closed neighborhood of x in
the graph Γ . We write x ≡Γ y if NΓ (x) = NΓ (y), where x and y are vertices of Γ .
If Γ is the power graph of a group G, then we write x ≡G y instead of x ≡G(G) y.
Notice that, for any element x of a group G, we have x ≡G x−1. Moreover, whenever
〈x〉 = 〈y〉, for elements x and y of G, x ≡G y holds.

For a group G, the set

Cen
(G(G)

) = {x ∈ G | x ∼Γ y for all y ∈ G \ {x}}

we call the center of the power graph G(G). Notice that in the power graph of a
group the identity element is adjacent to all other vertices of the graph. Therefore,
the eccentricity of each of these graphs is 1. Because of that, in the case of the power
graph, it is justifiable to call the set of vertices, that are adjacent to all vertices of the
graph other than itself, its center.

Let us also note that the definitions of the directed power graph and the power graph
can be applied not only on groups but on power-associative loops, too, in the same
manner. In this case, the center of the power graph is defined in the same way.
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3 On different definitions of the power graph

In this section, the relation between three different notions of power graphs is investi-
gated. Namely, by Definition 1, which is consistent with the definitions from [1] and
[9], for elements x and y of a group G, there exists a directed edge from x to y in
�G(G) if there exists n ∈ Z such that y = xn . Also, by the same definition, x and y are
adjacent in G(G) if there exists n ∈ Z such that y = xn or x = yn . Let us introduce
the definition of the power graph that was introduced in [17]. To avoid any confusion,
we bring the terms of the N -power graph and the directed N -power graph.

Definition 2 The directed N -power graph of a group G is the digraph �G+(G)whose
vertex set is G, and in which there is a directed edge from x to y, x = y, if there exists
n ∈ N such that y = xn . If there is a directed edge from x to y in �G+(G), we write

x
+→G y or simply x

+→ y.
The N -power graph of a group G is the graph G+(G) whose vertex set is G, and

whose vertices x and y, x = y, are adjacent if there exists n ∈ N such that y = xn or

x = yn . If x and y are adjacent in G+(G), we write x
p+∼G y or simply x

p+∼ y.

An advantage of the above definition is that it can be applied to any power-
associative groupoid where inverse elements, or even the identity element, might not
exist. Furthermore, for torsion groups, the N -power graph is the same as the power
graph.

Further, in [9] the authors used another version of the definition in which they
insisted on the exponent from the expression y = xn to be a nonzero integer. In this
paper, the graph defined in this manner is called the Z±-power graph.

Definition 3 Thedirected Z±-power graph of a groupG is the digraph �G±(G)whose
vertex set is G, and in which there is a directed edge from x to y, x = y, if there exists
n ∈ Z \ {0} such that y = xn . If there is a directed edge from x to y in �G±(G), we

write x
±→G y or simply x

±→ y.
The Z±-power graph of a group G is the graph G±(G) whose vertex set is G, and

in which x and y, x = y, are adjacent if there exists n ∈ Z \ {0} such that y = xn or

x = yn . If x and y are adjacent in G±(G), we write x
p±∼G y or simply x

p±∼ y.

The above version of the definition of the power graphs helped authors of [9] to
make their arguments simpler while studying the power graphs of torsion-free groups.
(Note that, for torsion-free groups, the power graph and the Z±-power graph determine
each other.) Besides, it is easily noticed that the directed power graph and the directed
Z±-power graph of a group determine each other. In this section, it is proved that the
power graph, the N -power graph and the Z±-power graph of any power-associative
loop determine each other.

Lemma 1 Let G be a power-associative loop such that |Cen (G(G)
)| > 1. Then the

following conditions hold:

1. G is the infinite cyclic group, or all elements of the loop G have finite orders.
2. G ∼= (Z,+) if and only if G is a union of countablymany≡G-classes of cardinality

2 and one ≡G-class of cardinality 3.
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Proof Let G be a power-associative loop, and let |Cen (G(G)
)| > 1. Notice that in

the power graph no non-identity element of finite order is adjacent to an element of
infinite order. Therefore, either all non-identity elements of G have finite order, or all
elements of G are of infinite order. Suppose that G does not contain any non-identity
element of finite order. Since |Cen (G(G)

)| > 1, then there exists x ∈ G \ {eG} which
is adjacent in G(G) with all elements of G \ {x}. Let us show that then G = 〈x〉. If
G = 〈x〉, then there exist y ∈ G \ 〈x〉 and n ∈ Z \ {−1, 0, 1} such that x = yn . Then,

for m ∈ N relatively prime to n, we have x p∼ ym , which is a contradiction. Therefore,
G contains only elements of finite order or G ∼= (Z,+), and thus, we have obtained
conclusion 1. of the lemma.

If G ∼= (Z,+) is generated by x , then {x, x−1, eG} is an ≡G -class of cardinality 3.
Let y ∈ G\{x, x−1, eG}. Obviously, y ≡G y−1. Suppose that there exists z /∈ {y, y−1}
such that z ≡G y. Then, there exists n ∈ Z \ {−1, 0, 1} such that z = yn or y = zn .

Then, for m relatively prime to n, it follows z  p∼ ym
p∼ y or y  p∼ zm

p∼ z, which is
a contradiction. Therefore, any non-identity element of G, which is not a generator
of G, is contained in an ≡G -class of cardinality 2. This proves one implication of
conclusion 2. of the lemma. In order to prove the other implication as well, suppose
that G � (Z,+), which, by conclusion 1., implies that G contains only elements of
finite order. If G had an element x of order n > 6, then 〈x〉 would have at least 4
generators, and these generators of 〈x〉 would have the same closed neighborhoods
in G(G). Therefore, G contains only elements of order at most 6. Further, because
G(Z) has infinitely many ≡Z-classes of cardinality 2, G(G) also has infinitely many
≡G -classes of cardinality 2. Thus, G contains infinitely many elements of order 3 or
infinitely many elements of order 6. If G has an element of order 6, then {eG} is an
≡G -class, and the same follows if G has at least two distinct subgroups of order 3.
Therefore, G(G) contains an ≡G -class of cardinality 1, which is a contradiction. This
way we obtain conclusion 2., and thus, the lemma has been proved. ��
Theorem 1 Let G and H be power-associative loops. Then G(G) ∼= G(H) if and only
if G±(G) ∼= G±(H).

Proof LetG be power-associative loop, and letΓ = G(G),Γ ± = G±(G), �Δ = G(H),
and Δ± = G±(H). By definitions of the Z±-power graph and the power graph, we
have

Γ ± ⊆ Γ and

E(Γ ) \ E(Γ ±) = {{e, x} | x ∈ G and o(x) = ∞}
,

and similar conditions hold for Δ and Δ±.
If |Cen(Γ )| > 1, then, by Lemma 1, if G ∼= (Z,+), it follows that H ∼= (Z,+),

which trivially implies the stated equivalence. Similarly, if G � (Z,+), then G and
H do not have any element of infinite order. Then Γ = Γ ± and Δ = Δ±, so the
equivalence holds in this case, too.

Suppose now that |Cen(Γ )| = 1. Let Γ ∼= Δ, and let ϕ : G → H be an isomor-
phism from Γ to Δ. Let us show that ϕ is an isomorphism from Γ ± to Δ±, too. Let
x, y ∈ G, and let x

p±∼ y. Obviously, then ϕ(x)
p∼ ϕ(y). Suppose that ϕ(x)  p±∼ ϕ(y).
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Then, without loss of generality, the order of ϕ(x) is infinite and ϕ(y) = eH . Then
ϕ(x) is contained in a connected component ofΔ\{eH }whose vertex set is a union of
countably many ≡Δ-classes of cardinality two, and which contains an infinite clique.
Obviously, similar condition holds for x , too. Suppose that the order of x is finite.
Then connected component Φ of Γ \ {eG} containing x has no element of order
greater than 6, because, if it did contain such an element z, then [z]≡G would be
an ≡G -class of cardinality at least ϕ

(
o(z)

)
> 2. It follows that Φ does not contain

any infinite clique. Therefore, the order of x is infinite. Obviously, y = eG because

ϕ(y) = eH ∈ Cen
(G(H)

)
. Therefore, x p±∼ y, which is a contradiction. This proves

that ϕ(x)
p±∼ ϕ(y). Similarly, ϕ(x)

p±∼ ϕ(y) implies x
p±∼ y.

It remains to show that, if |Cen(Γ )| = 1, then Γ ± ∼= Δ± implies that Γ ∼= Δ. Let
Γ ± ∼= Δ±, and let ϕ : G → H be an isomorphism from Γ ± to Δ±. It is possible
that ϕ(eG) = eH , so let ϕ̂(x) = τ

(
ϕ(x)

)
, where τ : H → H is the transposition

of eH and ϕ(eG) if ϕ(eG) = eH , and the identity mapping otherwise. Because a
connected component Φ of Δ± contains only elements of infinite order if and only if
V (Φ) is a union of countably many ≡Δ± -classes of cardinality 2 and Φ contains an
infinite clique, then ϕ(eG) is contained in the connected component which contains
only elements of finite order, i.e., the same connected component that contains eH .
Therefore, ϕ̂ is an isomorphism from Γ ± to Δ±, which maps the element eG to eH .

Let us show that ϕ̂ is an isomorphism from Γ to Δ. Let x, y ∈ G, and let x
p∼ y. If

x
p±∼ y, then obviously it follows that ϕ̂(x)

p∼ ϕ̂(y). Suppose that x p±∼ y. Then, without
loss of generality, x = eG ∈ Cen

(G(G)
)
, and because ϕ̂(x) = eH ∈ Cen

(G(H)
)
, it

follows that ϕ̂(x)
p∼ ϕ̂(y). In the same manner, it is proved that ϕ̂(x)

p∼ ϕ̂(y) implies

that x
p∼ y. Therefore, ϕ̂ is an isomorphism from Γ to Δ. Thus, the theorem has been

proved. ��
With the previous theorem, we proved that the power graph and the Z±-power

graph of a power-associative loop carry the same amount of information about the
original structure. Let us show that the same result holds for the Z±-power graph and
the N -power graph.

Lemma 2 Let G be a power-associative loop. Then, for each element x ∈ G of infinite
order, x and x−1 lie in different connected components of G+(G).

Proof Let x ∈ G be an element of infinite order. For natural numbers n and m, let
S(x, n,m) = {y | xn = ym}, and let S(x) = ⋃

n,m∈N S(x, n,m). Let us show that the

set S(x) induces a connected component ofG+(G). Let y ∈ S(x). Then y ∈ S(x, n,m)

for some n,m ∈ N, and suppose that z
p+∼ y for some z ∈ G. If z

+→ y, i.e., y = zk

for some k ∈ N, then z ∈ S(x) because z ∈ S(x, n,mk). So suppose that y
+→ z.

Then z = yk for some k ∈ N. This implies that z ∈ S(x, nk,mk) ⊆ S(x). Therefore,
because S(x) induces a connected subgraph of G+(G), it follows that S(x) induces a
connected component of G+(G), while clearly x−1 /∈ S(x). This proves the lemma. ��

We remind the reader that, for graphs Γ and Δ, Γ � Δ denotes the strong graph
product of Γ and Δ, and, for X ⊆ V (Γ ), Γ [X ] denotes the subgraph induced by X
in Γ . In this paper, P2 denotes the path with two vertices.

123



Journal of Algebraic Combinatorics (2022) 55:715–727 721

Lemma 3 Let G be power-associative loop. For each connected component Φ of
Γ ± = G±(G) which contains only elements of infinite order, there exist connected
components Ψ1 and Ψ2 of G+(G) which satisfy the following conditions:

1. V (Φ) = V (Ψ1) ∪ V (Ψ2);
2. Ψ1 ∼= Ψ2;
3. Φ ∼= Ψ1 � P2;
4. Ψ1 ∼= Φ/≡Γ ± .

Proof Let us denote graphs G+(G) and G±(G) by Γ + and Γ ±, respectively. Let
x ∈ G be an element of infinite order, and let T (x, n,m) = {y | ym = xn}, for any
x ∈ G, n ∈ Z \ {0}, and m ∈ N. Let T (x) = ⋃

n∈Z\{0},m∈N T (x, n,m). It is easily

seen that T (x) induces a connected subgraph of G±(G). Also, similarly to the proof

of Lemma 2, if z
p±∼ y for some y ∈ T (x), then z ∈ T (x). Therefore, T (x) induces a

connected component of Γ ±. Now, it is easily seen that T (x) = S(x)∪ S(x−1), where
S(x) is the set defined in the proof of Lemma 2. As seen in the proof of Lemma 2,
S(x) and S(x−1) induce different connected components ofΓ +. Thus, each connected
component of Γ ± which contains only elements of infinite order is a union of two
connected components Ψ1 and Ψ2 of Γ +, where Ψ2 contains inverses of elements of
V (Ψ1). This way we obtain conclusion 1. of the lemma.

Let Φ be the connected component of Γ ± induced by V (Ψ1) ∪ V (Φ2). Since
the mapping x �→ x−1 is an automorphism of Γ + which maps V (Ψ1) onto V (Ψ2),
connected components Ψ1 and Ψ2 are isomorphic. This proves statement 2. of the
lemma. Further, since x and x−1 have the same closed neighborhood in Γ ± for every
x ∈ G, and since Ψ1 and Ψ2 are induced subgraphs of Φ, then Φ ∼= Ψ1 � P2.
Additionally, V (Φ) is union of≡Γ ± -classes of cardinality 2, each ofwhich contains an
element of infinite order and its inverse. Therefore,Ψ1 has one vertex from each≡Γ ±-
class contained in V (Φ), so Ψ1 is isomorphic to the graph constructed by replacing
each≡Γ ±-class contained inΦ with one vertex. Thus, conclusions 3. and 4. have been
obtained as well, which finishes our proof. ��
Theorem 2 Let G and H be power-associative loops. Then G+(G) ∼= G+(H) if and
only if G±(G) ∼= G±(H).

Proof Let us denote graphs G+(G), G±(G), G+(H) and G±(H) by Γ +, Γ ±, Δ+ and
Δ±, respectively. Let G<∞ and H<∞ be the sets of all elements of finite order of
loops G and H .

Suppose that G+(G) ∼= G+(H). The set G<∞ induces a connected component
of graphs Γ + and Γ ±. Moreover, G<∞ induces the only connected component of
Γ +, which is not a union of ≡Γ +-classes of cardinality 1 or which does not contain
any infinite clique. Since similar condition holds for the connected component of
Δ+ induced by H<∞, then Γ ±[G<∞] = Γ +[G<∞] ∼= Δ+[H<∞] = Δ±[H<∞].
Now, let Φ be a connected component Γ ± which contains only elements of infinite
order, and let κ be the cardinality of the set of all connected components of Γ ±
isomorphic toΦ. By Lemma 3,Φ is induced by vertices of two isomorphic connected
componentsΨ1 andΨ2 ofΓ +, so the cardinality of the set of all connected components
of Γ + isomorphic to Ψ1 is 2κ . Since Γ + ∼= Δ+, then Δ+ has exactly 2κ connected
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components isomorphic to Ψ1, so, by Lemma 3, graph Δ± contains κ connected
components isomorphic to Φ. Similar result holds for each connected component
of Δ±. Therefore, since Γ ± and Δ± have the same, up to isomorphism, connected
components, and, for each connected component Φ of Γ ±, the cardinality of the set
of all connected components of Γ ± isomorphic to Φ is equal to the cardinality of the
set of all connected components of Δ± isomorphic to Φ, it follows that Γ ± and Δ±
are isomorphic.

The other implication is proved in a similar manner. Let G±(G) ∼= G±(H). Now
G<∞ is the only connected component of Γ ± which is not a union of ≡Γ ±-classes
of cardinality 2 or does not contain an infinite clique, and similar condition holds
for the connected component of Δ± induced by H<∞. Therefore, G<∞ and H<∞
induce isomorphic connected components of Γ + and Δ+, respectively. Now, let Ψ

be a connected component of Γ + which contains only elements of infinite order.
By Lemma 2, there exists a cardinal κ such that the cardinality of the set of all
connected components of Γ + isomorphic to Ψ is equal to 2κ . By Lemma 3, Γ ±
contains κ connected components isomorphic to Ψ � P2, where P2 is the path with
2 vertices, so Δ±, too, contains κ connected components isomorphic to Ψ � P2.
Therefore, by Lemma 3, graph Δ+ contains 2κ connected components isomorphic to
Ψ . Thus, Δ+ and Γ + contain, up to isomorphism, the same connected components,
and for each connected componentΨ of Γ +, the cardinality of the set of all connected
components of Γ + isomorphic to Ψ is equal to the set of all connected components
of Δ+ isomorphic to Ψ . It follows that Γ + ∼= Δ+, which finishes our proof. ��

The following corollary, which is the main result of this section, follows immedi-
ately from Theorem 1 and Theorem 2.

Corollary 1 Let G and H be power-associative loops. Then the following conditions
are equivalent:

1. G and H have isomorphic power graphs;
2. G and H have isomorphic Z±-power graphs;
3. G and H have isomorphic N-power graphs.

4 The power graph of a torsion-free group

Cameron, Guerra and Jurina [9] proved that, if torsion-free groups of nilpotency class
2 have isomorphic power graphs, then the two groups have isomorphic directed power
graph. They asked whether the same result holds if at least one of the groups is torsion-
free of nilpotency class 2. This section answers this question affirmatively.

We start this section by introducing several notations and some results from [9]
which are going to be useful for proving the main result of this section. For a graph
Γ , by SΓ (x, y) we denote the set:

SΓ (x, y) = NΓ (y) \ NΓ (x),

where NΓ (x) denotes the closed neighborhood of x in Γ . Also, for a group G, by
SG(x, y) we denote SG±(G)(x, y). SG(x, y) is a useful construction because, by [9,
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Lemma 4.1], ifG is the infinite cyclic group, then x
±→ y if and only if the set SG(x, y)

is finite.
The complement of a graph Γ = (V , E) is the graph Γ = (V , V [2] \ E). In this

section, for an element x of a group G, by IG(x), OG(x) and MG(x) we denote the
set of all its direct predecessors without x−1, the set of all its direct successors without
x−1, and the set of all its neighbors without x−1 in �G±(G), respectively, i.e.,

IG(x) = {y ∈ V \ {x−1} | y ±→Gx},
OG(x) = {y ∈ V \ {x−1} | x ±→G y} and
MG(x) = IG(x) ∪ OG(x).

Sometimes we may denote IG(x), OG(x) and MG(x) shortly by I (x), O(x) and
M(x), respectively. Further, for a group G and its Z±-power graph Γ ± = G±(G), we
introduce the following denotations:

IG(x) = Γ ±[I (x)], OG(x) = Γ ±[O(x)], MG(x) = Γ ±[M(x)],
IG(x) = Γ ±[I (x)], OG(x) = Γ ±[O(x)], MG(x) = Γ ±[M(x)],

for the respective induced subgraphs of G±(G) or its complement. Sometimes we
write shortly I(x),O(x),M(x), I(x),O(x) andM(x). Note that, for a non-identity
element x of a torsion-free group G, the element x−1 is recognizable by the fact that
it is the only vertex which has the same closed neighborhood in G±(G) as the vertex
x .

By [9, Lemma 3.3], for a torsion-free group G and its non-identity element x ,
OG(x) is a connected component of MG(x). Also, by [9, Lemma 3.4], if G and
H are torsion-free groups, and if ϕ : G → H is an isomorphism from G±(G)

to G±(H), then MG(x) ∼= MH
(
ϕ(x)

)
, and, moreover, OG(x) ∼= OH

(
ϕ(x)

)
and

IG(x) ∼= IH
(
ϕ(x)

)
. However, let us note that ϕ may not map OG(x) onto OH

(
ϕ(x)

)
.

The transposed digraph of a directed graph �Γ is the digraph �Γ T such that x → �Γ T

y if y → �Γ x . For digraphs �Γ = (V1, E1) and �Δ = (V2, E2), bijection ϕ : V1 → V2 is
an anti-isomorphism from �Γ to �Δ if ϕ is an isomorphism from �Γ to �ΔT . Interestingly,
an isomorphism between the Z±-power graphs of groups may be anti-isomorphism
between their directed Z±-power graphs. For example, the mapping ϕa : Q → Q

defined as

ϕa(x) =
⎧
⎨

⎩

0, x = 0
a2

x
, x = 0.

is an anti-isomorphism from G±(Q) onto itself (see [9, Lemma 6.1]).
Before we move on with the proof of Lemma 4, let us introduce a well-known

theorem about locally cyclic groups. Its proof can be found in [22, Chapter VIII,
Section 30].
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Theorem 3 Every torsion-free abelian group of rank 1 is isomorphic to a subgroup of
the additive group of rational numbers.

In other words, a torsion-free group is locally cyclic if and only if it is isomorphic
to a subgroup of the group of rational numbers.

Lemma 4 Let G be a torsion-free locally cyclic group such that OG(x) ∼= IG(x) for
all x ∈ G. Then G ∼= (Q,+).

Proof Suppose that G � (Q,+) and that IG(x) ∼= OG(x) for all x ∈ G. By Theorem
3, any torsion-free locally cyclic group can be embedded into the group of rational
numbers. Notice that Q is isomorphic to none of its proper subgroups, because, for
every prime number p, every equation px = a with the unknown x has a solution inQ.
Also, every subgroup of the group of rational numbers is isomorphic to a subgroup of
Q which contains 1. Namely, if q ∈ G for G ≤ (Q,+), then the mapping ϕq : x �→ x

q
is a group isomorphism fromG to ϕ(G), and ϕ(G) contains 1. Therefore, without loss
of generality, one can assume that G < (Q,+), and that 1 ∈ G. One can also notice
that there is a prime number p such that 1

pk
/∈ G for some k ∈ N, and, without loss of

generality, we can assume that 1
p ∈ G.

Let m be the maximal natural number such that 1
pm ∈ G. Notice that such natural

number does exist, because 1
pk

/∈ G implies that 1
pk+1 /∈ G. Let � be the preorder

on OG(1) such that x � y if x → y or x = y. Let us introduce the preorder �
on IG(1) such that x � y if y → x or x = y. One can easily see that classes of
the preordered set (OG(1),�) are two-element sets {n,−n}, where n ∈ N \ {1} and
that classes of the preordered set (IG(1),�) are two-element sets of form { 1n ,− 1

n }, for
n ∈ N\{1}. Further, notice that minimal classes of (OG(1),�) are the ones containing
prime numbers and that minimal classes of (IG(1),�) are the ones containing the
multiplicative inverses of prime numbers.

Notice that, for all x, y ∈ OG(1) adjacent in G±(G), holds x → y if and only if
SOG (1)(x, y) is a finite set. Also, for x, y ∈ IG(1) holds y → x if and only if the
set SIG (1)(x, y) is finite. Let ϕ : OG(1) → IG(1) be an isomorphism from OG(1)
to IG(1). By the above discussion, ϕ is a preorder isomorphism from (OG(1),�) to
(IG(1),�). Notice that in (OG(1),�) each element of any minimal class is contained
in some infinite ascending chain L such that every two elements of L↓ = {z ∈ OG(1) |
z � x for some x ∈ L} are comparable.Namely, if x is an element of aminimal class of
(OG(1),�), then x or−x is a prime number. Then, the sequence x, x2, x3, . . . makes
up an ascending chain L , and, for each y ∈ L↓, y or−y is a power of the prime number
|x |. Since (OG(1),�) and (IG(1),�) are isomorphic preordered sets, it follows that
the same holds for (IG(1),�). However, because G does not contain all powers of
1
p ,

1
p is contained in no infinite ascending chain L of the preordered set (IG(1),�)

such that every two elements of L↓ are comparable. This is in contradiction with the
fact that preordered sets (OG(1),�) and (IG(1),�) are isomorphic. This proves the
lemma. ��

Cameron, Guerra and Jurina proved in [9] that, for any group G, G±(G) ∼= G±(Q)

implies �G±(G) ∼= �G±(Qn). Furthermore, any isomorphism ϕ from G±(G) to G±(Q)
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and any C ⊆ G which induces a connected component of G±(G), the restriction of ϕ

onC is an isomorphismor an anti-isomorphism (see [9, Theorem1.5]).Aswe are going
to show, this result, together with Lemma 4, implies that no group non-isomorphic to
the group of rational numbers has the power graph isomorphic to G(Q).

Corollary 2 Let G be a group such that G±(G) ∼= G±(Q). Then G ∼= (Q,+).

Proof Because G±(G) ∼= G±(Q), then, by [9, Theorem 1.5], �G±(G) ∼= �G±(Q). It
follows thatG is a locally cyclic group such that, for all x ∈ G, holdsOG(x) ∼= IG(x).
Therefore, by Lemma 4, it follows that G is isomorphic to the group of rational
numbers. ��

As seen before, for torsion-free groupsG and H , an isomorphism ϕ from G±(G) to

G±(H), and elements x, y ∈ G such that x
±→ y, we might not be able to tell whether

ϕ(x)
±→ ϕ(y) or ϕ(y)

±→ ϕ(x). However, with the following lemma, we will be able to
prove that, for any connected component Γ of G±(G), ϕ either preserves or reverses
directions of all arcs of Γ .

Lemma 5 Let G be a torsion-free group, and let x, y, z ∈ G be such that x, y ∈ OG(z),

x
±→G y, and y /∈ {x, x−1}. Let H be a group, and let ϕ : G → H be an isomorphism

from G±(G) to G±(H). Then

ϕ(x)
±→Hϕ(y) if and only if ϕ

(
OG(z)

) = OH
(
ϕ(z)

)
.

Proof Because, by [9, Lemma 3.3], OG(z) and OH
(
ϕ(z)

)
induce connected compo-

nents of MG(z) and MH
(
ϕ(z)

)
, respectively, it follows, by [9, Lemma 3.4], that

ϕ
(
OG(z)

) = OH
(
ϕ(z)

)
if and only if ϕ(x), ϕ(y) ∈ OH

(
ϕ(z)

)
. Therefore, it is suffi-

cient to prove that ϕ(x)
±→Hϕ(y) if and only if ϕ(x), ϕ(y) ∈ OH

(
ϕ(z)

)
.

SinceG is a torsion-free group, by [9,Lemma3.1],G has an isolatedvertex.Because
G±(G) ∼= G±(H), H has an isolated vertex too. Therefore, by [9, Lemma 3.1], group
H is torsion-free, too. Since {x, x−1}, {y, y−1} and {z, z−1} are pairwise disjoint
sets, then elements x , y and z have distinct closed neighborhoods. Therefore, ϕ(x),
ϕ(y) and ϕ(z) have distinct closed neighborhoods, which implies that {ϕ(x), ϕ(x−1)},
{ϕ(y), ϕ(y−1)} and {ϕ(z), ϕ(z−1)} are pairwise disjoint sets.

Suppose that ϕ(x)
±→Hϕ(y), and suppose that ϕ(x), ϕ(y) ∈ IH

(
ϕ(z)

)
. Then it fol-

lows that ϕ(x), ϕ(y)
±→Hϕ(z). By [9, Lemma 3.3], OG(z) is a connected component

of MG(z), so the subgraph of MH
(
ϕ(z)

)
induced by ϕ

(
OG(z)

)
is connected and

isomorphic to OG(z). By [9, Lemma 4.1], the set SOG (z)(y, x) is infinite, which

implies that Sϕ(OG (z))
(
ϕ(y), ϕ(x)

)
is infinite. However, from ϕ(x)

±→Hϕ(y) and

ϕ(y)
±→Hϕ(z) it follows that Sϕ(OG (z))

(
ϕ(y), ϕ(x)

)
is finite, which is a contradic-

tion. Thus, ϕ(x)
±→Hϕ(y) implies ϕ(x), ϕ(y) ∈ OH

(
ϕ(z)

)
, and it remains to prove

the other implication as well.
Suppose that ϕ(x), ϕ(y) ∈ OH

(
ϕ(z)

)
, which implies that ϕ

(
OG(z)

) = OH
(
ϕ(z)

)
.

Suppose now that ϕ(x)  ±→Hϕ(y). That implies ϕ(y)
±→Hϕ(x), i.e., ϕ(z)

±→Hϕ(y)
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and ϕ(y)
±→Hϕ(x). By [9, Lemma 4.1], SOH (ϕ(z))

(
ϕ(y), ϕ(x)

)
is finite. On the other

hand, the fact that SOG (z)(y, x) is infinite implies that Sϕ(OG (z))
(
ϕ(y), ϕ(x)

) =
SOH (ϕ(z))

(
ϕ(y), ϕ(x)

)
is infinite, which is a contradiction. Thus, the lemma has been

proved. ��
Now we are ready to prove the main result of this paper.

Theorem 4 Let G be a torsion-free group of nilpotency class 2, and let H be a group
such that G±(G) ∼= G±(H). Then �G±(G) ∼= �G±(H).

Proof Let ϕ : G → H be an isomorphism from G±(G) to G±(H). Then ϕ maps every
connected component of G±(G) onto some connected component of G±(H). Also, by
[9, Lemma 3.1], the group H is torsion-free, too. Let C induce a non-trivial connected
component of G±(G), and let us denote ϕ(C) by D. By [9, Lemma 7.1], C ∪ {eG} is
the universe of a locally cyclic subgroup of G. That locally cyclic subgroup we shall

denote by Ĉ . Let x, y ∈ C be such that x
±→G y and y /∈ {x, x−1}.

Let us show that ϕ|C is an isomorphism or an anti-isomorphism from graph
( �G±(G)

)[C] to ( �G±(H)
)[D]. Let u, v ∈ C , and let u

±→Gv. Since ϕ is an isomorphism

from Γ toΔ, then ϕ(u)
±→Hϕ(v) or ϕ(v)

±→Hϕ(u). Obviously, if v ∈ {u, u−1}, then so
does ϕ(v) ∈ {ϕ(u), ϕ(u−1)} because in this case u ≡G±(G) v and ϕ(u) ≡G±(H) ϕ(v).
So suppose that v /∈ {u, u−1}. Because Ĉ is a locally cyclic subgroup of G, there
exists w ∈ C such that x, u ∈ 〈w〉. Suppose that w /∈ {x, x−1, u, u−1}. In this case,

by Lemma 5, ϕ(x)
±→Hϕ(y) if and only if ϕ

(
OG(w)

) = OH
(
ϕ(w)

)
. Furthermore,

by the same lemma, these conditions are equivalent to ϕ(u)
±→Hϕ(v). Similarly, we

can prove the assertion when w ∈ {x, x−1, u, u−1}. Namely, in this case at least one
of the two equivalences holds by [9, Lemma 3.3] and [9, Lemma 3.4], instead of by
Lemma 5. So ϕ|C is an isomorphism or an anti-isomorphism from

( �G±(G)
)[C] to( �G±(H)

)[D].
Next we prove that

( �G±(G)
)[C] ∼= ( �G±(H)

)[D], which obviously holds if ϕ|C is
an isomorphism. If ϕ|C is an anti-isomorphism, then, for each x ∈ C , OG(x) is being
mapped onto IH

(
ϕ(x)

)
, and IG(x) is being mapped onto OH

(
ϕ(x)

)
. It follows that

OG(x) ∼= OH
(
ϕ(x)

) ∼= IG(x), which, by Lemma 4, implies Ĉ ∼= (Q,+). Then, by

[9, Lemma 6.1], it follows that
( �G±(G)

)[C] ∼= ( �G±(H)
)[D].

Now we proved that, for every set C ⊆ G inducing a connected component of
G±(G), we have that

( �G±(G)
)[C] ∼= ( �G±(H)

)[
ϕ(C)

]
. Thus, groups G and H have

isomorphic directed Z±-power graphs, which proves the theorem. ��
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