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Abstract
We determine the number of cubic surfaces with 27 lines over a finite field Fq . This is
based on exploiting the relationship between non-conical six-arcs in a projective plane
embedded in projective three-space and cubic surfaces with 27 lines. We revisit this
classical relationship, which goes back to work of Clebsch in the nineteenth century.
Our result can be used as an enumerative check for a computer classification of cubic
surfaces with 27 lines over finite fields.
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1 Introduction

The study of the geometry of smooth cubic surfaces, the 27 lines lying on them,
their symmetries and numerous other features has a long history dating back to the
nineteenth century and is still of remarkable interest, especially in some important
areas in algebraic geometry (Weyl groups of type E6) and in the field of combinatorics
(the Schäfli graphs). If the field of coordinates is not algebraically closed, the number
of lines contained in a smooth cubic surface may be less than 27. For instance, the
number of (real) lines contained in a smooth real cubic surface is one of 27, 15, 7, 3
or none at all; see Segre [22]. This gives a strong motivation for the study of cubic
surfaces over a (not algebraically closed) field F which contain exactly 27 lines. The
list of 27 open problems by Ranestad and Sturmfels [19] shows that there is still a lot
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of interest in finding out more about cubic surfaces. The present paper is concerned
with cubic surfaces over finite fields.

One of the main topics in the study of cubic surfaces is the problem of classification
up to projective equivalence. Several tools have been developed in the nineteenth
century, and these tools work remarkably well in the case of finite fields also. There
are the ideas of the Schläfli double-six [21], the Steiner trihedral pairs [23] and the
associated arcs due to Clebsch [5]. When considering cubic surfaces over finite fields,
the problem becomes finite and hence can be attacked using combinatorial methods,
as well as usingmethods from computational group theory. Dickson [7] considered the
very first case of the field of two elements. Hirschfeld and his students contributed to
the problemof classification of cubic surfaceswith 27 lines over finite fields [11,15,20].

The relation between non-conical six-arcs and cubic surfaces with 27 lines plays
a central role in this, as is explained in Sect. 3. One of the central elements in a
classification approach over finite fields is the use of group invariant relations which
reduce the classification to smaller objects. In [3], the relation between Schläfli double-
sixes and cubic surfaces is used. In [2], six-arcs andSteiner trihedral pairs are used. This
relation was well known to nineteenth-century mathematicians. However, the action
of the projective group of three-space on this relation is not obvious. We describe an
invariant relation in Sect. 3.

Clebsch [5] seems to be the first to point out the relationship between cubic surfaces
and six-arcs in the plane. Baker [1] mentions it only briefly. By the late nineteenth
century, Felix Klein in 1873 [16] knew that the Clebsch surface [6] is related to the
configuration of six lines through the origin inEuclidean space, obtained by connecting
the opposite vertices in the Icosahedron. Under this relationship, the six lines are then
identified with a non-conical six-arc in the real projective plane.

The present paper will exploit the above relation and develop an enumerative result
for the number of cubic surfaces with 27 lines over a finite field of order q. This result
can be used to confirm the correctness of computer classifications of cubic surfaces
with 27 lines over finite fields. Our main result is the following:

Theorem 1 The number of cubic surfaces with 27 lines in PG(3, q) is

cq = q6(q2 − 1)(q3 − 1)(q4 − 1)(q − 2)(q − 3)(q − 5)2

51840
.

2 Background

Let us discuss some of the background material on cubic surfaces. For a deeper treat-
ment, we refer to Hirschfeld [13] or Segre [22].

Let PG(n,F) be the n-dimensional projective space over the field F. The elements
of PG(n,F) are the subspaces of V (n + 1,F) = F

n+1, the n + 1-dimensional vector
space overF.Weuse homogeneous coordinates X0, . . . , Xn .The notation v(F) is used
to denote the variety associated with the equation F , that is, the set of points whose
coordinates evaluate to zero when substituted into F . The projective dimension of an
object is one less than the vector space dimension. Thus, subspaces of ranks one are
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said to be projective points, subspaces of ranks two are called lines, and so on. Two
lines in PG(3,F) are called skew if they do not meet.

Let Fq be the finite field with q elements. We write PG(n, q) for PG(n,Fq). The
number of k-dimensional subspaces of the vector space Fn

q is

[
n
k

]
q

=
k−1∏
i=0

qn − qi

qk − qi
,

the q-binomial coefficient. From this, it follows that in PG(3, q), there are q2 + q + 1
lines through a point and q + 1 points on each line.

A cubic surface in PG(3,F) is the zero set of a homogeneous polynomial of degree
three in four variables. A line of PG(3,F) lies on the cubic surface if it is completely
contained in it. This means that the equation of the surface vanishes when restricted
to the coordinates of the line. Over the complex numbers, a smooth cubic surface has
exactly 27 lines [4]. Over a finite field, it may have fewer lines. As there are 20 cubic
monomials in four variables, 19 linearly independent conditions are required to define
a cubic surface. This is because the homogeneous equation of a surface is unique up
to nonzero scalars.

A plane intersects a cubic surface in a cubic. It may happen that this cubic degen-
erates into three lines. In this case, the plane is said to be a tritangent plane. A cubic
surface with 27 lines has exactly 45 tritangent planes. Any line of the surface lies on
exactly five tritangent planes. For this reason, any line of the surface is incident with
exactly 10 other lines of the surface, two on each tritangent plane through it. Given
two skew lines �1 and �2 of PG(3, q) and a point P not on either �1 or �2, there exists
a unique line t through P which intersects both �1 and �2. Such a line is called a
transversal. Two skew lines on the surface have exactly five common transversals on
the surface.

A set of six lines on a surface, pairwise disjoint, is called a single-six. A set of 12
lines, partitioned into two sets of six, each forming a single six is called a double-six
(or Schäfli double-six, in recognition of [21]) if the following condition holds: There is
a bijection between the two sets such that two lines from different sets intersect if and
only if they do not correspond. Double-sixes are important because they determine a
cubic surface uniquely. On the other hand, one cubic surface has exactly 36 double-
sixes associated with it. The Schläfli labeling ai , b j , ci j of lines can be used to express
all double-sixes in terms of one particular one. It is important to be able to build
double-sixes from smaller configurations of lines. The following result of Schläfli
enables this.

Theorem 2 (Schläfli [21]) Given five skew lines a1, a2, a3, a4, a5 with a single
transversal b6 such that each set of four ai omitting a j ( j = 1, . . . , 5) has a unique
further transversal b j , then the five lines b1, b2, b3, b4, b5 have a transversal a6 also.

Two surfaces are projectively equivalent (or isomorphic) if there is a projectivity
that takes one to the other. The classification problem for cubic surfaces is the problem
of determining a complete set of the pairwise inequivalent surfaces over a given field.
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Several infinite families of surfaces are known, among them the examples of Fermat
(see [13]), Hilbert, Cohn-Vossen (see [10]), Clebsch (see [6]) and Hirschfeld (see
[14]). Families can be recognized and distinguished by a geometric invariant called
the number of Eckardt points. An Eckardt point is a point on the surface where three of
the lines contained in the surfacemeet (see [8,13]). TheHirschfeld family is recognized
by the fact that its members have 45 Eckardt points (the largest it can possibly be). The
Fermat, Clebsch and Hilbert, Cohn-Vossen surfaces are examples of a larger class of
surfaces described by Goursat [9]. The equation of the Hilbert, Cohn-Vossen surface
was described in [3], and a double-six was listed. We will use this description in some
of the examples later on.

In a projective plane PG(2,F), a set of points S is called an arc if no line � intersects
S in more than two points. That is,

|S ∩ �| ≤ 2

for all lines �. If we want to emphasize the size of the arc, we say that S is an n-arc
where n = |S|. A conic is the set of points in PG(2,F) described by a non-degenerate
homogeneous quadratic equation in three variables. A 5-arc determines a unique conic.
A six-arc S = {P1, . . . , P6} is called non-conical if not all six points lie on a conic.
The number of six-arcs not on a conic in PG(2, q) is known:

Lemma 3 (Hirschfeld [11]) The number of six-arcs not on a conic in PG(2, q) is

aq = q3(q + 1)(q − 1)2(q − 2)(q − 3)(q − 5)2(q2 + q + 1)

6! .

Non-conical arcs in planes have been investigated by Hirschfeld. Up to projective
equivalence, the points of such an arc can be assumed in the form

P1 = P(1, 0, 0), P2 = P(0, 1, 0), P3 = P(0, 0, 1),

P4 = P(1, 1, 1), P5 = P(a, b, 1), P6 = P(c, d, 1),

for some field elements a, b, c, d, subject to certain algebraic restrictions (cf.
Hirschfeld [12]). We can use these arcs as a starting point for a classification of cubic
surfaces with 27 lines over Fq . This is the approach taken by Sadeh [20] and Karaoglu
[15] as well as in [2].

3 The birational structure

A rational map is a function whose coordinate functions are rational. Birational maps
are rational maps that are invertible as rational map almost everywhere. The birational
parametrization of a circle as

x = 2t

1 + t2
, y = 1 − t2

1 + t2
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has been known since antiquity. The stereographic map can often be used to create
birational maps. For cubic surfaces, the Clebsch map [5] does the trick. This has
important implications for the problem of classification of cubic surfaces. There is a
relation between cubic surfaces with 27 lines and non-conical six-arcs. In the algebraic
geometry literature, this construction is known as the blow-up of the six points in
general position in the plane. The inverse map is often called the blow-down of the
surface to the plane.

The following theorem is fundamental for this work. The result seems to be part
of the folklore of nineteenth-century mathematics. Theorems 20.1.1 and 20.1.5 in
Hirschfeld [13] together prove the first half of the theorem. Baker [1, p. 192] discusses
this relation briefly. A recent reference is the last section of [18]. Since our main result
relies very much on the second half of the theorem, we include a full proof of it.

Theorem 4 Let F be a field. There is a relation between non-conical six-arcs in planes
embedded in PG(3,F) and cubic surfaces with 27 lines in PG(3,F). The relation is
invariant under the action of the collineation group of projective space. A surface F
and an arc S correspond whenever there is a birational map between F and S. A
non-conical six-arc S determines a cubic surfaces with 27 lines up to isomorphism.
Conversely, a cubic surface with 27 lines gives rise to a non-conical six-arc once two
skew lines on the surface and a tritangent plane through one of the transversal lines
of the chosen pair of lines have been chosen.

Proof Consider the following sets:

(a) LetA be the set of all pairs
(
S, π

)
where π is a plane in PG(3, q) and S is a six-arc

not on a conic in π.

(b) Let B be the set of cubic surfaces with 27 lines in PG(3, q).

(c) Let R be the set of all
(
S, π,F)

where F is a cubic surface in PG(3, q) with 27
lines, π is a tritangent plane of F and S is a six-arc not on a conic in π ∩ F . We
require that there exist two skew lines �1 and �2 of F not contained in π, such
that P1 := �1 ∩ π and P2 := �2 ∩ π are two points of S and t = P1P2 is a line of
F . We also require that the four remaining points P3, . . . , P6 of S are of the form
� ∩ π where � runs through the four transversals of �1 and �2 on F different from
t .

The setR can be considered as a relation betweenA and B. Simply identify
(
S, π,F)

with
((
S, π),F)

. In the following proof, we start from a non-conical six-arc S in a
plane π . After embedding this plane in PG(3, q), we construct a cubic surfaceF with
27 lines such that

(
S, π,F)

is in relation R. Once this is done, we will show how a
non-conical six-arc S in a plane π can be recovered from a surface F assuming that
F has 27 lines. This can be done in such a way that the pair

((
S, π),F)

lies in the
relation R. We will then define a birational map � between the plane π containing
the non-conical six-arc S and the surface F . Finally, we will see that the relationR is
invariant under the collineation group.

Let P1, . . . , P6 be a non-conical six-arc in π = PG(2,F), where π is embedded
in PG(3,F). Since the group of projective space is transitive on hyperplanes, there is
no loss in assuming that π = v(X3), for instance. We also pick two skew lines �1
and �2 of PG(3,F), not contained in π , passing through P1 and P2, respectively. For
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Fig. 1 Configuration of lines
which determines a unique cubic
surface

i = 3, . . . , 6, let ti be the unique transversal line of �1 and �2 through Pi . Finally, we
partition the points P3, P4, P5, P6 into two pairs of two. Without loss of generality,
we pair P3 with P4 and P5 with P6. Because no three points of the arc are collinear,
the lines P1P2, P3P4 and P5P6 form a degenerate cubic curve. In total, the lines

�1, �2, t3, t4, t5, t6, P1P2, P3P4, P5P6

impose 19 linearly independent conditions on the space of cubic monomials in 4
variables. Namely, the degenerate cubic accounts for 9 independent conditions. The
lines �1 and �2 add three independent conditions each. The transversals t3, . . . , t6
contribute one further condition each, for a total of 19 linearly independent conditions.
This shows that there is a unique cubic surface passing through the set of nine lines
(Fig. 1). It remains to see that the surface has 27 lines. To this end, we will use
Theorem 2. Recall that P1, . . . , P6 is a non-conical six-arc. Observe that t3, . . . , t6
are pairwise skew, for otherwise there would be a point which had two transversals to
�1, �2, which is impossible. Note that the lines P1P2 and �1 determine a plane which
intersects the cubic surface in a degenerate cubic curve. Hence, there must be a third
line of the surface contained in that plane. Let this line be called t2.By the same token,
the plane through P1P2 and �2 contains a line of the surface which we call t1.We claim
that the lines t1, . . . , t6 are pairwise skew. To this end, we appeal to Lemma 20.2.1 (iv)
in [13]. The lines t1 and t2 meet π in distinct points of P1P2, for otherwise the point
of intersection would determine a tritangent plane containing the lines P1P2, t1, t2,
which is impossible. Regarding ti and t j with i ≤ 2 and j ≥ 3, we observe that line t j
intersects the tritangent plane P1P2, �3−i , ti in �3−i . This point of intersections does
not lie on ti because otherwise ti and �3−i would lie on the two different tritangent
planes ti , �3−i , t j and ti , �3−i , P1P2, which is impossible.

It remains to show that the configuration of lines �1, �2, t1, . . . , t6 completes to a
double-six, which implies that the surface has 27 lines. We verify the Schläfli prop-
erty for the lines �1, t2, . . . , t6. This means that any four of {t2, . . . , t6} have a unique,
distinct second transversal (different from �1). For simplicity, we look at one case. Sup-
pose we want to show that t2, t3, t4, t5 have a unique transversal besides �1. Because
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Fig. 2 The fourth line does (left) or does not (right) belong to the regulus determined by the other three

these lines are pairwise skew, any three of them determine a regulus lying on a hyper-
boloid H3. Because of the property that the points P1, . . . , P6 are non-conical, the
fourth line t5 does not belong to the regulus generated by the lines t2, t3, t4 (see Fig. 2).
This means that t5 is secant to the hyperboloid H3. Since it intersects the opposite
regulus in �1 and since it is different from the line P1P2 which also has this property,
it intersects H3 in another point. Let �6 be the line in the opposite regulus passing
through that second point of intersection. This process shows that the partial double-six
(lines are disjoint if and only if they are in the same row or column)

t1 t2 t3 t4 t5 t6
�1 �2

can be completed to a double-six

t1 t2 t3 t4 t5 t6
�1 �2 �3 �4 �5 �6

and hence the cubic surface constructed has 27 lines.
Now, let F be a cubic surfaces with 27 lines. Let �1 and �2 be skew lines of F

with common transversal t contained in a tritangent plane π, where t is another line
of F . The following procedure recovers a non-conical six-arc S in π associated with
F by means of the relationR. Let Pi = �i ∩ π for i = 1, 2. Let t2 be the unique third
line in the tritangent plane spanned by �1 and P1P2. Likewise, let t1 be the unique
third line in the tritangent plane spanned by �2 and P1P2. Let t3, . . . , t6 be the four
transversals of �1 and �2 different from P1P2. Let Pi = ti ∩π for i = 3, . . . , 6. These
are four distinct points, because t3, . . . , t6 are pairwise skew, for otherwise a point of
intersection would have two distinct transversals to �1 and �2. Together, P1, . . . , P6
are six distinct points of π. It remains to show that these six points form a non-conical
six-arc.

Assume that the points P1, . . . , P6 are on a conic. Let H3 be the hyperboloid
generated by t3, t4, t5. Then �1 and �2 belong to the opposite regulus ofH3. The plane
π intersectsH3 in a conic which contains the five points P1, . . . , P5. By assumption,
P6 belongs to that conic. But t6 is a transversal to �1 and �2, to t6 belongs to the
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regulus containing t3, . . . , t5. But we have seen above that this is impossible, because
this means that t6 is not sufficiently general for �1 and t2, . . . , t6 to generate a cubic
surface with 27 lines (Fig. 2), which is a contradiction.

Regarding the arc property of {P1, . . . , P6},we see that �1, �2, t3, t4, t5 lie on aH3,
and hence, P1, P2, P3, P4, P5 lie on a conic, so no three of these points are collinear.
Considering the (different)H3 through �1, �2, t4, t5, t6,wefind that P1, P2, P4, P5, P6
lie on a different conic, and hence, no three of those points are collinear either. Regard-
ing the line P3P6, we consider two further H3, one through �1, �2, t3, t5, t6, and the
other through �1, �2, t3, t4, t6. This proves the arc property of P1, . . . , P6.

Counting intersections, a line not contained in F intersects F in three points. This
allows us to define a rational map � from the plane π to the surface F . For a point
P ∈ π, let t be the unique transversal t to �1 and �2 through P. The map sends P to
the third intersection of t with the surface if t intersects F in three distinct points. The
map is birational, i.e., the coordinate functions of the map are polynomials in terms of
the coordinates of P and the coordinates of the surface equation and a basis for the two
lines �1 and �2. The exceptional locus where the map is undefined is the line P1P2,
the points of the six-arc, and the two conics C1 and C2 where Ci = {P1, . . . , P6}\ {Pi }.
Outside this locus, the map is one to one to the points of the surface except for the
points of six lines forming a single-six, and the three lines �1, �2 and P1P2.

The inverse map, �−1, which takes the surface F to the plane π , can be defined
similarly: For a point Q ∈ F , �−1 takes Q to π ∩ t, where t is the unique transversal
to �1 and �2 through Q (if it exists). �−1 is rational, too, with exceptional locus at
�1, �2 and t .

The above description shows that the points of the arc are constructed by intersecting
6 lines of the surface with the plane. Because of this, the relation is invariant under
the action of the collineation group of projective space which preserves incidence
relations. ��

In the following,wewill refer to the birationalmap arising in the proof of Theorem4
as Clebsch map, in reference to [5].

Let us make an explicit example. We consider the Hilbert, Cohn-Vossen surface,
which has the equation

5

2
X0X1X2 −

(
X2
0 + X2

1 + X2
2

)
X3 + X3

3 = 0.

We follow the Schläfli labeling of lines given in Table 5 in [3], with parameters a = 2
and b = 1. For convenience, we reproduce this table here as Table 1. Consider the
Clebsch map � associated with the lines �1 = b3, �2 = b4 and the plane

π = π12,34,56 = v(X3).

Consider a point P ∈ π with coordinates (y0, y1, y2, 0). The transversal line t to
�1 and �2 is given in parametric form as

t = t(α) :
[
α · y0

y2
− 4y20 − y22

2y1y2
, α · y1

y2
− 2 · y0

y2
, α, 1

]
.
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Table 1 A double-six of the
Hilbert, Cohn-Vossen surface a1 = L

[
1 a 0 0
0 0 1 b

]
b1 = L

[
1 − 1

a 0 0
0 0 1 −b

]

a2 = L
[
1 −a 0 0
0 0 1 −b

]
b2 = L

[
1 1

a 0 0
0 0 1 b

]

a3 = L
[
1 0 − 1

a 0
0 1 0 −b

]
b3 = L

[
1 0 a 0
0 1 0 b

]

a4 = L
[
1 0 1

a 0
0 1 0 b

]
b4 = L

[
1 0 −a 0
0 1 0 −b

]

a5 = L
[
1 0 0 −b
0 1 −a 0

]
b5 = L

[
1 0 0 b
0 1 1

a 0

]

a6 = L
[
1 0 0 b
0 1 a 0

]
b6 = L

[
1 0 0 −b
0 1 − 1

a 0

]

The line t intersects �1 at t(α1) with

α1 = −y2 + 2y0
y1

.

Likewise, the line t intersects �2 at t(α2) with

α2 = y2 + 2y0
y1

.

Substituting the equation of t in the equation of the surface gives a cubic polynomial

aα3 + bα2 + cα + d = 0

in α, where

a = 2y0y1
2y22

,

b = −11
y20
y22

+ 1

4
− y21

y22
,

c = 14
y30
y22 y1

− 7y0
2y1

+ 4y0y1
y22

,

d = −4
y40
y22 y

2
1

+ 2
y20
y21

− y22
4y21

− 4
y20
y22

+ 1.

Comparing coefficients of like terms in the expansion of

(α − α1)(α − α2)(α − α3) = α3 + b

a
α2 + c

a
α + d

a
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yields

−b

a
= α1 + α2 + α3.

Therefore,

α3 = −b

a
− α1 − α2 = 4y20 + 4y21 − y22

10y0y1

and the third point of intersection of t with F is

t(α3) =
(−8y20 + 2y21 + 2y22

5y1y2
,
−16y20 + 4y21 − y22

10y0y2
,
4y20 + 4y21 − y22

10y0y1
, 1

)
.

The Clebsch map � : P �→ t(α3) associated with b3, b4 and π12,34,56 is given as

� :

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

PG(2,R) → PG(3,R),

[Y0,Y1,Y2] �→ [X0, X1, X2, X3]
X0 = − 4(4Y 2

0 − Y 2
1 − Y 2

2 )Y0,
X1 = − (16Y 2

0 − 4Y 2
1 + Y 2

2 )Y1,
X2 = (4Y 2

0 + 4Y 2
1 − Y 2

2 )Y2,
X3 = 10Y0Y1Y2.

This is theClebschmap from the plane to the surface. This example has been computed
with help of the computer algebra system Maple [17].

The Clebsch map �−1 from the surface down to the plane is given by

�−1 :

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

F ⊆ PG(3,R) → PG(2,R),

[X0, X1, X2, X3] �→ [Y0,Y1,Y2]
Y0 = − 2X0X1 + X2X3

Y1 = − 2X2
1 + 2X2

3
Y2 = 4X0X3 − 2X1X2

Let us now talk about enumerative aspects of this relation. In the finite case, when
F = Fq , there are

[
4
3

]
q

hyperplanes π inside PG(3, q).

Lemma 5 Let π be a plane in PG(3, q). Let P1 and P2 be two points in π. Two skew
lines �1 and �2 outside π and intersecting π in P1 and P2, respectively, can be chosen
in q3(q − 1) many ways.
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Proof There are q2 lines �1 in PG(3, q) passing through P1 but not contained in π.

There are q2 − q lines �2 in PG(3, q) passing through P2 but not contained in π and
skew to �1. ��

The pointwise stabilizer of the hyperplane π is a group of transvections (see [24]).
It acts sharply transitively on these configurations.

4 Proof of themain result

The proof or Theorem 1 is based on a double count of the incident pairs of the invariant
relationR from the proof of Theorem 4. For a given element

(
S, π

)
inA, let uS,π be

the number of surfaces F in B such that (S, π,F) is in R. For a given surface F in
B, let vF be the number of (S, π) in A such that

(
S, π,F)

is inR.

Lemma 6 The relation R from the proof of Theorem 4 is regular in both ways:

1. uS,π = 45q3(q − 1)

2. vF = 3240.

Proof For
(
S, π

)
in A, there are 15 = (6

2

)
ways to pick two points in S, say P1 and

P2. The remaining four points P3, . . . , P6 can be partitioned into two disjoint sets of
size two in three ways. By Lemma 5, there are q3(q − 1) ways to choose lines �1 and
�2 intersecting π in points P1 and P2, respectively. Following Theorem 4, for each
choice of �1, �2 subject to these conditions, a cubic surface F with 27 lines is defined
with (S, π,F) inR. This shows that each pair (S, π) in A gives rise to

uS,π =
(
6

2

)
· 3 · q2(q2 − q) = 45q3(q − 1)

distinct surfaces F in relationR with (S, π).

On the other hand, any surfaceF ∈ B has 45 tritangent planes, and in each tritangent
plane π , there are three ways to pick a line of the surface. For each such line t , there are
8 · 6/2 ways to pick a pair (�1, �2) of skew lines of F intersecting it and not contained
in the given tritangent plane π . For each choice of tritangent plane π of F , and each
pair (�1, �2) of skew lines intersecting π in points P1 and P2 with t the unique line
of F through P1 and P2 in π , a set S = {P1, . . . , P6} is defined: Let P3, . . . , P6 be
the points of the form � ∩ π where � runs through the four transversals of �1 and �2
in F distinct from t . It follows from Theorem 4 that S is a six-arc not on a conic. For
different choices of π, �1, �2, the arcs S which arise are all distinct, and the pair (S, π)

is in relation R with F . This shows that

vF = 45 · 3 · 8 · 6
2

= 45 · 72 = 3240.

��
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Table 2 Cubic surfaces with 27 lines for q = 13, 17, 19

q F i
q s e3 |G(F i

q )| q F i
q s e3 |G(F i

q )|

13 F0
13 10 4 12 19 F0

19 21 2 4

13 F1
13 7 6 24 19 F1

19 21 2 4

13 F2
13 2 9 108 19 F2

19 14 3 6

13 F3
13 2 18 648 19 F3

19 14 3 6

17 F0
17 9 1 8 19 F4

19 10 4 12

17 F1
17 14 3 6 19 F5

19 7 6 24

17 F2
17 10 4 12 19 F6

19 7 6 24

17 F3
17 10 4 12 19 F7

19 4 9 54

17 F4
17 7 6 24 19 F8

19 4 10 120

17 F5
17 7 6 24 19 F9

19 2 18 648

17 F6
17 7 6 24

The proof of the main result is a simple double count of the incident pairs of the

relation R. The number of elements in A is aq

[
4
3

]
q
. The number of elements in B

is cq . Therefore,

aq

[
4
3

]
q

· q3(q − 1) · 45 = aquS,π = cqvF = cq · 3240,

from which the result follows.

5 Numerical examples

We remark that the result of this paper was first conjectured in the Ph.D. thesis of the
second author [15]. The result can been used as a mass formula to verify the classifica-
tion of cubic surfaces with 27 lines over small finite fields.We present here the relevant
data for the fields Fq where q ∈ {13, 17, 19}. The classification of cubic surfaces with
27 lines over the field F13 can be found in [2]. The classification of cubic surfaces
with 27 lines over the fields F17 and F19 can be found in [3]. In Table 2, these results
are summarized, together with information about the order of the projectivity stabi-
lizer G(F i

q), where F i
q is the representative of the i th isomorphism class. Additional

information is e3, the number of Eckardt points, and s, the number of isomorphism
types of non-conical six-arcs associated with it. Some numerical data associated with
the classification are shown in Table 3.
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Let g4 be the order of PGL(4, q). Let G(F) be the group of projectivities of the
cubic surface F . It follows from the orbit-stabilizer theorem that

cq :=
∑

iso type F

g4
|G(F)| .

For q = 13, the distribution of the automorphism group orders of the projectively
distinct cubic surface with 27 lines is 12, 24, 108, 648 as shown in Table 2. Therefore,
the number of cubic surfaces with twenty-seven lines in PG(3, 13) is

c13 = |PGL(4, 13)| ·
( 1

12
+ 1

24
+ 1

108
+ 1

648

)

= 50858076935877120 ·
( 1

12
+ 1

24
+ 1

108
+ 1

648

)

= 6906652423390720

= 136(132 − 1)(133 − 1)(134 − 1)(13 − 2)(13 − 3)(13 − 5)2

51840
.

For q = 17, the distribution of the automorphism group orders of the projectively
distinct cubic surfaces is 8, 6, 122, 243 as shown in Table 2. Therefore, the number of
cubic surfaces with twenty-seven lines in PG(3, 17) is

c17 = |PGL(4, 17)| ·
(1
8

+ 1

6
+ 2

12
+ 3

24

)

= 2851903720876769280 ·
(1
8

+ 1

6
+ 2

12
+ 3

24

)

= 1663610503844782080

= 176(172 − 1)(173 − 1)(174 − 1)(17 − 2)(17 − 3)(17 − 5)2

51840
.

For q = 19, the distribution of the automorphism group orders of the projectively
distinct cubic surface with 27 lines is 42, 62, 12, 242, 54, 120, 648 as shown in Table 2.
Therefore, the number of cubic surfaces with twenty-seven lines in PG(3, 19) is

c19 = |PGL(4, 19)| ·
(2
4

+ 2

6
+ 1

12
+ 2

24
+ 1

54
+ 1

120
+ 1

648

)

= 15136750711925049600 ·
(2
4

+ 2

6
+ 1

12
+ 2

24
+ 1

54
+ 1

120
+ 1

648

)

= 15566559682757489280

= 196(192 − 1)(193 − 1)(194 − 1)(19 − 2)(19 − 3)(19 − 5)2

51840
.
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