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Abstract
We study the change of the minimal degree of a logarithmic derivation of a hyperplane
arrangement under the addition or the deletion of a hyperplane and give a number of
applications. First, we prove the existence of Tjurina maximal line arrangements in a
lot of new situations. Then, starting with Ziegler’s example of a pair of arrangements
of d = 9 lines with n3 = 6 triple points in addition to some double points, having
the same combinatorics, but distinct minimal degree of a logarithmic derivation, we
construct new examples of such pairs, for any number d ≥ 9 of lines, and any number
n3 ≥ 6 of triple points. Moreover, we show that such examples are not possible for
line arrangements having only double and triple points, with n3 ≤ 5.
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1 Introduction

LetK be a field of characteristic zero, consider the polynomial ring S = K[x1, . . . , x�]
with the usual grading, i.e., S = ⊕d∈Z≥0 Sd , and for an S-graded module M , let
M = ⊕d∈ZMd be its decomposition according to the grading. Let X be a reduced
projective hypersurface in P

�−1, defined by a homogeneous polynomial f ∈ Sd of
degree d. We assume that X is essential, that is, X is not the cone over a projective
hypersurface in somePn with n < �−1.When X = A is a hyperplane arrangement,
the main situation considered below, this definition agrees with the usual one. The
details will be recalled in the next section. Let

Der S := ⊕�
i=1S∂xi

be the module of derivations of S, a Z-graded free S-module of rank �. Here, 0 �=
θ ∈ Der S is homogeneous of degree e if θ(g) is zero or homogeneous of degree e for
all g ∈ S1. For example, the Euler derivation θE := ∑�

i=1 xi∂xi is homogeneous of
degree 1. The logarithmic derivation module D(X) of the hypersurface X is defined
by

D(X) := {θ ∈ Der S | θ( f ) ⊂ ( f )},

where ( f ) denotes the principal ideal generated by f in S. It is known that D(X) is an
S-graded reflexive module, but not free in general. It is clear that θE ∈ D(X). We say
that X has exponents exp(X) = (d1, . . . , dk) if there are homogeneous derivations
θ1 = θE , . . . , θk with deg θ j = d j which form a minimal set of generators for the
graded S-module D(X). Since X is essential, it follows that d j > 0 for all j . When
these integers d j are written in increasing order, we use the notation

(d1, . . . , dk)≤.

Consider the graded S-submodule D0(X) = {θ ∈ D(X) | θ( f ) = 0} in D(X) and
note the decomposition D(X) = D0(X) ⊕ SθE . Because of this decomposition, it is
usual to choose the minimal generators θ j above such that θ j ∈ D0(X) for j > 1. If
θ = ∑�

i=1 ai∂xi with ai ∈ Sr for some integer r , the condition θ( f ) = 0 translates
into the following homogeneous Jacobian relation or Jacobian syzygy

�∑

i=1

ai fxi = 0, (1.1)

involving the partial derivatives fxi = ∂xi f of the polynomial f . In this way, the
generators θ j for j > 1 are sometimes identifiedwith Jacobian relations. This explains
the following.
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Definition 1.1 Theminimal degree of a Jacobian relation of X , denoted by r(X) or
mdr(X), is defined by

r(X) = min
r∈Z

{r | D0(X)r �= (0)}.

In other words, r(X) is exactly the α-invariant α(D0(X)), or the initial degree
indeg(D0(X)), of the graded S-module D0(X), see [20,21]. If (d1, . . . , dk)≤ are
the exponents of X , then d1 = 1 and d2 = r(X). We say that the hypersurface X is
free if k = �, i.e., the graded S-module D(X) is free. When this happens, one has

d1 + . . . + d� = d.

In particular, for a free plane curve X (the case when � = 3), the exponents are
determined by r(X), namely

exp(X) = (1, r(X), d − 1 − r(X)), (1.2)

and r(X) ≤ (d − 1)/2. Recall that a plane curve X is nearly free when its exponents
are given by exp(X) = (1, r(X), d − r(X), d − r(X)) with the unique relation at
degree d − r(X) + 1, see [14,16].

The main motivation of this paper, and the reason to study the invariant r(X), is
the following conjecture due to H. Terao.

Conjecture 1.2 LetA andB be two hyperplane arrangements, having isomorphic inter-
section lattices L(A) ∼= L(B). If A is free, then B is also free.

Formore onTerao’s conjecture, aswell as for basic information on hyperplane arrange-
ments, we refer to [8,23]. This conjecture is open, even in the case of line arrangements
in P

2, in spite of a lot of work and partial results in the recent years, see [2,3,13,28].
Note that the freeness of a line arrangementA is not determined by theweak combi-
natorics of A, namely the numbers n j of points in A of multiplicity j ≥ 2, see [22].
In the case of line arrangements, using (1.2) and a result by A. du Plessis and C.T.C.
Wall quoted below in Theorem 4.2, Terao’s conjecture can be restated as follows.

Conjecture 1.3 LetA and B be two line arrangements, having isomorphic intersection
lattices L(A) ∼= L(B). If A is free, then r(A) = r(B).

It is known that the intersection lattice L(A) does not determine the integer r(A) in
general: indeed, G. Ziegler produced two arrangementsA andB of d = 9 lines, having
only double and triple points, such that L(A) ∼= L(B), and 5 = r(A) �= r(B) = 6,
see Remark 3.9 for more details. However, the following stronger form of Terao’s
conjecture might be true.

Conjecture 1.4 LetA and B be two arrangements of d lines, having isomorphic inter-
section lattices L(A) ∼= L(B). If r(A) < d/2, then r(A) = r(B).

Note that in [22], the authors produce two arrangementsA andB of d lines, having the
sameweak combinatorics, and such that r(A) < d/2 and r(A) �= r(B). Conjecture 1.4
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can be stated in a more geometric way as follows, when K = C. Let E(A) be the
rank 2 vector bundle on P

2 naturally associated with the reflexive graded S-module
D0(A). For a generic line L in P

2, the restriction E(A)|L splits as a direct sum
OL(−e1) ⊕ OL(−e2). The pair (e1, e2) is called the generic splitting type of the
bundle E(A), and it is known that the two pairs (e1, e2) and (d, r(A)) determine each
other when r(A) < d/2, with d = |A|, see [5, Propositions 3.1 and 3.2] and [11,
Theorem 1.2]. When r(A) ≥ d/2, it follows from [5,11] that the generic splitting type
(e1, e2) is determined by d and the global Tjurina number τ(A), which is determined
in turn by the weak combinatorics of A via the well-known formula

τ(A) =
∑

j≥2

n j ( j − 1)2. (1.3)

Hence, Conjecture 1.4 is equivalent, whenK = C, to the following conjecture, which
has already appeared in [7, Question 7.12] and in [5].

Conjecture 1.5 LetA and B be two line arrangements, having isomorphic intersection
lattices L(A) ∼= L(B). Then, the rank 2 vector bundles E(A) and E(B) have the same
generic splitting type.

Note that in spite of Ziegler’s example mentioned above, Conjecture 1.5 holds for line
arrangements having only double and triple points, see Remark 4.21.

In this paper, we start a detailed investigation of the dependence of the minimal
degree r(A) of a Jacobian relation of a hyperplane arrangementA on the combinatorics
of A. As a first step, we study the change of the invariant r(A) of a hyperplane
arrangementA under the addition or the deletion of a hyperplane H and give a number
of applications.

In Sect. 2, after some preliminary material on arrangements, we establish the main
general addition–deletion result for the invariant r(A) of a hyperplane arrangement
A, see Theorem 2.14. The special case of free hyperplane arrangements is discussed in
Theorem 2.18. Other authors have considered addition–deletion to study the logarith-
mic derivation module D(A), see, for instance, [24,26], but without paying attention
to the invariant r(A).

In Sect. 3, we concentrate our attention to a line arrangement A in P
2. The corre-

sponding addition–deletion results for r(A) are stated in Theorems 3.3 and 3.4, while
the case of free line arrangements is discussed in Theorem 3.6. We then recall the
relation between the invariant r(A) and the maximal multiplicity m(A) of an inter-
section point of the line arrangement A following [9]. Corollary 3.8 says that r(A) is
determined by the weak combinatorics of A when 2m(A) ≥ |A|.

In Sect. 4, we give some applications of the above results. The result byA. du Plessis
and C.T.C. Wall quoted below in Theorem 4.2 gives an upper bound τ(d, r)max for
the global Tjurina number τ(C) of a reduced plane curve C , in terms of its degree d
and the invariant r = r(C). A curve C , for which the equality τ(C) = τ(d, r)max

holds, is called a maximal Tjurina curve of type (d, r). For any pair (d, r), with
1 ≤ r < d/2, a maximal Tjurina curve of type (d, r) is nothing else but a free curve
C of degree d with r(C) = r , and the existence of such curves, even in the class of
line arrangements, follows from [14]. For the pairs of the form (d = 2r , r), a maximal
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Tjurina curve of type (d, r) is nothing else but a nearly free curve C of degree d = 2r
with r(C) = r , and the existence of such curves, even in the class of line arrangements,
follows again from [14]. The existence of maximal Tjurina curves of type (d, r) when
d/2 < r ≤ d − 2, is much more subtle. The following conjecture was stated in [17].

Conjecture 1.6 For any integer d ≥ 5 and for any integer r such that d/2 < r ≤ d−2,
there are maximal Tjurina line arrangements of type (d, r).

As noted in [17], the generic line arrangement of d lines is Tjurina maximal of type
(d, d − 2) for any d ≥ 2, see also Remark 4.12 below. Line arrangements which are
potentially maximal Tjurina of the following types:

(1) (d, r) = (2r − 1, r) for r ≥ 3,
(2) (d, r) = (d, d − 4) for d ≥ 8, and
(3) (d, r) = (d, d − 3) for d ≥ 7

have been put forth in [17], following numerical experiments with SINGULAR. The
fact that these arrangements are indeed maximal Tjurina is proved here, see Corol-
lary 4.5 for type (1), Theorem 4.10 for type (2), and Theorem 4.11 for type (3).
As a result, Conjecture 1.6 holds in all these extremal cases for r in the interval
d/2 < r < d − 2. The existence of maximal Tjurina curves of type (d, r) when
d/2 < r < d − 2, in a lot of new cases, is proved in Theorem 4.4, Proposition 4.6 and
Remark 4.8.

We continue Sect. 4 by investigating the effect on r(A) of adding a generic line,
either passing through a point of maximal multiplicity of A, or just transversal to A,
see Propositions 4.14 and 4.15 . Using these results and our main addition–deletion
result, Theorem 3.3, we determine the invariant r(A) in the case of line arrangements
having only double and triple points, when the number of triple points n3 is ≤ 5, see
Theorem 4.18. The conclusion is that in these cases the invariant r(A) is determined
by the combinatorics ofA, in a precise, but rather complicated way. Ziegler’s example,
which was the only known example of this type until now, shows that this result is
sharp, i.e., it does not extend for the situation n3 ≥ 6, see Corollary 4.20. In fact, using
Ziegler’s example and adding well-chosen lines, we can construct similar examples of
pairs of arrangements of d lines, having only double and triple points, for any d ≥ 9
and any possible weak combinatorial data (n2, n3), when n3 ≥ 6, see the Proof of
Corollary 4.20.

We also note that results in this paper are used in [12] to prove the irreducibility of
the unexpected curves of minimal possible degree in many situations, see [7] for the
relevant definitions.

We would like to thank the referee for the careful reading of our manuscript.

2 Hyperplane arrangements

2.1 Preliminaries

First, we recall some definitions and notations. Let V = K
�, x1, . . . , x� a basis for V ∗

and let S := Sym∗(V ∗) = K[x1, . . . , x�]. We say that A is a hyperplane arrange-
ment in V if A is a finite set of linear hyperplanes in V . We say that A is essential
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if ∩H∈AH = {0}. We assume that all arrangements are essential unless otherwise
specified. For H ∈ A, let AH := {H ∩ L | L ∈ A \ {H}} be the restriction of A to
H . Let L(A) := {∩H∈BH | B ⊂ A} be the intersection lattice of A. Then, we can
define the Möbius function μ : L(A) → Z by μ(V ) = 1, and by

μ(X) := −
∑

X�Y⊂V , Y∈L(A)

μ(Y ).

Then, we can define the characteristic polynomial χ(A; t) by

χ(A; t) :=
∑

X∈L(A)

μ(X)tdim X =
�∑

i=0

bi (A)t i .

If A �= ∅, then χ(A; t) is divisible by (t − 1). Let

χ0(A; t) := χ(A; t)/(t − 1) =
�−1∑

i=0

b0i (A)t i .

It is easy to show that

b1(A) = |A|, b01(A) = |A| − 1, b02(A) = b2(A) − |A| + 1.

For H ∈ A fix a linear form αH ∈ V ∗ such that ker αH = H . Then, the logarithmic
derivation module D(A) can be defined in this situation as follows:

D(A) := {θ ∈ Der S | θ(αH ) ∈ SαH (∀H ∈ A)}.

For Q(A) := ∏
H∈A αH , one has as in the Introduction

D0(A) := {θ ∈ Der S | θ(Q(A)) = 0}.

The first easy, but important lemma is the following.

Lemma 2.2 (Lemma1.33, [28]) For H ∈ A, let DH (A) := {θ ∈ D(A) | θ(αH ) = 0}.
Then,

D(A) = D0(A) ⊕ SθE = DH (A) ⊕ SθE .

In particular, if A �= ∅,

D0(A) � D(A)/SθE � DH (A)

for any H ∈ A.
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Lemma 2.2 is a well-known classical result in arrangement theory. It implies in
particular the equality

r(A) = min
d∈Z

{d | DH (A)d �= (0)}, (2.1)

for any H ∈ A. In the study of r(A), Lemma 2.2 shows a big difference of hyperplane
arrangements compared with, say, the case of general plane curves. The reason is that,
for L ∈ A′ := A \ {H}, Lemma 2.2 and the definition of logarithmic vector fields
show that

D0(A) � DL(A) ⊂ DL(A′) � D0(A′).

Thus, we can directly compare r(A) and r(A′). To compare them more precisely, the
following result due to Terao always plays the key role.

Theorem 2.3 (Terao’s polynomial B-theory, [25]) Let H ∈ A, A′ := A \ {H}, and
let us define the homogeneous degree |A′| − |AH |-polynomial B by

B :=
∏

X∈AH

αν(X),

where ν : AH → A is a section satisfying that ν(X) ∩ H = X. Then,

(1) for an arbitrary θ ∈ D(A′), it holds that

θ(αH ) ∈ (αH , B),

where (αH , B) denotes the ideal of S generated by αH and B. Thus, θ ∈ D(A′)
is in D(A) if deg θ < |A′| − |AH |.

(2) Assume that there isϕ ∈ D(A′) such that deg ϕ = |A′|−|AH | and thatϕ /∈ D(A).
Then for θ ∈ D(A′), there is f ∈ S such that θ − f ϕ ∈ D(A). Thus,

D(A′) = D(A) + S · ϕ.

To compare algebraic structures of D(A) and D(A′), the most useful tool is Terao’s
addition–deletion. Since r(A) sees only the lowest degree generator of D0(A), the
following variant of the addition–deletion theorem is useful.

Theorem 2.4 (Multiple deletion theorem, [6])LetA be a free hyperplane arrangement
with exp(A) = (1, d2, . . . , d�)≤. If there is H ∈ A such that |A| − |AH | = d2, then
A′ := A \ {H} is free with exp(A′) = (1, d2 − 1, d3, . . . , d�)≤.

To compare r(A), the following two restriction maps play important roles. Let us
introduce them. First, the Euler restriction ρ : D(A) → D(AH ) is defined by

ρ(θ)( f ) := θ( f )
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for θ ∈ D(A), f ∈ S/αH S. Here f denotes the image of f ∈ S by the canonical
surjection S → S/αH S. It is well known that there is an exact sequence

0 → D(A \ {H}) ·αH→ D(A)
ρ→ D(AH ).

Also, we have the other restriction. To introduce it, let us recall multiarrangements.
For an arrangement A, let m : A → Z>0 be a multiplicity, and the pair (A,m) is
called a multiarrangement. For H ∈ A, let δH be a multiplicity on A defined by
δH (L) = 1 if L = H , and 0 otherwise. We can define its logarithmic derivation
module D(A,m) by

D(A,m) := {θ ∈ Der S | θ(αH ) ∈ Sα
m(H)
H (∀H ∈ A)}.

We can define the freeness and exponents of D(A,m) in the same manner as for A.
We can construct multiarrangements canonically from an arrangement A and H ∈ A
as follows. Define the Ziegler multiplicity mH on AH by

mH (X) := |{L ∈ A \ {H} | L ∩ H = X}

for X ∈ AH . Then, the pair (AH ,mH ) is called the Ziegler restriction of A onto
H , and the map π = πH : DH (A) → D(AH ,mH ) obtained by taking modulo αH

is called the Ziegler restriction map. The most important results related to multiar-
rangements are the following two.

Theorem 2.5 ( [29]) Let A be free with exponents (1, d2, . . . , d�), and H ∈ A. Then,
(AH ,mH ) is free with exponents (d2, . . . , d�) for any H ∈ A.

Theorem 2.6 ( [27]) Let � = 3, H ∈ A and exp(AH ,mH ) = (d2, d3). Let π :
DH (A) → D(AH ,mH ) be the Ziegler restriction map. Then,

dimK coker π = b02(A) − d2d3,

and the equality holds if and only if A is free with exponents (1, d2, d3).

If we can determine the whole algebraic structure of D(A), then of course we can
see r(A), which is in general very difficult unless A is free. By [4], we can do it for
the arrangement that can be obtained by deleting one hyperplane from free one.

Theorem 2.7 (Theorem 1.4, [4]) Let A be free with exp(A) = (1, d2, . . . , d�). Let
H ∈ A with |A| − |AH | =: d + 1. If A′ := A \ {H} is not free, then D(A′) has a
minimal set of generators

θE , θ2, . . . , θ�, ϕ
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such that θE , θ2, . . . , θ� form a basis for D(A) with deg θi = di , ϕ /∈ D(A) is of
degree d, and there is the unique relation

�∑

i=1

fiθi + αHϕ = 0

for θ1 := θE , fi ∈ S.

Theorem 2.8 (Theorem 5.5, [4]) Let � = 3, H ∈ A and A′ := A \ {H}. Assume
that A is not free. Then, A′ is free with exp(A′) = (1, d2, d3) if and only if D(A) is
generated by derivations θE , θ2, θ3, ϕ of degrees deg θi = di + 1, degϕ = |AH | − 1
and there is the unique relation

f1θE + f2θ2 + f3θ3 + αHϕ = 0.

Since such arrangements are useful, we give them a name as follows.

Definition 2.9 (Definition 1.1, [4]) We say thatA is plus-one generated (POG) with
POexp(A) = (d1, . . . , d�) and level d if D(A) has a minimal set of generators

θE , θ2, . . . , θ�, ϕ

such that deg θi = di , degϕ = d, and there is the unique relation

�∑

i=1

fiθi + αϕ = 0

for some α ∈ V ∗.
We say that A is strongly plus-one generated (SPOG) with POexp(A) =

(d1, . . . , d�) and level d if D(A) has a minimal set of generators

θE , θ2, . . . , θ�, ϕ

such that deg θi = di , degϕ = d, and there is the unique relation

�∑

i=1

fiθi + αϕ = 0

for some α ∈ V ∗ \ {0}. Such a ϕ is called the level element, and such a set of minimal
generators is said to be a SPOG generator.

Remark 2.10 Note that when � = 3 all POG arrangements are SPOG by Proposition
5.1, [4].
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2.2 Addition–deletion theorems on r(A) for hyperplane arrangements

First let us show the most fundamental results on r(A).

Proposition 2.12 Let � ≥ 2, H ∈ A, A′ := A \ {H}. Then,
(1) r(A′) ≤ r(A) ≤ r(A′) + 1.
(2) If |A| − |AH | > r(A), then r(A) = r(A′).
(3) If |A′| − |AH | > r(A′), then r(A) = r(A′).

Proof Let L ∈ A′. Since ch(K) = 0, it holds that

D0(A′) � DL(A′), D0(A) � DL(A).

Sowemay consider only derivations in DL(A) and DL(A′). First assume that r(A′) ≤
r(A) − 2. Let θ ∈ DL(A′) be of degree r(A′). Then, αH θ ∈ DL(A) is zero by the
definition of r(A). Thus, r(A′)+ 1 ≥ r(A). Since DL(A′) ⊃ DL(A), r(A) ≥ r(A′),
completing the Proof of (1).

Next let us prove (2). Assume that r(A′)+1 = r(A) =: r . Let 0 �= θ ∈ DL(A′)r−1.
By Theorem 2.3, it holds that DL(A′)<|A′|−|AH | = DL(A)<|A′|−|AH |. In particular,
DL(A′)r−1 = DL(A)r−1. So θ ∈ DL(A)r−1 = (0). This is absurd. The same
argument shows (3). A quick proof can also be obtained using [23, Lemma 4.39 and
Proposition 4.41], which in turn are based on Theorem 2.3. ��

For an arrangement A, to study r(A), the Euler derivation does not appear, but it
is very important in the following sense.

Lemma 2.13 Let A �= ∅ and 0 �= θ ∈ D(A)d . Then, r(A) ≤ d if θ /∈ SθE .

Proof Let θ ′ := θ − θ(αH )
αH

θE ∈ DH (A)d for some H ∈ A. By the assumption, θ ′ �= 0,
which completes the proof. ��

Now let us introduce the addition–deletion theorems for r(A) in an arbitrary dimen-
sion.

Theorem 2.14 (Addition–deletion theorem for r(A)) Let � ≥ 2, H ∈ A and A′ :=
A \ {H}. Let r = r(A), r ′ = r(A′) and r ′′ = r(A′′) := r(AH ). Then, r = r ′ + 1 if
r ′ < r ′′.

Proof Assume that r ′ < r ′′ and r = r ′. Then, there is 0 �= θ ∈ DH (A′)r=r ′ such that
θ ∈ DH (A)r by Lemma 2.2. Let ρ : D(A) → D(AH ) be the Euler restriction. Since
r ′′ > r and deg ρ(θ) = r < r ′′, ρ(θ) is of the form ρ( f θE ) by Lemma 2.13. Since
θ /∈ SθE , we may replace θ by θ − f θE /∈ SθE and we may assume that ρ(θ) = 0.
Thus, θ = αH θ ′ with SθE �� θ ′ ∈ D(A′)r−1=r ′−1. By Lemma 2.13, θ ′ �= 0 implies
that r(A′) ≤ r ′ − 1, a contradiction. ��

The addition–deletion theorem is related with the restriction theorem in general.
For the effect of restriction on r(A), however, we cannot say much.
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Proposition 2.15 Let � ≥ 2, H ∈ A and A′ := A \ {H}. Let r = r(A), r ′ = r(A′)
and r ′′ = r(A′′) = r(AH ). Then, r ′′ ≤ r if r = r ′.

Proof By the same proof as in Theorem 2.14, there is a common 0 �= θ ∈ D(A′)r=r ′ ∩
D(A)r , and we may assume that 0 �= ρ(θ) ∈ D(AH )r \ (S/αH S)ρ(θE ). Therefore,
one has r ′′ ≤ r . ��
Remark 2.16 One can obtain a quick Proof of Theorem 2.14 and Proposition 2.15
using the exact sequence in [23, Proposition 4.45].

2.3 The case of free hyperplane arrangements

We can explicitly describe the behavior of r(A) when A is free.

Theorem 2.18 Let A be free with exp(A) = (1, d2, . . . , d�)≤. Let H ∈ A and A′ :=
A\ {H}. Then, r(A′) = d2 −1 if and only if |A|− |AH | = d2. Otherwise r(A′) = d2.

Proof Recall that r(A) = d2. If |A| − |AH | = d2, then A′ is free with exponents
(1, d2 − 1, d3, . . . , d�) by Theorem 2.4. Assume that r ′ := r(A′) = d2 − 1. Then,
|A|−|AH | has to be d2 ifA′ is free. Assume thatA′ is not free. Then by Theorem 2.7,
A′ is strictly plus-one generated with exponents (1, d2, . . . , d�)≤ and level |A| −
|AH | − 1 =: d. Let us show that d ≥ d2 − 1. Assume that d < d2 − 1. Note that

Q(A)
∏

X∈AH ανX
π(θE ) =: θH

E ∈ D(AH ,mH )

and d2 > d+1 = deg θH
E , whereπ : DH (A) → D(AH ,mH ) is the Ziegler restriction

map and ν is the section in Theorem 2.3. Since D(AH ,mH ) is free with exponents
(d2, . . . , d�) by Theorem 2.5, this is a contradiction. ��

3 Line arrangements

3.1 Addition–deletion theorems on r(A) for line arrangements

First, let us recall Terao’s addition–deletion theorem for line arrangements.

Theorem 3.2 (Terao’s addition–deletion theorem, [25]) Let � = 3, H ∈ A and A′ :=
A \ {H}. Then,
(1) A is free with exp(A) = (1, a, b + 1) if A′ is free with exp(A′) = (1, a, b) and

|AH | = a + 1.
(2) A′ is free with exp(A′) = (1, a, b − 1) if A is free with exp(A) = (1, a, b) and

|AH | = a + 1.

When � = 3, Theorem 2.14 is more combinatorial.
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Theorem 3.3 (Addition theorem for r(A)) Let � = 3 andA := A′∪{H}with H /∈ A′.
Assume that r(A′) = r ′. If |AH | ≥ r ′ + 2, then r(A) = r ′ + 1.

Proof Since exp(AH ) = (1, |AH |−1), |AH | ≥ r ′ +2 shows that r ′′ > r ′. Now apply
Theorem 2.14. ��
Theorem 3.4 (Deletion theorem for r(A)) Let � = 3 andA := A′ ∪{H}with H /∈ A′.
Assume that r(A) = r . If |AH | ≥ r + 2, then r(A′) = r − 1.

Proof Apply the same proof as in Theorem 3.3. ��

3.2 The case of free line arrangements

By the same reason as above, we can describe r(A) when � = 3 and the arrangement
A is free.

Theorem 3.6 Let � = 3, H ∈ A and A′ := A \ {H}.
(1) Assume that A is free with exp(A) = (1, d2, d3)≤. Then, r(A′) = d2 − 1 if and

only if |AH | = 1 + d3. Otherwise r(A′) = d2.
(2) Assume that A′ is free with exp(A′) = (1, d2, d3)≤. Then, r(A) = d2 + 1 if and

only if |AH | �= 1 + d2. Otherwise r(A) = d2.

Proof (1) follows fromTheorem2.18. Let us show (2). By [1],A is freewith exponents
(1, d2 + 1, d3) if and only if |A′| − |AH | = d3, and

|A′| − |AH | = d3, or |A′| − |AH | ≤ d2.

IfA is not free, thenA is strictly plus-one generated with exponents (1, d2+1, d3+1)
and level d = |AH | − 1 by Theorem 2.7. Since � = 3,A is SPOG. Thus, d ≥ d3 + 1.
Thus, mdr(A) = d2 + 1. Since this occurs if and only if |A′| − |AH | �= d2, d3, it
suffices to show that r := mdr(A) = d2 if |A′| − |AH | = d3, which is trivial since
exp(A) = (1, d2, d3 + 1) by Theorem 3.2. ��

3.3 Points of highmultiplicity and the invariant r(A)

In this subsection A′ : f ′ = 0 is a line arrangement, and p = (1 : 0 : 0) is
an intersection point on A′ of maximal multiplicity, say m′ = mult(A′, p). To this
situation, one can associate a primitive Jacobian syzygy as explained in [9, Section
2.2].We recall this construction here. Let g = 0 be the equation of the subarrangement
of A′ formed by the m′ lines in A′ passing through p. Then, we can write f ′ = gh
for some polynomial h ∈ S. Since g is a product of linear factors of the form sy + t z,
it follows that f ′

x = ghx and hence g = G.C .D.( f ′, f ′
x ). The syzygy constructed as

explained there is primitive and has degree r ′
p = d ′ − m′. As shown in [9, Theorem

1.2], the following cases are possible for r ′ = r(A′).
Case A: r ′ = r ′

p = d ′ − m′, in other words the constructed syzygy has minimal
degree.
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Case B: r ′ < r ′
p = d ′ − m′, in other words the constructed syzygy has not minimal

degree. Then, two situations are possible, namely
Subcase B1: r ′ = m′ − 1, and then, 2m′ < d ′ + 1 and A′ is free with exponents
d1 = 1, d2 = m′ − 1 < d3 = d ′ − m′, or
Subcase B2: m′ ≤ r ′ ≤ d ′ − m′ − 1, and then 2m′ < d ′.
This discussion implies the following.

Corollary 3.8 If the line arrangement A′ satisfies 2m′ ≥ d ′, then r ′ = r(A′) is deter-
mined by the weak combinatorics of A′.

Proof If 2m′ ≥ d ′ +1, it follows that only Case A is possible, and hence, r ′ = d ′ −m′.
When 2m′ = d ′, then both Case A and Subcase B1 are possible; hence, we have either
r ′ = m′ − 1 or r ′ = d ′ − m′ = m′. If A′ is in the situation of Subcase B1, then we
know that

τ(A′) = (d ′ − 1)2 − r ′(d − r ′ − 1) = (d ′ − 1)2 − (m′ − 1)(d ′ − m′).

On the other hand, if A′ is in the situation of Case A, then we know that

τ(A′) ≤ (d ′ − 1)2 − r ′(d − r ′ − 1) − 1 = (d ′ − 1)2 − (d ′ − m′)(m′ − 1) − 1,

see [10,18]. Since the total Tjurina number is determined by the weak combinatorics,
recall (1.3), this completes the proof. ��

Remark 3.9 In Ziegler’s celebrated example, see [30], we have two line arrangements
A′

1 and A′
2 of degree d ′ = 9 and such that m′ = 3 in both cases. For one of them,

say for A′
1, the six triple points are on a conic, and one has r ′

1 = 5 = d ′ − m′ − 1;
hence, we are in Subcase B2 above. For the other one, say forA′

2, the six triple points
are not on a conic, and one has r ′

2 = 6 = d ′ − m′, so we are in Case A. This shows
that the combinatorics of A′ cannot decide in which case A, B1 or B2 we are in the
above discussion. This example is discussed in [8, Remark 8.5]. One can find there
some equations for the arrangements A′

1 and A′
2, namely

A′
1 : xy(x − y − z)(x − y + z)(2x + y − 2z)

×(x + 3y − 3z)(3x + 2y + 3z)(x + 5y + 5z)(7x − 4y − z) = 0

and

A′
2 : xy(4x − 5y − 5z)(x − y + z)(16x + 13y − 20z)

×(x + 3y − 3z)(3x + 2y + 3z)(x + 5y + 5z)(7x − 4y − z) = 0.

In fact, the equation for A′
2 given in [8, Remark 8.5] is not correct, and we take the

opportunity here to correct this equation.
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4 Applications

4.1 Line arrangements which are Tjurinamaximal

Recall that the global Tjurina number τ(C) of the plane curve C : f = 0 can be
defined as either the degree of the Jacobian ideal J f = ( fx , fy, fz), or as the sum
of the Tjurina numbers of all the singularities of the curve C . It was shown by A. du
Plessis and C.T.C. Wall that one has the following result, see [18, Theorem 3.2], and
also [19, Theorem 20] for a new approach.

Theorem 4.2 Let C : f = 0 be a reduced plane curve of degree d and let r = mdr(C).
Then, the following hold.

(1) If r < d/2, then τ(C) ≤ τ(d, r)max = (d − 1)(d − r − 1) + r2 and the equality
holds if and only if the curve C is free.

(2) If d/2 ≤ r ≤ d − 1, then τ(C) ≤ τ(d, r)max , where, in this case, we set

τ(d, r)max = (d − 1)(d − r − 1) + r2 −
(
2r − d + 2

2

)

.

The curve C : f = 0 in this Theorem is calledmaximal Tjurina of type (d, r) if one
has the equality

τ(C) = τ(d, r)max .

The characterization and the existence of maximal Tjurina curves of type (d, r), with
d/2 ≤ r ≤ d − 1 is discussed in [17]. In this note we prove the existence of maximal
Tjurina curves of type (d, r) in many cases. We start with the following.

Proposition 4.3 If A′ : f ′ = 0 is a Tjurina maximal line arrangement of type (d ′, r ′)
with r ′ ≥ (d ′ − 1)/2 and H is a new line in P

2 such that

|A′ ∩ H | = r ′ + 2,

thenA = A′ ∪H is a Tjurina maximal line arrangement of type (d, r)with d = d ′ +1
and r = r ′ + 1.

Proof First note that Theorem 3.3 implies that r = r(A) = r(A′)+1 = r ′ +1. Hence
to show that A is a Tjurina maximal line arrangement of type (d, r), it is enough to
show that it has the global Tjurina number τ(A) = τ(d, r)max , given by the formula
in Theorem 4.2 (2). Indeed, it is clear that r ′ ≥ (d ′ − 1)/2 implies r ≥ (d − 1)/2. A
direct computation shows that this yields the following

τ(A) − τ(A′) = 2d ′ − r ′ − 2. (4.1)

To measure the difference τ(A)− τ(A′), assume thatA′ ∩ H consists of s points, say
p1, . . . , ps , with multiplicities m1, . . . ,ms regarded as points on A′. When we add
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the new line H , the point p j will have multiplicity m j + 1, so the increase in Tjurina
number at p j is

m2
j − (m j − 1)2 = 2m j − 1.

It follows that
τ(A) − τ(A′) =

∑

j=1,s

(2m j − 1) = 2d ′ − s. (4.2)

This ends the proof of the claim. ��
Theorem 4.4 Given a pair of positive integers (d, r) such that d ≥ 4 and

d

2
≤ r ≤ 2

3
(d − 1),

then there is a real line arrangementA in P2 which is Tjurina maximal of type (d, r).

Proof We set r = d − k for some k ≥ 2, and the equalities involving d and r in
Theorem 4.4 are equivalent to

2k ≤ d ≤ 3k − 2.

Hence, we have to show the existence of a real line arrangement A in P
2 which is

Tjurina maximal of type (d, d − k), where d and k satisfy the above inequalities. We
start with the line arrangement

A0 : f0(x, y, z) = x(x − z) . . . (x − (k − 2)z)y(y − z) . . . (y − (k − 2)z)z = 0,

which is free, even supersolvable, and also Tjurina maximal of type (2k − 1, k − 1).
If we add the line

H1 : y = x + z,

then we can apply Proposition 4.3 with A′ = A0 and H = H1, since

|H1 ∩ A0| = k + 1,

see Fig. 1 to understand why this equality holds, or read the explanation in the general
case given below when we add Hj+1 to A j . We get that

A1 = A0 ∪ H1 : f1(x, y, z) = f0(x, y, z)(x − y + z) = 0

is a Tjurina maximal line arrangement of type (2k, k). Then, we add the line

H2 : y = x + 2z,
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and apply Proposition 4.3 with A′ = A1 and H = H2. We get that

A2 = A1 ∪ H2 : f2(x, y, z) = f0(x, y, z)(x − y + z)(x − y + 2z) = 0

is a Tjurina maximal line arrangement of type (2k + 1, k + 1). Assume now that A j

has been constructed, for 2 ≤ j < k−2, and it is a Tjurina maximal line arrangement
of type (2k + j − 1, k + j − 1). Then, we construct A j+1 by adding the new line

Hj+1 : y = x + ( j + 1)z

and apply Proposition 4.3 with A′ = A j and H = Hj+1. Indeed, the new line
H = Hj+1 intersects the line arrangement A′ = A j in k − j − 2 double points of
A′, 2 j + 2 simple points of A′ and one point of multiplicity j + 1 of A′, namely
(1 : 1 : 0). Bezout theorem yields

2(k − j − 2) + (2 j + 2) + j + 1 = 2k + j − 1 = deg(A j ),

and this shows that we have listed all the intersection points. It follows that

|A j ∪ Hj+1| = (k − j − 2) + (2 j + 2) + 1 = k + j + 1 = r(A j ) + 2,

and hence indeed one can apply Proposition 4.3. We get that

A j+1 = A j ∪ Hj+1 : f j+1(x, y, z)

= f0(x, y, z)(x − y + z) . . . (x − y + ( j + 1)z) = 0

is a Tjurina maximal line arrangement of type (2k + j, k + j). This construction ends
when we constructAk−1, because after this value the hypothesis of Proposition 4.3 is
no longer verified. ��
Corollary 4.5 For any odd degree d = 2r − 1 ≥ 7, there is a maximal Tjurina real
line arrangement of type (2r − 1, r).

Proof Just consider the arrangement A2 in the above proof. ��
Note that the last arrangementAk−1 constructed in the Proof of Theorem 4.4 consists
of the line at infinity z = 0 and three families of parallel lines, each containing k − 1
lines. Hence, this arrangement has three points of maximal multiplicity equal to k on
the line at infinity. When d − r = k = 2k′ + 1 is odd, we can continue the above
construction and get a stronger result.

Proposition 4.6 Given a pair of positive integer (d, r) such that d ≥ 4, k = d − r is
odd and

d

2
≤ r ≤ 3

4
(d − 1),

then there is a real line arrangementA in P2 which is Tjurina maximal of type (d, r).
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Proof When d − r = k = 2k′ + 1 is odd, we can continue the above construction in
two steps, as follows. Recall thatAk−1 is a Tjurina maximal line arrangement of type
(3k − 2, 2k − 2). To get Ak from Ak−1 we add the line

Hk : x + y = 3k′z.

Note that Hk does the following.

a) It intersects vertical lines x − az = 0 in (a : 3k′ − a : 1);
b) It intersects horizontal lines y − bz = 0 in (3k′ − b : b : 1);
c) It intersects oblique lines y = x + cz in (3k′ − c : 3k′ + c : 2).
One can see when two such points are the same, and when they are not, and use
inclusion–exclusion principle to count them only once. In this way we get that line
Hk intersects the line arrangement A0 in 3k′ + 2 points, namely one point on the line
at infinity, k′ + 1 points situated only on vertical lines x − az = 0 for 0 ≤ a ≤ k′,
k′ + 1 points situated only on horizontal lines y − az = 0 for 0 ≤ a ≤ k′, and k′ − 1
points situated at the intersection of a vertical line x − az = 0 with a horizontal line
y − (3k′ − a)z = 0 for k′ + 1 ≤ a ≤ 2k′ − 1. The intersection of Hk with the line
y − x − bz = 0 for 1 ≤ b ≤ k − 1 = 2k′ is the point

(3k′ − b : 3k′ + b : 2).

This point gives a new intersection point of Hk with the line arrangementAk−1 exactly
when k′ − b is an odd integer. Since b can take k′ even values and k′ odd values, this
happens exactly k′ times. It follows that

|Hk ∩ Ak−1| = 3k′ + 2 + k′ = 4k′ + 2 = 2k = (2k − 2) + 2.

Hence, we can use Proposition 4.3 and we get that Ak is a Tjurina maximal line
arrangement of type (3k − 1, 2k − 1). Then, in the first step, we add the lines

Hj : x + y = (3k′ + j − k)z,

for j = 2k′ + 2, ..., 3k′, to get new line arrangements A j = Ak−1 ∪ Hk ∪ . . . ∪ Hj ,
which are Tjurina maximal of type (2k+ j−1, k+ j−1) for each j = 2k′+2, ..., 3k′.
Indeed, in each case one can count the intersection points in Hj ∩ A j−1 as above,
and conclude that Proposition 4.3 may be applied. If we increase the coefficient of
z beyond this value 6k′ − k = 2k − 3, the number of intersection points in A′ ∩ H
is no longer a strictly increasing sequence q, q + 1, q + 2, ... as until now, but has
repetitions of the form q, q, q+1, q+1, q+2, q+2, ..., and hence, we have a choice
in selecting the new line to add between two possibilities. This is the second step in
this construction. The largest type we can get in this way is (4k − 3, 3k − 3), and we
denote such an arrangement byA2k−2, since it is obtained fromA0 by adding 2k − 2
lines. ��
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Note that the last arrangement A2k−2 constructed in the Proof of Proposition 4.6
consists of the line at infinity z = 0 and four families of parallel lines, each containing
k − 1 lines. Hence, this arrangement has four points of maximal multiplicity equal to
k on the line at infinity.

Example 4.7 As an illustration, consider the case k = 7, and hence, k′ = 3. The
first sequence of line arrangements constructed in the Proof of Theorem 4.4 has the
following equations

A0 : f0(x, y, z) = x(x − z) . . . (x − 5z)y(y − z) . . . (y − 5z)z = 0,

and

A j : f j (x, y, z) = f0(x, y, z)(x − y + z)(x − y + 2z) . . . (x − y + j z) = 0,

for j = 1, 2, ..., 6. In other words Hj : x − y + j z = 0, see Figure 1. The arrange-
ments constructed in the first step in Proposition 4.6 consist of the following two
arrangements

A7 = A6 ∪ {H7} : f7(x, y, z) = f6(x, y, z)(x + y − 9z)

and

A8 = A7 ∪ {H8} : f8(x, y, z) = f7(x, y, z)(x + y − 10z).

The second sequence of arrangements constructed in Proposition 4.6, when a choice is
possible, consists of the following four arrangements obtained by taking the minimal
absolute value for the coefficient of z:

A9 = A8 ∪ {H9} : f9(x, y, z) = f8(x, y, z)(x + y − 11z),

A10 = A9 ∪ {H10} : f10(x, y, z) = f9(x, y, z)(x + y − 13z),

A11 = A10 ∪ {H11} : f11(x, y, z) = f10(x, y, z)(x + y − 15z),

and

A12 = A11 ∪ {H12} : f12(x, y, z) = f11(x, y, z)(x + y − 17z).

Note that A0 has 2k − 1 = 13 lines, and A12 has 13 + 12 = 25 = 4k − 3 lines, as
expected. Here A j is a Tjurina maximal line arrangement of type (13+ j, 6+ j) for
j = 0, 1, ..., 12.

Remark 4.8 When k = 2k′ is even, then there are two cases. When k′ is odd, we
have found no simple way to add a new line to Ak−1 in order to get a larger Tjurina
maximal line arrangement. This is due to the fact that the number of intersection points
inA′ ∩ H in this case, for H a line of the form to x + y − az = 0, has repetitions and
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H1

H2

H3

H4

H5

H6

H7

H8

H9

H10

H11

H12

Fig. 1 The arrangements from Example 4.7. The line at infinity z = 0 is not drawn

gaps of the form 2q + 1, 2q + 1, 2q + 3, 2q + 3, ..., i.e., we get only odd numbers,
and hence, it is impossible to apply Proposition 4.3. When k′ is even, we can construct
Ak as follows: we add the line

Hk : x + y = (3k′ − 2)z.

Using Proposition 4.3 we get that Ak is a Tjurina maximal line arrangement of type
(3k − 1, 2k − 1). However, this construction stops here, since in this case the number
of intersection points in A′ ∩ H has repetitions and gaps of the form 2q, 2q, 2q +
2, 2q + 2, ....

Example 4.9 As an illustration, consider the case k = 8, and hence, k′ = 4. The
first sequence of line arrangements constructed in the Proof of Theorem 4.4 has the
following equations

A0 : f0(x, y, z) = x(x − z) . . . (x − 6z)y(y − z) . . . (y − 6z)z = 0,

and

A j : f j (x, y, z) = f0(x, y, z)(x − y + z)(x − y + 2z) . . . (x − y + j z) = 0,

for j = 1, 2, ..., 7. The largest line arrangement constructed in Remark 4.8 is the
following:

A8 : f8(x, y, z) = f7(x, y, z)(x + y − 10z).

Here A j is a Tjurina maximal line arrangement of type (15 + j, 7 + j) for j =
0, 1, ..., 8.
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Consider now the question of the existence ofmaximal Tjurina line arrangementsA
of d lines with large invariant r = r(A)with respect to d. The first case we consider is
r = d−4, see Remark 4.12 below. To give a positive answer to this question, consider
the following arrangements A3p+2 for p ≥ 2, defined by

xy
( x

2p+1 + y

3p+1 − z
) p∏

j=1

( x

2 j
+ y

3 j
− z

) ( x

2 j
+ y

3 j+1 − z
)

×
p−1∏

j=1

(
x

2 j
+ y

3 j+2 − z) = 0,

A3p+3 = A3p+2 ∪ {H1}

with H1 : 27x − 8y = 0, and

A3p+4 = A3p+3 ∪ {H2}

with H2 : x − y = 0. Using these three families of line arrangements, we can define
Ad for all d ≥ 8. The following result proves a conjecture made in [17], where it was
shown thatAd is a maximal Tjurina line arrangement of type (d, d − 4) if and only if
r(Ad) = d − 4.

Note that the line

x

2c
+ y

3d
− z = 0

intersects the line

i) x = 0 in (0 : 3d : 1);
ii) y = 0 in (2c : 0 : 1);
iii) x

2a + y
3b

− z = 0 in

((3b − 3d)2a+c : (2c − 2a)3b+d : 3b2c − 3d2a).

Note that, if a = c (and necessarily, b �= d), we get the point (2c : 0 : 1); and if b = d
(and necessarily, a �= c) we get the point (0 : 3d : 1).
Theorem 4.10 Let Ad be the arrangement defined above. Then, r(Ad) = d − 4 for
all d ≥ 8.

Proof We know that the statement is true when d is small by [17]. We use first a
recursive argument on p ≥ 2 to show that r(A3p+2) = 3p − 2. The inductive step
will be to go from A3p+2 to A3p(p+1)+2 = A3p+5, and to do this we apply Theorem
3.3 three times. To fill in the gaps not covered by this induction, one can similarly
apply Theorem 3.3 for each of the steps A3p+2 → A3p+3 and A3p+3 → A3p+4
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Here are the details for the first step.We add three lines, namely we setB = A3p+2,
B′ = B ∪ H ′ where

H ′ : x

2p
+ y

3p+2 − z = 0,

B′′ = B′ ∪ H ′′ where

H ′′ : x

2p+1 + y

3p+2 − z = 0

and B′′′ = B′′ ∪ H ′′′ = A3p+5 where

H ′′′ : x

2p+2 + y

3p+2 − z = 0.

Then, we apply Theorem 3.3 three times. First we have to pass from B to B′, and to
do this we have to check that |B ∩ H ′| ≥ r(B) + 2 = 3p. The line H ′ intersects B
transversely, except at one double point, located at (2p : 0 : 1). It follows that |B ∩
H ′| = degB−1 = (3p+2)−1 = 3p+1, andhence,we can applyTheorem3.3 andget
that r(B′) = r(B)+1 = 3p−1. Then, we check that |B′ ∩H ′′| ≥ r(B′)+2 = 3p+1.
The line H ′′ intersects B′ transversely, except at two double points, located at (2p+1 :
0 : 1) and (0 : 3p+2 : 1). It follows that |B′∩H ′′| = degB′−2 = (3p+3)−2 = 3p+1,
and hence, we can apply Theorem 3.3 and get that r(B′′) = r(B′) + 1 = 3p. Finally,
we have to check that |B′′ ∩ H ′′′| ≥ r(B′′) + 2 = 3p + 2. The line H ′′′ intersects
B′′ transversely, except at one triple point, located at (0 : 3p+2 : 1). It follows that
|B′′ ∩ H ′′′| = degB′′ − 2 = (3p + 4) − 2 = 3p + 2, and hence, we can apply
Theorem 3.3 and get that r(B′′′) = r(B′′) + 1 = 3p + 1 = deg(B′′′) − 4. This ends
the proof for the passage from A3p+2 to A3p+5. The case p = 2 is represented in
Figure 2. The other two passages can be justified in a completely similar manner. ��

Finally, consider the question of the existence of maximal Tjurina line arrangement
of d lines with r = d − 3. Define the families of line arrangements B2p by

xy
p−1∏

j=1

( x

2 j
+ y

3 j
− z

) ( x

2 j
+ y

3 j+1 − z
)

= 0,

and B2p+1 by

xy
( x

2p
+ y

3p
− z

) p−1∏

j=1

( x

2 j
+ y

3 j
− z

) ( x

2 j
+ y

3 j+1 − z
)

= 0,

Using these two families, we can define Bd for all d ≥ 7. In [17, Subsection 4.12] it
was shown that Bd is a maximal Tjurina line arrangement of type (d, d − 3) if and
only if r(Bd) = d − 3, and it was conjectured that one has r(Bd) = d − 3. By the
same proof as in Theorem 4.10, we can prove this conjecture.
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Fig. 2 The arrangements from
the Proof of Theorem 4.10, case
p = 2. The line at infinity is not
in these arrangements

3

9

27

81

0 2 4 8 16

H ′ H ′′ H ′′′

Theorem 4.11 Let Bd be the arrangement defined above. Then, r(Bd) = d − 3 for all
d ≥ 7.

Proof For small values of d the claim was established in [17] by a direct computation.
Assume now the claim holds for B2p+1, for some value of p. Then, to get B2p+2 from
B2p+1 we have to add the line

H ′ : x

2p
+ y

3p+1 − z = 0.

This line H ′ intersects B2p+1 transversely, except at one double point, located at
(2p : 0 : 1). It follows that

|B2p+1 ∩ H ′| = degB2p+1 − 1 = 2p = r(B2p+1) + 2,

and hence we can apply Theorem 3.3 and get that

r(B2p+2) = r(B2p+1) + 1 = 2p − 1 = deg(B2p+2) − 3.

Next, to pass from B2p+2 to B2p+3 we have to add the line

H ′′ : x

2p+1 + y

3p+1 − z = 0.

123



Journal of Algebraic Combinatorics (2021) 54:739–766 761

This line H ′′ intersects B2p+2 transversely, except at one double point, located at
(0 : 3p+1 : 1). It follows that

|B2p+2 ∩ H ′′| = degB2p+2 − 1 = 2p + 1 = r(B2p+2) + 2.

Hence, we can apply Theorem 3.3 and get that

r(B2p+3) = r(B2p+2) + 1 = 2p = deg(B2p+3) − 3.

��
Remark 4.12 For any line arrangement with d ≥ 2, one has r ≤ d − 2, by our
discussion before Corollary 3.8. Any generic line arrangement is maximal Tjurina
of type (d, d − 2) when d ≥ 2, see [17, Remark 2.2]; hence, the cases r = d − 4
and r = d − 3 considered in Theorems 4.10 and 4.11 are the largest possible values
of r where the existence of a maximal Tjurina line arrangement of type (d, r) is not
obvious.

4.2 Adding a generic line to a line arrangement

First we take a generic secant passing through the point p of maximal multiplicity m′
for the line arrangement A′.
Proposition 4.14 Let A′ : f ′ = 0 be a line arrangement, let L be a generic line
passing through the maximal multiplicity intersection point p ∈ A′, and let A =
A′ ∪ L : f = 0. Then, one has the following.

(1) The (weak) combinatorics of the line arrangementA′ determines the (weak) com-
binatorics of the line arrangement A. In particular, one has

τ(A) = τ(A′) + d ′ + m′ − 1.

(2) r = r ′ + 1 if r ′ < d ′ − m′.
(3) r = r ′ if r ′ = d ′ − m′.

Proof The first claim is obvious. To prove the second claim, we use Theorem 3.3. The
number of intersection points ofA on L is |AL | = 1+d ′ −m′ and hence the condition
in Theorem 3.3, namely

|AL | ≥ r ′ + 2

is equivalent to

1 + d ′ − m′ ≥ r ′ + 2

or

r ′ ≤ d ′ − m′ − 1.
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This condition is satisfied by our assumption r ′ < d ′ −m′. To prove the claim (3), note
that by Proposition 2.12 we have d ′ − m′ = r ′ ≤ r . On the other hand, [9, Theorem
1.2] implies r ≤ d −m = (d ′ + 1) − (m′ + 1) = d ′ −m′, where m = mult(A, p). ��
Next we add a generic line, meeting A′ only at simple points.

Proposition 4.15 Let A′ : f ′ = 0 be a line arrangement with d ′ ≥ 2 and L be a
generic line. Consider the new line arrangementA = A′ ∪ L : f = 0. Then, one has
the following.

(1) The (weak) combinatorics of the line arrangementA′ determines the (weak) com-
binatorics of the line arrangement A. In particular, one has

τ(A) = τ(A′) + d ′.

(2) r = r ′ + 1.

In particular, if A is a generic arrangement of d ≥ 2 lines, then r(A) = d − 2.

Proof The intersection points in A which are not the same as the corresponding ones
in A′ are the d ′ double points along the line L . These points add d ′ to the global
Tjurina number of A. The number of intersection points of A on L is |AL | = d ′ and
hence the condition in Theorem 3.3, namely

|AL | ≥ r ′ + 2

is equivalent to

d ′ ≥ r ′ + 2

This condition is satisfied, since r ′ ≤ d ′ − m′ ≤ d ′ − 2. The last claim is obvious for
d = 2, since the equation for A can be chosen to be xy = 0. The case d > 2 follows
by induction on d, using the point (2) above. ��
Example 4.16 Consider again Ziegler’s arrangementsA′

1 andA′
2 from Remark 3.9. If

we apply Proposition 4.14 (2) to the arrangementA′
1, we get a new arrangement with

r1 = r ′
1 + 1 = 5+ 1 = 6. If we apply Proposition 4.14 (3) to the arrangementA′

2, we
get a new arrangement with r2 = r ′

2 = 6. Hence by adding a generic line through a
triple point, the difference between r ′

1 and r
′
2 disappears. On the other hand, if we add

a generic line L to both arrangementsA′
1 andA′

2, we get again two line arrangements
A1 and A2 with d = 10, r1 = 5 + 1 = 6 < r2 = 6 + 1 = 7 and having the same
combinatorics. By continuing to add generic lines we can construct such pairs for any
d ≥ 9.

4.3 On line arrangements with double and triple points

Note that Ziegler’s arrangements A′
1 and A′

2 have both only double and triple points;
more precisely, n2 = 18 and n3 = 6. The following result says that n3 = 6 is the
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minimal value for which such pairs with the same combinatorics but distinct values
for r can be constructed.

Theorem 4.18 Let A be a line arrangement with d = |A| ≥ 2, having n2 double
points, n3 triple points and no points of higher multiplicity.

(1) If n3 = 0, then r(A) = d − 2.
(2) If 1 ≤ n3 ≤ 3, then r(A) = d − 3.
(3) If n3 = 4, then r(A) = d − 3, unless any line of the arrangement A, passing

through a triple point of A, contains an extra triple point of A. In this latter
situation, A is obtained, up to a change of coordinates, from the arrangement

A(2, 2, 3) : (x2 − y2)(x2 − z2)(y2 − z2) = 0

by adding d − 6 generic lines, and then, r(A) = d − 4.
(4) If n3 = 5, then there are two possibilities.
(A) There is at least one triple point p inA and a line L inA, passing through p and

containing only p as a triple point. If the line arrangementA′ = A\L is obtained,
up to a change of coordinates, from the arrangement A(2, 2, 3) by adding d − 7
generic lines, then r(A) = d − 4. Otherwise r(A) = d − 3.

(B) For any of the five triple points, the three lines meeting at this point contain each
at least an extra triple point, and then, r(A) = d − 4. The intersection lattice of
A in this case is the same as the intersection lattice of the arrangement obtained
by adding d − 7 generic lines to the following arrangement

B : y(y + x)(y − x)(y + x − 2z)(y − x − 2z)(3y + x − 2z)(3y − x − 2z) = 0.

Proof The claim (1) is well known, see, for instance, 4.15.
Consider now the claim (2). Let p be a triple point, and note that, since n3 ≤ 3,

there is a line L in A, passing through p, containing only p as a triple point. Indeed,
otherwise, we get at least three new triple points inA, at least one on each of the three
lines through p, which is a contradiction. Since r(A) ≤ d − m = d − 3, it is enough
to show that r = r(A) ≤ d − 4 leads to a contradiction.

Apply Theorem 3.4 to the arrangementA′ = A \ L and the line L . The number of
intersection points ofA on L is |AL | = d−2 and hence the condition in Theorem 3.4,
namely

|AL | ≥ r ′ + 2,

where r ′ = r(A′), is satisfied by our assumption. It follows that r ′ = r −1 ≤ d −5 =
d ′ −4.We start with the case n3 = 1. Then,A′ is nodal, so r ′ = d ′ −2 a contradiction.
Hence, in this case r = d − 3. The cases n3 = 2 and n3 = 3 can be treated in exactly
the same way, using the previous cases.

To treat the claim (3), note that there are two possibilities. The first one is that there
is a triple point p and a line L in A, passing through p and containing only p as a
triple point. Then, we can repeat the argument in the case (2) and get r = d − 3. The
second case is when, for any of the four triple points, the three lines meeting at this
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point contain each an extra triple point. Let p one of these triple points, denote by L1,
L2 and L3 the 3 lines passing through p, and let q j ∈ L j be the unique triple point on
L j distinct from p, for j = 1, 2, 3. Since any line through a triple point contains at
least another one, it follows that all the lines Li j determined by qi and q j for i �= j are
inA. Indeed, p, q1, q2 and q3 are the only triple points inA. This situation occurs for
the arrangementA(2, 2, 3), and it is known that this arrangement has r = 2 = d − 4.
If we are in this situation, the six lines determined by the four triple points form an
arrangementwhich is, up to a linear change of coordinates, the arrangementA(2, 2, 3).
The additional lines must create only double points, so they are generic lines. Using
Proposition 4.15, we see that for any arrangement A constructed in this way we get
r = d − 4.

In the final claim (4), if we are in case (A), we can delete the line L , and the resulting
arrangement A′ has n3 = 4. Hence, the two cases discussed in (3) are possible. More
precisely, we know that r ≤ d−m = d−3. Assume r ≤ d−4 and apply Theorem 3.4.
We get as above r ′ = r −1 ≤ d−5 = d ′ −4. Using the claim (3), we infer that in this
case A′ is obtained from the arrangement A(2, 2, 3) by adding d − 7 generic lines.

If we are in case (B), it is enough to check that for the arrangement B of seven lines
we have r(B) = 3, which follows by a direct computation using SINGULAR, and
then, we use Proposition 4.15.

The possible configurations of the five triple points in A are discussed next, and
this discussion shows that only the situations (A) and (B) are possible.
Case 1: Assume first that each line in A contains at most two triple points. If each
triple point p is connected to three other triple points by lines inA, it means that there
is a unique triple point p′ not connected to p. The five triple points are in this way
divided in a number of pairs {p, p′}, a contradiction. Hence, in this case we are in the
situation (A).
Case 2:Assume next that there is a unique line L ′ inA containing three or more triple
points. If L ′ contains at least four triple points, the claim is clear, any triple point p
on L ′ is a good choice, to see that we are again in situation (A). Assume now that L ′
contain three points p1, p2 and p3, and the remaining triple points are q1 and q2 are
not on L ′. Each of the points p j has to be connected with both points q1 and q2, in
order to avoid being again in the situation (A). In this way, by considering these seven
lines, we get a line arrangement with the same combinatorics as B. Therefore, if this
happens, we are in the situation (B).
Case 3: Assume finally that there are two lines L ′ and L ′′ in A containing each three
triple points. Then, the intersection point p = L ′ ∩ L ′′ has to be a triple point, and the
third line through p, call it L , contains no triple points except p. Therefore, we are in
the situation (A). ��
Example 4.19 (i) The arrangement

A : f = xyz(x + z)(x + y − z)(2x − y)(x + y + 3z) = 0

has d = 7, n3 = 4 and r = d−3 = 4. Hence, it illustrates the case (3), when r = d−3
in Theorem 4.18. The line L : x + y − z = 0 contains a unique triple point, namely
the point p = (1 : −1 : 0).
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(ii) The arrangement

A : f = xyz(x + z)(x + y − z)(2x − y)(x + y + 3z)(y + z) = 0

has d = 8, n3 = 5 and r = d − 3 = 5. Hence, it illustrates the case (4), subcase (A),
when r = d − 3 in Theorem 4.18. The line L : x + y − z = 0 contains a unique triple
point, namely p = (1 : −1 : 0), and also the line L ′ : y + z = 0 contains a unique
triple point, namely p′ = (1 : 0 : 0).
Corollary 4.20 Let A : f = 0 be a line arrangement with d = |A| ≥ 2, having n2
double points, n3 triple points and no points of higher multiplicity. The invariant r(A)

is determined by the combinatorics of A if and only if n3 ≤ 5.

Proof The claim that r(A) is determined by the combinatorics ofA if n3 ≤ 5 follows
from Theorem 4.18. The claim that r(A) is not determined by the combinatorics ofA
if n3 = 6 follows from Ziegler’s example of arrangements A′

j for j = 1, 2 discussed
in Remark 3.9 and in Example 4.16, where we show that any d ≥ 9 can be realized.
To increase the number of triple points, it is enough to pick a double point p in A′

j
for j = 1, 2 and add a generic line L passing through p. We can apply Theorem
3.3 and show that the arrangements A j = A′

j ∪ L have r1 = r ′
1 + 1 = 6 and

r2 = r ′
2 + 1 = 7, and they both have n3 = 7 and the same combinatorics. Note that

|AL
1 | = 8 > r ′

1 + 2 = 7, and |AL
2 | = 8 = r ′

2 + 2; hence, we need the full strength of
Theorem 3.3.

Proceeding in this way, it is clear that for any n3 ≥ 6, one can construct a pair
of line arrangements having only double points and n3 triple points, with the same
combinatorics, but distinct invariants r . ��
Remark 4.21 Using [5, Proposition 3.2, (3) and (4)] and [15, Theorem 3.2 (1)], it
follows that Conjecture 1.5 holds for the line arrangements having only double and
triple points. More precisely, [15, Theorem 3.2 (1)] shows that an arrangement A of
d lines, having only double and triple points, satisfies

r(A) ≥ d − 2

2
.

Then, [5, Proposition 3.2, (3) and (4)] shows that in this case, the generic splitting type
(e1, e2) is determined by d.
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