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Abstract
Inspired by the work of Zhou (Des Codes Cryptogr 88:841–850, 2020) based on
the paper of Schmidt (J Algebraic Combin 42(2):635–670, 2015), we investigate the
equivalence issue of maximum d-codes of Hermitian matrices. More precisely, in the
space Hn(q2) of Hermitian matrices over Fq2 we have two possible equivalences: the
classical one coming from the maps that preserve the rank in F

n×n
q2

, and the one that

comes from restricting to those maps preserving both the rank and the space Hn(q2).
We prove that when d < n and the codes considered are maximum additive d-codes
and (n − d)-designs, these two equivalence relations coincide. As a consequence,
we get that the idealisers of such codes are not distinguishers, unlike what usually
happens for rank metric codes. Finally, we deal with the combinatorial properties of
known maximum Hermitian codes and, by means of this investigation, we present a
new family of maximum Hermitian 2-code, extending the construction presented by
Longobardi et al. (Discrete Math 343(7):111871, 2020).
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1 Introduction

Let us consider Fn×n
q , the set of the square matrices of order n defined over Fq , with

q a prime power. It is well known that Fn×n
q equipped with

d(A, B) = rk(A − B),

where A, B ∈ F
n×n
q , is a metric space. If C is a subset of Fn×n

q with the property that
for each A, B ∈ C then d(A, B) ≥ d with 1 ≤ d ≤ n, then we say that C is a d-code.
Furthermore, we say that C is additive if C is an additive subgroup of (Fn×n

q ,+), and
C is Fq -linear if C is an Fq -subspace of (Fn×n

q ,+, ·), where + is the classical matrix
addition and · is the scalar multiplication by an element of Fq . Delsarte [10] shows
the following bound for a d-code C

|C | ≤ qn(n−d+1),

known as Singleton like bound, see also [12]. Codes whose parameters satisfy the
aforementioned bound are known as maximum rank distance codes (or shortlyMRD-
codes), and they have several important applications. Attention has been paid also
to rank metric codes with restrictions, which are codes whose words are alternating
matrices [11], symmetric matrices [16,24,25,32] and Hermitian matrices [26].

In this paper we deal with Hermitian matrices over Fq2 .
Consider · : x ∈ Fq2 �→ xq ∈ Fq2 the conjugation map over Fq2 . Let A ∈ F

n×n
q2

and denote by A∗ the matrix obtained from A by conjugation of each entry and
transposition. A matrix A ∈ F

n×n
q2

is saidHermitian if A∗ = A. Denote by Hn(q2) the
set of all Hermitian matrices of order n over Fq2 . In [26, Theorem 1], Schmidt proved
that if C is an additive d-code contained in Hn(q2), then

|C | ≤ qn(n−d+1). (1)

When the parameters ofC satisfy the equality in this bound,we say thatC is amaximum
(additive) Hermitian d-code. Schmidt also provided constructions of maximum d-
codes for all possible value of n and d, except if n and d are both even and 3 < d < n
[26, Theorems 4 and 5].When d = 2 andwhen d = n, it is easy to exhibit constructions
of maximum additive d-codes. For instance, when d = n a semifield spread set of
symmetric n × n matrices over Fq , gives rise to an example of maximum n-code of
Hn(q2). For d = 2, instead, we can take all matrices in Hn(q2) whose main diagonal
contains only zeros.

For given a ∈ F
∗
q , ρ ∈ Aut(Fq2), A ∈ GL(n, q2) and B ∈ Hn(q2), the map

Θ : C ∈ Hn(q
2) �→ aACρ A∗ + B ∈ Hn(q

2), (2)

where Cρ is the matrix obtained from C by applying ρ to each of its entry, preserves
the rank distance and conversely, see [30]. For two subsets C1 and C2 of Hn(q2), if
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there exists Θ as in (2) such that

C2 = {Θ(C) : C ∈ C1}

we say that C1 and C2 are equivalent in Hn(q2). Nevertheless, we may consider the
maps of Fn×n

q2
preserving the rank distance, which by [30] are all of the following kind

Ψ : C ∈ F
n×n
q2

�→ ACσ B + R ∈ F
n×n
q2

(3)

or

Ψ : C ∈ F
n×n
q2

�→ A(Cσ )TB + R ∈ F
n×n
q2

,

where A, B ∈ GL(n, q2), σ ∈ Aut(Fq2), R ∈ F
n×n
q2

and CT denotes the transpose of

C . For two subsets C1 and C2 of Hn(q2), if there exists Ψ as above such that

C2 = {Ψ (C) : C ∈ C1}

we say that C1 and C2 are said extended equivalent. Clearly, if C1 and C2 of Hn(q2)
are equivalent in Hn(q2), they are also extended equivalent. However, whenmaximum
d-codes are considered, the converse statement is not true. In fact, fromwhat Yue Zhou
points out in [32], it follows that constructions of commutative semifields exhibited
in [9,33] provide examples of maximum n-codes in Hn(q2) say C , with the property
that there exist A, B ∈ GL(n, q2) such that

ACB ⊆ Hn(q
2),

where A 	= aB∗ for each a ∈ Fq .
Along the lines of what has been done by Zhou [32], in Sect. 3 we will investigate

on the conditions that guarantee the identification of the aforementioned types of
equivalence for maximum Hermitian d-codes. Results in Sect. 3 heavily rely on what
Schmidt proven in [26] using the machinery of association schemes. Moreover, in
Sect. 4 we will show that providing such conditions holds true for a d-code C ∈
Hn(q2), then its idealisers are both isomorphic to Fq2 , and hence they cannot be used
as distinguisher, similarly to what happens in the symmetric setting as proved in [32].

In Sect. 5, following [16], we introduce the Hermitian setting from a polynomial
point of view, where some properties are easier to establish. Indeed, we show some
combinatorial properties of the known constructions of maximum Hermitian codes.
Finally, in Sect. 6 we extend the construction presented in [16] yielding an example
of maximum Hermitian 2-code and, relying on the results of the previous sections, we
are able to show that it is also new.
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2 The association scheme of Hermitianmatrices

By [2, Sect. 9.5] we have that Hn(q2) gives rise to an association schemewhose classes
are

(A, B) ∈ Ri ⇔ rk(A − B) = i .

Let χ : Fq → C be a nontrivial character of (Fq ,+) and let

〈A, B〉 = χ(tr(A∗B)),

with A, B ∈ Hn(q2) and tr denotes the matrix trace. Denoting by Hi the subset of
Hn(q2) of matrices having rank equal to i , the eigenvalues of such association scheme
are

Qk(i) =
∑

A∈Hk

〈A, B〉, for B ∈ Hi ,

with i, k ∈ {0, 1, . . . , n}, see [3,26,28].
Let C ⊆ Hn(q2). The inner distribution of C is (A0, A1, . . . , An) of rational

numbers given by

Ai = |(C × C) ∩ Ri |
|C | .

Therefore, C is a d-code if and only if

A1 = . . . = Ad−1 = 0.

The dual inner distribution of C is (A′
0, A

′
1, . . . , A

′
n) where

A′
k =

n∑

i=0

Qk(i)Ai .

Also, we have that A′
0 = |C |, A′

k ≥ 0 for each k ∈ {0, 1, . . . , n} and if C is additive,
then |C | divides A′

i for each i ∈ {0, . . . , n}.
If A′

1 = . . . = A′
t = 0, we say that C is a t-design. Of course, if C is additive the

Ai ’s count the number of matrices in C of rank i with i ∈ {0, 1, . . . , n}.
Moreover, in such a case we can associate with C its dual in Hn(q2); i.e.,

C⊥ = {X ∈ Hn(q
2) : 〈X ,Y 〉 = 1 for each Y ∈ C},

and it is possible to show that the coefficients
A′
k|C| count exactly the number of matrices

in C⊥ of rank i with i ∈ {0, 1, . . . , n}.
Also in [26] the author proved the following results on combinatorial properties of

maximum additive Hermitian d-codes when d is odd.
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Theorem 2.1 [26, Theorem 1] If C ⊆ Hn(q2) is a Hermitian additive d-code with odd
d, then it is maximum if and only if C is an (n − d + 1)-design.

Consider m and � two non-negative integers, negative q-binomial coefficient is
defined as

[
m
�

]
=

�∏

i=1

(−q)m−i+1 − 1

(−q)i − 1
.

Wewill need the following property for negative q-binomial coefficients. Let k and
i be two non-negative integers, then

k∑

j=i

(−1) j−i (−q)(
j−i
2 )

[
j
i

] [
k
j

]
= δk,i , (4)

where δk,i is the Kronecker delta function, see [26, Eq. (6)] and [11, Eq. (10)].
If C is a Hermitian additive d-code and a (n− d)-design, then its inner distribution

has been determined.

Theorem 2.2 [26, Theorem3] IfC is aHermitian additive d-code anda (n−d)-design,
then

An−i =
n−d∑

j=i

(−1) j−i (−q)(
j−i
2 )

[
j
i

] [
n
j

] ( |C |
qnj

(−1)(n+1) j − 1

)
,

for each i ∈ {0, 1, . . . , n − 1}.

3 The equivalence issue for maximum codes

Following the paper of Zhou [32], we may generalize his considerations to the Her-
mitian setting.

Let C be a subset of Fn×n
q2

and let 0 be the zero vector in F
n
q2
. In [19] the authors

define the following incidence structure

S(∞) = {(0, y) : y ∈ F
n
q2},

S(X) = {(x, xX) : x ∈ F
n
q2}, for X ∈ C .

The kernel K (C) of C is defined as the set of all the endomorphism μ of the group
(F2n

q2
,+) such that S(X)μ ⊆ S(X) for every X ∈ C ∪ {∞}. The following result has

been proved in [19].

Lemma 3.1 Let C be a subset of Fn×n
q2

.
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(a) The kernel of C is a ring under addition and composition of maps.
(b) If C1 and C2 are two equivalent rank metric codes in F

n×n
q2

, then their kernels are

equivalent in Fn×n
q2

.

(c) Let In denote the identity matrix of Fn×n
q2

. The set of matrices {aIn+n : a ∈ Fq2}
forms a field isomorphic to Fq2 contained in K (C).

(d) Let O be the zero matrix in F
n×n
q2

. If O ∈ C, then each element of K (C) must be
of the form (

N1 O
O N2

)
, (5)

where N1, N2 ∈ End(Fn
q2

,+).

As a consequence, we can prove the following result.

Lemma 3.2 Let C be a subset of Hn(q2) containing O and In. If there are no trivial
subspaces U and W such that

• F
n
q2

= U ⊕ W;
• {uX : u ∈ U , X ∈ C} ⊆ U;
• {wX : w ∈ W , X ∈ C} ⊆ W,

then the kernel of C is isomorphic to a finite field containing Fq2 .

Proof Since O ∈ C , by (d) of Lemma 3.1 each element A of K (C) is of Form (5),
i.e.

A =
(
N1 O
O N2

)
.

Because of (a) of Lemma 3.1, it is enough to show that except for the case in which
N1 and N2 are the zero matrix, N1 and N2 are invertible. Since A ∈ K (C), then

{(xN1, xXN2) : x ∈ F
n
q2} ⊆ {(x, xX) : x ∈ F

n
q2},

and hence xN1X = xXN2 for each x ∈ F
n
q2
. Since In ∈ C , we may choose X = In

and hence we have N1 = N2, which will be denoted by N . Suppose that xN = 0,
then we have also that xXN = 0. This implies that each X ∈ C maps the kernel of N
into itself. Denote by V the kernel of N and by k its dimension. Choosing a suitable
basis of Fn

q2
in such a way that its first k elements are a basis of V , then each element

of C may be written as

(
X1 O
O X2

)
,

with X1 ∈ Hk(q2) and X2 ∈ Hn−k(q2). LetU andW be the subspaces corresponding
to the first k coordinates and the last n − k coordinates, respectively. If k > 0, this
would contradict the hypothesis and hence N1 and N2 are invertible. ��
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3.1 The equivalence issue

In this section we will show that, under some assumptions, the equivalence of two
maximum additive Hermitian d-codes in Hn(q2) coincides with extended equivalence
in Fn×n

q2
.

Theorem 3.3 Let d be a positive integer and let C be a maximum additive d-code in
Hn(q2). If there exist a ∈ F

∗
q and P ∈ GL(n, q2) such that

In ∈ aP∗X P,

then K (C) is isomorphic to a finite field containing Fq2 . In particular, if d < n then
K (C) is isomorphic to Fq2 .

Proof Clearly, by (b) Lemma 3.1, we may assume that In ∈ C . Now, we show that the
hypothesis in Lemma 3.2 is satisfied and hence K (C) is a finite field. Suppose that
there exist two subspaces U and W of Fn

q2
such that Fn

q2
= U ⊕ W and

• {uX : u ∈ U , X ∈ C} ⊆ U and
• {wX : w ∈ W , X ∈ C} ⊆ W .

Let k be the dimension of U and we may assume that k ≥ � n
2 � and that a basis for U

is given by the first k elements of the standard basis of Fn
q2
. Therefore, each element

M of C can be written as

M =
(
M1 O
O M2

)
,

with M1 ∈ Hn(q2) and M2 ∈ Hn−k(q2).

• If d > � n
2 �, then the set

C1 := {M1 : M ∈ C}

has size |C | = qn(n−d+1), otherwise there would be two matrices in C whose
difference has rank less than or equal to n − k ≤ � n

2 �. Its minimum distance d1 is
greater than or equal to d − (n − k). Bound (1) applied to C1 implies

qn(n−d+1) = |C1| ≤ qk(k−d1+1) ≤ qk(k−d+(n−k)+1).

Thus k = n.
• Suppose that d ≤ � n

2 �. For each M2 ∈ Hn−k(q2) let

CM2 =
{
M1 :

(
M1 O
O M2

)
∈ C

}
.

Its minimum distance d(CM2) ≥ d and by (1),

|CM2 | ≤ qk(k−d+1).
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Therefore,

|C | =
∑

M2∈Hn−k (q2)

|CM2 | ≤ q(n−k)(n−k+1) · qk(k−d+1),

and so

n(n − d + 1) ≤ (n − k)2 + (n − k) + k(k − d + 1)

≤ (n − k)2 + (n − k) + k(n − d + 1).

If k 	= n, then d ≥ k, which is not possible. Hence k = n.

In both the aforementioned cases, we have k = n and therefore we can apply
Lemma 3.2 and (c) of Lemma 3.1 to get the first part of the assertion. Now, sup-
pose that d < n and that K (C) � Fq2� contains properly a field isomorphic to Fq2 .
Then C can be seen as subset of Hermitian matrices of order n/� over Fq2� with
minimum distance d ′ = d/�. By (1) we have that

|C | = qn(n−d+1) ≤ q
n
� (

n
�
−d ′+1),

from which we get � = 1 and also the second part of the statement follows. ��

Lemma 3.4 If C is a Hermitian maximum additive d-code and an (n−d)-design with
d < n. Then there is at least one invertible matrix in C.

Proof If d = 1, then C = Hn(q2) and the assertion holds. So assume that 1 < d < n:
our aim is to prove that An 	= 0. By Theorem 2.2, we have that

An−i =
n−d∑

j=i

(−1) j−i (−q)(
j−i
2 )

[
j
i

] [
n
j

] ( |C |
qnj

(−1)(n+1) j − 1

)
,

for each i ∈ {0, 1, . . . , n − 1}. For i = 0, we get

An =
n−d∑

j=0

(−1) j (−q)(
j
2)

[
j
0

] [
n
j

] ( |C |
qnj

(−1)(n+1) j − 1

)
. (6)
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Recalling that |C | = qn(n−d+1), the above formula can be written as follows

An =
n−d∑

j=0

(−1) j (−q)(
j
2)

[
n
j

] (
qn(n−d− j+1) − 1

)

≡ −
n−d∑

j=0

(−1) j (−q)(
j
2)

[
n
j

]
(mod qn−d)

≡ −
n∑

j=0

(−1) j (−q)(
j
2)

[
n
j

]
+

n∑

j=n−d+1

(−1) j (−q)(
j
2)

[
n
j

]
(mod qn−d)

≡ −
n∑

j=0

(−1) j (−q)(
j
2)

[
n
j

]
(mod qn−d).

Therefore, by Eq. (4) we have An ≡ −1 (mod qn−d), so that An 	= 0. ��
We are ready to prove the main result of this section.

Theorem 3.5 If C1 and C2 are two maximum additive Hermitian d-codes and (n−d)-
designs with d < n, then they are equivalent inHn(q2) if and only if they are extended
equivalent.

Proof Clearly, if C1 and C2 are equivalent in Hn(q2), then they are also extended
equivalent. Now assume that C1 and C2 are extended equivalent, i.e. there exist two
invertible matrices A, B ∈ GL(n, q2), ρ ∈ Aut(Fq2) and R ∈ F

n×n
q2

such that

C1 = ACρ
2 B + R.

Since C1 and C2 are additive, we may assume that R = O , i.e. C1 = ACρ
2 B. We are

going to prove that A = zB∗ for some z ∈ F
∗
q . So,

C2 = ACσ
1 B = (A(B∗)−1)B∗Cσ

1 B = MC3,

where M = A(B∗)−1 and C3 = B∗Cσ
1 B ⊆ Hn(q2). As a consequence, we have that

MX ∈ Hn(q2) for each X ∈ C3, i.e.

MX = (MX)∗ = XM∗

for all X ∈ C3. Hence the matrix

(
M O
O M∗

)
∈ K (C3).

By Lemma 3.4, there exists in C3 an invertible matrix, which implies the existence of
a ∈ Fq and D ∈ GL(n, q) such that In ∈ aD∗C3D. Now, by Theorem 3.3 we have
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that K (C3) = Fq2 and hence M = z In for some z ∈ F
∗
q2
. By (c) of Lemma 3.1, we

have

K (C3) = {γ In+n : γ ∈ Fq2},

and as

(
M O
O M∗

)
∈ K (C3), it follows that M = M∗ = z In , with z ∈ F

∗
q , i.e.

A = zB∗. ��
As a consequence of Theorem 2.1, we get the following.

Corollary 3.6 If C1 and C2 are two Hermitian maximum additive d-codes with d odd,
d < n, then they are equivalent in Hn(q2) if and only if they are extended equivalent.

4 Idealisers are not distinguishers in Hn(q2)

In the classical rank metric context, to establish whether two codes are equivalent or
not could be quite difficult. One of the strongest tool for such a issue is given by the
automorphism groups of such codes, which usually is very hard to determine. In some
cases it is enough to study some subgroups of the automorphism group which are
invariant under the equivalence, which are easier to calculate, such as the idealisers
introduced in [15] and deeply investigated in [19].

Let C be an additive rank metric code in Fn×n
q , its left idealiser I�(C) is defined as

I�(C) = {Z ∈ F
n×n
q : Z X ∈ C for all X ∈ C}

and its right idealiser Ir (C) is defined as

Ir (C) = {Z ∈ F
n×n
q : X Z ∈ C for all X ∈ C}.

Idealisers have been used to distinguish examples of MRD-codes, see [1,5,6,8,16,
19,20,27,31]. In the next we prove that for maximum additive Hermitian d-codes left
and right idealisers are isomorphic to Fq , i.e. they cannot be used as distinguishers in
the Hermitian setting.

Theorem 4.1 Let C be a maximum Hermitian additive d-code and a (n − d)-design
with d < n. Then I�(C) and Ir (C) are both isomorphic to Fq .

Proof Let us consider the left idealiser case and let M ∈ I�(C). We have that MX ∈
Hn(q2) for each X ∈ C , i.e.

MX = (MX)∗ = XM∗

for all X ∈ C . Hence the matrix
(
M O
O M∗

)
∈ K (C),

123



Journal of Algebraic Combinatorics (2021) 54:151–171 161

and as in the proof of Theorem 3.5, we get that M = aIn for some a ∈ Fq . Similar
arguments imply the same result for the right idealiser. ��

As a consequence of Theorem 2.1, we get the following.

Corollary 4.2 If C is a maximum Hermitian additive d-code with d odd, d < n. Then
I�(C) and Ir (C) are both isomorphic to Fq .

5 The q-polynomial setting and some combinatorial properties

Webriefly introduce theHermitian setting fromapolynomial point of view.Let n ∈ Z
+

be a positive integer, and let q be a prime power. We denote by Ln,q the quotient Fq -
algebra of the algebra of linearized polynomials over Fqn with respect to (x − xq

n
),

i.e.

Ln,q =
{
n−1∑

i=0

ai x
qi : ai ∈ Fqn

}
.

It is well known that there is a one-to-one correspondence between the elements
of Ln,q and the Fq -linear transformation of Fqn (represented as matrices). Using this
fact and following the point of view expressed in [16], we may identify the set Hn(q2)
of Hermitian matrices of order n over Fq2 with the set of q

2-polynomials

Hn(q
2) =

{
n−1∑

i=0

ci x
q2i : cn−i+1 = cq

2n−2i+1

i , with i ∈ {0, . . . , n − 1}
}

⊆ Ln,q2 ,

where the indices are takenmodulo n.Weunderline here that if n is odd, then c(n+1)/2 ∈
Fqn . Moreover, the rank of a Hermitian form equals the dimension of the image of the
map f : Fq2n → Fq2n , where f ∈ Hn(q2).

Also, we may consider the maps that preserve the rank distance in Hn(q2) rep-
resented as polynomials. In order to do this, consider the non-degenerate symmetric
bilinear form of Fq2n over Fq2 defined by

〈x, y〉 = Trq2n/q2(xy),

for each x, y ∈ Fq2n , where Trq2n/q2(x) = ∑n−1
i=0 xq

2i
. Then the adjoint f � of the

linearized polynomial f (x) = ∑n−1
i=0 ai xq

2i ∈ Ln,q2 with respect to the bilinear form
〈, 〉 is

f �(x) =
n−1∑

i=0

aq
n−2i

i xq
n−2i

,
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i.e.

Trq2n/q2(x f (y)) = Trq2n/q2(y f
�(x)),

for any x, y ∈ Fq2n .
Then, one can easily verify that maps preserving the rank distance in Hn(q2) are

of the form
Θa,g,ρ,r0( f ) = ag ◦ f ρ ◦ g�q2n−1

(x) + r0(x), (7)

for given a ∈ F
∗
q , ρ ∈ Aut(Fq2), g(x) = ∑n−1

i=0 gi xq
i
a permutation q2-polynomial

over Fq2n , r0 ∈ Hn(q2) and g�q2n−1
(x) = ∑n−1

i=0 gq
n−2i−1

i xq
n−2i

.
In this context, if C1 and C2 are two subsets of Hn(q2) and there exists a map

Θa,g,ρ,r0 defined as in Eq. (7) for certain a, g, ρ and r0 such that

C2 := {Θa,g,ρ,r0( f ) : f ∈ C1},
then we say that C1 and C2 are equivalent inHn(q2).

As we are considering d-codes using linearized polynomials, we can interpret the
dual code C⊥ of C in the following way:

C⊥ = { f ∈ Hn(q
2) : b( f , g) = 0, ∀ g ∈ C},

where

b( f , g) = Trq2n/q2

(
n−1∑

i=0

aibi

)
, (8)

whenever f (x) = ∑n−1
i=0 ai xq

2i
and g = ∑n−1

i=0 bi xq
2i ∈ Hn(q2).

Remark 5.1 As noted in [22, Sect. 2] (see also [17]), there exists an Fq2 -basis of F
n
q2

such that Hn(q2) andHn(q2) are isomorphic (denote by ϕ such an isomorphism) and
with the property that tr(A∗B) = b(ϕ(A), ϕ(B)). Now, recalling that 〈A, B〉 = 1 if
and only if b(ϕ(A), ϕ(B)) = 0 (as χ is a non-trivial character of Fq ), we have that

ϕ(C⊥) = C⊥.

This allows us to switch between the two models.

Here below we give a description of the known examples of maximum Hermitian
d-codes in a polynomial fashion, [26, Theorems 4 and 5] (see also [16, Sect. 2.2]).
More precisely, let s be an odd positive integer with gcd(s, n) = 1. If n and d are
integers with opposite parity such that 1 ≤ d ≤ n − 1, then the set

Hn,d,s =

⎧
⎪⎨

⎪⎩

n−d+1
2∑

j=1

(
(b j x)

q2s(n− j+1) + bq
s

j xq
2s j

)
: b1, . . . , bn−d+1

2
∈ Fq2n

⎫
⎪⎬

⎪⎭
, (9)
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is a maximum Fq -linear Hermitian d-code.
In addition, if n and d are both odd integers, then the set

En,d,s =

⎧
⎪⎨

⎪⎩
(b0x)

qs(n+1) +
n−d
2∑

j=1

(
(b j x)

qs(n+2 j+1) + bq
s

j xq
s(n−2 j+1)

)
:

b0 ∈ Fqn , b1, . . . , bn−d+1
2

∈ Fq2n

}
, (10)

is a maximum Fq -linear Hermitian d-code.
We present some combinatorial properties of these examples. In order to do this,

let us recall the following result of Gow and Quinlan.

Theorem 5.2 ([13, Theorem 5] and [14, Theorem 10]) The dimension of the kernel
of a q-polynomial f (x) = a0x + a1xq

s + · · · + ak−1xq
s(k−1) + akxq

sk ∈ Ln,q with
gcd(s, n) = 1 is at most k. In particular, if the dimension of the kernel of f (x) is k,

then Nqn/q(a0) = (−1)nk Nqn/q(ak), where Nqn/q(a) = a
qn−1
q−1 for a ∈ Fqn .

The next result provides combinatorial properties of Constructions (9) and (10).

Theorem 5.3 For any suitable parameters n, d and s, the maximum Fq-linear d-codes
Hn,d,s and En,d,s are (n − d + 1)-designs.

Proof If d is odd, the assertion follows by Theorem 2.1. So, the remaining codes to
be analyzed are Hn,d,s with n odd and d even. Let start by determining its dual code
H⊥

n,d,s with respect to the bilinear form (8). First, we remark that

|H⊥
n,d,s | = qn

2

|Hn,d,s | = qn(d−1). (11)

Let us consider the following set

D :=

⎧
⎪⎨

⎪⎩
c n+1

2
xq

2s n+1
2 +

n−1
2∑

i= n−d+3
2

ci x
q2si + cq

2n−2i+1

i xq
2s(n−i+1) : c n+1

2
∈ Fqn ,

ci ∈ Fq2n , i ∈
{
n − d + 3

2
, . . . ,

n − 1

2

}}
.

It follows that each polynomial f in D satisfies the property that

b( f , h) = 0 for any h ∈ Hn,d,s .

Hence, by (11) we have that D = H⊥
n,d,s . Let us consider

D ◦ xq
2s(n− n−d+3

2 ) = { f ◦ xq
2s(n− n−d+3

2 ) : f (x) ∈ D}.
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The polynomials inD ◦ xq
2s(n− n−d+3

2 )

have q2s-degree less than or equal to d − 1, and
hence by Theorem 5.2 we have that

dimFq2
ker f (x) = dimFq2

ker f ◦ xq
2s(n− n−d+3

2 ) ≤ d − 1,

for each f ∈ D\{0}, i.e. rk f ≥ n − d + 1 for each f ∈ D\{0}. Hence D is an
(n − d + 1)-code and the assertion is then proved. ��

Moreover in [23,26] another family of additive 2-codes in Hn(q2) was exhibited
which exists for any value of the positive integer n. In fact,

M = {(mi, j )1≤i, j≤n ∈ Hn(q
2) : mi,i = 0 ∀ 1 ≤ i ≤ n}, (12)

see [23, Theorem 6.1]. We are going to show that this example is not a 1-design and
hence it cannot be equivalent to the aforementioned families.

By simply adapting arguments exhibited in [24, Sect. 3.4], designs in the Hermitian
association scheme can be characterized by means of the following property

Theorem 5.4 Let U be a t-dimensional vector subspace of V (n, q2) = F
n
q2

and let

H : U ×U → Fq2 be a Hermitian bilinear form on U. Then, a d-code C ⊂ Hn(q2)
is a t-design if and only if the number of forms in C that are an extension of H, is
independent of the choice of U and H.

As a consequence, we have the following result.

Theorem 5.5 The 2-code M is not a t-design for any t 	= 0.

Proof It is enough to show that M is not a 1-design. Indeed, letU = 〈(1, 0, . . . , 0)〉Fq2
a one-dimensional subspace of Fn

q2
. The number of forms in M that are extension of

the 1×1 Hermitian bilinear for H = (0) is |M |, and the number of forms in M that are
extension of the 1×1 Hermitian bilinear for H = (1) is 0. Therefore, by Theorem 5.4
we have that M is not a 1-design. ��

Therefore, we have the following.

Corollary 5.6 The 2-code M is not equivalent toHn,2,s , for any n and s.

As pointed out in Theorem 2.1, any maximum d-code is an (n − d + 1)-design
when d is odd. For the d even case this is not true. Indeed, by Theorem 5.5, we have
example of maximum 2-code which is not even a 1-design, whereas by Theorem 5.3
we have examples of maximum d-codes which are (n − d + 1)-designs.

6 New constructions of maximumHermitian 2-code

We start by pointing out the technique developed in [29], in order to use it in the
Hermitian setting similarly to what has been done in [16] in the symmetric framework.

In [29], the following was proved.
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Lemma 6.1 Let q be an odd prime power, let n ∈ Z
+ and s ∈ Z be two integers

such that n is odd and (s, 2n) = 1. Let γ ∈ Fq2n with Nq2n/q(γ ) a non-square in Fq .

If f (x) = ax +
∑k−1

i=0
ai x

qis + γ bxq
sk ∈ L2n,q with ai ∈ Fq2n , a, b ∈ Fqn , then

dimFq ker f ≤ k − 1 and rk f ≥ 2n − k + 1.

Proof By Theorem 5.2 dimFq ker f ≤ k. By way of contradiction, let us assume that
the dimension of the kernel of f (x) is k. Hence, by Theorem 5.2, it follows that

Nq2n/q(a) = Nq2n/q(bγ ),

i.e., since a, b ∈ Fqn ,

Nq2n/q(γ ) = Nq2n/q

(a
b

)
= Nqn/q

(a
b

)2
,

which gives a contradiction. The second part follows from the relation rk f = 2n −
dimFq ker f . ��

We are now able to generalize the construction of [16] to the Hermitian setting.
Precisely, we have

Theorem 6.2 Let q be an odd prime power, let n ∈ Z
+ and s ∈ Z be two integers such

that n is odd and (s, 2n) = 1. Let γ ∈ Fq2n with Nq2n/q(γ ) a non-square in Fq . Then

H̃s =

⎧
⎪⎨

⎪⎩
bxq

2s n+1
2 + aγ xq

2s n−1
2 + (aγ )q

s(n+2)
xq

2s n+3
2 +

n−3
2∑

i=1

(
ci x

q2si + cq
s(2n−2i+1)

i xq
2s(n−i+1)

)

: a, b ∈ Fqn , ci ∈ Fq2n

}
.

is a maximum Hermitian Fq-linear 2-code.

Proof First we note that |H̃s | = q2n
n−3
2 +2n = qn(n−1) which, according to (1), is the

maximum possible size providing d = 2. Now we have to show that dimFq2
ker f ≤

n−2 for each f ∈ H̃s . Indeed, if dimFq2
ker f ≤ n−2, then rk f ≥ n− (n−2) = 2.

By way of contradiction, we may suppose that there exists

f (x) = bxq
2s n+1

2 + aγ xq
2s n−1

2 + (aγ )q
s(n+2)

xq
2s n+3

2

+
n−3
2∑

i=1

(ci x
q2si + cq

s(2n−2i+1)

i xq
2s(n−i+1)

)
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in H̃s such that dimFq2
ker f ≥ n − 1. Clearly, the dimFq2

ker f = dimFq2
ker f ◦

xq
si
for each i ∈ {0, . . . , 2n − 1}. In particular,

f ◦ xq
s(n−3) := bxq

2s(n−1) + aγ xq
2s(n−2) + (aγ )q

s(n+2)
x

+
n−3
2∑

i=0

ci x
qs(2i+n−3) + cq

2n−2i+1

i xq
s(n−2i−1)

has q2s-degree atmost n−1 and hence, by Theorem 5.2, it follows that dimFq2
ker f ≤

n−1.Whenwe look at f ◦xqs(n−3)
as aq-polynomial inFq2n wehave that dimFq ker( f ◦

xq
s(n−3)

) = 2n − 2; a contradiction by Lemma 6.1. Hence, dimFq2
ker f ≤ n − 2. ��

Also we are in the position to determine its dual code H̃⊥
s of H̃s . Precisely, we have

Theorem 6.3 Let γ ∈ Fq2n with Nq2n/q(γ ) a non-square element of Fq . Then, the dual

code of H̃s is

H̃⊥
s =

{
cγ −1αxq

2s
(
n−1
2

)

+ (cγ −1α)q
s(n+2)

xq
2s n+3

2 : c ∈ Fqn

}
,

with α ∈ Fq2n and αq−1 = − 1.

Proof We have that |H̃⊥
s | = qn

2
/|H̃s | = qn . Let

f (x) = bxq
2s n+1

2 + aγ xq
2s n−1

2 + (aγ )q
s(n+2)

xq
2s n+3

2

+
n−3
2∑

i=1

(
ci x

q2si + cq
s(2n−2i+1)

i xq
2s(n−i+1)

)
∈ H̃s

and

g(x) = cγ −1αxq
2s( n−1

2 ) + (cγ −1α)q
s(n+2)

xq
2s n+3

2

with c ∈ Fqn , then

b( f , g) = Trq2n/q2
(
acα + (acα)q

s(n+2)
)

= Trq2n/q2
(
acα + acαq)

= Trq2n/q2
(
acα

(
1 + αq−1

))
= 0.

The assertion then follows. ��
Corollary 6.4 The 2-code H̃s is an (n − 1)-design.
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Proof To prove the assertion, it is enough to show that all the polynomials in H̃⊥
s are

invertible. For this purpose, let

f (x) = cγ −1αxq
2s( n−1

2 ) + (cγ −1α)q
s(n+2)

xq
2s n+3

2
,

with c ∈ Fqn and αq−1 = − 1.

Clearly, f ◦ xq−s(n−1) = cγ −1αx + (cγ −1α)q
s(n+2)

xq
2s
. It has a nonzero root if and

only if

Nq2n/q2

(
(cαγ −1)1−qs(n+2)

)
= − 1.

Since

Nq2n/q2

(
c1−qs(n+2)

α1−qs(n+2)
γ qs(n+2)−1

)
= −Nq2n/q2

(
γ q−1

)
.

Therefore, cγ −1αx + (cγ −1α)q
s(n+2)

xq
2s = 0 has a no-zero solution, if and only if

Nq2n/q2

(
γ q−1

)
= 1,

which implies that Nq2n/q2 (γ ) ∈ Fq . This is a contradiction since Nq2n/q(γ ) is a
non-square in Fq . ��

Finally, we prove that construction exhibited in Theorem 6.2 is equivalent to none
of the known examples with involved parameters. We need the following tools from
[18], used by the authors in order to solve the equivalence issue for the family of
generalized twisted Gabidulin codes.

Let C be a subset of Ln,q . The universal support S(C) of C is the subset of
{0, 1, . . . , n − 1} defined as follows

S(C) = {i : there exists f ∈ C such that the qi -coefficient of f is not zero},

whereas an independent support B is a subset of {0, 1, . . . , n − 1} for which there
exists a set {hi : i ∈ B} of permutations of Fqn such that

{
∑

i∈B
hi (a)xq

i : a ∈ Fqn

}
⊆ C.

Also, let A and B two subsets of {0, 1, . . . , n − 1}, then

AB := {k : there exists a unique pair (i, j) ∈ A × B such that k ≡ i + j (mod n)}.

For two extended equivalent codes the following holds.
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Lemma 6.5 [18, Lemma 4.6] Let C1 and C2 two subsets of Ln,q . Assume that C1 and
C2 are extended equivalent, i.e. τ(C1) = C2 for some τ as in (3). Let A be the support
of {τ(ax) : a ∈ Fqn }. Then

AB ⊆ S(C2),

for every independent support.

Now, we are ready to prove our final result.

Theorem 6.6 The 2-code H̃s is new.

Proof We first remind that, by Theorem 5.5, the 2-code M described in (12), is not a
t-design for any t 	= 0. Then, by Corollary 6.4, it is plain that H̃s cannot be equivalent
to M .

On the other hand, assume byway of contradiction that H̃s is extended equivalent to
Hn,2,�. Since both codes are (n − 1)-designs, as a direct consequence of Theorem 3.5
and Corollary 3.6, then they have to be equivalent inHn(q2), i.e. there must be a map
of type Θa,g�q ,ρ such that Θa,g�q ,ρ(H̃s) = Hn,2,�, for given a ∈ F

∗
q , ρ ∈ Aut(Fq2),

and g(x) = ∑n−1
i=0 gi xq

2i
a permutation q2-polynomial over Fq2n .

In what follows we will first prove that under this assumption, it must necessarily
be � ≡ ± s (mod n). In fact, suppose that � 	≡ ± s. As n is odd, we must have that
(�, n) = 1, and hence there must be an 1 < l < n − 1 such that s ≡ l� (mod n).

Let A be the universal support of {g�q ◦ ax ◦ g(x) : a ∈ Fq2n }, and S(Hn,2,�) be
the universal support ofHn,2,�. By applying Lemma 6.5 we get that AB ⊆ S(Hn,2,�)

for each set of independent supports B of H̃s .
Now, consider the set

{
is, (2n − 2i + 1)s : i = 1, 2, . . . ,

n − 1

2

}}
,

which is a set of independent supports of H̃s .
If j ∈ A, applying again Lemma 6.5, we get that

{
j + is : j + (2n − 2i + 1)s : i ∈

{
1, 2, . . . ,

n − 1

2

}}
⊆ S(Hn,2,�).

Hence,

{
j + is; j + (2n − 2i + 1)s : i ∈

{
1, 2, . . . ,

n − 1

2

}}

⊆
{
i�; (2n − i + 1)� : i ∈

{
1, 2, . . . ,

n − 1

2

}}
.
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Letting j ≡ u� (mod n)with u ∈
{
1, 2, . . . , n−1

2

}
in above equation, and plugging

in s ≡ l� (mod n), we get

{
u + il and u + l(2n − i + 1) : i = 1, . . . ,

n − 1

2

}

⊆
{
i, n − i + 1 : i = 1, . . . ,

n − 1

2

}
.

But since l ≥ 2 and u ∈
{
1, 2, . . . , n−1

2

}
, this can never be the case. Hence, we end

up with � ≡ ± s (mod n).

In this case consider the map g�q ◦bρxq
2s n+1

2 ◦ g. A direct computation shows that

the coefficient of the term with q-degree q2s
n+1
2 in it, equals to

a n+1
2

(b) =
n−1∑

i=0

gq
s(2n−2i+1)

i gq
s2( n+1

2 −i)

i bρqs2(n−i)
.

Since (s, 2n) = 1, the coefficients gq
s(2n−2i+1)

i gq
s2( n+1

2 −i)

i belong to Fqn . As the
coefficient of the term with q2�-degree n+1

2 in Hn,2,� is zero, and since � ≡ ± s
(mod n), we get that a n+1

2
(b)must be zero for each b ∈ Fqn . But this finally contradicts

the fact that g is a permutation polynomial.
Hence, we may conclude that H̃s is equivalent to none of the two existing examples

with the involved parameters. ��

7 Concluding remarks and open problems

In this article we provide some conditions ensuring the identification of the two types
of equivalences which can be naturally defined for maximum additive d-codes in
the Hermitian association scheme. More precisely in Theorem 3.5 we prove that the
equivalence and the extended equivalence coincide for maximum additive Hermitian
d-codeswith d < nwhich are also (n−d)-designs.As a byproduct, inCorollary 3.6we
prove that the equivalence and the extended equivalence coincide, whenever we deal
with two maximum additive Hermitian d-codes with d < n and d odd. However, it is
an open question whether or not this holds true also for maximum additive Hermitian
d-codes with d < n and d even, which are not (n − d)-designs.

Also, it would be interesting to understand whether the same result holds for max-
imum additive codes in the alternating setting. In addition, we do not know whether
Lemma 6.1 may be used for constructing new examples of 2-codes in such a context.

Furthermore, one of the most important open problems regards the construction of
maximum Hermitian d-codes for 3 < d < n − 1 with n and d both even. Probably,
further investigations on the relations between the coefficients of a linearized polyno-
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mial and the dimension of its kernel (i.e. by using results contained in [4,7,21]) may
lead to new constructions for some fixed value of n.
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