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Abstract Using a variation of Seydewitz’s method of projective generation of
quadratic cones, we define an algebraic surface of PG(3, qn), called σ -cone, whose
Fqn -rational points are the union of a linewith a setA of q2n points. If qn = 22h+1, h ≥
1, and σ is the automorphism of Fqn given by x �→ x2

h
, then the setA is the affine set

of the Lüneburg spread of PG(3, qn). If n = 2 and σ is the involutory automorphism
of Fq2 , then a σ -cone is a subset of a Hermitian cone and the set A is the union of q
non-degenerate Hermitian curves.

Keywords Luneburg spread · Quadratic cone · Hermitian curve

1 Introduction

Let A and B be two distinct points of a three-dimensional projective space. Let SA

be the star of lines through A, let S∗
B be the star of planes through B, and let � be a

projectivity between SA and S∗
B . In 1848 F. Seydewitz proved that quadrics may be

generated as the set of points of intersection of corresponding elements under � (see
e.g., [10]).

If the line AB is mapped under� into a plane, sayπAB , containing AB and the lines
through A of the planeπAB aremapped into the planes through the line AB, then the set
of points of intersection of corresponding elements under� is a quadratic cone. In this
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paper we define an algebraic surface of PG(3, qn) by using a variation of Seydewitz’s
projective generation of quadratic cones by means of a suitable collineation instead
of a projectivity.

Let A and B be two distinct points of PG(3, qn), and let σ be an automorphism of
Fqn such that Fix(σ ) = Fq . Let � be a σ -collineation between the star of lines with
center A and the star of planes with center B. Suppose that the line AB is mapped
under � into a plane containing AB and that the lines through A of the plane πAB are
mapped into the planes through the line AB, then the set of points of intersection of
corresponding elements under � is a σ -cone of PG(3, qn) with vertices A and B. We
will prove the following results:

Theorem 1.1 Every σ -cone K of PG(3, qn) is projectively equivalent to the set of
Fqn -rational points of the algebraic surface with equation

x1
σ+1 + x2x

σ
3 + x3x

σ
2 − x4x2

σ = 0.

It has size q2n + qn + 1, it is of type (0, 1, 2, q + 1, qn + 1)1, every (q + 1)-secant
line meetsK in a subline over Fq . Moreover AB is the unique line contained inK and
πAB is the unique plane that meets K exactly in AB.

Theorem 1.2 A σ -cone and a σ ′-cone of PG(3, qn) are P�L-equivalent if, and only
if, either σ ′ = σ or σ ′ = σ−1.

Theorem 1.3 LetK be a σ -cone of PG(3, 2n) with vertices A and B. The setK \ AB
is a subset of PG(3, 2n) \ πAB of size 22n. The lines joining any two points of K \ AB
are disjoint from a translation hyperovalO∞ of the plane πAB, projectively equivalent
to the set {(0, t, tσ−2

, 1) : t ∈ F2n } ∪ {A, B}, .

Corollary 1.4 If n = 2h+1 and σ is the automorphism of F2n given by σ : x �→ x2
h
,

thenO∞ is the union of a non-degenerate conic with its nucleus. Hence the setK\ AB
is the affine set of the Lüneburg spread of PG(3, qn).

2 Preliminary results

Let τ be a symplectic polarity of PG(3, qn). A line � is called self-polar if τ(�) = �.
The symplectic polar space W3(qn) is the classical generalized quadrangle whose
pointset is the set of points of PG(3, qn) and whose lineset is the set of the self-polar
lines with respect to τ . A spread S of PG(3, qn), i.e., a set of q2n + 1 pairwise skew
lines, is called symplectic if all lines of S belong to a symplectic polar space W3(qn).
Via the Plücker embedding, to a spread S of PG(3, qn) there corresponds an ovoid
O(S) of Q+(5, qn), i.e., a set of q2n + 1 points pairwise non-collinear on Q+(5, qn).
The spread S is symplectic if and only if the ovoid O(S) is contained in a Q(4, qn).
In the what follows we will denote by ⊥ the polarity of Q+(5, qn).

A polarity of W3(qn) is a bijection of order 2 interchanging points and lines. An
absolute line of a polarity of W3(qn) is a line of W3(qn) containing its polar point.
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In 1965, H. Lüneburg in [9] proved that if qn = 22h+1, h ≥ 1, then the set of
absolute lines of a polarity ofW3(qn) is a symplectic spread, now called the Lüneburg
spread of PG(3, qn).

Let �∞ be a hyperplane of PG(4, qn) and let Q+(3, qn) be a hyperbolic quadric
of �∞. A set A of q2n points of PG(4, qn) \ �∞ s. t. that the line joining any two of
them is disjoint from Q+(3, qn) called an affine set of PG(4, qn) \ �∞.

In [6] and also in [7] the following result has been proved.

Theorem 2.1 Let O be an ovoid of Q+(5, qn), let x be a point of O and let 	 be a
hyperplane of PG(5, qn) not containing x. The set Ax (O) obtained by projecting O
from the point x onto 	 is an affine set of 	 \ x⊥. Conversely, if A is an affine set of
	 \ x⊥, then the set O = {xy ∩ Q+(5, qn) : y ∈ A} is an ovoid of Q+(5, qn).

If S is a spread of PG(3, qn) and � is a line of S, then we will denote by A�(S) the
affine set arising from S with respect to �.

If S is a symplectic spread, then A�(S) is a set of q2n points of an affine space
PG(3, qn) \ π∞ such that the line joining any two of them is disjoint from a given
non-degenerate conic C of π∞.

The affine set arising from the Lüneburg spread has been studied by A. Cossidente,
G. Marino and O. Polverino in [1], where the following result has been obtained.

Theorem 2.2 The affine set A of the Lüneburg spread of PG(3, qn), qn = 22h+1, is
the union of qn qn-arcs, each of which can be completed to a translation hyperoval.
The directions of A on π∞ are the complement of a conic and its nucleus. Moreover,
the planes containing the qn translation hyperovals, together with π∞, form a pencil
of planes with axis a line that is also the axis of all the translation hyperovals.

In [5] a Cm
F -set (degenerate Cm

F -set) of PG(2, qn) is defined as the set of points of
intersection of corresponding lines under a collineation between two pencils of lines
with vertices two distinct points A and B mapping the line AB not into itself (into
itself). Every Cm

F -set of PG(2, qn) is the union of {A, B} with q − 1 scattered Fq -
linear sets of rank n. Every degenerate Cm

F -set of PG(2, qn) is the union of the line
AB with a scattered Fq -linear set of rank n + 1 meeting the line AB in a Fq -linear set
of pseudoregulus type with transversal points A and B and vice versa.

LetP andP ′ be twoBaer subpencils of lines of PG(2, q2)with vertices two distinct
points V and V ′, respectively. If the line VV ′ belongs to P and does not belong to P ′
(or vice versa), then the set of points of intersection between the lines of P and the
lines of P ′ is called in a K -set of PG(2, q2) (see [3]). If the line VV ′ belongs neither
to P nor to P ′, then the set of points of intersection between the lines of P and the
lines ofP ′ is called an H -set of PG(2, q2) (see [3]). Finally letH be a non-degenerate
Hermitian curve of PG(2, q2) containing the point V , with the tangent line toH at V
being a line of P . The set of points of intersection between H and the lines of P is
called a �-set (see [4]).

3 σ -cones

We start by proving Theorem 1.1. Let K be a σ -cone of PG(3, qn) with vertices A
and B. Wlog we may assume that A = (0, 0, 0, 1), B = (0, 0, 1, 1) and that �
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maps the line joining A and (y1, y1, y3, 0) onto the plane through B with equation
b1x1 + b2x2 + b3x3 − b3x4 = 0, where

⎛
⎝
b1
b2
b3

⎞
⎠ =

⎛
⎝
a11 a12 a13
a21 a22 a23
a31 a32 a33

⎞
⎠

⎛
⎝

y1σ

y2σ

y3σ

⎞
⎠ ,

and (ai j ) is a non-singular matrix over Fqn .
We may assume that the line joining A and (1, 0, 0, 0) is mapped onto the plane

with equation x1 = 0, that the line joining A and (0, 1, 0, 0) is mapped onto the plane
with equation x3 − x4 = 0 and that the line joining A and (0, 0, 1, 0) is mapped onto
the plane πAB with equation x2 = 0. Under these assumptions it follows readily that
a21 = a31 = a12 = a22 = a13 = a33 = 0, and that a11a23a32 �= 0.

A line through A may be assumed as the line joining A with a point (y1, y2, y3, 0).
The unique line � through A contained in the plane�(�) is the line AB. If � is different
from AB, then � ∩ �(�) is a point with homogeneous coordinates

(a32y
σ
2 y1, a32y

σ+1
2 , a32y

σ
2 y3, a11y

σ+1
1 + a23y2y

σ
3 + a32y3y

σ
2 ),

and this gives a parametric representation of the set K. Therefore K has an equation
of the form

axσ+1
1 + bx2x

σ
3 + x3x

σ
2 − x4x

σ
2 = 0,

with a = a11
a32

�= 0 and b = a23
a32

�= 0.
Assuming that the point (0, 1, 1, 2)belongs toK, it follows thatb = 1, and assuming

that the point (1, 1, 1, 3) belongs to K, it follows that a = 1. Hence the equation of a
σ -cone assumes the canonical form

xσ+1
1 + x2x

σ
3 + x3x

σ
2 − x4x

σ
2 = 0.

Let PA be the pencil of lines mapped under � onto the pencil of planes with axis
the line AB. Every line ofPA, different from AB, intersectsK exactly in A. Every line
� through A, not in πAB , intersectsK in two points, namely A and �∩�(�). Similarly,
every line through B, different from AB, either intersectsK exactly in B or intersects
K in two distinct points. It follows that K has q2n + qn + 1 points. Let � be a line
of PG(3, qn) neither through A nor through B. If there exist a point R on � such that
� ⊆ �(AR), then the axis of the pencil of planes {�(AP) : P ∈ �} intersects � in a
point R′ possibly coincident to R. It follows that for every point P ∈ �, distinct from
R and distinct from R′, the plane �(AP) cannot contain P, soK∩ � = {R, R′}. If the
line � is not contained in any plane of the pencil {�(AP) : P ∈ �}, then � induces a
σ -collineation of the line � into itself defined by

φ� : P ∈ � −→ �(AP) ∩ � ∈ �.
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The points of the line � which belong to K are exactly all the fixed points of φ�. The
system of fixed points of φ� is one of the following (see [2]): the empty set, a single
point, a pair of distinct points or a subline formed by all the points of � coordinatized
over the subfield Fix(σ ) = Fq , with respect to a suitable basis of �. In the last case
this set is an Fq -subline of the line �. From these arguments it follows that every line
of PG(3, qn), neither through A nor through B, intersectsK in 0, 1, 2 or q + 1 points.

The Proof of Theorem 1.1 is complete.
Suppose that σ is the automorphism of Fqn mapping x into xq

m
, (m, n) = 1.

Theorem 3.1 Let K be a σ -cone of PG(3, qn) with vertices A and B. Every plane
π through the line AB, different from πAB, intersects K in a degenerate Cm

F -set, say
Kπ , with vertices A and B. Moreover the set of the directions of Kπ \ AB on the line
AB is independent of π .

Proof Suppose thatK is defined by a collineation � between SA and S∗
B and suppose

thatK has canonical equation xσ+1
1 +x2xσ

3 +x3xσ
2 −x4xσ

2 = 0. LetPπ
A andPπ

B be the
pencils of lines contained in π with vertices A and B, respectively. The collineation
� induces a collineation �π given by

�π : � ∈ Pπ
A −→ �(�) ∩ π ∈ Pπ

B .

The σ -cone K meets the plane π exactly in the set of points of intersection of corre-
sponding lines under �π . Since �π maps the line AB into itself, it follows thatK∩π

is a degenerate Cm
F -set of the plane π . Consider the plane through the line AB with

equation ax1 = bx2, with a �= 0, and consider in this plane the points of K given by
L = (b, a, 0, b(aσ )−1), M = (b, a, a, 2a + b(aσ )−1). The direction of the line LM
on the line AB is independent of (a, b) and it is given by D = (0, 0, 1, 2). The set of
the directions of Kπ \ AB on the line AB is a linear set of pseudoregulus type with
transversal points A and B (see [5,8]). Since the linear sets of pseudoregulus type
with transversal points A and B partition AB \ {A, B}, it follows that the set of the
directions of Cπ \ AB is independent of π . ��
Remark 3.2 LetK be a σ -cone of PG(3, qn)with vertices A and B. From the previous
theorem it follows that A and B are the unique points of K not incident with (q + 1)-
secant lines to K.

Let σ ′ be the automorphism of Fqn mapping x into xq
m′
, with (m′, n) = 1.

Lemma 3.3 Let S (resp. S ′) be a degenerate Cm
F -set (resp. Cm′

F -set) of PG(2, qn).
The sets S and S ′ are P�L-equivalent if, and only if, either σ ′ = σ or σ ′ = σ−1

Proof Let � (resp. �′) be a σ -collineation (resp. σ ′-collineation) defining S (resp.
S ′). We may assume that both S and S ′ have the same vertices A and B. Observe
that if S is a degenerate Cm

F -set of PG(2, qn) with vertices A and B defined by a
σ -collineation �, then S is also a Cn−m

F -set with vertices B and A, generated by the
σ−1-collineation �−1.

Let f be a collineation of PG(2, qn) mapping S into S ′. Since A and B are the
unique points of both S and S ′ not incident with (q + 1)-secant lines, it follows that
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f stabilizes the set {A, B}. First assume that f (A) = B. For every line � through the
point A we have that f (�(�)) = (�′)−1( f (�)). As � and (�′)−1 are collineations

with accompanying automorphism x �→ xq
m
and x �→ xq

n−m′
, respectively, we have

that m = n−m′, and so m = m′ = n
2 . Since (m, n) = 1 it follows that n = 2,m = 1.

Next suppose that f (A) = A, f (B) = B. For every line � through A we have that
f (�(�)) = �′( f (�)), hence σ = σ ′. ��
Proof of Theorem 1.2 Let � (resp. �′) be a σ -collineation (resp. σ ′-collineation)
defining K (resp. K′). We may assume that both K and K′ have the same vertices
A and B and the same plane πAB . Observe that if K is defined by a σ -collineation �,
then K is also a σ−1-cone with vertices B and A generated by the σ−1-collineation
�−1.

Let f be a collineation of PG(3, qn) mapping K into K′. Since A and B are the
unique points of both K and K′ through which do not pass (q + 1)-secant lines, it
follows that f stabilizes both the set {A, B} and the pencil of planes with axes the
line AB. Let π be a plane through the line AB, different from πAB . The set π ∩ K is
a degenerate Cm

F -set of π and it is mapped under f into the set f (π) ∩ K′, that is a
degenerateCm′

F -set if f (π). FromLemma 3.3we have that either σ ′ = σ or σ ′ = σ−1.
��

4 Affine sets of the Lüneburg spread

In this section we will prove Theorem 1.3 and Corollary 1.4. LetK be the σ -cone with
vertices A = (0, 0, 0, 1) and B = (0, 0, 1, 1) with canonical equation

x1
σ+1 + x2x

σ
3 + x3x

σ
2 − x4x2

σ = 0.

Consider the projectivity given by

⎛
⎜⎜⎝
x1′
x2′
x3′
x4′

⎞
⎟⎟⎠ =

⎛
⎜⎜⎝
0 1 0 0
0 0 1 0
0 0 − 1 1
1 0 0 0

⎞
⎟⎟⎠

⎛
⎜⎜⎝
x1
x2
x3
x4

⎞
⎟⎟⎠

that mapsK into the σ -coneK′ with vertices A′ = (0, 0, 1, 0) and B ′ = (0, 1, 0, 0)
and with equation

x4
σ+1 + x1x

σ
2 − x3x1

σ = 0.

This projectivity maps the plane πAB with equation x2 = 0 onto the plane πA′B′
with equation x1 = 0. The set A′ = K′ \ πA′B′ is given by {(1, x, xσ + yσ+1, y) :
x, y ∈ Fqn }. Arguing as in Proposition 5.2 in [1], we obtain that the set of directions
determined by A′ onto the plane πA′B′ cover all the points of πA′B′ but the points of
a hyperoval C given by C = {(0, x, xσ−2

, 1) : x ∈ F
∗
qn }. Note that if q = 22h+1 and
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σ : x �→ x2
h
, then the hyperoval C is a hyperconic and hence both Theorem 1.3 and

Corollary 1.4 are proved.

5 σ -cones in PG(3, q2)

In this section we will study a σ -cone in PG(3, q2) with σ : x �→ xq , that will be
called a q-cone.

Theorem 5.1 Every q-cone of PG(3, q2) is the union of q non-degenerate Hermitian
curves with a common point with the line AB, such that the planes containing the q
Hermitian curves, together with the plane πAB, form a Baer subpencil of planes.

Proof LetK be a q-cone. Wlog we may assume thatK has canonical equation xq+1
1 +

x2x
q
3 + x3x

q
2 − x4x

q
2 = 0. Let F be the pencil formed by all the planes with equation

x4 = hx2, h ∈ Fq2 , togetherwith the planeπAB with equation x2 = 0. The intersection
between πAB and K is the line AB. The intersection between the plane with equation
x4 = hx2 withK is a setKh with equations x4 = hx2, x

q+1
1 −hxq+1

2 +x2x
q
3+x3x

q
2 = 0.

The set Kh is a non-degenerate Hermitian curve of the plane with equation x4 = hx2
if, and only if, h ∈ Fq . ThereforeK intersects each of the q planes ofF , different from
πAB , in a non-degenerate Hermitian curve and intersects πAB in the line AB. Observe
that the set of planes with equations x4 = hx2, h ∈ Fq , together with the plane πAB ,
form a Baer subpencil of planes with axis the line � with equations x2 = x4 = 0, and
observe that every non-degenerate Hermitian curve Kh , h ∈ Fq , contains the point
V = (0, 0, 1, 0). Finally, the set K contains the set

K′ =
⋃
h∈Fq

Kh ∪ (K ∩ πAB),

and since |K′| = q4 + q2 + 1 = |K|, it follows that K = K′. ��
Theorem 5.2 Every q-cone of PG(3, q2) is contained in a Hermitian cone.

Proof Let K be a q-cone of PG(3, q2). Wlog we may assume that K has canonical
equation xq+1

1 + x2x
q
3 + x3x

q
2 − x4x

q
2 = 0. It is known that the polynomial xq +

x + 1 has q roots over Fq2 . Hence there exists an element γ of Fq2 satisfying the
condition γ q + γ + 1 = 0. It follows that K is contained in the Hermitian cone with
equation xq+1

1 + x2x
q
3 + x3x

q
2 + σ x2x

q
4 + σ q x4x

q
2 = 0 whose vertex is the point

V ′ = (0, 0,−σ, 1). ��
Theorem 5.3 Every plane of PG(3, q2) intersects a q-cone in one of the following:
a point, a Baer subline, a non-degenerate Hermitian curve, a line, a (possibly degen-
erate) C1F-set, a K -set, a �-set.

Proof Let π be a plane of PG(3, q2) and let K be a q-cone with vertices A and B,
contained in a Hermitian cone C. The setK is contained in a Baer subpencil of planes
P with axis a line �. If π is a plane ofP , then π intersectsK either in a non-degenerate
Hermitian curve or in the line AB. If π belongs to the pencil of planes with axis � and
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does not belong to P , then π ∩ K is a point. If π is a plane not containing the line
�, then π ∩ K = P ∩ π ∩ C and so π ∩ K is the intersection between the Hermitian
curve π ∩ C (possibly degenerate) with the degenerate Hermitian curve of π ∩ P .
In [4] the intersection between two distinct, possibly degenerate, Hermitian curves
has been studied and it has been proved that, if one of the two Hermitian curves is
degenerate, then their intersection is one of the following: a point, a Baer subline, a
(possibly degenerate) C1F -set, an H -set, a K -set, a �-set, a line, a pair of distinct lines.
It follows that if π ∩ C �= π ∩P , then π ∩K is one of the intersection configurations
described above. A pair of distinct lines cannot occur since K contains a unique line.
Moreover there are no planes meetingK in an H -set. Indeed a plane of the pencilF in
Theorem 5.1meetsK either in a point or a line or a non-degenerate Hermitian curve. A
plane π not inF meets each of the Hermitian curvesKh , h ∈ Fq either in a point or in
a Baer subline and meets the line AB in a point. It follows that |K∩π | ≤ q(q+1)+1,
so π ∩ K cannot be an H -set.

Finally, if π ∩ C = π ∩ P , then π ∩ K is a Baer subpencil of lines, which is not
possible since K does not contain Baer subpencils of lines. ��
Theorem 5.4 Let π be a plane of PG(3, q2) and letH be a non-degenerate Hermitian
curve contained in π . Let A and B be two distinct points not in π such that AB ∩ π

is a point P of H. There exists a unique q-cone containing H.

Proof Let u be the unitary polarity associated with H and let � be the map sending
every line � of PG(3, q2) through A onto the plane 〈u(� ∩ π), B〉 spanned by the line
u(�∩π) and the point B. The map� is a σ -collineation mapping the line AB onto the
plane 〈B, u(P)〉. Let K be the set of points of intersection of corresponding elements
under �. Since the points of the line u(P) are mapped under u onto the lines through
P contained in π , it follows that the lines on A contained in 〈A, u(P)〉 are mapped
under � onto the planes containing AB. Hence πAB = 〈A, u(P)〉 = �(AB) and
so K is a q-cone of PG(3, q2). It is clear that K ∩ π = H. We will now prove the
uniqueness of K. Let K1 and K2 be two q-cones of PG(3, q2) both with vertices A
and B generated by two σ -collineation �1 and �2 such that K1 ∩ π = K2 ∩ π = H.
The maps �1 and �2 induce on π two correlations u1 and u2 both with H as set of
absolute points. Hence u1 = u2 = u. So K1 = K2. ��
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