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Abstract We study the vector spaces and integer lattices of cuts and flows associ-
ated with an arbitrary finite CW complex, and their relationships to group invariants
including the critical group of a complex. Our results extend to higher dimension the
theory of cuts and flows in graphs, most notably the work of Bacher, de la Harpe,
and Nagnibeda. We construct explicit bases for the cut and flow spaces, interpret their
coefficients topologically, and give sufficient conditions for them to be integral bases
of the cut and flow lattices. Second, we determine the precise relationships between
the discriminant groups of the cut and flow lattices and the higher critical and cocritical
groups with error terms corresponding to torsion (co)homology. As an application, we
generalize a result of Kotani and Sunada to give bounds for the complexity, girth, and
connectivity of a complex in terms of Hermite’s constant.
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1 Introduction

This paper is about vector spaces and integer lattices of cuts and flows associated
with a finite cell complex. Our primary motivation is the study of critical groups of
cell complexes and related group invariants. The critical group of a graph is a finite
abelian group the order of which is the number of spanning forests. The definition
was introduced independently in several settings, including arithmetic geometry [28],
physics [12], and algebraic geometry [2] (where it is also known as the Picard group
or Jacobian group). It has received considerable recent attention for its connections
to discrete dynamical systems, tropical geometry, and linear systems of curves; see,
e.g., [3,4,7,22].

In a previous work [17], the authors extended the definition of the critical group
to a cell complex � of arbitrary dimension. To summarize, the critical group K (�)

can be calculated using a reduced combinatorial Laplacian, and its order is a weighted
enumeration of the cellular spanning trees of �. Moreover, the action of the critical
group on cellular (d − 1)-cochains gives a model of discrete flow on �, generalizing
the chip-firing and sandpile models; see, e.g., [4,12].

Bacher et al. first defined the lattices C and F of integral cuts and flows for a
graph [2]. By regarding a graph as an analogue of a Riemann surface, they interpreted
the discriminant groups C�/C and F�/F , respectively, as the Picard group of divisors
and as the Jacobian group of holomorphic forms. In particular, they showed that the
critical group K (G) is isomorphic to both C�/C and F�/F . Similar definitions and
results appear in the work of Biggs [4].

In the present paper, we define the cut and flow spaces and cut and flow lattices of
a cell complex � by

Cut(�) = imR ∂∗, Flow(�) = kerR ∂,

C(�) = imZ ∂∗, F(�) = kerZ ∂,

where ∂ and ∂∗ are the top cellular boundary and coboundarymaps of�. In topological
terms, cut and flow vectors are cellular coboundaries and cycles, respectively. Equiv-
alently, the vectors in Cut(�) support sets of facets deletion of which increases the
codimension-1 Betti number, and the vectors in Flow(�) support nontrivial rational
homology classes.

In the higher-dimensional setting, the groups C�/C and F�/F are not necessarily
isomorphic to each other. Their precise relationship involves several other groups:
the critical group K (�), a dually defined cocritical group K ∗(�), and the cutflow
group Z

n/(C ⊕ F). We show that the critical and cocritical groups are, respectively,
isomorphic to the discriminant groups of the cut lattice and flow lattice, and that
the cutflow group mediates between them with an “error term” given by homology.
Specifically, if dim� = d, then we have the short exact sequences:

0 → Z
n/(C ⊕ F) → C�/C ∼= K (�) → T(H̃d−1(�;Z)) → 0,

0 → T(H̃d−1(�;Z)) → Z
n/(C ⊕ F) → F�/F ∼= K ∗(�) → 0

(Theorems 7.6 and 7.7) where T denotes the torsion summand. The sizes of these
groups are then given by
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|C�/C| = |K (�)| = τ(�) = τ ∗(�) · t2,
|F�/F | = |K ∗(�)| = τ ∗(�) = τ(�)/t2,

|Zn/(C ⊕ F)| = τ(�)/t = τ ∗(�) · t,

(Theorems 8.1 and 8.2), where t = |T(H̃d−1(�;Z))| and τ(�) and τ ∗(�) are the
weighted enumerators

τ(�) =
∑

ϒ

|T(H̃d−1(ϒ;Z))|2, τ ∗(�) =
∑

ϒ

|T(H̃d(�,ϒ;Z))|2,

where both sums run over all cellular spanning forests ϒ ⊆ � (see Eq. 3) and � is an
acyclization of ϒ (see Definition 7.3).

Before proving these results, we study the cut space (Sect. 4), the flow space
(Sect. 5), and the cut and flow lattices (Sect. 6) in some detail. In order to do this, we
begin in Sect. 3 by describing and enumerating cellular spanning forests of an arbitrary
cell complex, generalizing our earlierwork [15,16]. Similar resultswere independently
achieved, using different techniques, byCatanzaro, Chernyak andKlein [8]. Ourmeth-
ods and results are very close to those of Lyons [29], but our technical emphasis is
slightly different.

Every cellular spanning forest ϒ naturally gives rise to bases of the cut space
(Theorem 4.8) and the flow space (Theorem 5.5). In the graphic case, these basis
vectors are simply signed characteristic vectors of fundamental cocircuits and circuits
in the graphic matroid, and they always form integral bases for the cut and flow
lattices. For a general cellular complex, the supports of basis vectors are given by
cocircuits and circuits in the cellular matroid of� (i.e., the matroid represented by the
columns of ∂), but their entries are not determined by the matroid. We prove that the
basis vectors can be scaled so that their entries are torsion coefficients of homology
groups of certain subcomplexes (Theorems 4.11 and 5.3). Under certain conditions
on ϒ , these bases are in fact integral bases for the cut and flow lattices (Theorems 6.1
and 6.2). Although the matroid data alone are not enough to extend the theory of
[2] to arbitrary cell complexes, the perspective of matroid theory will frequently be
useful.

The idea of studying cuts and flows of matroids goes back to Tutte [33]. More
recently, Su and Wagner [32] define cuts and flows of a regular matroid (i.e., one
represented by a totally unimodular matrix M); when M is the boundary matrix of
a cell complex, this is the case where the torsion coefficients are all trivial. Su and
Wagner’s definitions coincide with ours; their focus, however, is on recovering the
structure of a matroid from the metric data of its flow lattice.

In the final section of the paper, we generalize a theorem of Kotani and Sunada [26],
who observed that a classical inequality for integer lattices, involving Hermite’s
constant (see, e.g., [27]), could be applied to the flow lattice of a graph to give a
bound for girth and complexity. We prove the corresponding result for cell com-
plexes (Theorem 9.2), where “girth” means the size of a smallest circuit in the cel-
lular matroid (or, topologically, the minimum number of facets supporting a nonzero
homology class), and “complexity” is the torsion-weighted count of cellular spanning
trees.
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2 Preliminaries

In this section, we review the tools needed throughout the paper: cell complexes,
cellular spanning trees and forests, integer lattices, and matroids.

2.1 Cell complexes

Ourwork ismotivated by algebraic graph theory, including critical groups, cut andflow
spaces and lattices, and the chip-firing game. Our central goal is to extend the theory
from graphs to higher-dimensional spaces. Thus, we work in the setting of a finite CW
complex, regarded as the higher-dimensional analogue of a graph. Accordingly, we
begin by reviewing some of the topology of cell complexes; for a general reference,
see [23, p. 5]. The reader more familiar with simplicial complexes may safely consider
that special case throughout.

Throughout the paper,� will denote a finite CWcomplex (whichwe refer to simply
as a cell complex) of dimension d. We adopt the convention that� has a unique cell of
dimension −1 (as though it were an abstract simplicial complex); this will allow our
results to specialize correctly to the case d = 1 (i.e., that� is a graph).Wewrite�i for
the set of i-dimensional cells in �, and �(i) for the i-dimensional skeleton of �, i.e.,
�(i) = �i ∪�i−1∪· · ·∪�0. Again, in keeping with simplicial-complex terminology,
a cell of dimension d is called a facet.

Unless otherwise stated, every d-dimensional subcomplex � ⊆ � will be assumed
to have a full codimension-1 skeleton, i.e., �(d−1) = �(d−1). Accordingly, for sim-
plicity of notation, we will often make no distinction between the subcomplex � itself
and its set �d of facets.

The symbol Ci (�) = Ci (�; R) denotes the group of i-dimensional cellu-
lar chains with coefficients in a ring R. The i-dimensional cellular boundary
and coboundary maps are, respectively, ∂i (�; R) : Ci (�; R) → Ci−1(�; R) and
∂∗
i (�; R) : Ci−1(�; R) → Ci (�; R); we will write simply ∂i and ∂∗

i whenever pos-
sible.

When � is a graph (i.e., a cell complex of dimension 1), its top boundary map is a
familiar object, namely its signed vertex-edge incidence matrix (with respect to some
edge orientation). In this article, our goal will be to extract combinatorial information
about an arbitrary cell complex from its top-dimensional boundary map (which can
be any integer matrix).

The i th reduced cellular homology and cohomology groups of � are, respectively,
H̃i (�; R) = ker ∂i/ im ∂i+1 and H̃ i (�; R) = ker ∂∗

i+1/ im ∂∗
i . We say that � is R-

acyclic in codimension one if H̃d−1(�; R) = 0. For a graph (d = 1), both Q- and
Z-acyclicity in codimension one are equivalent to connectedness. The i th reduced
Betti number is β̃i (�) = dim H̃i (�;Q), and the i th torsion coefficient ti (�) is the
cardinality of the torsion subgroup T(H̃i (�;Z)). We will frequently use the fact that

T(H̃d−1(�;Z)) ∼= T(H̃d(�;Z)) (1)

which is a special case of the universal coefficient theorem for cohomology [23,
p. 205, Corollary 3.3]. A pair of complexes � ⊆ � induces a relative complex (�, �),
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with relative homology and cohomology H̃i (�, �; R) and H̃ i (�, �; R) and torsion
coefficients ti (�, �) = |T(H̃i (�, �;Z))|.

While many definitions and results can be stated purely algebraically (e.g., in terms
of chain complexes over Z), we regard the underlying object of interest as the cell
complex (see Remark 4.2).

2.2 Spanning forests and Laplacians

Our work on cuts and flows will use the theory of spanning forests in arbitrary dimen-
sions. Define a cellular spanning forest (CSF) of � to be a subcomplex ϒ ⊆ � such
that ϒ(d−1) = �(d−1) and

H̃d(ϒ;Z) = 0, (2a)

rank H̃d−1(ϒ;Z) = rank H̃d−1(�;Z), and (2b)

|ϒd | = |�d | − β̃d(�) (2c)

The above conditions generalize the definition of a spanning forest1 of a graph G:
respectively, it is acyclic, has c components, and has n − c edges, where n and c are
the numbers of vertices and components of G. Just as in the graphic case, any two
of the conditions (2a), (2b), (2c) together imply the third; the proof is just a slight
modification of the proof of [15, Proposition 3.5]. An equivalent and perhaps simpler
definition is that a subcomplex ϒ ⊆ � is a cellular spanning forest if and only if its
d-cells correspond to a column basis for the cellular boundary matrix ∂ = ∂d(�);
however, the definition focusing on integral homology is frequently the most useful
(see, e.g., Remark 4.15).

In the case that � is Q-acyclic in codimension one, this definition specializes to
our earlier definition of a cellular spanning tree [16, Definition 2.2].

There are two main reasons that enumeration of spanning forests of cell complexes
is more complicated than for graphs. First, many properties of graphs can be studied
component by component, so that one can usually make the simplifying assumption
of connectedness; on the other hand, a higher-dimensional cell complex cannot in
general be decomposed into disjoint pieces that are all acyclic in codimension one.
Second, for complexes of dimension greater than or equal to two, the possibility of
torsion homology affects enumeration.

Define the i th up-down, down-up and total Laplacian operators2 on � by

Lud
i = ∂i+1∂

∗
i+1 : Ci (�; R) → Ci (�; R),

Ldu
i = ∂∗

i ∂i : Ci (�; R) → Ci (�; R),

L tot
i = Lud

i + Ldu
i .

1 That is, a maximal acyclic subgraph of G, not merely an acyclic subgraph containing all vertices.
2 These are discrete versions of the Laplacian operators on differential forms of aRiemannianmanifold. The
interested reader is referred to [18] and [14] for their origins in differential geometry and, e.g., [13,20,30]
for more recent appearances in combinatorics.
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Moreover, define the complexity of � as

τ(�) = τd(�) =
∑

CSFs ϒ⊆�

|T(H̃d−1(ϒ;Z))|2. (3)

The cellular matrix-tree theorem [16, Theorem 2.8] states that if � is Q-acyclic in
codimension one and Lϒ̄ is the submatrix of Lud

d−1(�) obtained by deleting the rows
and columns corresponding to the facets of a (d − 1) spanning tree ϒ , then

τ(�) = |T(H̃d−2(�;Z))|2
|T(H̃d−2(ϒ;Z))|2 det Lϒ̄ .

In Sect. 3, wewill generalize this formula to arbitrary cell complexes (i.e., not requiring
that� beQ-acyclic in codimension one). This has previously been done by Lyons [29]
in terms of slightly different invariants. If G is a connected graph, then τ(G) is just
the number of spanning trees, and we recover the classical matrix-tree theorem of
Kirchhoff.

2.3 Lattices

Starting in Sect. 6, we will turn our attention to lattices of integer cuts and flows. We
review some of the general theory of integer lattices; see, e.g., [1, Chap. 12], [21,
Chap. 14], [24, Chap. IV].

A lattice L is a discrete subgroup of a finite-dimensional vector space V ; that is,
it is the set of integer linear combinations of some basis of V . Every lattice L ⊆ R

n

is isomorphic to Z
r for some integer r ≤ n, called the rank of L. The elements of L

span a vector space denoted by L ⊗ R. For L ⊆ Z
n , the saturation of L is defined

as L̂ = (L ⊗ R) ∩ Z
n . An integral basis of L is a set of linearly independent vectors

v1, . . . , vr ∈ L such thatL = {c1v1+· · ·+crvr : ci ∈ Z}. We will need the following
fact about integral bases of lattices; the equivalences are easy consequences of the
theory of free modules (see, e.g., [1, Chap. 12], [24, Chap. IV]):

Proposition 2.1 For any lattice L ⊆ Z
n, the following are equivalent:

(a) Every integral basis of L can be extended to an integral basis of Zn.
(b) Some integral basis of L can be extended to an integral basis of Zn.
(c) L is a summand of Zn, i.e., Zn can be written as an internal direct sum L ⊕ L′.
(d) L is the kernel of some group homomorphism Z

n → Z
m.

(e) L is saturated, i.e., L = L̂.
(f) Zn/L is a free Z-module, i.e., its torsion submodule is zero.

Fixing the standard inner product 〈·, ·〉 on R
n , we define the dual lattice of L by

L� = {v ∈ L ⊗ R : 〈v,w〉 ∈ Z ∀w ∈ L}.

Note that L� can be identified with the dual Z-module L∗ = Hom(L,Z), and that
(L�)� = L. A lattice is called integral if it is contained in its dual; for instance, any
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subgroup of Zn is an integral lattice. The discriminant group (or determinantal group)
of an integral lattice L is L�/L; its cardinality can be calculated as det MT M , for any
matrix M whose columns form an integral basis ofL. We will need the following facts
about bases and duals of lattices:

Proposition 2.2 [21, Sect. 14.6] Let M be an n × r integer matrix.

(a) If the columns of M form an integral basis for the lattice L, then the columns of
M(MT M)−1 form the corresponding dual basis for L�.
(b) The matrix P = M(MT M)−1MT represents orthogonal projection from R

n onto
the column space of M.
(c) If the greatest common divisor of the r × r minors of M is 1, then L� is generated
by the columns of P.

2.4 The cellular matroid

Many ideas of the paper may be expressed efficiently using the language of matroids.
For a general reference on matroids, see, e.g., [31]. We will primarily consider cellular
matroids. The cellular matroid of � is the matroid M(�) represented over R by the
columnsof the boundarymatrix ∂ . Thus, the ground set ofM(�)naturally corresponds
to the d-dimensional cells �d , and the matroid records which sets of columns of ∂ are
linearly independent. If � is a graph, then M(�) is its usual graphic matroid, while
if � is a simplicial complex, thenM(�) is its simplicial matroid [10].

The bases ofM(�) are the collections of facets of cellular spanning forests of �.
If r is the rank function of the matroidM(�), then for each set of facets B ⊆ �d , we
have r(B) = rank ∂B , where ∂B is the submatrix consisting of the columns indexed
by the facets in B. Moreover, we have

r(�) := r(�d) = rankM(�) = rank ∂ = |�d | − β̃d(�)

by the definition of Betti number.
A set of facets B ⊆ �d is called a cut if deleting B from � increases its

codimension-one homology, i.e., β̃d−1(�\B) > β̃d−1(�). A cut B is a bond if
r(�\B) = r(�) − 1, but r((�\B) ∪ σ) = r(�) for every σ ∈ B. That is, a bond is a
minimal cut. In matroid terminology, a bond of � is precisely a cocircuit of M(�),
i.e., a minimal set that meets every basis of M(�). Equivalently, a bond is the com-
plement of a flat of rank r(�) − 1. If ϒ is a cellular spanning forest (i.e., a basis of
M(�)) and σ ∈ ϒd is a facet, then the fundamental bond of the pair (ϒ, σ ) is

bo(ϒ, σ ) = σ ∪ {ρ ∈ �d\ϒ : ϒ\σ ∪ ρ is a CSF} . (4)

This is the fundamental cocircuit of the pair (ϒ, σ ) of M(�) [31, p. 78].
While the language of matroids will frequently be useful, it is important to point

out that most of the objects of interest to us, such as the cut and flow lattices and the
critical group of a cell complex�, are not purely combinatorial invariants of its cellular
matroidM(�). (See [32] for more on this subject, and [11,19] for generalizations of

123



976 J Algebr Comb (2015) 41:969–999

matroids that contain finer arithmetic information). As an example, the summands in
Eq. (3) are indexed by the bases ofM(�), but the summands themselves are not part
of the matroid data. (On the other hand, when � is a graph, all summands are 1.)

Below is a table collecting some of the standard terminology from linear algebra,
graph theory, and matroid theory, along with the analogous concepts that we will be
using for cell complexes.

Linear algebra Graph Matroid Cell complex

Column vectors Edges Ground set Facets
Independent set Acyclic subgraph Independent set Acyclic subcomplex
Min linear dependence Cycle Circuit Circuit
Basis Spanning forest Basis CSF
Set meeting all bases Disconnecting set Codependent set Cut
Min set meeting all bases Bond Cocircuit Bond
Rank # edges in spanning forest Rank # facets in CSF

Here “codependent” means dependent in the dual matroid.

3 Enumerating cellular spanning forests

In this section, we study the enumerative properties of cellular spanning forests of an
arbitrary cell complex�. Our setup is essentially the same as that of Lyons [29, Sect. 6],
but the combinatorial formulas wewill need later, namely Propositions 3.2 and 3.4, are
somewhat different. As a corollary, we obtain an enumerative result, Proposition 3.5,
which generalizes the simplicial and cellular matrix-tree theorems of [15] and [16]
(in which we required that � be Q-acyclic in codimension one). The result is closely
related, but not quite equivalent, to Lyons’ generalization of the cellular matrix-tree
theorem [29, Corollary 6.2], and to [8, Corollary D].

The arguments require some tools from homological algebra, in particular, the
long exact sequence for relative homology and some facts about the torsion-subgroup
functor. The details of the proofs are not necessary to understand the constructions of
cut and flow spaces in the later sections.

Let� be a d-dimensional cell complex with rank r . Let � ⊆ � be a subcomplex of
dimension less than or equal to d − 1 such that �(d−2) = �(d−2). Thus, the inclusion
map i : � → � induces isomorphisms i∗ : H̃k(�;Q) → H̃k(�;Q) for all k < d − 2.

Definition 3.1 The subcomplex � ⊆ � is called relatively acyclic if in fact the inclu-
sion map i : � → � induces isomorphisms i∗ : H̃k(�;Q) → H̃k(�;Q) for all k < d.

By the long exact sequence for relative homology, � is relatively acyclic if and only
if H̃d(�;Q) → H̃d(�, �;Q) is an isomorphism and H̃k(�, �;Q) = 0 for all k < d.
These conditions can occur only if |�d−1| = |�d−1| − r . This quantity may be zero
(in which case the only relatively acyclic subcomplex is �(d−2)). A relatively acyclic
subcomplex is precisely the complement of a (d − 1)-cobase (a basis of the matroid

123



J Algebr Comb (2015) 41:969–999 977

represented overR by the rows of the boundary matrix ∂) in the terminology of Lyons
[29].

Two special cases are worth noting. First, if d = 1, then a relatively acyclic complex
consists of one vertex in each connected component. Second, if H̃d−1(�;Q) = 0, then
� is relatively acyclic if and only if it is a cellular spanning forest of �(d−1).

For a matrix M , we write MA,B for the restriction of M to rows indexed by A and
columns indexed by B.

Proposition 3.2 Let � ⊆ ϒ ⊆ � be subcomplexes such that dimϒ = d; dim � =
d − 1; |ϒd | = r; |�d−1| = |�d−1| − r; ϒ(d−1) = �(d−1); and �(d−2) = �(d−2).
Also, let R = �d−1\�. Then the following are equivalent:

(a) The r × r square matrix ∂̂ = ∂R,ϒ is nonsingular.
(b) H̃d(ϒ, �;Q) = 0.
(c) H̃d−1(ϒ, �;Q) = 0.
(d) ϒ is a cellular spanning forest of � and � is relatively acyclic.

Proof The cellular chain complex of the relative complex (ϒ, �) is

0 → Cd(ϒ, �;Q) = Q
r ∂̂−→ Cd−1(ϒ, �;Q) = Q

r → 0

with other terms zero. If ∂̂ is nonsingular, then H̃d(ϒ, �;Q) and H̃d−1(ϒ, �;Q) are
both zero; otherwise, both are nonzero. This proves the equivalence of (a), (b) and (c).

Next, note that H̃d(�;Q) = 0 (because � has no cells in dimension d) and
that H̃d−2(ϒ, �;Q) = 0 (because �(d−2) = ϒ(d−2)). Accordingly, the long exact
sequence for relative homology of (ϒ, �) is

0 → H̃d(ϒ;Q) → H̃d(ϒ, �;Q)

→ H̃d−1(�;Q) → H̃d−1(ϒ;Q) → H̃d−1(ϒ, �;Q)

→ H̃d−2(�;Q) → H̃d−2(ϒ;Q) → 0.

(5)

If H̃d(ϒ, �;Q) = H̃d−1(ϒ, �;Q) = 0, then H̃d(ϒ;Q) = 0 (which says that ϒ is a
cellular spanning forest) and the rest of (5) splits into two isomorphisms that assert
precisely that � is relatively acyclic (recall that H̃d−1(ϒ;Q) = H̃d−1(�;Q) when ϒ

is a cellular spanning forest). This implication is reversible, completing the proof. ��
The torsion subgroup of a finitely generated abelian group A is defined as the

subgroup

T(A) = {x ∈ A : kx = 0 for some k ∈ Z}.

Note that A = T(A) if and only if A is finite. The torsion functor T is left-exact [24,
p. 179]. Moreover, if A → B → C → 0 is exact and A = T(A), then T(A) →
T(B) → T(C) → 0 is exact. We will need the following additional fact about the
torsion functor:
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Lemma 3.3 Suppose we have a commutative diagram of finitely generated abelian
groups

0 �� A
f ��

α

��

B
g ��

β

��

C
h ��

��

D
j ��

��

E ��

��

0

0 �� A′ f ′
�� B ′ g′

�� C ′ h′
�� D′ j ′ �� E ′ �� 0

(6)

such that both rows are exact; A, A′ are free; α is an isomorphism; β is surjective;
and C,C ′ are finite. Then there is an induced commutative diagram

0 �� TB ⊕ G ��

��

TC ��

��

TD ��

��

TE ��

��

0

0 �� TB ′ ⊕ G �� TC ′ �� TD′ �� TE ′ �� 0

(7)

such that G is finite and both rows are exact. Consequently,

|TB| · |TC ′| · |TD| · |TE ′| = |TB ′| · |TC | · |TD′| · |TE |. (8)

Proof Since C is finite, we have ker j = im h ⊆ TD, and so replacing D, E with
their torsion summands preserves exactness. The same argument implies that we can
replace D′, E ′ with TD′,TE ′.

Second, note that A, A′, B, B ′ all have the same rank (since the rows are exact,C,C ′
are finite, and α is an isomorphism). Hence, f (A) is a maximal-rank free submodule
of B; we can write B = TB ⊕ F , where F is a free summand of B containing f (A).
Likewise, write B ′ = TB ′ ⊕ F ′, where F ′ is a free summand of B ′ containing f ′(A′).
Meanwhile, β is surjective, and hencemust restrict to an isomorphism F → F ′, which
induces an isomorphism F/ f (A) → F ′/ f ′(A′). Abbreviating this last group byG, we
obtain the desired diagram (7) . Since ker g = im f ⊆ F , the map g : TB⊕G → TC
is injective, proving exactness of the first row; the second row is exact by the same
argument. Exactness of each row implies that the alternatingproduct of the cardinalities
of the groups is 1, from which the Eq. (8) follows. ��

Proposition 3.4 Let � be a d-dimensional cell complex, let ϒ ⊆ � be a cellular
spanning forest, and let � ⊆ � be a relatively acyclic (d − 1)-subcomplex. Then

td−1(ϒ) td−1(�, �) = td−1(�) td−1(ϒ, �).

Proof The inclusion ϒ ⊆ � induces a commutative diagram

0 �� H̃d−1(�;Z)
i∗ ��

∼=
��

H̃d−1(ϒ;Z)
j∗ ��

��

H̃d−1(ϒ, �;Z) ��

��

H̃d−2(�;Z) ��

∼=
��

H̃d−2(ϒ;Z) ��

∼=
��

0

0 �� H̃d−1(�;Z)
i∗ �� H̃d−1(�;Z)

j∗ �� H̃d−1(�, �;Z) �� H̃d−2(�;Z) �� H̃d−2(�;Z) �� 0

123



J Algebr Comb (2015) 41:969–999 979

whose rows come from the long exact sequences for relative homology. (For the top
row, the group H̃d(ϒ, �;Z) is free because dimϒ = d, and on the other hand is
purely torsion by Proposition 3.2, so it must be zero. For the bottom row, the condition
that � is relatively acyclic implies that i∗ is an isomorphism over Q; therefore, it is
one-to-one overZ.) The groups H̃d−1(ϒ, �;Z) and H̃d−1(�, �;Z) are purely torsion.
The first, the fourth, and the fifth vertical maps are isomorphisms (the last because
ϒ(d−1) = �(d−1)), and the second is a surjection by the relative homology sequence
of the pair (�,ϒ) (since the relative complex has no cells in dimension d − 1). The
result now follows by applying Lemma 3.3 and canceling like terms. ��

As a consequence, we obtain a version of the cellular matrix-forest theorem that
applies to all cell complexes (not only those that are Q-acyclic in codimension one).

Proposition 3.5 Let� be a d-dimensional cell complex and let � ⊆ � be a relatively
acyclic (d − 1)-dimensional subcomplex, and let L� be the restriction of Lud

d−1(�) to
the (d − 1)-cells of �. Then

τd(�) = td−1(�)2

td−1(�, �)2
det L�.

Proof By the Binet–Cauchy formula and Propositions 3.2 and 3.4, we have

det L� = det ∂�∂∗
� =

∑

ϒ⊆�d : |ϒ |=r(�)

(det ∂�,ϒ)2 =
∑

CSFs ϒ⊆�d

td−1(ϒ, �)2

= td−1(�, �)2

td−1(�)2

∑

CSFs ϒ⊆�d

td−1(ϒ)2 = td−1(�, �)2

td−1(�)2
τd(�)

and solving for τd(�) gives the desired formula. ��
If H̃d−1(�;Z) = T(H̃d−1(�;Z)), then the relative homology sequence of the pair

(�, �) gives rise to the exact sequence

0 → T(H̃d−1(�;Z)) → T(H̃d−1(�, �;Z))

→ T(H̃d−2(�;Z)) → T(H̃d−2(�;Z)) → 0

which implies that td−1(�)/td−1(�, �) = td−2(�)/td−2(�), so Proposition 3.5

becomes the formula τd(�) = td−2(�)2

td−2(�)2
det L� . This was one of the original versions

of the cellular matrix-tree theorem [16, Theorem 2.8(2)].

Remark 3.6 Lyons [29, Corollary 6.2] proves a similar matrix-forest theorem in terms
of an invariant t′ defined below. He shows that each row of (6) induces the correspond-
ing row of (7). This does not quite imply Lemma 3.3, since one still needs to identify
the “error terms” G in the top and bottom rows of (7). Doing so would amount to
showing that H̃d−1(ϒ)/ ker( j∗) ∼= H̃d−1(�)/ ker( j∗) in the commutative diagram of
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Proposition 3.4. Alternatively, Proposition 3.4 would follow from [29, Lemma 6.1]
together with the equation

td−2(�)t′d−1(�̄)/td−2(�) = td−1(�, �)/td−1(�),

where �̄ = X(d−1)\� and t′d−1(�̄) = ∣∣ ker ∂d−1(�;Z)/
(
(ker ∂d−1(�;Z) ∩

im ∂d(�;Q)) + ker ∂d−1(�;Z)
)∣∣.

4 The cut space

Throughout this section, let � be a cell complex of dimension d and rank r (that is,
every cellular spanning forest of � has r facets). For each i ≤ d, the i-cut space and
i-flow space of � are defined, respectively, as the spaces of cellular coboundaries and
cellular cycles:

Cuti (�) = im(∂∗
i : Ci−1(�,R) → Ci (�,R)),

Flowi (�) = ker(∂i : Ci (�,R) → Ci−1(�,R)).

We will primarily be concerned with the case i = d. For i = 1, these are the standard
graph-theoretic cut and flow spaces of the 1-skeleton of �.

There are two natural ways to construct bases of the cut space of a graph, in which
the basis elements correspond to either (a) vertex stars or (b) the fundamental circuits
of a spanning forest (see, e.g. [21, Chap. 14]). The former is easy to generalize to cell
complexes, but the latter involves more work.

First, if G is a graph on vertex set V and R is a set of (“root”) vertices, one in each
connected component, then the rows of ∂ corresponding to the vertices V \R form a
basis for Cut1(G). This observation generalizes easily to cell complexes:

Proposition 4.1 A set of r rows of ∂ forms a row basis if and only if the corresponding
set of (d − 1)-cells is the complement of a relatively acyclic (d − 1)-subcomplex.

This is immediate from Proposition 3.2. Recall that if H̃d−1(�;Q) = 0, then
“relatively acyclic (d − 1)-subcomplex” is synonymous with “spanning tree of the
(d − 1)-skeleton.” In this case, Proposition 4.1 is also a consequence of the fact that
the matroid represented by the rows of ∂d is dual to the matroid represented by the
columns of ∂d−1 [16, Proposition 6.1].

The second way to construct a basis of the cut space of a graph is to fix a spanning
tree and take the signed characteristic vectors of its fundamental bonds. In the cellular
setting, it is not hard to show that each bond supports a unique (up to scaling) vector in
the cut space (Lemma 4.4) and that the fundamental bonds of a fixed cellular spanning
forest give rise to a vector space basis (Theorem 4.8). (Recall from Sect. 2 that a
bond in a cell complex is a minimal collection of facets whose removal increases
the codimension-one homology, or equivalently a cocircuit of the cellular matroid.)
The hard part is to identify the entries of these cut-vectors. For a graph, these entries
are all 0 or ±1. In higher dimension, this need not be the case, but the entries can
be interpreted as the torsion coefficients of certain subcomplexes (Theorem 4.11). In
Sect. 5, we will prove analogous results for the flow space.
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Fig. 1 a The bipyramid 
. b A simplicial spanning tree (unfolded). c Deleting the bond {123, 134, 125}

Remark 4.2 Although many of our results may be stated in terms of algebraic chain
complexes overZ (integer boundary matrices), we use the language of cell complexes.
(This is a difference only in terminology, not the generality of the results, since every
integer matrix is the top-dimensional boundary matrix of some cell complex.) Thus,
definitions and results about column bases, row bases, rank, etc., can be interpreted
topologically in terms of cellular spanning trees and creating and puncturing holes
in cell complexes (see Example 4.9 and Fig. 1). This is analogous to the situation in
algebraic graph theory, where results that can be stated in terms of matrices are often
more significant in terms of trees, cuts, flows, etc.

4.1 A basis of cut-vectors

Recall that the support of a vector v = (v1, . . . , vn) ∈ R
n is the set

supp(v) = {i ∈ [n] : vi �= 0}.

Proposition 4.3 [31, Proposition 9.2.4]. Let M be an r×n matrix with rowspace V ⊆
R
n, and let M be the matroid represented by the columns of M. Then the cocircuits

of M are the inclusion-minimal elements of the family Supp(V ) := {supp(v) : v ∈
V \{0}}.
Lemma 4.4 Let B be a bond of �. Then the set

CutB(�) = {0} ∪ {v ∈ Cutd(�) : supp(v) = B}

is a one-dimensional subspace of Cutd(�). That is, up to scalar multiple, there is a
unique cut-vector, whose support is exactly B.

Proof Suppose that v,w are vectors in the cut space, both supported on B, that are not
scalar multiples of each other. Then there is a linear combination of v,w with strictly
smaller support; this contradicts Proposition 4.3. On the other hand, Proposition 4.3
also implies that CutB(�) is not the zero space; therefore, it has dimension 1. ��
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We now know that for every bond B, there is a cut-vector supported on B that is
uniquely determined up to a scalar multiple. As we will see, there is a choice of scale
so that the coefficients of this cut-vector are given by certain minors of the down-
up Laplacian L = Ldu

d (�) = ∂∗∂ (Lemma 4.6); these minors (up to sign) can be
interpreted as the cardinalities of torsion homology groups (Theorem 4.11).

In choosing a scale, the first step is to realize the elements of CutB(�) explicitly
as images of the map ∂∗. Fix an inner product 〈·, ·〉 on each chain group Ci (�;R)

by declaring the i-dimensional cells to be an orthonormal basis. (This amounts to
identifying each cell with the cochain that is its characteristic function.) Thus, for
α ∈ Ci (�;R), we have supp(α) = {σ ∈ �i : 〈σ, α〉 �= 0}. Moreover, for all β ∈
Ci−1(�;R), we have by basic linear algebra

〈∂α, β〉 = 〈
α, ∂∗β

〉
. (9)

Lemma 4.5 Let B be a bondof� and letU be the space spanned by {∂σ : σ ∈ �d\B}.
In particular, U is a subspace of im ∂ of codimension one. Let V be the orthogonal
complement of U in im ∂ , and let v be a nonzero element of V . Then supp(∂∗v) = B.

Proof First, we show that ∂∗v �= 0. To see this, observe that the column space of ∂

is U + Rv, and so the column space of ∂∗∂ is ∂∗U + R∂∗v. However, rank(∂∗∂) =
rank ∂ = r , and dimU = r − 1; therefore, ∂∗v cannot be the zero vector. Second, if
σ ∈ �d\B, then ∂σ ∈ U , and so 〈∂∗v, σ 〉 = 〈v, ∂σ 〉 = 0. It follows that supp(∂∗v) ⊆
B, and in fact supp(∂∗v) = B by Proposition 4.3. ��

Given a bond B, let A = {σ1, . . . , σr−1} be a cellular spanning forest of �\B. Fix
a facet σ = σr ∈ B, so that A ∪ σ is a cellular spanning forest of �. Define a vector

v = vA,σ =
r∑

j=1

(−1) j (det Ldu
A,A∪σ\σ j

)∂σ j ∈ Cd−1(�;Z)

so that

∂∗v =
r∑

j=1

(−1) j (det Ldu
A,A∪σ\σ j

)Lduσ j ∈ Cutd(�). (10)

Lemma 4.6 For the cut-vector ∂∗v defined in Eq. 10,

∂∗v = (−1)r
∑

ρ∈B
(det Ldu

A∪ρ,A∪σ )ρ.

In particular, supp(∂∗v) = B.

Proof For each ρ ∈ B,
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〈
∂∗v, ρ

〉 =
r∑

j=1

(−1) j det Ldu
A,A∪σ\σ j

〈
Lduσ j , ρ

〉

=
r∑

j=1

(−1) j det Ldu
A,A∪σ\σ j

〈
∂σ j , ∂ρ

〉

=
r∑

j=1

(−1) j det Ldu
A,A∪σ\σ j

Ldu
ρ,σ j

= (−1)r det Ldu
A∪ρ,A∪σ ,

where the last equality comes from expanding the row corresponding to ρ. Note that
det Ldu

A∪ρ,A∪σ �= 0 for ρ = σ , so ∂∗v �= 0. On the other hand, by Cramer’s rule,
v is orthogonal to ∂σ1, . . . , ∂σr−1, so in fact 〈∂∗v, ρ〉 = 0 for all ρ ∈ �d\B. This
establishes the desired formula for ∂∗v, and then supp(∂∗v) = B by Lemma 4.5. ��

Equation (10) does not provide a canonical cut-vector associated to a given bond B,
because ∂∗v depends on the choice of A and σ . On the other hand, the bond B
can always be expressed as a fundamental bond bo(ϒ, σ ) (equivalently, fundamental
cocircuit; see Eq. 4 in Sect. 2.4) by taking σ to be an arbitrary facet of B and taking
ϒ = A ∪ σ , where A is a maximal acyclic subset of �\B. This observation suggests
that the underlying combinatorial data that gives rise to a cut-vector is really the pair
(ϒ, σ ).

Definition 4.7 Let ϒ = {σ1, σ2, . . . , σr } be a cellular spanning forest of �, and let
σ = σi ∈ ϒ . The (uncalibrated) characteristic vector of the bond bo(ϒ, σ ) is

χ̄(ϒ, σ ) = (−1)r
r∑

j=1

(−1) j (det Ldu
ϒ\σ,ϒ\σ j

)Lduσ j .

By Lemma 4.6, taking A = ϒ\σ , we have

χ̄(ϒ, σ ) =
∑

ρ∈bo(ϒ,σ )

(det Ldu
ϒ\σ∪ρ,ϒ)ρ,

a cut-vector supported on bo(ϒ, σ ).

The next result is the cellular analogue of [21, Lemma 14.1.3].

Theorem 4.8 The family {χ̄(ϒ, σ ) : σ ∈ ϒ} is an R-vector space basis for the cut
space of �.

Proof Let σ ∈ ϒ . Then supp χ̄(ϒ, σ ) = bo(ϒ, σ ) contains σ , but no other facet ofϒ .
Therefore, the set of characteristic vectors is linearly independent, and its cardinality
is |ϒd | = r = dim Cutd(�). ��
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Example 4.9 The equatorial bipyramid is the two-dimensional simplicial complex 


with facet set {123, 124, 125, 134, 135, 234, 235} (Fig. 1a). Let ϒ be the simplicial
spanning tree with facets {123, 124, 234, 135, 235} (unfolded in Fig. 1b). Then

bo(ϒ, 123) = {123, 125, 134}, bo(ϒ, 124) = {124, 134},
bo(ϒ, 135) = {135, 125}, bo(ϒ, 234) = {234, 134},
bo(ϒ, 235) = {235, 125}.

In each case, the removal of the bond leaves a one-dimensional hole (as shown for the
bond {123, 125, 134} in Fig. 1c). By Theorem 4.8, we have

χ̄ (ϒ, 123) = 75([123] + [125] − [134]), χ̄(ϒ, 124) = 75([124] + [134]),
χ̄(ϒ, 135) = 75([125] + [135]), χ̄(ϒ, 234) = 75([134] + [234]),
χ̄(ϒ, 235) = 75([235] − [125]),

which indeed form a basis for Cut2(
).

4.2 Calibrating the characteristic vector of a bond

The term “characteristic vector” suggests that the coefficients of χ̄ (ϒ, σ ) should all
be 0 or 1, but this is not necessarily possible, even by scaling, as Example 4.14 below
will show. We would like to define the characteristic vector of a bond so that it carries
combinatorial or topological information, avoiding extra factors such as the 75 in
Example 4.9. We will show that the number

μϒ := td−1(ϒ)
∑

�

td−1(�, �)2

td−1(�)2
, (11)

where the sum runs over all relatively acyclic (d − 1)-subcomplexes � ⊆ �, is an
integer that divides every coefficient of the characteristic vector. Moreover, we will
show that the entries of 1

μϒ
χ̄(ϒ, σ ) are (up to sign) the torsion coefficients of the

cellular forests {ϒ\σ ∪ ρ} for ρ ∈ bo(ϒ, σ ).
Let εA

σ,σ ′ be the relative sign of ∂σ, ∂σ ′ with respect to ∂A; that is, it is +1 or
−1 according to whether ∂σ and ∂σ ′ lie on the same or on the opposite sides of the
hyperplane in im ∂ spanned by ∂A. In the language of oriented matroids, this sign is
simply a product of the entries corresponding to ∂σ and ∂σ ′ in one of the cocircuits
corresponding to the hyperplane and determines the relative signs of a basis orientation
on A ∪ σ and A ∪ σ ′ [6, Sect. 3.5].
Proposition 4.10 Let � be a cell complex of rank r . Let ϒ = A∪σ and ϒ ′ = A∪σ ′
be d-dimensional cellular spanning forests of �. Let Ldu

ϒ,ϒ ′ be the restriction of the

down-up Laplacian Ldu = ∂∗∂ to the rows indexed by ϒ and the columns indexed by
ϒ ′. Then

det Ldu
ϒ,ϒ ′ = det ∂∗

ϒ∂ϒ ′ = εμϒ td−1(ϒ
′),
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where ε = εA
σ,σ ′ .

Proof By the Binet–Cauchy formula, we have

det Ldu
ϒ,ϒ ′ =

∑

S

(det ∂∗
ϒ,S)(det ∂S,ϒ ′) =

∑

S

(det ∂S,ϒ )(det ∂S,ϒ ′), (12)

where the sum runs over all sets S ⊆ �d−1 with |S| = r , and ∂S,ϒ is the corre-
sponding r × r submatrix of ∂ . By Proposition 3.2, det ∂S,ϒ is nonzero if and only if
�S = �d−1\S is relatively acyclic, and for those summands Proposition 3.4 implies
| det ∂S,ϒ | = td−1(ϒ, �S) = td−1(ϒ)td−1(�, �S)/td−1(�).

We claim that every summand in Eq. (12) has the same sign, namely ε. To see
this, observe that since ϒ,ϒ ′ are both column bases of ∂ , there are unique scalars
{cα : α ∈ ϒ} such that ∂σ ′ = ∑

α∈ϒ cα∂α; in particular, cσ is nonzero and has the
same sign as ε. This equation holds upon restricting to any set of rows S. By linearity
of the determinant, det ∂S,ϒ ′ = cσ det ∂S,ϒ for each S, so the sign of every summand
in Eq. (12) is the same as that of cσ . Therefore, Eq. (12) gives

det Ldu
ϒ,ϒ ′ =

∑

S

(det ∂S,ϒ )(det ∂S,ϒ ′)

=
∑

S

ε

(
td−1(ϒ)td−1(�, �S)

td−1(�)

) (
td−1(ϒ

′)td−1(�, �S)

td−1(�)

)

= εμϒ td−1(ϒ
′).

��
A corollary of the proof is that μϒ is an integer, for the following reason. The

number td−1(ϒ
′) is the gcd of the r ×r minors of ∂ϒ ′ , or equivalently the r ×r minors

of ∂ using columns ϒ ′. In other words, td−1(ϒ
′) divides det ∂S,ϒ ′ in every summand

of Eq. (12). Therefore, it divides det Ldu
ϒ,ϒ ′ , and μϒ = ± det Ldu

ϒ,ϒ ′/td−1(ϒ
′) is an

integer.

Theorem 4.11 Let B be a bond. Fix a facet σ ∈ B and a cellular spanning forest
A ⊆ �d\B, so that in fact B = bo(A ∪ σ, σ ). Define the characteristic vector of B
with respect to A as

χA(B) := 1

μϒ

χ̄(A ∪ σ, σ ) =
∑

ρ∈B
εAσ,ρtd−1(A ∪ ρ) ρ.

Then χA(B) is in the cut space of�, and has integer coefficients. Moreover, it depends
on the choice of σ only up to sign.

Proof Apply the formula of Proposition 4.10 to the formula of Definition 4.7 for
the characteristic vector, and factor the integer μϒ out of every coefficient. Mean-
while, replacing σ with a different facet σ ′ ∈ B merely multiplies all coefficients by
εA
σ ′,ρ/εAσ,ρ = εA

σ,σ ′ ∈ {±1}. ��
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Remark 4.12 The authors are grateful to an anonymous referee for suggesting the
following construction of the vector χA(B). Let M ∈ Z

k×n be a matrix of rank r
whose first r columns are linearly independent, and let P be the generalized inverse of
the submatrix of M consisting of the first r columns, so that Q = PM is the reduced
row-echelon form of M . Thus, P−1Q = M . By Cramer’s rule, for each j ∈ [n], the
j th entry in the r th row of Q is

qr, j = det(m1, . . . ,mr−1,m j )

det(m1, . . . ,mr−1,mr )
,

where mi denotes the i th column of M .
Now let �, B, A, σ be the same as in Theorem 4.11, let r = rank(�), and let M

be the top boundary matrix of �, with its first r − 1 columns labeled by the facets of
A and the r th column labeled by σ . The numerator of qr, j is

{
0 for j �∈ B,

εAσ,ρ j
td−1(A ∪ ρ j ) for j ∈ B,

where ρ j denotes the facet corresponding to the j th column. Therefore, clearing the
denominators from the r th row of M produces the characteristic vector χA(B) of
Theorem 4.11.

Ifϒ is a cellular spanning forest of� and σ ∈ ϒd , then we define the characteristic
vector of the pair (ϒ, σ ) by

χ(ϒ, σ) := χϒ\σ (bo(ϒ, σ )) = 1

μϒ

χ̄(ϒ, σ). (13)

Example 4.13 Let 
 be the bipyramid of Example 4.9. Every cellular spanning forest
ϒ ⊆ 
 is torsion-free. Moreover, the relatively acyclic subcomplexes � that appear
in Eq. (11) are the spanning trees of the 1-skeleton 
(1) (see Sect. 3), which is the
graph K5 with one edge removed; Accordingly, we have μϒ = τ(
(1)) = 75, and so
the calibrated characteristic vectors are as given in Example 4.9, with all factors of 75
removed.

On the other hand, μϒ is not necessarily the greatest common factor of the entries
of each uncalibrated characteristic vector, as the following example illustrates.

Example 4.14 Consider the cell complex � with a single vertex v, two 1-cells e1 and
e2 attached at v, and four 2-cells attached via the boundary matrix

∂ =
(σ2 σ3 σ5 σ7

e1 2 3 0 0
e2 0 0 5 7

)
.

Let B be the bond {σ2, σ3}, so that the obvious candidate for a cut-vector supported
on B is the row vector

[
2 3 0 0

]
. On the other hand, taking A = {σ5} (a cellular
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spanning forest of �\B), the calibrated characteristic vector given by Theorem 4.11
is

χA(B) = [
10 15 0 0

]
.

For ϒ = A ∪ {σ2}, the uncalibrated characteristic vector of Definition 4.7 is

χ̄ (ϒ, σ2) = [
100 150 0 0

]
.

On the other hand, the calibration factor μϒ is not gcd(100, 150) = 50, but rather 10,
since t1(ϒ) = 10 and the summation of Eq. (11) has only one term, namely,� = �(0).
Similarly, for A′ = {σ7} and ϒ ′ = A′ ∪ {σ2}, we have

χA′(B) = [
14 21 0 0

]
, χ̄(ϒ ′, σ2) = [

196 294 0 0
]
, μϒ ′ = 14.

Remark 4.15 As an illustration of where torsion plays a role, and of the principle that
the cellular matroidM(�) does not provide complete information about cut-vectors,
let � be the the complete 2-dimensional simplicial complex on 6 vertices, which has
complexity 66 = 46656 [25, Theorem 1]. Most of the cellular spanning trees of �

are contractible topological spaces, hence Z-acyclic, and the calibrated cut-vectors
obtained from them have all entries equal to 0 or ±1. On the other hand, � has twelve
spanning treesϒ homeomorphic to the real projective plane (so that H̃1(ϒ;Z) ∼= Z2).
For any facet σ ∈ ϒ , we have bo(ϒ, σ ) = �2\ϒ2∪{σ }, and the calibrated cut-vector
contains a ±2 in position σ and ±1’s in positions �\ϒ .

Remark 4.16 When � is a graph and ϒ is a spanning forest, μϒ is just the number of
vertices of �. Then, for any edge σ in ϒ , the vector χϒ(σ) is the usual characteristic
vector of the fundamental bond bo(ϒ, σ ).

Remark 4.17 Takingϒ = ϒ ′ in the calculation of Proposition 4.10 gives the equality

∑

�

td−1(�, �)2 = td−1(�)2

td−1(ϒ)2
det Ldu

ϒ

which can be viewed as a dual form of Proposition 3.5, enumerating relatively acyclic
(d − 1)-subcomplexes, rather than cellular spanning forests.

5 The flow space

In this section, we describe the flow space of a cell complex. We begin by observing
that the cut and flow spaces are orthogonal to each other.

Proposition 5.1 The cut and flow spaces are orthogonal complements under the stan-
dard inner product on Cd(�;R).
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Proof First, we show that the cut and flow spaces are orthogonal. Let α ∈ Cutd =
im ∂∗

d and β ∈ Flowd = ker ∂d . Then α = ∂∗γ for some (d − 1)-chain γ , and
〈α, β〉 = 〈∂∗γ, β〉 = 〈γ, ∂β〉 = 0 by Eq. (9).

It remains to show that Cutd and Flowd have complementary dimensions. Indeed,
let n = dimCd(�;R); then dim Flowd = dim ker ∂d = n − dim im ∂d = n −
dim im ∂∗

d = n − dim Cutd . ��
Next we construct a basis of the flow space whose elements correspond to funda-

mental circuits of a given cellular spanning forest. Although cuts and flows are in some
sense dual constructions, it is easier in this case to work with kernels than images,
essentially because of Proposition 2.1. As a consequence, we can much more directly
obtain a characteristic flow vector whose coefficients carry topological meaning.

We need one preliminary result from linear algebra.

Proposition 5.2 Let N be an r × c integer matrix of rank c− 1 such that every set of
c − 1 columns is linearly independent, so that r ≥ c − 1 and dim ker N = 1. Then
ker N has a spanning vector v = (v1, . . . , vc) such that

vi = ±|T(coker Nı̄ )|,

where Nı̄ denotes the submatrix of N obtained by deleting the i th column. In particular,
vi �= 0 for all i .

Proof Let Q be an r ×r matrix whose first r −(c−1) rows form aZ-module basis for
ker(NT ), and whose remaining c − 1 rows extend it to a basis of Zr (see Proposition
2.1). Then Q is invertible over Z, and the matrix P = QN = (NT QT )T has the form

P =
[
0
M

]
,

where M is a (c − 1) × c matrix, whose column matroid is the same as that of
N . Then ker N = ker P = ker M . Meanwhile, by Cramer’s rule, ker M is the
one-dimensional space spanned by v = (v1, . . . , vc), where vi = (−1)i det Mı̄ =
±| coker Mı̄ | = ±|T(coker Pı̄ )|. Since Q is invertible, it induces isomorphisms
coker Nı̄ ∼= coker QNı̄ = coker Pı̄ for all i , so |T(coker Pı̄ )| = |T(coker Nı̄ )|, com-
pleting the proof. ��

Recall that a set of facets C ⊆ �d is a circuit of the cellular matroidM(�) if and
only if it corresponds to a minimal linearly dependent set of columns of ∂d . Applying
Proposition 5.2 with N = ∂C (i.e., the restriction of ∂ to the columns indexed by C),
we obtain a flow vector whose support is exactly C . We call this the characteristic
vector ϕ(C).

Theorem 5.3 Let C be a circuit of the cellular matroidM(�), and let � ⊆ � be the
subcomplex �(d−1) ∪ C. Then

ϕ(C) =
∑

σ∈C
±td−1(�\σ) σ.
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Proof Let N = ∂C , and for σ ∈ C , let Nσ̄ denote N with the column σ removed. By
Proposition 5.2, it suffices to show that the two groups

H̃d−1(�\σ ;Z) = ker ∂d−1

im Nσ̄

, coker Nσ̄ = Cd−1(�;Z)

im Nσ̄

have the same torsion summands. However, this is immediate because ker ∂d−1 is a
summand of Cd−1(�;Z) as a free Z-module. ��

Example 5.4 Consider the cell complex � with two vertices, v1 and v2, three one-
cells, e1, e2, and e3, each one with endpoints v1 and v2, and three two-cells σ1, σ2,
and σ3 attached to the one-cells so that the two-dimensional boundary matrix is

∂ =
⎛

⎝

σ1 σ2 σ3

e1 2 2 0
e2 −2 0 1
e3 0 −2 −1

⎞

⎠.

The only circuit in� is the setC of all three two-cells. Thus, ϕ(C) = 2σ1−2σ2+4σ3,
because the relevant integer homology groups are H̃1(�\σ1) ∼= H̃1(�\σ2) ∼= Z2, but
H̃1(�\σ3) ∼= Z2 ⊕ Z2.

For a cellular spanning forest ϒ and facet σ �∈ ϒ , let ci(ϒ, σ ) denote the funda-
mental circuit of σ with respect to ϒ , that is, the unique circuit in ϒ ∪ σ .

Theorem 5.5 Let � be a cell complex and ϒ ⊆ � a cellular spanning forest. Then
the set

{ϕ(ci(ϒ, σ )) : σ �∈ ϒ}

forms an R-vector space basis for the flow space of �.

Proof The flow space is the kernel of a matrix with |�d | columns and rank |ϒd |, so
its dimension is |�d | − |ϒd |. Therefore, it is enough to show that the ϕ(ci(ϒ, σ ))

are linearly independent. Indeed, consider the matrix W whose rows are the vectors
ϕ(ci(ϒ, σ )); its maximal square submatrix W ′ whose columns correspond to �\ϒ
has nonzero entries on the diagonal but zeroes elsewhere. ��

Example 5.6 Recall the bipyramid of Example 4.9, and its spanning tree ϒ . Then
ci(ϒ, 125) = {125, 123, 135, 235}, and ci(ϒ, 134) = {134, 123, 124, 234}. If we
instead consider the spanning treeϒ ′ = {124, 125, 134, 135, 235}, then ci(ϒ ′, 123) =
{123, 125, 135, 235}, and ci(ϒ ′, 234) = {234, 124, 125, 134, 135, 235}. Each of
these circuits is homeomorphic to a 2-sphere, and the corresponding flow vec-
tors are the homology classes they determine. Furthermore, each of {ϕ(ci(ϒ, 125)),
ϕ(ci(ϒ, 134))} and {ϕ(ci(ϒ ′, 123)), ϕ(ci(ϒ ′, 234))} is a basis of the flow space.
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6 Integral bases for the cut and flow lattices

Recall that the cut lattice and flow lattice of � are defined as

C = C(�) = imZ ∂∗
d ⊆ Z

n, F = F(�) = kerZ ∂d ⊆ Z
n .

In this section, we study the conditions under which the vector space bases of Theo-
rems 4.11 and 5.5 are integral bases for the cut and flow lattices, respectively.

Theorem 6.1 Suppose that� has a cellular spanning forestϒ such that H̃d−1(ϒ;Z)

is torsion-free. Then

{χ(ϒ, σ) : σ ∈ ϒ}

is an integral basis for the cut lattice C(�), where χ(ϒ, σ) is defined as in equa-
tion (13).

Proof Consider the n × r matrix with columns χ(ϒ, σ) for σ ∈ ϒd . Its restriction
to the rows ϒd is diagonal, and by Theorem 4.8 and the hypothesis on H̃d−1(ϒ;Z),
its entries are all ±1. Therefore, the χ(ϒ, σ) form an integral basis for the lattice
Cutd(�) ∩ Z

n . Meanwhile,

(Cutd(�) ∩ Z
n)/Cd(�) = T(H̃d(�;Z)) ∼= T(H̃d−1(�;Z)),

where the first equality is because Cutd(�) ∩Z
n is a summand of Zn , and the second

one is Eq. (1). On the other hand, H̃d−1(�;Z) is a quotient of H̃d−1(ϒ;Z) of equal
rank; in particular, T(H̃d−1(�;Z)) = 0 and in fact Cutd(�) ∩ Z

n = Cd(�). ��
Next we consider integral bases of the flow lattice. For a circuit C , define

ϕ̂(C) = 1

g
ϕ(C),

where ϕ(C) is the characteristic vector defined in Sect. 5 and g is the gcd of its
coefficients. Thus, ϕ̂(C) generates the rank-1 freeZ-module of flow vectors supported
on C .

Theorem 6.2 Suppose that� has a cellular spanning forestϒ such that H̃d−1(ϒ;Z)

= H̃d−1(�;Z). Then {ϕ̂(ci(ϒ, σ )) : σ �∈ ϒ} is an integral basis for the flow lat-
tice F(�).

Proof By the hypothesis on ϒ , the columns of ∂ indexed by the facets in ϒ form a
Z-basis for the column space. That is, for every σ �∈ ϒ , the column ∂σ is a Z-linear
combination of the columns of ϒ ; equivalently, there is an element wσ of the flow
lattice, with support ci(ϒ, σ ), whose coefficient in the σ position is ±1. However,
then wσ and ϕ̂(ci(ϒ, σ )) are integer vectors with the same linear span, both of which
have the gcd of their entries equal to 1; therefore, they must be equal up to sign.
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Therefore, retaining the notation of Theorem 5.5, the matrix W ′ is in fact the identity
matrix, and it follows that the lattice spanned by the ϕ̂(ci(ϒ, σ )) is saturated, so it
must equal the flow lattice of �. ��

If � is a graph, then all its subcomplexes and relative complexes are torsion-free
(equivalently, its incidence matrix is totally unimodular). Therefore, Theorems 6.1
and 6.2 give integral bases for the cut and flow lattices, respectively. These are, up to
sign, the integral bases constructed combinatorially in, e.g., [21, Chap. 14].

7 Groups and lattices

In this section, we define the critical, cocritical, and cutflow groups of a cell complex.
We identify the relationships between these groups and to the discriminant groups of
the cut andflow lattices. The case of a graphwas studied in detail byBacher, de laHarpe
and Nagnibeda [2] and Biggs [4], and is presented concisely in [21, Chap. 14].

Throughout this section, let � be a cell complex of dimension d with n facets, and
identify both Cd(�;Z) and Cd(�;Z) with Zn .

Definition 7.1 The critical group of � is

K (�) := T(ker ∂d−1/ im ∂d∂
∗
d ) = T(coker(∂d∂

∗
d )).

Here and henceforth, all kernels and images are taken over Z.

Note that the second and third terms in the definition are equivalent because ker ∂d−1
is a summand of Cd−1(�;Z) as a free Z-module. This definition coincides with the
usual definition of the critical group of a graph in the case d = 1, and with the authors’
previous definition in [17] in the case that � is Q-acyclic in codimension one (when
ker ∂d−1/ im ∂d∂

∗
d is its own torsion summand).

Definition 7.2 The cutflow group of � is Zn/(C(�) ⊕ F(�)).

Note that the cutflow group is finite because the cut and flow spaces are orthogonal
complements in R

n (Proposition 5.1), so in particular C ⊕ F spans Rn as a vector
space. Observe also that the cutflow group does not decompose into separate cut and
flow pieces; that is, it is not isomorphic to the group G = ((Flowd ∩Zn)/ ker ∂d) ⊕
((Cutd ∩Zn)/ im ∂∗

d ), even when� is a graph. For example, if� is the complete graph
on three vertices, whose boundary map can be written as

∂ =
⎛

⎝
1 −1 0

−1 0 1
0 1 −1

⎞

⎠ ,

then ker ∂ = span{(1, 1, 1)T } and im ∂∗ = span{(1,−1, 0)T , (1, 0,−1)T }. So G is
the trivial group, while Zn/(ker ∂d ⊕ im ∂∗

d ) = K1(�) ∼= Z3.
In order to define the cocritical group of a cell complex, we first need to introduce

the notion of acyclization.
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Definition 7.3 An acyclization of � is a (d + 1)-dimensional complex � such that
�(d) = � and H̃d+1(�;Z) = H̃d(�;Z) = 0.

Algebraically, this construction corresponds to finding an integral basis for
ker ∂d(�) and declaring its elements to be the columns of ∂d+1(�) (so in partic-
ular |�(d+1)| = β̃d(�)). Topologically, it corresponds to filling in just enough d-
dimensional cycleswith (d+1)-dimensional faces to remove all d-dimensional homol-
ogy. The definition of acyclization and equation (1) together imply that H̃d+1(�;Z) =
0; that is, ∂∗

d+1(�) is surjective.

Definition 7.4 The cocritical group K ∗(�) is

K ∗(�) := Cd+1(�;Z)/ im ∂∗
d+1∂d+1 = coker Ldu

d+1.

It is not immediate that the group K ∗(�) is independent of the choice of�; we will
prove this independence as part of Theorem 7.7. For the moment, it is at least clear
that K ∗(�) is finite, since rank ∂∗

d+1 = rank Ldu
d+1 = rankCd+1(�;Z). In the special

case of a graph, Ldu
d+1 is the “intersection matrix” defined by Kotani and Sunada [26].

(See also [5, Sects. 2, 3].)

Remark 7.5 As in [17], one can define critical and cocritical groups in every dimension
by Ki (�) = T(Ci (�;Z)/ im ∂i+1∂

∗
i+1) and K ∗

i (�) = T(Ci (�;Z)/ im ∂∗
i ∂i ). If the

cellular chain complexes of � and � are algebraically dual (for example, if � and �

are Poincaré dual cell structures on a compact orientable d-manifold), then Ki (�) =
K ∗
d−i (�) for all i .

We now come to the main results of the second half of the paper: the critical and
cocritical groups are isomorphic to the discriminant groups of the cut and flow lattices,
respectively, and the cutflow groupmediates between the critical and cocritical groups,
with an “error term” given by homology.

Theorem 7.6 Let � be a cell complex of dimension d with n facets. Then there is a
commutative diagram

0 �� Zn/(C ⊕ F)

α

��

ψ �� C�/C
β

��

�� T(H̃d(�;Z))

γ

��

�� 0

0 �� im ∂d/ im ∂d∂
∗
d

�� K (�) �� T(H̃d−1(�;Z)) �� 0

(14)

in which all vertical maps are isomorphisms. In particular, K (�) ∼= C�/C.

Proof Step 1: Construct the bottom row of (14). The inclusions im ∂d∂
∗
d ⊆ im ∂d ⊆

ker ∂d−1 give rise to the short exact sequence

0 → im ∂d/ im ∂d∂
∗
d → ker ∂d−1/ im ∂d∂

∗
d → ker ∂d−1/ im ∂d → 0.
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The first term is finite (because rank ∂d = rank ∂d∂
∗
d ), so taking torsion summands

yields the desired short exact sequence.
Step 2:Construct the top rowof (14). Let r = rank ∂d , let {v1, . . . , vr } be an integral

basis of C, and let V be the matrix with columns v1, . . . , vr . By Proposition 2.2, the
dual basis {v∗

1 , . . . , v
∗
r } for C� consists of the columns of the matrixW = V (V T V )−1.

Let ψ be the orthogonal projection R
n → Cut(�), which is given by the matrix

P = WVT = V (V T V )−1V T (see Proposition 2.2). Then

imψ = colspace

⎛

⎜⎝
[
v∗
1 · · · v∗

r

]
︸ ︷︷ ︸

W

[
v1 · · · vr

]T
︸ ︷︷ ︸

V T

⎞

⎟⎠ .

The i th column of P equals W times the i th column of V T . If we identify C� with Zr

via the basis {v∗
1 , . . . , v

∗
r }, then im(ψ) is just the column space of V T . So C�/ imψ ∼=

Z
r/ colspace(V T ), which is a finite group because rank V = r . Since the matrices V

and V T have the same invariant factors, we have

Z
r/ colspace(V T ) ∼= T(Zn/ colspace(V )) = T(Cd(�;Z)/ im ∂∗

d ) = T(H̃d(�;Z)).

Meanwhile, imψ ⊇ C because PV = V . Since kerψ = F , we have (imψ)/C =
(Zn/F)/C = Z

n/(C ⊕ F). Therefore, the inclusions C ⊆ imψ ⊆ C� give rise to the
short exact sequence in the top row of (14).

Step 3: Describe the vertical maps in (14). The maps α and β are each induced by
∂d in the following ways. First, the image of the cutflow group under ∂d is

∂d
(
Z
n/(F ⊕ C)

) = ∂d
(
Z
n/(ker ∂d ⊕ im ∂∗

d )
) = im ∂d/ im ∂d∂

∗
d .

On the other hand, ∂d acts injectively on the cutflow group (since the latter is a sub-
quotient of Zn/ ker ∂d ). So the map labeled α is an isomorphism.

The cellular boundary map ∂d also gives rise to the map β : C�/C → K (�), as we
now explain. First, note that ∂d C� ⊆ imR ∂d ⊆ kerR ∂d−1. Second, observe that for
everyw ∈ C� and ρ ∈ Cd−1(�;Z), we have 〈∂w, ρ〉 = 〈w, ∂∗ρ〉 ∈ Z, by equation (9)
and the definition of dual lattice. Therefore, ∂d C� ⊆ Cd−1(�;Z). It follows that ∂d
maps C� to (kerR ∂d−1)∩Cd−1(�;Z) = kerZ ∂d−1, hence defines a map β : C�/C →
kerZ ∂d−1/ imZ ∂d∂

∗
d . Since C�/C is finite, the image of β is purely torsion, hence

contained in K (�). Moreover, β is injective because (ker ∂d) ∩ C� = F ∩ C� = 0 by
Proposition 5.1.

Every element of Rn can be written uniquely as c + f with c ∈ Cut(�) and
f ∈ Flow(�). The map ψ is orthogonal projection onto Cut(�), so ∂d(c + f ) =
∂dc = ∂d(ψ(c + f )). Hence, the left-hand square commutes. The map γ is then
uniquely defined by diagram-chasing.

The snake lemma now implies that ker γ = 0. Since the groups T(H̃d−1(�;Z))

and T(H̃d(�;Z)) are abstractly isomorphic by equation (1), in fact γ must be an
isomorphism and coker γ = 0 as well. Applying the snake lemma again, we see that
all the vertical maps in (14) are isomorphisms. ��
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Theorem 7.7 Let � be a cell complex of dimension d with n facets. Then there is a
short exact sequence

0 → T(H̃d−1(�;Z)) → Z
n/(C ⊕ F) → F�/F → 0. (15)

Moreover, K ∗(�) ∼= F�/F .

Proof Let � be an acyclization of �. By construction, the columns of the matrix
A representing ∂d+1(�) form an integral basis for F = ker ∂d . Again, the matrix
Q = A(AT A)−1AT represents orthogonal projection R

n → Flow(�). The maximal
minors of A have gcd 1 (because F is a summand of Zn , so the columns of A are part
of an integral basis), so by Proposition 2.2, the columns of Q generate the lattice F�.
Therefore, ifwe regardQ as amapofZ-modules, it defines a surjective homomorphism
Z
n → F�. ThismapfixesF pointwise and its kernel is the saturation Ĉ := (C⊗R)∩Zn .

So we have short exact sequences 0 → Ĉ → Z
n/F → F�/F → 0 and

0 → Ĉ/C → Z
n/(C ⊕ F) → F�/F → 0.

Since Ĉ is a summand of Z
n by Proposition 2.1, we can identify Ĉ/C with

T(H̃d(�;Z)) ∼= T(H̃d−1(�;Z)), which gives the short exact sequence (15).
We will now show that F�/F ∼= K ∗(�). To see this, observe that ∂∗

d+1(F�) =
∂∗
d+1(colspace(Q)) = colspace(AT Q) = colspace(AT ) = im ∂∗

d+1 = Cd+1(�) (by
the construction of an acyclization). In addition, ker ∂∗

d+1 is orthogonal to F�, hence
their intersection is zero. Therefore, ∂∗

d+1 defines an isomorphism F� → Cd+1(�).
Moreover, the same map ∂∗

d+1 maps F = ker ∂d = im ∂d+1 surjectively onto
im ∂∗

d+1∂d+1. ��
Corollary 7.8 If H̃d−1(�;Z) is torsion-free, then the groups K (�), K ∗(�), C�/C,
F�/F , and Z

n/(C ⊕ F) are all isomorphic to each other.

Corollary 7.8 includes the case that � is a graph, as studied by Bacher, de la Harpe
andNagnibeda [2] and Biggs [4]. It also includes the combinatorially important family
of Cohen-Macaulay (over Z) simplicial complexes, as well as cellulations of compact
orientable manifolds.

Example 7.9 Suppose that H̃d(�;Z) = Z and that H̃d−1(�;Z) is torsion-free. Then
the flow lattice is generated by a single element, and it follows from Corollary 7.8 that
K (�) ∼= K ∗(�) ∼= F�/F is a cyclic group. For instance, if � is homeomorphic to a
cellular sphere or torus, then the critical group is cyclic of order equal to the number
of facets. (The authors had previously proved this fact for simplicial spheres [17,
Theorem 3.7], but this approach using the cocritical group makes the statement more
general and the proof transparent.)

Example 7.10 Let � be the standard cellulation e0 ∪ e1 ∪ e2 of the real projective
plane, cellular chain complex of which is

Z
∂2=2−−−→ Z

∂1=0−−−→ Z.
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Then C = im ∂∗
2 = 2Z, C� = 1

2Z, and K (�) = C�/C = Z4. Meanwhile, F = F� =
F�/F = K ∗(�) = 0. The cutflow group is Z2. Note that the rows of Theorem 7.6
are not split in this case.

Example 7.11 Let a, b ∈ Z\{0}. Let � be the cell complex whose cellular chain
complex is

Z
2 ∂2=[a b]−−−−−→ Z

∂1=0−−−→ Z.

Topologically, � consists of a vertex e0, a loop e1, and two facets of dimension 2
attached along e1 by maps of degrees a and b. Then

C�/C = Zτ , Z
2/(C ⊕ F) = Zτ/g, F�/F = Zτ/g2 ,

where τ = a2 + b2 and g = gcd(a, b). Note that τ = τ2(�) is the complexity of �

(see Eq. 3) and that g = |H̃1(�;Z)|. The short exact sequence of Theorem 7.7 is in
general not split (for example, if a = 6 and b = 2).

8 Enumeration

For a connected graph, the cardinality of the critical group equals the number of
spanning trees. In this section, we calculate the cardinalities of the various group
invariants of �.

Examples 7.10 and 7.11 both indicate that K (�) ∼= C�/C should have cardi-
nality equal to the complexity τ(�). Indeed, in Theorem 4.2 of [17], the authors
proved that |K (�)| = τ(�) whenever � has a cellular spanning tree ϒ such that
H̃d−1(ϒ;Z) = H̃d−1(�;Z) = 0 (in particular, � must be not merely Q-acyclic, but
actually Z-acyclic, in codimension one). Here, we prove that this condition is actu-
ally not necessary: for any cell complex, the order of the critical group K (�) equals
the torsion-weighted complexity τ(�). Our approach is to determine the size of the
discriminant group C�/C directly, then use the short exact sequences of Theorems 7.6
and 7.7 to calculate the sizes of the other groups.

Theorem 8.1 Let � be a d-dimensional cell complex and let t = td−1(�) =
|T(H̃d−1(�;Z))|. Then

|C�/C| = |K (�)| = τd(�),

|Zn/(C ⊕ F)| = τd(�)/t, and

|F�/F | = |K ∗(�)| = τd(�)/t2.

Proof By Theorems 7.6 and 7.7, it is enough to prove that |C�/C| = τd(�).
Let R be a set of (d − 1)-cells corresponding to a row basis for ∂ (hence a vector

space basis for Cut(�)); let R be the lattice spanned by those rows (which is a full-
rank integral sublattice of C); and let � = (�d−1\R) ∪ �(d−2). The inclusions R ⊆
C ⊆ Cd(�) give rise to a short exact sequence 0 → C/R → H̃d(�, �;Z) →
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H̃d(�;Z) → 0. SinceC/R is finite, the torsion summands forma short exact sequence
(see Sect. 3). Taking cardinalities and using equation (1), we get

|C/R| = |T(H̃d(�, �;Z))|
|T(H̃d(�;Z))| = td−1(�, �)

td−1(�)
. (16)

The inclusionsR ⊆ C ⊆ C� ⊆ R� give |R�/R| = |R�/C�|·|C�/C|·|C/R|. Moreover,
R�/C� ∼= C/R. By Eq. (16) and Binet–Cauchy, we have

|C�/C| = |R�/R|
|R�/C�| · |C/R| = td−1(�)2

td−1(�, �)2
|R�/R|

= td−1(�)2

td−1(�, �)2
det(∂R∂∗

R)

=
∑

ϒ⊆�d : |ϒ |=r

td−1(�)2

td−1(�, �)2
det(∂R,ϒ )2.

By Proposition 3.2, the summand is nonzero if and only if ϒ is a cellular spanning
forest. In that case, the matrix ∂R,ϒ is the cellular boundary matrix of the relative
complex (ϒ, �), and its determinant is (up to sign) td−1(ϒ, �), so by Proposition 3.4
we have

|C�/C| =
∑

ϒ

td−1(�)2

td−1(�, �)2
td−1(ϒ, �)2 =

∑

ϒ

td−1(ϒ)2

with the sums over all cellular spanning forests ϒ ⊆ �. ��
Dually, we can interpret the cardinality of the cocritical group as enumerating

cellular spanning forests by relative torsion (co)homology, as follows:

Theorem 8.2 Let � be an acyclization of �. Then

|K ∗(�)| =
∑

ϒ

|H̃d+1(�,ϒ;Z)|2 =
∑

ϒ

|H̃d(�,ϒ;Z)|2

with the sums over all cellular spanning forests ϒ ⊆ �.

Note that the groups H̃d+1(�,ϒ;Z) and H̃d(�,ϒ;Z) are all finite, by definition
of acyclization.

Proof Let ∂d+1 = ∂d+1(�). Note that rank ∂d+1 = β̃d(�); abbreviate this number as
b. By Binet–Cauchy, we have

|K ∗(�)| = | det ∂∗
d+1∂d+1| =

∑

B⊆�d : |B|=b

(det ∂∗
B)2,
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where ∂B denotes the submatrix of ∂ with rows B. Letting ϒ = �\B, we can regard
∂B as the cellular boundary map of the relative complex (�,ϒ), which consists of b
cells in each of the dimensions d and d + 1. By Proposition 3.2, the summand is
nonzero if and only if ϒ is a cellular spanning forest of �(d) = �. (Note that the
d + 1, B, ϒ,�(d) in the present context correspond, respectively, to the d, R, �,ϒ

of Proposition 3.2.) For these summands, H̃d+1(�,ϒ;Z) ∼= H̃d(�,ϒ;Z) is a finite
group of order | det ∂B |. ��
Remark 8.3 Let τ ∗(�) = ∑

ϒ |H̃d(�,ϒ;Z)|2, as in Theorem 8.2. Then combining
Theorems 8.1 and Theorems 8.2 gives

|C�/C| = |K (�)| = τ(�) = τ ∗(�) · t2,
|F�/F | = |K ∗(�)| = τ ∗(�) = τ(�)/t2,

|Zn/(C ⊕ F)| = τ(�)/t = τ ∗(�) · t,

highlighting the duality between the cut and flow lattices.

9 Bounds on combinatorial invariants from lattice geometry

Let n ≥ 1 be an integer. The Hermite constant γn is defined as the maximum value of

(
min

x∈L\{0}
〈x, x〉

)
(|L�/L|)−1/n (17)

over all lattices L ⊆ R
n . The Hermite constant arises both in the study of quadratic

forms and in sphere packing; see [27, Sect. 4]. It is known that γn is finite for every n,
although the precise values are known only for 1 ≤ n ≤ 8 and n = 24 [9].

As observed by Kotani and Sunada [26], if L = F is the flow lattice of a connected
graph, then the shortest vector in F is the characteristic vector of a cycle of minimum
length; therefore, the numerator in equation (17) is the girth ofG. Meanwhile, |F�/F |
is the number of spanning trees. We now generalize this theorem to cell complexes.

Definition 9.1 Let � be a cell complex. The girth and the connectivity are defined as
the cardinalities of, respectively, the smallest circuit and the smallest cocircuit of the
cellular matroid of �.

Theorem 9.2 Let � be a cell complex of dimension d with girth g and connectivity
k, and top boundary map of rank r . Let b = rankF(�) = rank H̃d(�;Z). Then

kτ(�)−1/r ≤ γr and gτ ∗(�)−1/b ≤ γb.

Proof Every nonzero vector of the cut lattice C contains a cocircuit in its support,
so minx∈C\{0}〈x, x〉 ≥ k. Likewise, every nonzero vector of the flow lattice F of �

contains a circuit in its support, so minx∈F\{0}〈x, x〉 ≥ g. Meanwhile, |C�/C| = τ and
|F�/F | = τ ∗ by Theorem 8.1. The desired inequalities now follow from applying the
definition of Hermite’s constant to the cut and flow lattices, respectively. ��
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