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Abstract We consider the complement W \W J of any quotient W J of a Coxeter sys-
tem (W, S) and we investigate its algebraic, combinatorial and geometric properties,
emphasizing its connection with parabolic Kazhdan–Lusztig theory. In particular, we
define two families of polynomials which are the analogues, for the poset W \ W J , of
the parabolic Kazhdan–Lusztig and R-polynomials. These polynomials, indexed by
elements of W \W J , have interesting connections with the ordinary Kazhdan–Lusztig
and R-polynomials.

Keywords Coxeter groups · Hecke algebras · P-kernels

1 Introduction

Although the poset W J := { w ∈ W | w < sw ∀s ∈ J ⊆ S } has been well studied
and understood both combinatorially and topologically under the Bruhat order of the
Coxeter system (W, S) (see [1] and [3]), the complement W \W J does not seem to have
been considered yet. In this work we study algebraic, combinatorial and geometric
properties of these complements; more precisely, we show that W \ W J , as a poset
under the induced Bruhat order, is graded (Theorem 2.2); the order complex of its
intervals is shellable (Theorem 5.4) and we compute explicitly its Möbius function
(Theorem 5.6). We show that the study of the poset W \ W J arises quite naturally
from a construction done by Deodhar in [6] to introduce parabolic Kazhdan–Lusztig
theory. In fact Deodhar defined, for an arbitrary Coxeter system (W, S), two H -
modules M J,x with a Z[q1/2, q−1/2]-basis B indexed by W J , for every J ⊆ S, one
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for each value of a parameter x ∈ { −1, q }; here H is the Hecke algebra of W .
Algebraically the H -module M J,x can be described as the quotient of the Hecke
algebra H by the annihilator of the basis element m J,x

e ∈ B. We show that this
annihilator is an H -module which has a Z[q1/2, q−1/2]-basis indexed by W \ W J

(Corollary 3.3) and is invariant under a certain involution defined in [6]. These facts
lead to the construction of two families of elements of Z[q1/2, q−1/2], corresponding
to the two H -module structures. These polynomials have an interesting relation with
the ordinary R-polynomials (Proposition 4.2), and we obtain a recursion for their
computation (Theorem 4.14). These properties allow us to show the existence of
P-kernels (as developed by Stanley in [13]) for the poset W \ W J (Theorem 7.1).
Moreover, this investigation of the annihilator of m J,x

e leads to an extension of the
parabolic Kazhdan–Lusztig and R-polynomials to elements not in the quotient W J .

The organization of the paper is as follows. In the next section we fix notation, and
we recall some definitions and results about Coxeter groups, their Hecke algebras,
parabolic Kazhdan–Lusztig theory, and P-kernels. Section 3 is devoted to the study
of the annihilator of m J,x

e for both the H -modules M J,x , and a Z[q1/2, q−1/2]-basis
is obtained for this H -module. In Sect. 4 we introduce two families of polynomi-
als, as coordinates of an involution on the annihilator of m J,x

e with respect to the
basis discussed in the previous section. These polynomials are related to the ordi-
nary R-polynomials (see Proposition 4.2), and a recursion for them is obtained in
Theorem 4.14. In Sect. 5 we study the poset W \ W J under the induced Bruhat order.
We prove that it is a graded poset and that the order complex of its intervals is shellable,
and we compute its Möbius function. In Sect. 6 we extend the parabolic Kazhdan–
Lusztig and R-polynomials, introduced by Deodhar in [6], to elements not in W J .
Finally, Sect. 7 is devoted to the proof of the existence of P-kernels for the poset
W \ W J and to the existence of the analogues of the Kazhdan–Lusztig polynomials
for this poset.

2 Notations and preliminaries

In this section we establish some notation, and we collect some basic results in the
theory of Coxeter groups and their Hecke algebras which will be useful in the sequel.
The reader can consult [2] and [8] for further details.

We let Z be the ring of integers and R the field of real numbers. N is the set of
non-negative integers and, if n ∈ N, [n] := { 1, 2, . . . , n }; in particular [0] = ∅. |X |
is the cardinality of a set X , and ⊂ is the proper inclusion between two sets.

Let (W, S) be a Coxeter system. If v,w ∈ W we define �(v,w) := �(w) − �(v),
where �(z) is the length of the element z ∈ W . If J ⊆ S, we let

W J := { w ∈ W | �(sw) > �(w) ∀ s ∈ J } , (1)

DL(w) := { s ∈ S | �(sw) < �(w) } , (2)

DR(w) := { s ∈ S | �(ws) < �(w) } . (3)
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The parabolic subgroup WJ ⊆ W is the group with J ⊆ S as generator set. In
particular WS = W and W∅ = { e }.

We are interested in W as a poset under the Bruhat order � (see, e.g. Chapter 2
in [2] or Chapter 5 in [8]). The quotient W J is a subposet of W , considered with the
induced order. For v,w ∈ W J such that v � w, the interval [v,w]J ⊆ W J is the set
defined by

[v,w]J :=
{

z ∈ W J
∣∣∣ v � z � w

}
. (4)

In finite groups W there exists a unique maximal element w0, maximal relative to the
Bruhat order, and it is the element of maximum length in W (see Section 2.5 in [2]).
The following property, known as the lifting property, characterizes the Bruhat order
(see Proposition 2.2.7 and Exercise 2.14 in [2]):

Proposition 2.1 Let v,w ∈ W be such that v < w and s ∈ DR(w) \ DR(v). Then
v � ws, and vs � w.

As is well known, the poset W J is graded by the length function (see Theorem
2.5.5 in [2]).

Theorem 2.2 If u < w in W J , then there exist elements wi ∈ W J , such that �(wi ) =
�(u) + i , for 0 � i � k, and u = w0 < w1 < . . . < wk = w.

The Möbius function of the poset W J is also known (see Corollary 2.7.10 in [2]).

Proposition 2.3 Let u, w ∈ W J . The Möbius function of the poset W J is

μJ (u, w) =
{

(−1)�(u,w), if [u, w]J = [u, w],
0, otherwise.

For J ⊆ S, an element w ∈ W has a unique expression w = wJ w J , where
w J ∈ W J and wJ ∈ WJ (Proposition 2.4.4 in [2]). The canonical projection P J :
W → W J , defined by

P J (w) = w J , (5)

is a morphism of posets (Proposition 2.5.1 in [2]):

Proposition 2.4 Let v,w ∈ W be such that v � w; then v J � w J .

The following is an immediate consequence of Proposition 2.4 (see also Corollary
2.5.2 in [2]).

Corollary 2.5 Suppose v ∈ W J , w ∈ W, v < w and �(v,w) = 1. Then, either
w = sv, for some s ∈ J, or w ∈ W J .

The next lemma summarizes some known results (see Lemma 3.1 in [5] and Corol-
lary 2.5):

Lemma 2.6 Let s ∈ S and w ∈ W J . Exactly one of the following three possibilities
occurs:

123



730 J Algebr Comb (2015) 41:727–750

1. s ∈ DR(w). In this case ws ∈ W J ,
2. s �∈ DR(w) and ws ∈ W J ,
3. s �∈ DR(w) and ws �∈ W J ; in this case ws = s′w for a unique s′ ∈ J .

In the present work we consider the set W \ W J with the induced Bruhat order.
With [v,w]\J we denote an interval in W \ W J , i.e. if v,w ∈ W \ W J and v � w,

[v,w]\J :=
{

z ∈ W \ W J
∣∣∣ v � z � w

}
. (6)

For the topological questions discussed in Sect. 5 it is useful to recall some notation
and results about the interval structure of W . We refer to Section 2.7 of [2] for this
part. Let M (u, v) be the set of maximal chains in the Bruhat interval [u, v], and let
v = s1s2 . . . sq be a reduced expression. We associate with each m ∈ M (u, v) a string
of integers λ(m) := (λ1(m), λ2(m), . . . , λk(m)), where k = �(u, v). Suppose that m
is the chain v = x0 � x1 � . . . � xk = u. By the Strong Exchange Property (see
Theorem 1.4.3 in [2]), x1 = s1s2 . . . ŝi . . . sq , where the deleted generator si is uniquely
determined. Let λ1(m) := i and so on. Let M J (u, v) denote the set of maximal chains
in the Bruhat interval [u, v]J . Since M J (u, v) ⊆ M (u, v), the injective mapping
m 	→ λ(m) restricts to M J (u, v). We write (a1, . . . , ak) ≺ (b1, . . . , bk) for the anti-
lexicographic order relation of distinct integer strings. The following lemma is known
(see Lemma 2.7.4 in [2]).

Lemma 2.7 1. There is a unique chain m0 ∈ M J (u, v) such that λ(m0) is decreas-
ing1 (meaning that λ1(m0) > λ2(m0) > . . . > λk(m0)).

2. λ(m0) ≺ λ(m) for all m �= m0 in M J (u, v).

We now recall what the Hecke algebra H of a Coxeter group W is. Let A :=
Z[q−1/2, q1/2] be the ring of Laurent polynomials in the indeterminate q1/2. The
Hecke algebra H is the free A-module generated by the set { Tw | w ∈ W } with the
product

TwTs =
{

Tws, if s �∈ DR(w),

qTws + (q − 1)Tw, otherwise,
(7)

for all w ∈ W and s ∈ S. For s ∈ S the inverse of the generator Ts is

T −1
s = (q−1 − 1)Te + q−1Ts (8)

and this can be used to invert all the elements Tw, where w ∈ W . There is an involution
ι on H , as defined in [9], such that

ι(q1/2) = q−1/2, ι(Tw) = T −1
w−1 , (9)

for all w ∈ W . Moreover this map is a ring automorphism (see [8], Section 7.7), i.e.

ι(TvTw) = ι(Tv)ι(Tw) ∀ v,w ∈ W. (10)

1 This is consistent with our definition of W J . The statement for the quotient J W :=
{ w ∈ W | ws > w ∀ s ∈ J } says that the string λ(m0) is increasing.
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Expanding the element ι(Tw) in terms of the basis { Tw | w ∈ W } and considering
an ι-invariant basis { Cw }w∈W of H , Kazhdan and Lusztig have defined two families
of polynomials

{
Ry,w

}
y,w∈W ⊆ Z[q] and

{
Py,w

}
y,w∈W ⊆ Z[q] by

ι(Tw) = q−�(w)
∑
y�w

(−1)�(y,w) Ry,w(q)Ty, (11)

Cw = q
�(w)

2
∑
y�w

(−1)�(y,w)q−�(y) Py,w(q−1)Ty, (12)

for all w ∈ W .
The degree, the leading coefficient and the constant term of the R-polynomials are

known (see Proposition 5.1.3 in [2]).

Proposition 2.8 Let u, v ∈ W, u � v. Then, Ru,v is a monic polynomial of degree
�(u, v) and constant term (−1)�(u,v).

The constant term of the Kazhdan–Lusztig polynomials is known (see Proposition
5.1.5 in [2]): if u, v ∈ W and u � v, then

Pu,v(0) = 1. (13)

A generalization of these polynomials in a parabolic setting was given by Deodhar
in [6]. He defined two double families of polynomials

{
R J,x

v,w

}
v,w∈W J ⊆ Z[q] and{

P J,x
v,w

}
v,w∈W J ⊆ Z[q], where x ∈ { −1, q } , J ⊆ S. These families satisfy the

following theorems (see [6]):

Theorem 2.9 Let (W, S) be a Coxeter system, and J ⊆ S. Then, for each x ∈
{ −1, q }, there is a unique family of polynomials

{
R J,x

v,w

}
v,w∈W J ⊆ Z[q] such that,

for all v,w ∈ W J :

1. R J,x
v,w = 0 if v � w;

2. R J,x
w,w = 1;

3. if v < w and s ∈ DR(w) then

R J,x
v,w =

⎧⎪⎨
⎪⎩

R J,x
vs,ws, if s ∈ DR(v),

q R J,x
vs,ws + (q − 1)R J,x

v,ws, if s �∈ DR(v) and vs ∈ W J ,

(q − 1 − x)R J,x
v,ws, if s �∈ DR(v) and vs �∈ W J .

Theorem 2.10 Let (W, S) be a Coxeter system, and J ⊆ S. Then, for each x ∈
{ −1, q }, there is a unique family of polynomials

{
P J,x

v,w

}
v,w∈W J ⊆ Z[q] such that,

for all v,w ∈ W J :

1. P J,x
v,w = 0 if v � w;

2. P J,x
w,w = 1;

3. deg(P J,x
v,w) � �(v,w)−1

2 , if v < w
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4.

q�(v,w) P J,x
v,w(q−1) =

∑

z∈[v,w]J

R J,x
v,z (q)P J,x

z,w (q),

if v � w.

The polynomials R J,x
v,w(q) and P J,x

v,w(q) are called the parabolic R-polynomials
and parabolic Kazhdan–Lusztig polynomials (respectively) of W J of type x . They
generalize the ordinary R-polynomials and Kazhdan–Lusztig polynomials of W , which
appear in the expansions (11) and (12), since they satisfy the following relations:

R∅,x
v,w = Rv,w, (14)

P∅,x
v,w = Pv,w, (15)

for all x ∈ { −1, q } and v,w ∈ W . For u, v ∈ W J , the parabolic R-polynomials are
related to the ordinary ones by the following equality (see Proposition 2.12. in [6]):

R J,x
u,v =

∑
w∈WJ

(−x)�(w) Rwu,v. (16)

Remark 3.8. of [6] points out the following relation between the parabolic Kazhdan–
Lusztig polynomials and the ordinary ones for x = q:

P J,q
u,v =

∑
w∈WJ

(−1)�(w) Pwu,v, (17)

for all u, v ∈ W J . The following is another result which will be useful in the sequel
(see Corollary 2.2 in [7]).

Proposition 2.11 Let (W, S) be a Coxeter system, and J ⊆ S. Then

(−q)�(u,v) R J,x
u,v (q−1) = R J,q−1−x

u,v (q)

for all u, v ∈ W J , and x ∈ { −1, q }.
We end this section by recalling some notions from the theory of P-kernels in a poset
(P,�). For further details see [13], and [4] for applications to parabolic Kazhdan–
Lusztig theory. We follow Chapter 3 of [14] for notation and terminology concerning
posets. Given a poset P , we let Int(P) := { (x, y) ∈ P × P | x � y }; we say that P
is locally finite if |[x, y]| < ∞ for all (x, y) ∈ Int(P). Given a locally finite poset and
a commutative ring R the incidence algebra of P with coefficients in R is denoted
I (P; R).

Let P be a locally finite poset. We say that a function ρ : Int(P) → N is a weak
rank function for P if it has the following properties:

1. if u < v then ρ(u, v) > 0;
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2. if u � a � v then ρ(u, v) = ρ(u, a) + ρ(a, v).

Note that a weak rank function always exists. Following Sect. 6 of [13], given a locally
finite poset P and a weak rank function ρ for P , we let

Ĩ (P) : = { f ∈ I (P; R[q]) | deg( f (x, y)) � ρ(x, y) for all (x, y) ∈ Int(P) } ;
I1/2(P) : = { f ∈ Ĩ (P) | deg( f (x, y)) � ρ(x, y) − 1

2
for x < y, and f (x, x) = 1 } .

Given f ∈ Ĩ (P) we let

f̄ (x, y)(q) := qρ(x,y) f (x, y)(q−1), (18)

for all x, y ∈ P, x � y. Given an invertible element f ∈ Ĩ (P), Lemma 6.1. in [13]
asserts that

( f̄ )−1 = f̄ −1. (19)

Recall (see Definition 6.2 in [13]) that an element K ∈ I (P; R[q]) is called a
P-kernel if K (x, x) = 1 for all x ∈ P , and there exists an element f ∈ Ĩ (P) such
that

1. f is invertible in I (P; R[q]);
2. K f = f̄ .

An element f ∈ Ĩ (P) satisfying (2) above is called K -totally acceptable (Definition
6.2 of [13])2. The next result, which is a generalization of Corollary 6.7 in [13], appears
in [4] as Theorem 6.2.

Theorem 2.12 Let P be a locally finite poset and K ∈ I (P; R[q]) be a P-kernel.
Then there exists a unique element γ ∈ I1/2(P) such that K γ = γ̄ .

We call the element γ , whose existence and uniqueness are guaranteed by the preced-
ing theorem, the Kazhdan–Lusztig-Stanley function (or KLS-function, for short) of P
relative to K .

Let f ∈ Ĩ (P) and i be a positive integer. For a multichain a0 � a1 � . . . � ai in
P we define a polynomial fa0,...,ai ∈ R[q] inductively as follows. We let

fa0,...,ai (q) := fa0,a1(q)U(ρ(a1,ai )+1)/2(q
ρ(a1,ai ) fa1,...,ai (q

−1))

if i � 2, and

fa0,...,ai := f (a0, a1)

if i = 1, where the operator U j : R[q] → R[q] is defined, for j ∈ Q, by

U j

(∑
i�0

ai q
i
)

:=
∑
i� j

ai q
i .

2 These definitions are a little different from those in [13]: Stanley uses “ f K ” instead of “K f ”. This
choice is convenient for our purposes and does not affect the validity of the results in the sequel.
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We then have the following result (see Corollary 6.5 in [4]):

Theorem 2.13 Let P be a locally finite poset, K , be a P-kernel and γ be the K L S-
function of P relative to K . Then, for all u, v ∈ P, u � v,

γ (u, v) =
∑

C ∈M(u,v)

( ¯K )C ,

where M(u, v) denotes the set of all multichains in P from u to v.

3 The annihilator of m J,x
e

In order to define the parabolic R-polynomials in a Coxeter system (W, S), in [6]
Deodhar introduced for any J ⊆ S a free A-module M J generated by W J , i.e.
M J = spanA

{
m J

v

∣∣ v ∈ W J
}
, and two surjective maps φ J,x : H → M J defined

by φ J,x (Tw) = x�(wJ )m J
wJ , where x ∈ { −1, q }. He constructed an action of the

Hecke algebra H on M J , making this module an H -module, and the map φ J,x

an epimorphism of H -modules for both x ∈ { −1, q }. In our conventions we are
speaking about right H -modules. Explicitly, the two actions of the Hecke algebra on
M J are given by m J

v Tw = φ J,x (TvTw). To distinguish the two possible H -modules
for x ∈ { −1, q }, we write M J,x and their elements as m J,x

v , for v ∈ W J . Obviously
M J,q = M J,−1 = M J as A-modules. There is an involution ιJ,x on M J,x , analogous
to the one defined on H in Eq. (9), such that

ιJ,x (φ J,x (Tw)) = φ J,x (ι(Tw)), (20)

for every w ∈ W (see [6], Sect. 3).
The H -modules M J,x can be described also in another way. In fact these mod-

ules are principal because m J,x
v = m J,x

e Tv , for all v ∈ W J . Then M J,x is iso-
morphic as a right H -module to H / annJ,x

e , where the right ideal annJ,x
e :={

a ∈ H
∣∣∣ m J,x

e a = 0
}

= ker(φ J,x ) is the annihilator of m J,x
e . For every J ⊆ S, v ∈

W \ W J and x ∈ { −1, q } we define an element bJ,x
v ∈ annJ,x

e by

bJ,x
v := x�(vJ )Tv J − Tv. (21)

Observe that bJ,x
v = 0 if and only if v ∈ W J .

Definition 3.1 For J ⊆ S, x ∈ { −1, q } and any sequence { aw }w∈W ⊆ A, we define

a J,x
v :=

∑
w∈WJ

x�(w)awv,

for all v ∈ W J .
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Proposition 3.2 Let a = ∑
v∈W

avTv be an element of H , where av ∈ A for each

v ∈ W , and J ⊆ S. Then

a =
∑

v∈W J

a J,x
v Tv −

∑

v∈W\W J

avbJ,x
v .

Moreover a ∈ annJ,x
e if and only if a J,x

v = 0, for all v ∈ W J . In particular, when
a ∈ annJ,x

e ,

a = −
∑

v∈W\W J

avbJ,x
v .

Proof It is an easy calculation based on the fact that, if v ∈ W \ W J , then Tv =
x�(vJ )Tv J − bJ,x

v . �

Corollary 3.3 The set B J,x := {

bJ,x
w

∣∣ w ∈ W \ W J
}

is an A-basis of annJ,x
e , for

every J ⊆ S, x ∈ { −1, q }.
Proof The elements of B J,x are A-linearly independent. In fact, by Proposition 3.2,

∑

v∈W\W J

avbJ,x
v =

∑

v∈W J

(a J,x
v − av)Tv −

∑

v∈W\W J

avTv,

so
∑

v∈W\W J

avbJ,x
v = 0 implies av = 0 for every v ∈ W \ W J . Moreover Proposition

3.2 proves that the set B J,x generates annJ,x
e . �


We can complete the basis B J,x , defined in Corollary 3.3, to obtain a basis of the
Hecke algebra, by taking

{
Tv

∣∣ v ∈ W J
} ∪ B J,x as a new basis.

The following proposition explores the structure of annJ,x
e as a right H -module.

Proposition 3.4 Let s ∈ S, J ⊆ S, w ∈ W \ W J and x ∈ { −1, q }. Then

bJ,x
w Ts =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

bJ,x
ws , if s �∈ DR(w) and w J s ∈ W J ;

bJ,x
ws − x�(wJ )bJ,x

wJ s
, if s �∈ DR(w) and w J s �∈ W J ;

qbJ,x
ws + (q − 1)bJ,x

w if s ∈ DR(w J );

qbJ,x
ws + (q − 1)bJ,x

w − x�(wJ )bJ,x
wJ s

if s ∈ DR(w) \ DR(w J ).

Proof We have a few cases to distinguish.

1. If s �∈ DR(w) and w J s ∈ W J , then (ws)J = w J s and (ws)J = wJ .
2. If s �∈ DR(w) and w J s �∈ W J then (ws)J = w J and (ws)J = wJ s′ for some

s′ ∈ J , by Corollary 2.5. So

bJ,x
w Ts = (x�(wJ )TwJ − Tw)Ts = x�(wJ )TwJ s − Tws .
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Moreover Tws = x�((ws)J )T(ws)J −bJ,x
ws , by the definition of bJ,x

ws . Therefore Tws =
x�(wJ )+1TwJ − bJ,x

ws and then

bJ,x
w Ts = x�(wJ )TwJ s − x�(wJ )+1TwJ + bJ,x

ws = bJ,x
ws − x�(wJ )bJ,x

wJ s
.

3. If s ∈ DR(w J ), then s ∈ DR(w) and (ws)J = w J s, (ws)J = wJ . So

bJ,x
w Ts = (x�(wJ )TwJ − Tw)Ts

= x�(wJ )(qTwJ s + (q − 1)TwJ ) − (qTws + (q − 1)Tw).

4. If s ∈ DR(w) \ DR(w J ) then, by Corollary 2.5 an s′ ∈ J exists such that w J s =
s′w J and wJ s′ < wJ . So (ws)J = wJ s′ and (ws)J = w J . Then bJ,x

w Ts =
x�(wJ )TwJ s − (qTws + (q − 1)Tw). But

TwJ s = x�((wJ s)J )T(wJ s)J − bJ,x
wJ s

= xTwJ − bJ,x
wJ s

so

bJ,x
w Ts = x�(wJ )+1TwJ − x�(wJ )bJ,x

wJ s
− qTws − (q − 1)Tw.

Now Tws = x�(wJ )−1TwJ − bJ,x
ws and then

bJ,x
w Ts = x�(wJ )+1TwJ − x�(wJ )bJ,x

wJ s
− qx�(wJ )−1TwJ + qbJ,x

ws − (q − 1)Tw.

Since x − qx−1 = q − 1, we have

bJ,x
w Ts = x�(wJ )(q − 1)TwJ − x�(wJ )bJ,x

wJ s
+ qbJ,x

ws − (q − 1)Tw

= qbJ,x
ws + (q − 1)bJ,x

w − x�(wJ )bJ,x
wJ s

.

�

Next we note that annJ,x

e is an ι-invariant right ideal of H , where ι is the involution
defined by Eq. (9).

Proposition 3.5 The right ideal annJ,x
e is ι-invariant, for all J ⊆ S, x ∈ { −1, q }.

Proof In fact, if a ∈ annJ,x
e , φ J,x (ι(a)) = ιJ,x (φ J,x (a)) = 0, by Eq. (20). �


Lusztig defined in [10] a map Φ : H → H by Φ(q
1
2 ) = −q

1
2 and Φ(Tw) =

(−q)�(w)ι(Tw). This map is an involution, and it commutes with ι (see [10], 5.1.15).
We denote with Φ J,x the restriction of Φ to annJ,x

e .

Proposition 3.6 If J ⊆ S, we have Φ(annJ,x
e ) = annJ,q−1−x

e so Φ J,x : annJ,x
e →

annJ,q−1−x
e is a bijection; in particular

Φ(bJ,x
w ) = (−q)�(w)ι(bJ,q−1−x

w )
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for all w ∈ W \ W J .

Proof By definition

Φ(bJ,x
w ) = Φ(x�(wJ )TwJ − Tw)

= x�(wJ )(−q)�(w
J )ι(TwJ ) − (−q)�(w)ι(Tw)

= (−q)�(w)[(q − 1 − x)−�(wJ )ι(TwJ ) − ι(Tw)]
= (−q)�(w)ι(bJ,q−1−x

w ).

�


4 Polynomials

Using the results of the previous section, we will define polynomials, indexed by
pairs of elements of W \ W J , which are analogous, for W \ W J , to the parabolic
R-polynomials defined by Deodhar for W J .

Since, by Proposition 3.5, annJ,x
e is ι-invariant, we can express any element ι(bJ,x

w )

in terms of the basis B J,x .

Definition 4.1 We define elements
{

Z J,x
y,w

}
y,w∈W\W J

⊆ A by

ι(bJ,x
w ) = q−�(w)

∑

y∈W\W J

(−1)�(y,w) Z J,x
y,wbJ,x

y .

The next proposition gives a relation between the ordinary R-polynomials and the
polynomials Z J,x .

Proposition 4.2 For each w ∈ W \ W J and x ∈ { −1, q }, we have

Rv,w − (q − 1 − x)�(wJ ) Rv,wJ =
⎧⎨
⎩

Z J,x
v,w, if v ∈ W \ W J ;

− ∑
y∈WJ \{ e }

(−x)�(y)Z J,x
yv,w, if v ∈ W J ,

for all v ∈ W .

Proof From the expansion (11) we find

ι(bJ,x
w ) = x−�(wJ )ι(TwJ ) − ι(Tw)

= x−�(wJ )q−�(wJ )
∑

y�wJ

(−1)�(y,wJ ) Ry,wJ Ty − q−�(w)
∑
y�w

(−1)�(y,w) Ry,wTy

=
∑
y∈W

(
(−1)�(y,wJ )x−�(wJ )q−�(wJ ) Ry,wJ − (−1)�(y,w)q−�(w) Ry,w

)
Ty .
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On the other hand, by Definition 4.1,

ι(bJ,x
w ) = q−�(w)

∑

y∈W\W J

(−1)�(y,w) Z J,x
y,wbJ,x

y

= q−�(w)
∑

y∈W\W J

(−1)�(y,w) Z J,x
y,w(x�(yJ )Ty J − Ty)

= q−�(w)
∑

y∈W J

(−1)�(y,w)

( ∑
u∈WJ \{ e }

(−x)�(u)Z J,x
uy,w

)
Ty

− q−�(w)
∑

y∈W\W J

(−1)�(y,w) Z J,x
y,wTy,

by (21). Comparing the coefficients the result follows. �

Corollary 4.3 Let (W, S) be a Coxeter system, and J ⊆ S; then

Z J,x
v,w = Rv,w − (q − 1 − x)�(wJ ) Rv,wJ ,

for all v,w ∈ W \ W J and x ∈ { −1, q }.
Remark 4.4 Let I ⊆ J ⊆ S, so W J ⊆ W I . We can generalize the results of this paper
considering the morphisms of H -modules φ I,J,x : M I,x → M J,x defined by

φ I,J,x (m I,x
v ) = x�(vJ )m J,x

v J ,

for every v ∈ W I (see Sect. 5 of [6]). The kernels of these morphisms have an A-
basis indexed by the set W I \ W J ; moreover they are invariant under the involutions
ιx defined on M I,x , for each x ∈ { −1, q }. This leads to a family of polynomials{

Z I,J,x
v,w

}
v,w∈W I \W J such that

Z I,J,x
v,w = RI,x

v,w − (q − 1 − x)�(wJ ) RI,x
v,wJ ,

for all v,w ∈ W I \ W J .

Example 4.5 In (A5, S), where S = { s1, s2, s3, s4, s5 }, the permutations v = 324156
and w = 546132 are in W \W S\{ s3 } and v < w. Moreover w J = 456123, �(wJ ) = 2
and v < w J . So, by Corollary 4.3,

Z J,q
v,w = R324156,546132 − R324156,456123 = q7 − 4q6 + 6q5 − 4q4 + q3,

Z J,−1
v,w = R324156,546132 − q2 R324156,456123 = −q4 + 4q3 − 6q2 + 4q − 1.

Example 4.6 Take J = { s }. Then W \ W { s } = sW { s }, so W \ W { s } � W { s } as
posets. Moreover, if u, v ∈ W { s },

Z { s },q−1−x
su,sv = Rsu,sv − x Rsu,v = Ru,v − x Rsu,v = R{ s },x

u,v
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because Rsu,sv = Ru,v . The last equality follows from Eq. (16).

There are some immediate corollaries to Proposition 4.2, whose proof follows
from the properties of the R-polynomials stated in Proposition 2.8 and in Theorem 2.9
(taking J = ∅).

Corollary 4.7 If v,w ∈ W \ W J and v � w, then Z J,x
v,w = 0 and Z J,x

w,w = 1.

Corollary 4.8 If v,w ∈ W \ W J and v � w, then Z J,q
v,w is a monic polynomial of

degree �(v,w).

Proof This follows from Corollary 4.3 and Proposition 2.8, since w �∈ W J and
deg(Rv,w) = �(v,w) > �(v,w J ) � deg(Rv,wJ ). �


Corollary 4.9 If v,w ∈ W \ W J and v � w, then deg(Z J,−1
v,w ) � �(v,w). Moreover

deg(Z J,−1
v,w ) = �(v,w) if and only if v ≮ w J .

Proof This follows from Corollary 4.3 and Proposition 2.8, since w �∈ W J , and if
v < w J , we have deg(Rv,w) = �(v,w) = �(wJ ) + �(v,w J ) = deg(q�(wJ ) Rv,wJ ). �


Remark 4.10 It would be interesting to compute the degree of Z J,−1
v,w . It depends on

the maximal k ∈ N such that �(wJ ) � k < �(v,w) and for which the coefficients
[qk](Rv,w) and [qk−�(wJ )](Rv,wJ ) are different or, equivalently (by Proposition 2.11),

such that the coefficients [q�(v,w)−k ](Rv,w) and [q�(v,wJ )−k+�(wJ )]((−1)�(wJ ) Rv,wJ )=
[q�(v,w)−k]((−1)�(wJ ) Rv,wJ ) are not equal.

Corollary 4.11 If v,w ∈ W \ W J and v < w, then Z J,−1
v,w (0) = (−1)�(v,w) and

Z J,q
v,w(0) =

{
(−1)�(v,w), if v ≮ w J ,

0, otherwise.

Proof Since Rv,w(0) = (−1)�(v,w), if v < w J we have that Z J,x
v,w(0) = (−1)�(v,w) −

(−1)�(wJ )(−1)�(v,wJ ) = 0. Otherwise Z J,x
v,w(0) = Rv,w(0) = (−1)�(v,w), by Proposi-

tion 2.8. �


The following duality result is the analogue, for the polynomials Z J,x
v,w, of Proposi-

tion 2.11.

Corollary 4.12 Let (W, S) be a Coxeter system, and J ⊆ S. Then

(−q)�(v,w)Z J,x
v,w(q−1) = Z J,q−1−x

v,w (q)

for all v,w ∈ W \ W J , and x ∈ { −1, q }.
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Proof From Corollary 4.3 and Proposition 2.11 we have

(−q)�(v,w)Z J,x
v,w(q−1) = (−q)�(v,w)(Rv,w(q−1) − (q − 1 − x)−�(wJ ) Rv,wJ (q−1))

= Rv,w(q) − (−q)�(wJ )(q − 1 − x)−�(wJ ) Rv,wJ (q)

= Rv,w(q) − x�(wJ ) Rv,wJ (q) = Z J,q−1−x
v,w (q).

�

By Corollary 4.3 and the recursion for the R-polynomials in Theorem 2.9, we can

find a recursion for the polynomials Z J,x . Note that DR(w J ) = ∅ implies w ∈ WJ .

Proposition 4.13 Let v,w ∈ W \ W J and v � w. Then, if w J s < w J or ws < w ∈
WJ ,

Z J,x
v,w =

⎧⎪⎨
⎪⎩

Z J,x
vs,ws, if v > vs ∈ W \ W J ,

(q − 1 − x)�(w)−1δv,sδwJ ,e − Ẑ J,x
v,ws, if v > vs ∈ W J ,

q Z J,x
vs,ws + (q − 1)Z J,x

v,ws, if v < vs,

where Ẑ J,x
v,w := ∑

y∈WJ \{ e }
(−x)�(y)Z J,x

yv J ,w
, and δx,y is the Kronecker delta.

Proof Let s ∈ DR(w J ); then s ∈ DR(w), (ws)J = wJ and w J s = (ws)J . If
s �∈ DR(v), we have, by Corollary 4.3 and the recursion of Theorem 2.9

Z J,x
v,w = Rv,w − (q − 1 − x)�(wJ ) Rv,wJ

= q Rvs,ws + (q − 1)Rv,ws − (q − 1 − x)�(wJ )(q Rvs,wJ s + (q − 1)Rv,wJ s)

= q Z J,x
vs,ws + (q − 1)Z J,x

v,ws .

If v > vs ∈ W \ W J , then

Z J,x
v,w = Rvs,ws − (q − 1 − x)�(wJ ) Rvs,wJ s = Z J,x

vs,ws .

If v > vs ∈ W J , then by Proposition 4.2

Z J,x
v,w = Rvs,ws − (q − 1 − x)�(wJ ) Rvs,wJ s = −

∑
y∈WJ \{ e }

(−x)�(y)Z J,x
yv J ,ws

,

since, in this case, vs = v J . Observe that, by the lifting property (Proposition 2.1)
vs = v J � w J s, because, by Proposition 2.4, v J < w J .

If w ∈ WJ , we have w J = e and v ∈ WJ . Let s ∈ DR(w). If s �∈ DR(v), then

Z J,x
v,w = Rv,w = q Rvs,ws + (q − 1)Rv,ws = q Z J,x

vs,ws + (q − 1)Z J,x
v,ws,

since v �= e.
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If v > vs ∈ W \ W J , then

Z J,x
v,w = Rv,w − (q − 1 − x)�(w) Rv,e = Rv,w = Rvs,ws = Z J,x

vs,ws .

If v = s we have vs = e ∈ W J and, by Proposition 4.2,

Z J,x
v,w = Rs,w = Re,ws = (q − 1 − x)�(w)−1 −

∑
y∈WJ \{ e }

(−x)�(y)Z J,x
y,ws .

�

Summarizing the previous results we obtain the following statement.

Theorem 4.14 Let (W, S) be a Coxeter system, and J ⊆ S. Then, for each x ∈
{ −1, q }, there is a unique family of polynomials

{
Z J,x

v,w

}
v,w∈W\W J ⊆ Z[q] such

that, for all v,w ∈ W \ W J :

1. Z J,x
v,w = 0 if v � w;

2. Z J,x
w,w = 1;

3. if v < w, s ∈ S and w J s < w J or ws < w ∈ WJ then

Z J,x
v,w =

⎧⎪⎨
⎪⎩

Z J,x
vs,ws, if v > vs ∈ W \ W J ,

(q − 1 − x)�(w)−1δv,sδwJ ,e − Ẑ J,x
v,ws, if v > vs ∈ W J ,

q Z J,x
vs,ws + (q − 1)Z J,x

v,ws, if v < vs,

where Ẑ J,x
v,w := ∑

y∈WJ \{ e }
(−x)�(y)Z J,x

yv J ,w
and δx,y is the Kronecker delta.

5 The poset W \ W J

In this section we investigate the set W \ W J with the induced Bruhat order, which is
the underlying poset of our previous discussions. This poset does not in general have
a minimum, but, when the group W is finite, it has a maximum: w0, the maximum of
W . The minimal elements of W \ W J are the elements of J . If I, J ⊆ S, then

W \ W I∪J = (W \ W I ) ∪ (W \ W J ), (22)

since W I∪J = W I ∩W J . Moreover I ⊆ J ⊆ S implies (W \W I ) ⊆ (W \W J ). By the
Subword Property of the Bruhat order (see Theorem 2.2.2 in [2]) and the factorization
w = wJ w J for all w ∈ W , we have a surjective immersion of posets, not invertible
as poset morphism,

(
WJ \ { e }) × W J ↪→ W \ W J , (23)

where on (WJ \ { e }) × W J we consider the product order.
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Lemma 5.1 Let J ⊆ S and u, v ∈ W \ W J . Then [u, v]\J = [u, v] if and only if
u ≮ v J .

Proof If u < v J , then v J ∈ [u, v] but v J �∈ [u, v]\J . If [u, v]\J �= [u, v], then there
is a w ∈ W J ∩ [u, v]. By Proposition 2.4 we have w � v J , so u < w � v J . �

Theorem 5.2 The set W \ W J , with the ordering induced by the Bruhat order, is a
graded poset with the length minus one as rank function.

Proof Let u, v ∈ W \ W J be such that u < v. The case u ≮ v J is obvious since, by
Lemma 5.1, [u, v]\J = [u, v]. Let v = vJ v J = s1 . . . skt1 . . . th , where s1 . . . sk is a
reduced expression for vJ , and t1 . . . th is a reduced expression for v J , and k � 1.

If u < v J and s1 �∈ DL(u), then u ∈ W { s1 }, s1v ∈ W { s1 } and u < v J � s1v. In
this case, by Theorem 2.2, there is a maximal chain u = x0 < x1 < . . . < xr = s1v

such that �(x j ) = �(x0) + j for 0 � j � r . Then there is a maximal chain u =
x0 < s1x0 < s1x1 < . . . < s1xr in W \ W J such that �(s1x j ) = �(x0) + j + 1 for
0 � j � r .

If s1 ∈ DL(u) then s1u ∈ W { s1 } and s1u < u < v J � s1v. In this case, by
Theorem 2.2, we have a maximal chain s1u = x0 < x1 < . . . < xr = s1v in
W { s1 } such that �(x j ) = �(x0) + j for 0 � j � r . Then there is a maximal chain
u = s1x0 < s1x1 < . . . < s1xr in W \ W J such that �(s1x j ) = �(s1x0) + j for
0 � j � r . �


Let M \J (u, v) denote the set of maximal chains in the interval [u, v]\J . Since
M \J (u, v) ⊆ M (u, v), the injective mapping m 	→ λ(m) restricts to M \J (u, v).

Theorem 5.3 Let J ⊆ S and u, v ∈ W \ W J . Then

1. there is a unique chain m0 ∈ M \J (u, v) such that λ(m0) is decreasing,
2. λ(m0) ≺ λ(m) for all m �= m0 in M \J (u, v).

Proof Let v have a reduced expression as in the proof of Theorem 5.2. If u ≮ v J

then, by Lemma 5.1, [u, v]\J = [u, v], and we can apply Lemma 2.7 with J = ∅.
Otherwise, if u < v J and s1 �∈ DL(u), then u ∈ W { s1 }, s1v ∈ W { s1 } and u < v J �
s1v. In this case, by Lemma 2.7, we have a unique chain m ∈ M { s1 }(u, s1v) such that
λ(u = x0 < x1 < . . . < xr = s1v) is decreasing. Then λ(u = x0 < s1x0 < s1x1 <

. . . < s1xr = v) is still decreasing.
If s1 ∈ DL(u), then s1u ∈ W { s1 } and s1u < u < v J � s1v. In this case, by

Lemma 2.7, we have a unique chain m ∈ M { s1 }(s1u, s1v) such that λ(s1u = x0 <

x1 < . . . < xr = s1v) is decreasing. Then λ(u = s1x0 < s1x1 < . . . < s1xr = v) is
still decreasing.

The proof of the second point is analogous to the one of Lemma 2.7.4 in [2]. �

Let u, v ∈ W \ W J and (u, v)\J := {

z ∈ W \ W J
∣∣ u < z < v

}
.

Corollary 5.4 The order complex of (u, v)\J is shellable. In particular, it is Cohen-
Macaulay.

Moreover, by Lemma 5.1, we have the following statement.
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Corollary 5.5 The order complex of (u, v)\J is PL homeomorphic to

1. the sphere S
�(u,v)−2, if u ≮ v J ;

2. the ball B
�(u,v)−2, otherwise.

From these results we can deduce the Möbius function of the poset W \ W J .

Corollary 5.6 The Möbius function of the poset W \ W J is

μ\J (u, v) =
{

(−1)�(u,v) if u ≮ v J ,

0, otherwise.

Equivalently,

μ\J (u, v) =
{

(−1)�(u,v) if [u, v]\J = [u, v],
0, otherwise.

6 Parabolic polynomials for W \ W J

In this section, using Proposition 3.5, we extend the parabolic R-polynomials R J,x
u,v

and Kazhdan–Lusztig polynomials P J,x
u,v defined by Deodhar to the case v ∈ W \ W J .

For the parabolic R-polynomials we consider the sum in the right-hand side of
Eq. (16).

Definition 6.1 For all u, v ∈ W, J ⊆ S and x ∈ { −1, q } we define

R J,x
u,v :=

∑
w∈WJ

(−x)�(w) Rwu,v.

The next two results show that the sum in the previous definition has an expression
in terms of the parabolic R-polynomials.

Proposition 6.2 If u ∈ W J , then

R J,x
u,v = (q − 1 − x)�(vJ ) R J,x

u,v J ,

for all v ∈ W, x ∈ { −1, q }.
Proof By Proposition 3.5 ι(x�(vJ )Tv J − Tv) ∈ annJ,x

e , so, by the expansion (11) and
by Theorem 2.9,

x−�(vJ )q−�(v J )
∑

y�v J

(−1)�(y,v J ) Ry,v J Ty − q−�(v)
∑
y�v

(−1)�(y,v) Ry,vTy =

= (−q)−�(v J )
∑

y∈W
(−1)�(y)

(
x−�(vJ ) Ry,v J − (−q)−�(vJ ) Ry,v

)
Ty ∈ annJ,x

e .
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By Proposition 3.2 we have, for y ∈ W J ,

x−�(vJ )
∑

w∈WJ

(−x)�(w) Rwy,v J − (−q)−�(vJ )
∑

w∈WJ

(−x)�(w) Rwy,v = 0.

Therefore

∑
w∈WJ

(−x)�(w) Rwy,v =
(

−q

x

)�(vJ ) ∑
w∈WJ

(−x)�(w) Rwy,v J

and the result follows from equality (16). �

Proposition 6.3 Let J ⊆ S, then

R J,−1
u,v = q�(vJ ) R J,−1

u J ,v J ,

for all u, v ∈ W .

Proof Note that

∑
w∈WJ

Rwu,v =
∑

w∈WJ

Rwu J u J ,v =
∑

w∈WJ

Rwu J ,v = q�(vJ ) R J,−1
u J ,v J ,

by Proposition 6.2. �

Corollary 6.4 We have

∑
z�v

(−x)�(z) Rz,v = (q − 1 − x)�(v),

for every v ∈ W and x ∈ { −1, q }.
Proof Take J = S and u = e in Proposition 6.2. �

Remark 6.5 The result of Corollary 6.4 for x = −1 was already noted in [12], Eq.
(3.5). It could be proved by induction on �(v) (see also Proposition 2.2.6. in [11]).

Remark 6.6 If v ∈ W is an element such that Pu,v = 1 for all u � v we find, summing
over the interval [e, v] both sides of the identity in Corollary 6.4 with x = −1, that
the Poincaré polynomial Wv(q) of the interval [e, v], where Wv(q) := ∑

u�v

q�(u), is a

reciprocal polynomial, i.e. q�(v)Wv(q−1) = Wv(q).

Let
{

Qu,v

}
u,v∈W ⊆ Z[q] be the inverse Kazhdan–Lusztig polynomials, i.e.

Qu,v = (−1)�(u,v) P−1
u,v in the incidence algebra I (W, Z[q]), for all u, v ∈ W (see [2]).
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By (19) we have that, since the inverses of the R-polynomials are R−1
u,v =

(−1)�(u,v) Ru,v ,

q�(u,v)Qu,v(q
−1) =

∑
z∈[u,v]

Qu,z Rz,v, (24)

for all u, v ∈ W such that u � v.
The following result is probably known but, since we have not found it in literature,

it could be useful to deduce it from Corollary 6.4.

Proposition 6.7 Let (W, S) be a Coxeter system. Then Qe,v = 1 for every v ∈ W .

Proof We proceed by induction on �(v). If �(v) = 0 the result is obvious. Let �(v) > 1.
Then, by Corollary 6.4,

q�(v)Qe,v(q
−1) =

∑
z∈[e,v]

Qe,z Rz,v

=
∑

z∈[e,v)

Qe,z Rz,v + Qe,v =
∑

z∈[e,v)

Rz,v + Qe,v

= q�(v) − Rv,v + Qe,v;

therefore q�(v)Qe,v(q−1) − Qe,v = q�(v) − 1 and then Qe,v = 1. �

Now, after the extension of the parabolic R-polynomials, we extend the parabolic

Kazhdan–Lusztig polynomials. Since equality (17) is well defined for all u, v ∈ W ,
the following definition is natural.

Definition 6.8 For all u, v ∈ W, J ⊆ S and x ∈ { −1, q } we define

P̂ J,x
u,v :=

∑
w∈WJ

(q − 1 − x)�(w) Pwu,v.

Remark 6.9 Observe that, in general, deg(P̂ J,−1
u,v ) �

�(u,v)−1
2 .

By Eq. (17) we have that P̂ J,q
u,v = P J,q

u,v for all u, v ∈ W J . On the contrary, in
general we have P̂ J,−1

u,v �= P J,−1
u,v , for u, v ∈ W J ; in fact, if |WJ | < ∞, WJ (q) is its

Poincaré polynomial, and w0(J ) is the element of maximal length in WJ , it follows
from the equality Pwu,w0(J )v = Pw0(J )u,w0(J )v for each w ∈ WJ (see Proposition
5.1.8 in [2]) that P̂ J,−1

u,w0(J )v = WJ (q)Pw0(J )u,w0(J )v = WJ (q)P J,−1
u,v (see Proposition

3.4 in [6]). Then

P J,−1
u,v = 1

WJ (q)
P̂ J,−1

u,w0(J )v, (25)

for all u, v ∈ W J .
The next result shows that the polynomials P̂ J,q can be expressed in terms of the

parabolic polynomials P J,q .
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Proposition 6.10 Let J ⊆ S. Then

P̂ J,q
u,v =

{
(−1)�(u J ) P J,q

u J ,v
, if v ∈ W J ,

0, otherwise.

for all u, v ∈ W .

Proof If v �∈ W J there exists s ∈ DL(v) such that s ∈ J and then, since Pu,v = Psu,v

(see Proposition 5.1.8 in [2]),

∑
w∈WJ

(−1)�(w) Pwu,v =
∑

w∈WJ

(−1)�(w) Pswu,v = −
∑

w∈WJ

(−1)�(sw) Pswu,v

= −
∑

w∈WJ

(−1)�(w) Pwu,v.

If v ∈ W J and u �∈ W J , consider the decomposition u = u J u J . So

∑
w∈WJ

(−1)�(w) Pwu,v =
∑

w∈WJ

(−1)�(w) Pwu J u J ,v

= (−1)�(u J )
∑

w∈WJ

(−1)�(wu J ) Pwu J u J ,v

= (−1)�(u J )
∑

w∈WJ

(−1)�(w) Pwu J ,v = (−1)�(u J ) P J,q
u J ,v

,

by (17). �

By the previous proposition we obtain the following corollary.

Corollary 6.11 Let J ⊆ S, x ∈ { −1, q } and v �∈ W J . Then, for every u ∈ W ,

P̂ J,x
u,v ∈ 〈q − x〉,

where 〈q − x〉 is the ideal of the ring Z[q] generated by q − x.

Proof If x = q, we have P̂ J,q
u,v = 0 by Proposition 6.10. Then −1 is a root of the

polynomial P̂ J,−1
u,v . �


The following result, i.e. the expression in terms of the basis
{

Tv

∣∣ v ∈ W J
}∪B J,x

of the element Cw, defined in Eq. (12), is one of the main motivations of Definition 6.8.

Theorem 6.12 Let v ∈ W . The Kazhdan–Lusztig element Cv is

Cv =
∑

y∈W J

(−1)�(y,v)q
�(v)

2 q−�(y) P̂ J,x
y,v (q−1)Ty

−
∑

y∈W\W J

(−1)�(y,v)q
�(v)

2 q−�(y) Py,v(q
−1)bJ,x

y .

123



J Algebr Comb (2015) 41:727–750 747

In particular, Cv ∈ annJ,q
e if and only if v ∈ W \ W J .

Proof The result follows, by (12), from Propositions 3.2 and 6.10. �


Corollary 6.13 Let J ⊆ S and x ∈ { −1, q }. Then

q�(u,v) P̂ J,x
u,v (q−1) =

∑

y∈[u,v]∩W J

R J,x
u,y (q)P̂ J,x

y,v (q),

for all u ∈ W J , v ∈ W .

Proof Since bJ,x
y ∈ ker(φ J,x ) for all y ∈ W \ W J , by Theorem 6.12 we have

φ J,x (Cv) =
∑

y∈W J

(−1)�(y,v)q
�(v)

2 q−�(y) P̂ J,x
y,v (q−1)m J,x

y .

Moreover, by (20), ιx (φ J,x (Cv)) = φ J,x (ι(Cv)) = φ J,x (Cv), and

ιx (φ J,x (Cv)) = q− �(v)
2

∑

y∈W J

(−1)�(y,v)

( ∑

z∈W J

R J,x
y,z (q)P̂ J,x

z,v (q)

)
m J,x

y .

Comparing the coefficients the result follows. �


The previous corollary shows, in particular, that P̂ J,−1 is R J,−1-totally acceptable for
the poset W J . By Remark 6.9, the result of Corollary 6.13 does not permit to compute
the polynomials P̂ J,−1 by recursion. We know that the K L S-function of W J relative
to R J,−1 is P J,−1.

7 (W \ W J )-kernels

In this section we prove the existence of two (W \ W J )-kernels, one for each x ∈
{ −1, q }. The weak rank function of this poset is �(u, v).

We begin with x = q. The following result shows that Z J,q ∈ Ĩ (W \ W J ), where
Z J,q(u, v) := Z J,q

u,v for all u, v ∈ W \ W J , is a (W \ W J )-kernel and that the element
P̃ J,q ∈ I1/2(W \W J ), defined by P̃ J,q(u, v) := Pu,v , is the KLS-function of W \W J

relative to Z J,q .

Theorem 7.1 If u, v ∈ W \ W J , then

q�(u,v) Pu,v(q
−1) =

∑

y∈[u,v]\J

Z J,q
u,y (q)Py,v(q).
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Proof From Corollary 4.3 and Theorem 2.10 we find

∑

y∈[u,v]\J

Z J,q
u,y Py,v =

∑

y∈[u,v]\J

Ru,y Py,v −
∑

y∈[u,v]\J

(−1)�(yJ ) Ru,y J Py,v

=
∑

y∈[u,v]\J

Ru,y Py,v −
∑

w∈W J

Ru,w

∑
y∈WJ \{ e }

(−1)�(y) Pyw,v

=
∑

y∈[u,v]\J

Ru,y Py,v +
∑

w∈[u,v]∩W J

Ru,w Pw,v

= q�(u,v) Pu,v(q
−1),

because, by Proposition 6.10,
∑

y∈WJ \{ e }
(−1)�(y) Pyw,v = −Pw,v . �


Remark 7.2 Note that the KLS-function of W \ W J relative to Z J,q does not depend
on J .

Remark 7.3 If u, v ∈ W \ W J and u < v J then [u, v]\J ⊂ [u, v], by Lemma 5.1.
Therefore, in this case, Theorem 7.1 gives a recursion for the computation of the
Kazhdan–Lusztig polynomials Pu,v alternative to the one of Theorem 2.10.

Remark 7.4 Theorem 7.1 gives another way to deduce the Möbius function of the
poset W \ W J . In fact, if v,w ∈ W \ W J , from Theorem 7.1 and Theorem 2.10 we
have that

∑
y∈[v,w]\J

Z J,q
v,y (0) = 0; so Z J,q

v,w(0) = μ\J (v,w), and the result follows from

Corollary 4.11.

We consider now the case x = −1; we define Z J,−1 ∈ Ĩ (W \ W J ) by
Z J,−1(u, v) := Z J,−1

u,v for all u, v ∈ W \ W J .

Lemma 7.5 The element f ∈ Ĩ (W \ W J ), which is defined by f (u, v) :=
(−q)�(u,v) Pu,v(q−1) for all u, v ∈ W \ W J , is Z J,−1-totally acceptable, i.e.

(−1)�(u,v) Pu,v(q) =
∑

y∈[u,v]\J

Z J,−1
u,y (q)(−q)�(y,v) Py,v(q

−1),

for all u, v ∈ W \ W J .

Proof By Proposition 4.12 and Theorem 7.1 we have

∑

y∈[u,v]\J

Z J,−1
u,y (q)(−q)�(y,v) Py,v(q

−1) =

=
∑

y∈[u,v]\J

(−q)�(u,y) Z J,q
u,y (q−1)(−q)�(y,v) Py,v(q

−1)

= (−q)�(u,v)
∑

y∈[u,v]\J

Z J,q
u,y (q−1)Py,v(q

−1) = (−q)�(u,v)q−�(u,v) Pu,v(q).

�
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Corollary 7.6 The element Z J,−1 ∈ Ĩ (W \ W J ) is a (W \ W J )-kernel, and there
exists a unique Z J,−1—totally acceptable element P̃ J,−1 ∈ I1/2(W \ W J ).

Proof Since (−q)�(u,v) Pu,u(q−1) = 1 for all u ∈ W \W J , this is an invertible element
of Ĩ (W \ W J ), and it is Z J,−1-totally acceptable, by Lemma 7.5. The last assertion
follows from Theorem 2.12. �


We call P̃ J,−1 the KLS-function of W \ W J relative to the kernel Z J,−1.

Remark 7.7 Although the KLS-function of W \ W J relative to the kernel Z J,q is
known, being equal to Pv,w by Theorem 7.1, we do not know an expression for P̃ J,−1

v,w

in terms of known polynomials.

The next example shows that the polynomials P̃ J,−1 can have negative coefficients.

Example 7.8 As in Example 4.5, take v = 324156 and w = 546132 in W \ W S\{ s3 }.
Then

P̃ S\{ s3 },−1
v,w = −5q2 + 2q.

For each x ∈ { −1, q } we define an element Z J,x ∈ Ĩ (W \ W J ) by letting

Z J,x (u, v) := (−1)�(u,v)Z J,x
u,v , (26)

for all u, v ∈ W \ W J , u � v. Then, from Theorem 2.13 and Corollary 4.12, we find

Corollary 7.9 Let (W, S) be a Coxeter system, J ⊆ S, x ∈ { −1, q }, and u, v ∈
W \ W J , u � v. Then

P̃ J,x
u,v =

∑

C ∈M\J (u,v)

(Z J,q−1−x )C

where M\J (u, v) denotes the set of all multichains in W \ W J from u to v.
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