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Abstract Let Irr(W ) be the set of irreducible representations of a finite Weyl group W .
Following an idea from Spaltenstein, Geck has recently introduced a preorder �L on
Irr(W ) in connection with the notion of Lusztig families. In a later paper with Iancu,
they have shown that in type B (in the asymptotic case and in the equal parameter case)
this preorder coincides with the preorder on Lusztig symbols as defined by Geck and
the second author in 2011. In this paper, we show that this characterisation extends to
the so-called integer case, that is, when the ratio of the parameters is an integer.
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1 Introduction

Let W be a finite Weyl group together with a weight function L and let Irr(W ) be the
set of irreducible representations of W over C. On the one hand, Lusztig has defined a
function a on the set Irr(W ) (now known as the Lusztig a-function) which allowed him
to define a partition of Irr(W ) into the so-called families. On the other hand, Kazhdan-
Lusztig theory naturally yields a preorder ≤LR on Irr(W ) which in turn gives rise to a
partition of Irr(W ). When the weight function is equal to the length function (the equal
parameter case), these two partitions turn out to be the same: the proof relies on some
geometric interpretation. It is conjectured that the two partitions should coincide in the
general case of unequal parameters, that is for any choice of weight function L . The
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notion of families plays a fundamental role in the work of Lusztig on the characters
of reductive groups over finite fields. It also naturally appears in the work of Geck [2]
on the cellular structure of Iwahori–Hecke algebras.

Despite a fairly simple definition, the preorder ≤LR is particularly hard to han-
dle. To understand it and to give a combinatorial description, Geck has introduced a
new preorder �L in [3] on Irr(W ) which is defined using only standard operations
on the irreducible representations of W , such as truncated induction from parabolic
subgroups or tensoring with the sign representation. He then proved that this preorder
coincides with the Kazhdan–Lusztig preorder in the equal parameter case. He conjec-
tured that this should also hold in the general case of unequal parameters. Later on,
Geck and Iancu have studied �L in type B, and they have given a complete combina-
torial description of it in the equal parameter case and in the asymptotic case, using the
combinatorics of Lusztig symbols. Their result brings in a preorder on symbols, which
generalises the dominance order on partitions. This preorder was introduced, as far as
we know, in [4, §5.7.5] and since then it has naturally appeared in various contexts not
only in the representation theory of Hecke algebras [7] but also in the theory of canon-
ical bases for Fock spaces [4, Ch. 6] and in the theory of Cherednik algebras [1,8,9].

The main purpose of this paper is to show that the results of Geck and Iancu remain
valid in the integer case; that is when the weight function L satisfies some integer
condition. The proof relies on some combinatorial properties of Lusztig symbols which
may be of independent interest. The paper is organised as follows. In Sect. 2, we
introduced the basic concepts such as the preorder �L , the notion of symbols and the
dominance order on the set of symbols. In Sect. 3, we characterise adjacency of two
symbols for the dominance order. This will play a crucial role in the proof of the main
result in Sect. 4.

2 Ordering Lusztig families

2.1 Lusztig families

Let W be a finite Coxeter group with generating set S, and let L be a weight function
on W , that is a function L : W → N such that L(w1w2) = L(w1)+ L(w2) whenever
w1, w2 ∈ W satisfy �(w1w2) = �(w1) + �(w2). Here � denotes the usual length
function. It is easily seen that L only depends on the set {L(s) | s ∈ S} which is called
the set of parameters.

Let Irr(W ) be the set of complex irreducible representations of W . Using the
‘generic degrees’, Lusztig [11] defined a function

a : Irr(W ) −→ Z

E �−→ a(E)

which plays an important role in the representation theory of Weyl groups; see for
example [4, Ch. 1,2,3]. Using this function, Lusztig [10, §4.2] showed that the set
Irr(W ) can be naturally partitioned into the so-called ‘families’. In Example 2.5 and
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Proposition 2.11, we give explicit formulae for the values of the a-function on the
irreducible representations of the Weyl groups of type A and B.

We now briefly recall the definition of families. We use the following notation: if
J ⊂ S, M ∈ Irr(WJ ) and E ∈ Irr(W ), we write M ↑ E if E is a constituent of
IndS

J (M), and we write M �L E if M ↑ E and a(M) = a(E) (where a(M) is the
value of the a-function within the group WJ ).

Definition 2.1 When W = {1}, there is only one family which consists of the unit
representation. When W 	= {1}, E ∈ Irr(W ) and E ′ ∈ Irr(W ) are in the same family
if there exists a sequence

E = E0, E1, . . . , Em = E ′

in Irr(W ) such that for all i = 1, 2, . . . , m, the following condition is satisfied: there
exist a subset Ii ⊂ S and two simple modules Mi , M ′

i ∈ Irr(WIi ) which belong to the
same family in Irr(WIi ) such that

• either Mi �L Ei−1 and M ′
i �L Ei ,

• or Mi �L Ei−1 ⊗ ε and M ′
i �L Ei ⊗ ε,

where ε denotes the sign representation of W .

Example 2.2 Let W = 〈s, t〉 be the dihedral group of order 12, that is, the element
st is of order 6. We refer to [6, §5.3.4,§6.3.5,§6.5.10] for details of the computations.
We have Irr(W ) = {1W , ε, εs, εt , ϕ1, ϕ2} where

• 1W is the trivial representation,
• ε is the sign representation, i.e. ε(w) = (−1)�(w),
• εs and εt are two linear representations defined by εx (w) = (−1)�x (w) where �x

for x = s, t is the number of x in any reduced expression of w,
• ϕi for i = 1, 2 are defined by

ϕi (st) =
(

ξ i 0
0 ξ i

)
and ϕi (s) =

(
0 1
1 0

)
where ξ = e− i2π

6 .

There are only 4 parabolic subgroups, namely W∅ = {1}, Ws = 〈s〉, Wt = 〈t〉 and
W itself. One can check that we obtain the following relations, inducing the trivial
representation of each of the parabolic subgroups to W :

1W
W = 1W ,

1W
Ws

= 1W + εs + ∑
i

ϕi ,

1W
Wt

= 1W + εt + ∑
i

ϕi ,

1W
W∅ = 1W + ε + εs + εt + 2

∑
i

ϕi .

Next we obtain the following values for Lusztig a-function
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E ∈ Irr(W ) 1W εs εt ϕ1 ϕ2 ε

a(E) 0 1 1 1 1 6

From there, we see that the families are

{1W }, {εs, εt , ϕ1, ϕ2}, {ε}.

�
Kazhdan–Lusztig theory allows one to define another preorder on irreducible rep-

resentations that we will denote by ≤LR. More precisely, one can define a preorder
≤LR on W using the Hecke algebra associated to W . This preorder yields a partition
of W into the so-called two-sided cells which are then naturally equipped with a partial
order that we will still denote by ≤LR. Next, each two-sided cell c affords a represen-
tation of W , not necessarily irreducible, that we will denote by Mc. It turns out that any
irreducible representation appears in a unique cell representation and therefore, the
partial order ≤LR on cells induces a preorder on Irr(W ) as follows: E ≤LR E ′ if and
only if there exist two two-sided cells c and c′ such that c ≤LR c′, E is a constituent of
Mc, and E ′ is a constituent of Mc′ . In turn, this preorder induces a partition of Irr(W ).

As shown in [10, Chapter 5] these two partitions turn out to be the same in the
equal parameter case. The proof relies on some geometric interpretation which does
not exist in the general case of unequal parameters.

Conjecture 2.3 (Lusztig) Let W be a finite Coxeter group together with a weight
function L. The partition of Irr(W ) into families agrees with the partition induced by
the Kazhdan–Lusztig preorder ≤LR.

As far as unequal parameters are concerned, this conjecture has been verified by explicit
computations in type I2(m) and F4 by Geck. In type B, it holds in the asymptotic case;
see next section.

2.2 The preorder �L

To have a better understanding of the preorder ≤LR in Conjecture 2.3, Geck [3] has
introduced a preorder �L (see the definition below) satisfying the following condition:
E, E ′ ∈ Irr(W ) lie in the same family if and only if E �L E ′ and E ′ �L E . Then
with Iancu, they studied this preorder in type B and gave a complete combinatorial
description in the asymptotic case and in the equal parameter case [5]. Finally, they
deduced that Conjecture 2.3 holds in the asymptotic case.

We now recall the definition of �L .

Definition 2.4 When W = {1}, Irr(W ) contains only the unit representation which is
related with itself. When W 	= {1}, E ∈ Irr(W ) and E ′ ∈ Irr(W ) satisfy E �L E ′ if
and only if there exists a sequence

E = E0, E1, . . . , Em = E ′
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in Irr(W ) such that for all i = 1, 2, . . . , m, the following condition is satisfied: there
exist a subset Ii ⊂ S and two simple modules Mi , M ′

i ∈ Irr(WIi ) satisfying Mi �L M ′
i

in Irr(WIi ) such that

• either Ei−1 ↑ IndS
Ii
(Mi ) and M ′

i �L Ei ,

• or Ei ⊗ ε ↑ IndS
Ii
(Mi ) and M ′

i �L Ei−1 ⊗ ε,

where ε denotes the sign representation. We write E �L E ′ if we have E �L E ′ and
E ′ �L E .

Directly from the definition of �L , one can easily check that

1. if E and E ′ belong to the same family, then E �L E ′;
2. E �L E ′ ⇒ a(E) ≥ a(E ′).

The fact that this preorder gives rise to families (in other words that the converse of 1.
holds) is not straightforward by any means: it is one of the main results of [3] and [5].

Example 2.5 Let n ≥ 2 and W be a Weyl group of type An−1 with diagram as follows:

The description of �L is given in [5, Ex. 2.11]. We explain it for the convenience
of the reader as our proof in type Bn will roughly follow the same pattern. The group
W can be identified with the symmetric group Sn , and it is a well-known fact that
the irreducible representations of W are parametrised by partitions of n. We use the
labelling as in [6] where, for instance, the unit representation is parametrised by the
partition with one part equal to n and the sign representation by the partition with n
parts equal to 1. For a partition λ of n, we denote by Eλ the corresponding element of
Irr(W ). We will denote by Sk the parabolic subgroup of W generated by {s1, . . . , sk−1}
and by H� the parabolic subgroup of W generated by {sn−�+1, . . . , sn−1} where, by
convention, we set S1 = {1} and H1 = {1}. With these notations, if k, � ≥ 1 are such
that n = k + �, then the subgroup Sk × H� is a maximal parabolic subgroup of W .

Let λ = (λ1, . . . , λm) be a partition of n where λ1 ≥ λ2 ≥ · · · ≥ λm ≥ 0. Then
we have

a(Eλ) =
m∑

i=1

(i − 1)λi .

We claim that the order �L is the usual dominance order � on partitions. Recall that,
for two partitions λ = (λ1, . . . , λr ) and μ = (μ1, . . . , μs) of n, we have λ � μ if and
only if

k∑
i=1

λi ≤
k∑

i=1

μi for all k ≥ 1

where, by convention, we set λi = 0 if i > r and μ j = 0 if j > s.
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We will need the following results, and we refer to [6] for proofs and details. In the
following, ε�i denotes the sign representation of the parabolic subgroup H�i , while ε

denotes the sign representation of W .

(1) We have E �L E ′ if and only if there exists a sequence E = E0, . . . , Em = E ′
such that for each 1 ≤ i ≤ m there is a decomposition n = ki + �i and two
irreducible representations Mi , M ′

i ∈ Irr(Ski ) such that Mi �L M ′
i and either

• Mi � ε�i ↑ E and M ′
i � ε�i �L E ′

• Mi � ε�i ↑ E ′ ⊗ ε and M ′
i � ε�i �L E ⊗ ε

(2) (Pieri’s Rule) Let n = k + �, and let λ be a partition of k and μ a partition of n.
Then

Eλ � ε� ↑ Eμ

if and only if μ can be obtained from λ by adding one box to � different parts of
λ.

(3) (truncated Pieri’s Rule) Let n = k + �, and let λ be a partition of k and μ a
partition of n. Then

Eλ � ε� �L Eμ

if and only if μ can be obtained from λ by adding one box to the � greatest parts
of λ.

We are now ready to prove the claim. Let λ,μ be such that Eλ �L Eμ. It is enough
to consider an elementary step in the definition, so by (1), we may assume that there
exist k ≤ n and Eλ′

, Eμ′ ∈ Irr(Sk) such that the following is satisfied: Eλ′ �L Eμ′

within Sk , and we have either

• Eλ′ � ε� ↑ Eλ and Eμ′ � ε� �L Eμ;
• Eλ′ � ε� ↑ Eμ ⊗ ε and Eμ′ � ε� �L Eλ ⊗ ε.

Arguing by induction we may assume that λ′ � μ′. Suppose that we are in the first
case. Then, by (2), λ can be obtained from λ′ by adding one box to � different parts
of λ′, while, by (3), μ can be obtain from μ′ by adding one box to the � greatest parts
of μ. It is clear that in this case we still have λ � μ. The argument is similar in the
second case, since Eλ ⊗ ε = Eλ where λ is the transposed partition of λ.

Conversely, assume that λ � μ. We may assume that λ and μ are adjacent in the
dominance order, that is, if ν satisfies λ � ν � μ then either ν = λ or ν = μ. By [12,
§1.16], we know that μ differs from λ by only one box. That is there exists i1 < j1 ∈ N

such that

μi1 = λi1 + 1, μ j1 = λ j1 − 1 and μi = λi for all i 	= i1, j1.

Let ν be the partition defined by

νk =
{

μk − 1 if k < j1,
μk if k ≥ j1.
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Then, one sees that μ can be obtained from ν by adding one box to the j1 − 1 greatest
parts of μ, while λ can be obtained by adding one box to j1 − 1 different parts of ν

(namely the part indexed by {1, . . . , j1} − {i1}). Therefore we have Eν � ε j1−1 ↑ Eλ

and Eν � ε j1−1 �L Eμ and λ �L μ as required using (1). �
Finally, Geck conjectures the following relation.

Conjecture 2.6 (Geck [3]) Let E, E ′ ∈ Irr(W ). We have E �L E ′ if and only if
E �LR E ′.
It has been shown in [3, Prop. 3.4] that the implication E �L E ′ ⇒ E �LR E ′
always holds. The conjecture has been proved in the following cases:

• in the equal parameter case by Geck [3, Th. 4.11]. The proof relies on a geometric
interpretation of the Kazhdan–Lusztig theory;

• in type F4 and I2(m) for all choices of L by Geck [3, §3];
• in type Bn , in the so-called asymptotic case by Geck and Iancu [5].

2.3 Type Bn

Let W be a the Weyl group of type Bn with diagram as follows:

together with a weight function L : W → Z.

Remark 2.7 The case where L(t) > (n − 1)L(si ) > 0 for all i = 1, . . . , n − 1 is
called the ‘asymptotic case’.

In the rest of the paper, we will assume that we are in the ‘integer case’, that is,
L(t) = b ∈ N and L(si ) = 1 if i = 1, . . . , n − 1; we will denote by Lb such a
weight function.

We now show how the irreducible representations, the a-function and the families
can be described in the integer case, for all choices of weight function Lb.

The set of irreducible representations of W is naturally labelled by the set 	2
n

of bipartitions of rank n. Recall that for a partition λ = (λ1, . . . , λr ) we have set
|λ| = ∑

1≤i≤r λi . A bipartition of n is just a pair of partitions λ = (λ1, λ2) such that
|λ1| + |λ2| = n. We have

Irr(W ) = {Eλ | λ ∈ 	2
n}.

We refer to [4] for more details and for an explicit description of the irreducible
representations Eλ for λ ∈ 	2

n .
To each bipartition, one can associate an important object: its symbol. This notion

depends on the weight function that we have chosen on W . Let λ = (λ1, λ2) be a
bipartition of n ∈ N where λi = (λi

1, . . . , λ
i
ri
) and λi

1 ≥ λi
2 ≥ · · · ≥ λi

ri
≥ 0 for

i = 1, 2. Let N ∈ N be such that

N ≥ max{k ∈ N | max{λ1
k, λ

2
k} 	= 0}
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where, by convention, we set λ1
k = 0 if k > r1 and λ2

k = 0 if k > r2. Such an integer
will be called admissible for the bipartition λ. Then, we associate to λ and N the
(b, N )-symbol

B(b,N )(λ) =
(

B2
N . . . B2

1
B1

N+b . . . B1
2 . . . B1

1

)

where

B1
j :=λ1

j − j + N + b for j = 1, . . . , N + b,

B2
j :=λ2

j − j + N for j = 1, . . . , N .

We will denote by κ(b,N )(λ) the sequence of 2N + b elements in B(b,N )(λ) written
in decreasing order. A straightforward computation shows that it is a partition of the
integer

f (b, N , n) = n + (N (N − 1))/2 + (N + b)(N + b − 1)/2.

We set κ(b,N )(λ) = (κ1, . . . , κ2N+b) and

n(b,N )(λ) =
∑

1≤i≤2N+b

(i − 1)κi .

Example 2.8 Let b = 2, λ1 = (5, 1), λ2 = (2, 2, 1) and λ = (λ1, λ2). Then, N = 3
is admissible for λ, and we have

B(2,3)(λ) =
(

1 3 4
0 1 2 4 9

)
.

Then κ(2,3)(λ) = (9, 4, 4, 3, 2, 1, 1, 0) which is a partition of f (2, 3, 11) = 24. �
From now on and until the end of this section, we fix a weight function Lb on W .

Using symbols, one can easily describe the a-function and the families in type Bn .

Proposition 2.9 ([11, §22.14, §23.1]) Let λ = (λ1, λ2),μ = (μ1, μ2) ∈ 	2
n and

assume that N ∈ N is admissible for both λ and μ. Then the irreducible representations
Eλ and Eμ belong to the same family in W with respect to the weight function Lb if
and only if κ(b,N )(λ) = κ(b,N )(μ).

Example 2.10 (1) As noted in [5, Ex. 8.1], if we have b > n − 1, then all the families
are singletons.

(2) Consider the Weyl group of type B3 together with the weight function L1. There
are 10 bipartitions of 3. In Fig. 1, we list all the bipartitions of 3 together with their
(3, 1)-symbols and the partitions κ3,1.
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Fig. 1 Bipartitions and symbols for (B3, L1)

One can easily check that the families are then given by

{
( ,∅), (∅, ), ( , )

}
, {( ,∅), (∅, ), ( , )} , {( ,∅)} ,{

(∅, )
}

, {( , )} , {( , )} . �

Proposition 2.11 (Lusztig) Let λ = (λ1, λ2) ∈ 	2
n and assume that N ∈ N is

admissible for λ. Then

a(Eλ) = n(b,N )(λ) − n(b,N )(∅)

where ∅ denotes the empty bipartition.

There is a similar description of the a-function in the case where W is the complex
reflection group (Z/�Z)n

� Sn (see [4, Prop 5.5.11]).
Recall that our main aim is to give an explicit description of �L . We already know

that this preorder is a refinement of the preorder induced by the a-function. Actually,
looking at the above formula for the a-function, we see that the preorder induced by a
admits another natural refinement which has first been introduced in [4], again in the
wider context of complex reflection groups of types (Z/�Z)n

� Sn .
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Proposition 2.12 (Geck-J.) Let λ,μ ∈ 	2
n and assume that N ∈ N is admissible for

both λ and μ. Then we have

κ(b,N )(λ) � κ(b,N )(μ) �⇒ a(Eλ) ≥ a(Eμ).

It is then natural to ask if the preorder defined by the dominance order on the κ(b,N )(λ)

coincides with �L . This is the main result of this paper.

Theorem 2.13 Let λ,μ ∈ 	2
n and assume that N ∈ N is admissible for both λ and

μ. Then

κ(b,N )(λ) � κ(b,N )(μ) ⇐⇒ λ �L μ.

Note that the implication

κ(b,N )(λ) � κ(b,N )(μ) ⇐� λ �L μ

has already been proved in [5, Theorem 7.11]. So this article is devoted to the proof
of the reverse implication. Note that the result has also been established in the case
where:

• b = 0 and b = 1 by Geck and Iancu [5, Ex. 8.2] using results of Spaltenstein [13],
• b > n − 1 by Geck and Iancu [5, §6].

3 On the adjacency of Lusztig symbols with respect to �

As we have seen in the previous section, to any bipartition λ of n we can associate the
Lusztig’s symbol B(b,N )(λ) and a partition κ(b,N )(λ). Therefore, the usual dominance
order � on partitions yields an order on Lusztig’s symbols and bipartitions of n.
We will still denote this order by �. In this section we study adjacent bipartitions
for this order. Let us first clarify what we mean by adjacent: let λ and μ be two
bipartitions of n, and let N ∈ N be admissible for both λ and μ. We say that λ � μ

are adjacent if κ(b,N )(λ) � κ(b,N )(μ) and there is no bipartition ν of n such that
κ(b,N )(λ) � κ(b,N )(ν) � κ(b,N )(μ). Equivalently, if a bipartition ν satisfies

κ(b,N )(λ) � κ(b,N )(ν) � κ(b,N )(μ)

then we have either ν = λ or ν = μ.
It is a well-known fact, see, for example, [12, (1.16)], that if two partitions are

adjacent for the dominance order then one can be obtained from the other by moving
a single box in their Young diagram. The aim of this section is to show that a similar
result holds for the dominance order on bipartitions and symbols: if λ � μ are adjacent
bipartitions then the partition κ(b,N )(λ) can be obtained from κ(b,N )(μ) by moving a
single box in their Young diagram.
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3.1 Sympartitions and symbols

In this section, we study the following problem: given a partition λ, under which
condition can we find a bipartition λ ∈ 	2

n such that λ = κ(b,N )(λ) for some b, N ∈ N?
We start by introducing two definitions.

Definition 3.1 An �-overlap in a partition λ is a repetition of exactly � non-zero
elements.

For example, there is one 2-overlap in the partition λ = (4, 4, 2, 2, 2, 1) and one
3-overlap.

Definition 3.2 Let b, N , n ∈ N
∗. We say that λ is a (b, N , n)-sympartition if and only

if

• λ is a partition of f (b, N , n),
• there is no 3-overlap in λ,
• the number of 2-overlaps is at most N .

When the triplet (b, N , n) is clear from the context, we will simply write sympartition
instead of (b, N , n)-sympartition.

Example 3.3 The partition (7, 4, 4, 3, 2, 1, 1, 0) is a (2, 3, 9)-sympartition and also a
(4, 2, 6)-sympartition. However, it cannot be a sympartition associated to a triplet of
the form (b, 1, n) as there are two 2-overlaps.

Recall the definition of admissible in Sect. 2.3.

Proposition 3.4 Let λ be a bipartition of n, and let N ∈ N be admissible for λ. Then
the partition κ(b,N )(λ) is a (b, N , n)-sympartition. Conversely, let λ be a (b, N , n)-
sympartition. Then there exists a bipartition λ of n such that κ(b,N )(λ) = λ.

Proof Let λ be a bipartition of n. Then by definition of the (b, N )-symbol, the
sequences (B1

i )i=1,...,N+b and (B2
i )i=1,...,N are strictly increasing. It follows eas-

ily that there cannot be any 3-overlap in κ(b,N )(λ) and that the number of 2-overlaps
is less than or equal to N . We have seen in Sect. 2.3 that κ(b,N )(λ) is a partition of
f (b, N , n). Hence κ(b,N )(λ) is a (b, N , n)-sympartition.

Assume now that λ is a (b, N , n)-sympartition. Then there exist two sequences of
strictly increasing integers B1 and B2 such that

• there are N elements in B1 and N + b elements in B2,
• B1 ∩ B2 contains all the 2-overlaps of λ,
• B1 ∪ B2 = λ (as a multiset).

Now there exist two partitions λ1 and λ2 such that the increasing sequences (λ1
i − i +

N + b)i=1,...,N+b and (λ2
i − i + N )i=1,...,N are, respectively, equal to B1 and B2. If

we set λ := (λ1, λ2), then one can check that λ is a bipartition of n and that

B(b,N )(λ) =
(

B2

B1

)
and κ(b,N )(λ) = λ.
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3.2 Raising operators

Following [12], we introduce the raising operators. To this end, we will work on
M-uplets of integers instead of partitions or sympartitions.

Definition 3.5 Let a = (a1, . . . , aM ) ∈ Z
M . For 1 ≤ k1 < k2 ≤ M , we set

Upk1,k2
(a) = (a1, . . . , ak1 + 1, . . . , ak2 − 1, . . . , aM ),

Downk1,k2(a) = (a1, . . . , ak1 − 1, . . . , ak2 + 1, . . . , aM ).

Let λ be a partition of n and assume that Upk1,k2
(λ) is also a partition of n. Note

that this would be the case whenever λk2 > λk2+1 and λk1−1 > λk1 . Then, looking
at the associated Young tableau, Upk1,k2

(λ) is obtained from λ simply by moving the
(k2, λk2)-box to the kth

1 -part of λ.

Lemma 3.6 Let λ � λ′ be two partitions of n and let

i := min{k ∈ N | λk < λ′
k} and j := min{m ∈ N | m > i,

m∑
k=1

λk =
m∑

k=1

λ′
k}.

We have λ j > λ′
j ≥ λ′

j+1 ≥ λ j+1. Further, for all i ≤ k1 < k2 ≤ j such that
Upk1,k2

(λ) is a partition of n we have

λ � Upk1,k2
(λ) � λ′.

Similarly, for all i ≤ k1 < k2 ≤ j such that Downk1,k2(λ
′) is a partition of n we have

λ � Downk1,k2(λ
′) � λ′.

Proof By minimality of j we know that

j−1∑
k=1

λk <

j−1∑
k=1

λ′
k

therefore to have
∑ j

k=1 λk = ∑ j
k=1 λ′

k we must have λ j > λ′
j . The fact that λ′

j ≥ λ′
j+1

is clear, since λ′ is a partition. Finally we need to have λ j+1 ≤ λ′
j+1, and this follows

from the fact that λ � λ′.
Let k1, k2 ∈ N be such that i ≤ k1 < k2 ≤ j and assume that Upk1,k2

(λ) is a
partition of n. It is clear that λ � Upk1,k2

(λ) since we moved a box in the upward
direction. Let us show that λ′′ := Upk1,k2

(λ)�λ′. Let i ≤ m ≤ j . Note that λ′′
m = λm

for all m < k1 thus

m∑
k=1

λk =
m∑

k=1

λ′′
k for all m < k1.
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Further, for all m ≥ k2 we have

m∑
k=1

λk =
m∑

k=1

λ′′
k .

From those two inequalities and since λ � λ′, we get

m∑
k=1

λ′′
k ≤

m∑
k=1

λ′
k for all m < k1 and all m ≥ k2.

Let k1 ≤ m < k2. By minimality of j and since m < j , we have

m∑
k=1

λk <

m∑
k=1

λ′
k .

By definition of λ′′, we know that

m∑
k=1

λ′′
k =

m∑
k=1

λk + 1,

and therefore we get

m∑
k=1

λ′′
k ≤

m∑
k=1

λ′
k .

The result follows. The proof of the second part of the lemma is similar. �

3.3 A first simplification

Let λ = (λ1, . . . , λr ) be a partition of some integer. By convention, if i > r we set
λi = 0 and if i ≤ 0 we set λi = +∞. For i < j ∈ N, we set

λ[i, j] = (λi , . . . , λ j ), λ≤i = (λ1, . . . , λi ) and λ≥i = (λi , . . . , λr ).

We define λ<i , λ>i in a similar and obvious fashion.

Proposition 3.7 Let λ and μ be two bipartitions of n, and let N ∈ N be admissible
for λ and μ. Assume that λ � μ are adjacent. Let κ := κ(b,N )(λ) = (κ1, . . . , κr ) and
κ ′ := κ(b,N )(μ) = (κ ′

1, . . . , κ
′
r ) and set

i := min{k ∈ N | κk < κ ′
k} and j := min{m ∈ N | m > i,

m∑
k=1

κk =
m∑

k=1

κ ′
k}.
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Then we have κ<i = κ ′
<i and κ> j = κ ′

> j .

Proof It is clear that κ<i = κ ′
<i by definition of i . Let us show that κ> j = κ ′

> j . First,
by minimality of j we have κ j > κ ′

j , and since κ � κ ′, we also have κ ′
j+1 ≥ κ j+1.

In particular, it follows that κ j > κ j+1. This implies that both α := (κ≤ j , κ
′≥ j+1) and

β := (κ ′≤ j , κ≥ j+1) are partitions. In addition, we have

|α| = ∑
1≤k≤ j κk + ∑

j+1≤k≤r κ ′
k

= ∑
1≤k≤ j κ ′

k + ∑
j+1≤k≤r κ ′

k
= |κ ′|

and

|β| = ∑
1≤k≤ j κ ′

k + ∑
j+1≤k≤r κk

= ∑
1≤k≤ j κk + ∑

j+1≤k≤r κk

= |κ|.
So α and β are both partitions of f (b, N , n). We claim that either α or β is a (b, N , n)-
sympartition. First let us show that there is no 3-overlap in these two partitions.

• Since κ j > κ ′
j ≥ κ ′

j+1, it is easy to see that α cannot contain any 3-overlap as κ

and κ ′ does not; see Proposition 3.4.
• Assume that there is a 3-overlap in β. Then we must have κ ′

j = κ j+1 and either
κ ′

j−1 = κ ′
j or κ j+2 = κ j+1. First κ ′

j = κ j+1 implies that κ ′
j = κ j+1 = κ ′

j+1, since
κ ′

j ≥ κ ′
j+1 ≥ κ j+1. Second, since κ ′

j+1 = κ j+1, we must have κ ′
j+2 ≥ κ j+2 as

κ � κ ′. Finally, we get κ j+1 = κ ′
j+1 ≥ κ ′

j+2 ≥ κ j+2.
– Assume that κ ′

j−1 = κ ′
j . Then κ ′

j−1 = κ ′
j = κ ′

j+1, and we have a 3-overlap in
κ ′ which is a contradiction.

– Assume that κ j+1 = κ j+2. Then the inequality κ j+1 = κ ′
j+1 ≥ κ ′

j+2 ≥ κ j+2

implies that κ ′
j+1 = κ ′

j+2, and since we have seen that κ ′
j = κ ′

j+1, we have a
3-overlap in κ ′ which is a contradiction.

Thus, as claimed, there is no 3-overlap in α and β.
For ν a partition, we denote by O(ν) the number of 2-overlaps in ν. Then we have

O(κ) = O(κ< j+1) + O(κ> j ) (we have seen that κ j > κ j+1)

O(κ ′) = O(κ ′
< j+1) + O(κ ′

> j ) + δκ ′
j ,κ

′
j+1

where δ stands for the Kronecker symbol. We also have

O(α) = O(κ< j+1) + O(κ ′
> j ) and

O(β) = O(κ ′
< j+1) + O(κ> j ) + δκ ′

j ,κ j+1
.

Note that if δκ ′
j ,κ j+1

= 1, then we also have δκ ′
j ,κ

′
j+1

= 1 thus in any case

δκ ′
j ,κ j+1

≤ δκ ′
j ,κ

′
j+1

. We want to show that either O(α) ≤ N or O(β) ≤ N . We

argue by contradiction assuming that O(α) > N and O(β) > N . Then
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O(κ) + O(κ ′) ≥ O(α) + O(β) ≥ N + 2

so

O(κ) + O(κ ′) ≥ 2N + 2

which is a contradiction, because both κ and κ ′ are (b, N , n)-sympartitions and so we
have O(κ) ≤ N and O(κ ′) ≤ N . Since neither α nor β contains a 3-overlap, we see
that one of these partitions is a (b, N , n)-sympartition.

Finally, the hypotheses imply that κ≤ j � κ ′≤ j (they are both partitions of the same
rank) and κ> j � κ ′

> j (they are both partitions of the same rank). Thus we are in one
of the following configurations:

• either α is a (b, N , n)-sympartition, and we have

κ � α � κ ′.

Then κ = α or κ ′ = α and κ> j = κ ′
> j since κ≤ j 	= κ ′≤ j .• or β is a (b, N )-sympartition and we have

κ � β � κ ′.

Then κ = β or κ ′ = β and κ> j = κ ′
> j since κ≤ j 	= κ ′≤ j .

This concludes the proof. �

3.4 The double break Lemma

From now on and until the end of this section, we will assume that λ � μ are two
adjacent bipartitions of n and that N ∈ N is admissible for λ and μ. We set

κ:=κ(b,N )(λ) = (κ1, . . . , κr ), κ ′:=κ(b,N )(μ) = (κ ′
1, . . . , κ

′
r )

i = min{k ∈ N | κk < κ ′
k} and j := min

{
m ∈ N | m > i,

m∑
k=1

κk =
m∑

k=1

κ ′
k

}
.

For a partition ν we set Jν
k := νk − νk+1 ≥ 0. We then say that k is a break point of ν

if and only if we have Jν
k−1 ≥ 1 and Jν

k ≥ 1.

Lemma 3.8 Assume that for all i ≤ m ≤ j − 1 we have Jκ ′
m = 0 or 1. Then κ ′ has at

least two break points k1 and k2 such that i + 1 ≤ k1, k2 ≤ j − 1.

Proof Assume that κ ′ has no break point. There are 4 cases to consider, whether Jκ ′
i

and Jκ ′
j−1 are equal to 0 or 1. In the figure below, we give four examples of partitions
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κ ′ corresponding to the four cases we need to consider. The first line corresponds to
the i th-part and the last one to the j th-part.

(1) , (2) , (3) , (4) .

Let � ∈ N be such that j − i + 1 = 2� + ε where ε = 0 or 1. A straightforward
computation in each case yields

(1)

j∑
k=i

κ ′
k =

�∑
k=1

2(κ ′
i − k + 1) = 2�κ ′

i − �(� − 1),

(2)

j∑
k=i

κ ′
k =

�∑
k=1

2(κ ′
i − k + 1) + (κ ′

i − �) = (2� + 1)κ ′
i − �2,

(3)

j∑
k=i

κ ′
k = κ ′

i +
�∑

k=1

2(κ ′
i − k) = (2� + 1)κ ′

i − �(� + 1),

(4)

j∑
k=i

κ ′
k = κ ′

i +
�−1∑
k=1

2(κ ′
i − k) + (κ ′

i − �) = 2�κ ′
i − �2.

From there, we see that the smallest value of
∑ j

k=i κ ′
i that can be achieved when there

is no break point is

2�κ ′
i − �2 if j − i + 1is even,

(2� + 1)κ ′
i − �(� + 1) if j − i + 1 is odd.

Now the largest sympartition that one can construct starting with a i th-part equal to
κi < κ ′

i will satisfy

j∑
k=i

κk =
{

2�κi − �(� − 1) if j − i + 1 is even,
(2� + 1)κi − �2 if j − i + 1 is odd.

If j − i + 1 is even, then we would have

j∑
k=i

κk ≤ 2�κi − �(� − 1)

≤ 2�(κ ′
i − 1) − �(� − 1)
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= 2�κ ′
i − �(� + 1)

<

j∑
k=i

κ ′
i

contradicting the equality
∑ j

k=i κ ′
i = ∑ j

k=i κi .
If j − i + 1 is odd, then we would have

j∑
k=i

κi ≤ (2� + 1)κi − �2

≤ (2� + 1)(κ ′
i − 1) − �2

= (2� + 1)κ ′
i − (� + 1)2

<

j∑
k=i

κ ′
i

once again contradicting the equality
∑ j

k=i κ ′
i = ∑ j

k=i κi . So we see that κ ′ has at
least one break point.

Assume that κ ′ has a unique break point. Let N be the length of the part corre-
sponding to the break point. Note that we have κ ′

j < N < κ ′
i . There are 4 cases to

consider, whether Jκ ′
i and Jκ ′

j−1 are equal to 0 or 1. As before, we give four examples
corresponding to the four cases we need to consider.

(1) , (2) , (3) , (4) .

To use the computation done before, we will set � to be such that j − i + 2 = 2� + ε

where ε = 0 or 1. A straightforward computation in each case yields

(1)

j∑
k=i

κ ′
k = 2�κ ′

i − �(� − 1) − N ,

(2)

j∑
k=i

κ ′
k = (2� + 1)κ ′

i − �2 − N ,

(3)

j∑
k=i

κ ′
k = (2� + 1)κ ′

i − �(� + 1) − N ,

(4)

j∑
k=i

κ ′
k = 2�κ ′

i − �2 − N .
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From there, using the fact that κ ′
j < N < κ ′

i we see that the smallest value of
∑ j

k=i κ ′
k

that can be achieved when there is exactly one break point is strictly less than

2�κ ′
i − �(� + 1) if j − i + 1 is even,

(2� − 1)κ ′
i − �2 if j − i + 1 is odd.

Now the largest sympartition that we can construct starting with a i th-part equal to
κi < κ ′

i will satisfy

j∑
k=i

κk ≤
{

2�κi − �(� − 1) if j − i + 1 is even,

(2� − 1)κi − (� − 1)2 if j − i + 1 is odd.

If j − i + 1 is even, then we would have

j∑
k=i

κk ≤ 2�κi − �(� − 1)

≤ 2�(κ ′
i − 1) − �(� − 1)

= 2�κ ′
i − �(� − 1) − 2�

= 2�κ ′
i − �(� + 1)

<

j∑
k=i

κ ′
k

contradicting the equality
∑ j

k=i κ ′
k = ∑ j

k=i κk .
If j − i + 1 is odd, then we would have

j∑
k=i

κk ≤ (2� − 1)κi − (� − 1)2

≤ (2� − 1)(κ ′
i − 1) − (� − 1)2

= (2� − 1)κ ′
i − (� − 1)2 − (2� − 1)

= (2� − 1)κ ′
i − �2

<

j∑
k=i

κ ′
k

once again contradicting the equality
∑ j

k=i κ ′
k = ∑ j

k=i κk . This concludes the proof.�

3.5 Adjacency of two sympartitions

Theorem 3.9 Let b, N , n ∈ N, and let κ, κ ′ be two adjacent (b, N , n)-sympartitions
with respect to �. Then there exists k1, k2 ∈ N such that κ ′ = Upk1,k2

(κ).
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Proof The proof of this theorem is rather long and tedious and requires a case by case
analysis. First, as before, we set

i := min{k ∈ N | κk < κ ′
k} and j := min

{
m ∈ N | m > i,

m∑
k=1

κk =
m∑

k=1

κ ′
k

}
.

Then by Proposition 3.7 we know that κ<i = κ<i and κ> j = κ ′
> j . The idea of the

proof is to construct a sympartition κ ′′ either of the form Upk1,k2
(κ) or Downk1,k2(κ

′)
for some i ≤ k1 ≤ k2 ≤ j . Assume that we have constructed such a sympartition κ ′′.
Then by Lemma 3.6, we would have

κ � κ ′′ � κ ′ or κ � κ ′′ � κ ′.

Since κ, κ ′ are adjacent, this would imply that κ ′′ = κ ′ or κ ′′ = κ as required.

Case 1. Jκ
i−1 ≥ 2 and Jκ

j ≥ 2. In that case, we do not create any overlap by

removing the (κ j , j)-box in κ nor by adding a box to the i th part of κ . Then if we
set κ ′′ = Upi, j (κ), we have O(κ ′′) ≤ O(κ), and the result follows. (Recall that O(ν)

denotes the number of 2-overlaps in ν.)

Case 2. Assume that Jκ
i−1 ≥ 2 and Jκ

j = 1. We have κ j = κ j+1 +1, and by Lemma
3.6 we get κ ′

j = κ ′
j+1 = κ j+1. The shapes of κ and κ ′ are described in Figure 2.

Of course we may have κi−1 − κi > 2. Since κ ′ is a sympartition, we have κ j+1 =
κ ′

j+1 > κ ′
j+2 = κ j+2.

Subcase 1: There exists an overlap in κ[i, j]. We set

k := max{m ∈ N | i ≤ m < j, Jκ
m = 0}.

Let us show that κk+2 > κk+3. Since κ j+1 > κ j+2 and κ j > κ j+1, this is true if
k = j − 1 or k = j − 2. If k < j − 2, we cannot have κk+2 = κk+3, since k + 2 < j ,
and this would contradict the maximality of k.

Consider the partition κ ′′ = Upk+1,i (κ). We claim that κ ′′ is a sympartition. To see
this, note that since κk+2 > κk+3 and κi−1 − κi ≥ 2, there is no 3-overlap in κ ′′. Then
by removing the (k+1, κk+1)-box, we eliminate the 2-overlap at place (k, k+1) while

(a) (b)
Fig. 2 Shape of κ and κ ′
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possibly creating one at place (k +1, k +2). Also, by adding a box at the i th-part of κ ,
we cannot have created a 2-overlap since κi−1 − 2 ≥ κi . So the number of 2-overlaps
in κ ′′ is less than or equal to the number of 2-overlaps in κ . This shows that κ ′′ is a
sympartition, and we get the result in this case.

Subcase 2: There is no overlap between i and j . Set κ ′′ = Upi, j (κ). First, since
κ j+1 > κ j+2, we do not create a 3-overlap removing the ( j, κ j )-box inκ . Then we have

O(κ ′′) = O(κ[1, i − 1]) + 1 + O(κ[ j + 2, �(κ)])
= O(κ ′[1, i − 1]) + 1 + O(κ ′[ j + 2, �(κ ′)])
≤ O(κ ′)

The last inequality holds because κ ′ has a 2-overlap at place ( j, j + 1) and may have
more between i and j . Since κ ′ is a sympartition, so is κ ′′.

From now on and until the end of the proof, we will assume that Jκ
i−1 = 1. In that

case, since κ ′
i−1 = κi−1 and κ ′

i > κi , we have κ ′
i = κ ′

i−1 = κi + 1. That is, the
sympartitions κ and κ ′ have shapes as shown in Fig. 3.

Case 3. Jκ
i = 0 and Jκ

j = 1. Note that by Lemma 3.6, we have κ ′
j = κ ′

j+1 = κ j+1.
The shape of κ and κ ′ are described in Fig. 4.

Let k := max{m ∈ N | i ≤ m < j, Jκ
m = 0}. Note that k is well defined, since

there is a 2-overlap at place (i, i + 1). Set κ ′′ = Upi,k+1(κ). Arguing as in Case 2.1,
using the maximality of k, one can show that we do not create a 3-overlap by removing
the (k + 1, κk+1)-box and that the number of 2-overlaps remains constant. Also, we
have κi−2 = κ ′

i−2 > κ ′
i−1 = κi−1, so that we can add a box at the i th-part of κ without

creating a 3-overlap while keeping the number of 2-overlaps constant. It follows that
κ ′′ is a sympartition as required.

Case 4: Jκ
i = 0 and Jκ

j > 1. The shapes of κ and κ ′ are described in Fig. 5. Of
course, we may have κ j − κ j−1 > 2. As in the previous case we have κi−2 > κi−1, so

(a) (b)
Fig. 3 Shape of κ and κ ′

(a) (b)
Fig. 4 Shape of κ and κ ′
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(a) (b)
Fig. 5 Shapes of κ and κ ′

that we can add a box at the i th-part of κ without creating a 3-overlap while keeping
the number of 2-overlaps constant. Then setting κ ′′ = Upi, j (κ) easily yields the result.

Case 5: Jκ
i ≥ 1 and Jκ

j = 1. The shapes of κ and κ ′ are described in Figure 6.
We may have κi − κi−1 ≥ 1. Arguing as in Case 3, we can show that κ j+1 > κ j+2.

First assume that there exists i ≤ m < j such that κ ′
m − κ ′

m+1 ≥ 2. Then set

k := max{� ∈ N | � < m, Jκ ′
� = 0}.

Note that k is well-defined as there is an overlap in κ ′ at place (i − 1, i) and k ≥ i − 1.
Consider κ ′′ = Downk+1,m+1(κ

′). We show that there is no 3-overlap in κ ′′. If
k < m − 1, then we cannot have κ ′

k+1 = κ ′
k+2, because this would contradict the

maximality of k. If k = m−1, then we do not create a 3-overlap, since κ ′
m −κ ′

m+1 ≥ 2.
We show that O(κ ′′) ≤ O(κ ′). If k < m − 1, then by removing the (k + 1, κ ′

k+1)-box
from κ ′, we remove an overlap at place (k, k + 1) while possibly creating one at place
(k + 1, k + 2). By adding a box at the m + 1th-part of κ ′′ we do not create a 2-overlap
at place (m, m + 1), since κ ′

m − κ ′
m+1 ≥ 2, hence the result in this case. If k = m − 1,

then we are in the situation described in Fig. 7, and the result follows easily.
Second assume that for all i ≤ m < j we have Jκ ′

m = 0 or 1. Then by the double
break lemma, there exist at least two break points in κ ′. Let k1 (respectively k2) be

(a) (b)
Fig. 6 Shape of κ and κ ′

Fig. 7 From κ ′[k, k + 2] to
κ ′′[k, k + 2]
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(a)

(b)
Fig. 8 From κ ′ to κ ′′ = Downk1−1,k2+1(κ ′)

the highest (respectively lowest) one. Note that it is necessarily preceded (respectively
followed) by an overlap. Then set κ ′′ = Downk1−1,k2+1(κ

′). It can be seen in Fig. 8
that O(κ ′′) = O(κ ′), so that κ ′′ is a sympartition, and the result follows.

Case 6: Jκ
i ≥ 1 and Jκ

j > 1. In that case, we can remove the ( j, κ j )-box of κ without
creating a 2-overlap nor a 3-overlap. If there exists i ≤ k < j − 1 such that Jκ

k−1 ≥ 2,
then we set κ ′′ = Upk, j (κ), and κ ′′ is a sympartition. Otherwise, there is no such k and
Jκ

k−1 = 0 or 1 for all i ≤ k < j − 1. If between i and j there is a sequence of shape,

(∗)

then we can put the ( j, κ j )-box at the 3rd-line starting from the top to obtain the
desired sympartition κ ′′. Since, the top of κ has the following shape:
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Fig. 9 From κ to κ ′′

we see that either κ[i, j − 1] is a ‘staircase’ or one can find a shape as in (∗). If it
is a staircase, then we set κ ′′ = Upi, j (κ). This situation is described in Fig. 9 in the
case where Jκ

j−1 = 1 though possibly Jκ
j−1 ≥ 1.

The number of overlaps in κ ′′ is then

O(κ ′′) = O(κ[1, i − 1]) + 1 + O(κ[ j + 1, �(κ)])
= O(κ ′[1, i − 1]) + 1 + O(κ ′[ j + 1, �(κ ′)])
≤ O(κ ′)

where �(κ) denotes the length of κ . It follows that κ ′′ is a sympartition, and this
concludes the proof of the theorem. �

4 Proof of the main result

We start by giving an explicit characterisation of the preorder �L as in [5], which
is in spirit very similar to the one given in Example 2.5 in type A. Then, using our
characterisation of the adjacency of bipartitions we will prove the main result of this
paper, that is, the order �L on bipartition is the same as the order � in the integer case.

4.1 On the preorder �L in type Bn

We refer to [5, Lemma 7.5] for details in this section. Let W be a Weyl group of type
Bn with diagram as in sect. 2.3. The maximal parabolic subgroups of W are of the
form Wk × H� where n = k + � (k ≥ 0 and � ≥ 1). Here, Wk is of type Bk generated
by t, s1, . . . , sk−1, and H� is of type A�−1 generated by sk+1, sk+2, . . . , sn−1 (with
W0 = H1 = 1). We denote by ε� the sign representation of H�.

Let λ and μ be two bipartitions of n. We have λ �L μ if and only if there exists a
sequence

λ := λ0,λ1, . . . ,λm := μ

such that for each i ∈ {1, . . . , m}, the following condition is satisfied: there exist a
decomposition n = ki + �i and bipartitions νi , ν′

i of ki such that Eνi �L Eν′
i and

• either Eνi � ε�i ↑ Eλi−1 and Eν′
i � ε�i �L Eλi

• or Eνi � ε�i ↑ Eλi and Eν′
i � ε�i �L Eλi−1 (where μ means the transpose of μ).
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Lemma 4.1 Let n = k + � where k ≥ 0 and � ≥ 1. Let λ be a bipartition of k,
and let μ be a bipartition of n. Then Eμ is a constituent of Ind(Eλ � ε�) if and only
if κ(b,N )(μ) can be obtained from κ(b,N )(λ) by increasing � parts by 1. In addition,
we have a(Eλ � ε�) = a(Eμ) if and only if these parts are the � largest entries of
κ(b,N )(λ).

Proof The first assertion is proved in [5, Lemma 7.6]. The ‘if’ part of the second
assertion is a result of Lusztig [5, Lemma 7.10]. Let us show that if we increase the l
largest entries of κ(b,N )(λ) by 1, then a(Eλ � ε�) = a(Eμ). First, by [5, Remark 2.8],
we have

a(Eλ � ε�) = a(Eλ) + a(ε�).

Next by [4, Ex. 1.3.8], we have

a(ε�) =
∑

1≤i≤�

(i − 1).

If κ(b,N )(μ) is obtained from κ(b,N )(λ) by increasing the � largest entries of κ(b,N )(λ)

then, by Proposition 2.11, we obtain

a(Eμ) = a(Eλ) +
∑

1≤i≤�

(i − 1)

as required. �

4.2 Proof of Theorem 2.13

Assume that λ and μ are two bipartitions such that κ := κ(λ)�κ ′ := κ(μ). If κ = κ ′,
then we already know that λ and μ are in the same family so that λ �L μ. From now
on we assume that κ � κ ′.

We want to show that λ �L μ. To do so, it is enough to consider the case where
κ and κ ′ are adjacent. In the previous section, we have seen that there exist i1 and j1
such that κ ′ = Upi1, j1(κ). In other words

κ = (. . . , κi1−1, κi1 , κi1+1, . . . , κ j1−1, κ j1 , κ j1+1, . . .) and
κ ′ = (. . . , κi1−1, κi1 + 1, κi1+1, . . . , κ j1−1, κ j1 − 1, κ j1+1, . . .).

Note that this implies that there is at most one element in κ which is equal to κ ′
j1

= κ j1 −
1. Indeed, since the ( j1, κ j1)-box can be removed in κ , it implies that κ j1+1 ≤ κ j1 − 1.
If the inequality is strict, then the result is obvious, since no element of κ is equal
to κ j1 − 1. Next if κ j1+1 = κ j1 − 1, then we see that we must have κ j1+2 < κ j1+1,
otherwise we would create a 3-overlap by removing the ( j1, κ j1)-box.

Case 1: κ j1−1 	= κ j1 .
We will construct a (N , b, n − �)-sympartition κ ′′ for some � ∈ N satisfying the

two following properties:
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• κ is obtained from κ ′′ by increasing � parts,
• κ ′ is obtained from κ ′′ by increasing the � largest parts of κ ′′.
Consider the partition κ ′′ such that

κ ′′
j =

{
κ ′

j − 1 if j < j1,
κ ′

j if j ≥ j1.

Note that this is indeed a partition since we have seen that there is at most one element
in κ which is equal to κ ′

j1
= κ j1 − 1. In other words, we have

κ ′′ = (. . . , κ ′
i1−1 − 1, κ ′

i1
− 1, κ ′

i1+1 − 1, . . . , κ ′
j1−1 − 1, κ ′

j1 , κ
′
j1+1, . . .)

and

κ ′′ = (. . . , κi1−1 − 1, κi1 , κi1+1 − 1, . . . , κ j1−1 − 1, κ j1 − 1, κ j1+1, . . .).

We show that κ ′′ is a (N , b, n − �)-sympartition. It is clear that κ ′′ is a partition of
f (N , b, n − �). So we only need to check that (1) there is no 3-overlap, and (2) the
number of 2-overlaps is less than or equal to N .

(1) There is no 3-overlap in κ ′, thus the only possibility to have created one in κ ′′
is to have κ ′

j1−1 − 1 = κ ′
j1

= κ ′
j1+1, but this would imply that κ j1−1 = κ j1 ,

contradicting the hypothesis.
(2) The number of 2-overlaps in κ ′′ satisfies

O(κ ′′) = O(κ ′′
< j1) + δκ ′′

j1−1,κ
′′

j1
+ O(κ ′′≥ j1)

= O(κ ′
< j1) + δκ ′

j1−1−1,κ ′
j1

+ O(κ ′
> j1).

As we have κ ′
j1−1 − 1 = κ j1−1 − 1 	= κ j1 − 1 = κ ′

j1
by hypothesis, we conclude

that

O(κ ′′) ≤ O(κ ′) ≤ N .

The j1 − 1 largest parts in κ ′′ have size κ ′
i − 1 with i < j1. Thus κ ′ can be obtained

from κ ′′ by adding 1 to the j1 − 1 largest parts. Further, κ can be obtained from κ ′′ by
adding 1 to j1 − 1 part. It follows that λ �L μ by Lemma 4.1.

Case 2: κ j1−1 = κ j1 .
The partitions κ , κ ′ have the following shape around j1 (Fig. 10 ):
We consider the transposed bipartitions λ and μ. We choose t so that we have the

following inclusion of multisets:

(t − κ1, . . . , t − κr ) ⊆ (0, 1, . . . , t, 0, 1, . . . , t) (1)

and

(t − κ ′
1, . . . , t − κ ′

r ) ⊆ (0, 1, . . . , t, 0, 1, . . . , t). (2)
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(a) (b)
Fig. 10 Shape of κ and κ ′

(a) (b)
Fig. 11 Shape of κ and κ ′

Then the sympartition κ (respectively κ ′) associated to λ (respectively μ) is the parti-
tion obtained by reordering the complement of the first multiset into the second in (1)
(respectively in (2)); see [11, §22]. There exist i2 < j2 such that

κ ′ = (κ ′
1, . . . , κ ′

i2−1, κ ′
i2 , κ

′
i2+1, . . . , κ ′

j2−1, κ ′
j2 , κ

′
j2+1, . . .)

κ = (κ ′
1, . . . , κ ′

i2−1, κ ′
i2 + 1, κ ′

i2+1, . . . , κ ′
j2−1, κ ′

j2 − 1, κ ′
j2+1, . . .)

.

Looking at the shape of κ , κ ′ around j1, we see that the shape of κ and κ ′ around i2
is the following (Fig. 11):

Consider the partition κ ′′ defined by

κ ′′
j =

{
κ j − 1 if j ≤ i2,

κ j if j > i2.

Since κi2 − κi2+1 ≥ 2, we see that κ ′′ is a sympartition. Then κ is obtained from κ ′′
by adding 1 to the i2 largest parts, and κ ′ is obtained by adding 1 to i2 parts. This
concludes the proof of the theorem.

Remark 4.2 In the non-integer case, the definition of symbol is different (see [5,
Definition 3.1]), and it is not clear, at least to us, how to characterise adjacency of
symbols in this case.
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