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Abstract Let Π be a polar space of rank n ≥ 3. Denote by Gk(Π) the polar Grass-
mannian formed by singular subspaces of Π whose projective dimension is equal
to k. Suppose that k is an integer not greater than n − 2 and consider the relation
Ri,j , 0 ≤ i ≤ j ≤ k + 1, formed by all pairs (X,Y ) ∈ Gk(Π) × Gk(Π) such that
dimp(X⊥ ∩ Y) = k − i and dimp(X ∩ Y) = k − j (X⊥ consists of all points of Π

collinear to every point of X). We show that every bijective transformation of Gk(Π)

preserving R1,1 is induced by an automorphism of Π , except the case where Π is a
polar space of type Dn with lines containing precisely three points. If k = n − t − 1,
where t is an integer satisfying n ≥ 2t ≥ 4, we show that every bijective transforma-
tion of Gk(Π) preserving R0,t is induced by an automorphism of Π .
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1 Introduction

Let V be an n-dimensional vector space V (over a division ring). Denote by Gk(V )

the Grassmannian formed by the k-dimensional subspaces of V . Suppose that 1 <

k ≤ n − k. For every integer i satisfying 1 ≤ i ≤ k, we define the following relation:

Ri := {
(X,Y ) ∈ Gk(V ) × Gk(V ) : dim l (X ∩ Y) = k − i

}
.

We write dim l for the linear dimension (the dimension of vector spaces and their sub-
spaces) since we want to distinguish it from the projective dimension (the dimension
of projective spaces and their subspaces), which will be denoted by dimp . Note that
(X,Y ) ∈Ri if and only if the distance between X and Y in the Grassmann graph

Γk(V ) = (
Gk(V ),R1

)

is equal to i.
The same relations can be defined on dual polar spaces. Let Π be a polar space

of rank n. Denote by Gk(Π) the polar Grassmannian formed by singular subspaces
of Π whose projective dimension is equal to k. The associated dual polar space is
formed by maximal singular subspaces, i.e., singular subspaces of dimension n − 1.
For any integer i satisfying 1 ≤ i ≤ n, we define

Ri := {
(X,Y ) ∈ Gn−1(Π) × Gn−1(Π) : dimp(X ∩ Y) = n − 1 − i

}
.

As above, we have (X,Y ) ∈ Ri if and only if the distance between X and Y in the
dual polar graph

Γn−1(Π) = (
Gn−1(Π),R1

)

is equal to i.
By [4], every automorphism of the Grassmann graph Γk(V ) is induced by a semi-

linear automorphism of V or a semilinear isomorphism of V to the dual vector space
V ∗ (the second possibility can be realized only in the case n = 2k). Similarly, every
automorphism of the dual polar graph Γn−1(Π) is induced by an automorphism of
the polar space Π . The latter was proved by Chow [4] for classical polar spaces only,
but Chow’s method works in the general case [19, Sect. 4.6]. Some results closely
related to these statements were obtained [7–12, 16, 20, 21], and we refer [19] for a
survey.

Every bijective transformation of Gk(V ) preserving Rk is an automorphism of
Γk(V ) [2, 9]. For the relation Ri with 1 < i < k the same is not proved. However, all
bijective transformations of Gk(V ) preserving R1 ∪ · · · ∪ Rm are automorphisms of
Γk(V ) for every integer m < k [17]. This is a generalization of the previous result;
indeed, if m = k − 1, then the transformations considered above preserve Rk . The
same statement is proved for some dual polar spaces [14]. Results of similar nature
were established for other objects [1, 5, 6, 13, 15].

Now suppose that k is an integer not greater than n − 2 and consider the relation
Ri,j , 0 ≤ i ≤ j ≤ k + 1, formed by all pairs

(X,Y ) ∈ Gk(Π) × Gk(Π)
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satisfying the following conditions:

dimp

(
X⊥ ∩ Y

) = k − i and dimp(X ∩ Y) = k − j

(X⊥ consists of all points of Π collinear to every point of X). All automorphisms of
the polar Grassmann graph

Γk(Π) = (
Gk(Π),R0,1

)

are described in [19, Sect. 4.6]. They are induced by automorphisms of Π , except the
case where k = 1 and our polar space is of type D4. Also, every automorphism of the
so-called weak Grassmann graph

Γ w
k (Π) = (

Gk(Π),R0,1 ∪R1,1
)

is induced by an automorphism of Π [22].
We show that every bijective transformation of Gk(Π) preserving R1,1 is induced

by an automorphism of Π , except the case where Π is a polar space of type Dn

with lines containing precisely three points (Theorem 1). If k = n − t − 1, where t

is an integer satisfying n ≥ 2t ≥ 2, then (X,Y ) ∈ R0,t is equivalent to the fact that
X and Y span a maximal singular subspace. Our second result (Theorem 2) states
that every bijective transformation of Gk(Π) preserving this relation is induced by an
automorphism of Π .

Note that for finite symplectic and hermitian polar spaces, the first result under
some conditions was proved in [18, 25].

2 Polar spaces

We recall some basic properties of polar spaces and refer to [3, 19, 24] for their
proofs.

Let P be a nonempty set whose elements are called points, and L be a family
formed by proper subsets of P called lines. Two distinct points joined by a line are
said to be collinear. Let Π = (P,L) be a partial linear space, i.e., each line contains
at least two points, and for any distinct collinear points p,q ∈ P , there is precisely
one line containing them, and this line is denoted by pq .

We say that S ⊂ P is a subspace of Π if for any distinct collinear points p,q ∈ S,
the line pq is contained in S. A singular subspace is a subspace where any two
distinct points are collinear. Note that the empty set and a single point are singular
subspaces. Using the Zorn lemma, we show that every singular subspace is contained
in a certain maximal singular subspace.

From this moment we suppose that Π is a polar space. This means that the fol-
lowing axioms hold:

(P1) each line contains at least three points,
(P2) there is no point collinear to all points,
(P3) if p ∈ P and L ∈ L, then p is collinear to precisely one point or all points of

the line L,
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(P4) every flag formed by singular subspaces is finite.

If there is a maximal singular subspace of Π containing more than one line, then all
maximal singular subspaces of Π are projective spaces of the same finite dimension
≥ 2. We say that the rank of Π is n if this dimension is equal to n − 1.

In the case where the rank of Π is not less than 4, every maximal singular
subspace M can be identified with the projective space associated to a certain n-
dimensional vector space V (over a division ring). Then every nonempty singular
subspace S ⊂ M will be identified with the corresponding subspace of the vector
space V .

The collinearity relation on Π is denoted by ⊥. We write p ⊥ q if p,q ∈ P are
collinear points and p 
⊥ q otherwise. If X,Y ⊂ P , then X ⊥ Y means that every
point of X is collinear to all points of Y . For every subset X ⊂ P satisfying X ⊥ X,
the minimal singular subspace containing X is called spanned by X and denoted by
〈X〉. For every subset X ⊂ P , we denote by X⊥ the subspace of Π formed by all
points collinear to all points of X.

Fact 1 Let X be a subset of P satisfying X ⊥ X and spanning a maximal singular
subspace M . Then p ⊥ X implies that p ∈ M .

Fact 2 If M is a maximal singular subspace of Π , then for every point p ∈ P such
that p /∈ M , we have

dimp

(
p⊥ ∩ M

) = n − 2.

Fact 3 For every singular subspace S, there are maximal singular subspaces M and
N such that S = M ∩ N .

For every polar space of rank n, one of the following possibilities is realized:

• type Cn, where every (n−2)-dimensional singular subspace is contained in at least
three maximal singular subspaces,

• type Dn, where every (n − 2)-dimensional singular subspace is contained in pre-
cisely two maximal singular subspaces.

All polar spaces of rank ≥ 3 were described by Tits [23].

3 Results

Let Π = (P,L) be a polar space of rank n ≥ 3. Recall that the polar Grassmannian
formed by all k-dimensional singular subspaces of Π is denoted by Gk(Π). Suppose
that k ≤ n − 2. We consider the relation Ri,j , 0 ≤ i ≤ j ≤ k + 1, formed by all pairs

(X,Y ) ∈ Gk(Π) × Gk(Π)

satisfying

dimp

(
X⊥ ∩ Y

) = k − i and dimp(X ∩ Y) = k − j.
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Since

dimp

(
X⊥ ∩ Y

) = dimp

(
Y⊥ ∩ X

)

for any pair X,Y ∈ Gk(Π), this relation is symmetric. Every automorphism of Π

(a bijective transformation of P preserving L) induces a transformation of Gk(Π)

which preserves all Ri,j .
First, we determine all automorphisms of the graph

Γ ′
k(Π) = (

Gk(Π),R1,1
)

except the case where Π is a polar space of type Dn with lines containing precisely
three points.

Theorem 1 Suppose that one of the following possibilities is realized:

• Π is a polar space of type Cn, n ≥ 3,
• Π is a polar space of type Dn, n ≥ 3, and each line contains more than three

points.

Then every automorphism of Γ ′
k(Π) is induced by an automorphism of Π .

Remark 1 For k = 0, this statement is trivial. The edges of Γ ′
0(Π) are pairs of non-

collinear points of Π , and every automorphism of this graph is an automorphism of
the collinearity graph Γ0(Π). It is well known that the class of automorphisms of
Γ0(Π) coincides with the class of automorphisms of Π .

In the case where k ∈ {1, . . . , n − 3}, the distance between S,U ∈ Gk(Π) in the
Grassmann graph Γk(Π) is equal to 2 if and only if (S,U) belongs to R1,1 ∪ R0,2.
The distance between S,U ∈ Gn−2(Π) in Γn−2(Π) is equal to 2 if and only if
(S,U) ∈ R1,1 (if k = n − 2, then R0,2 is empty). Theorem 1 gives the following.

Corollary 1 Suppose that one of the possibilities from Theorem 1 is realized. Let
f be a bijective transformation of Gn−2(Π) satisfying the following condition: the
distance between S,U ∈ Gn−2(Π) in Γn−2(Π) is equal to 2 if and only if the distance
between f (S) and f (U) in Γn−2(Π) is equal to 2. Then f is an automorphism of
Γn−2(Π).

If X and Y are singular subspaces of Π contained in a certain maximal singular
subspace, then

dimp

(〈X ∪ Y 〉) = dimp(X) + dimp(Y ) − dimp(X ∩ Y). (1)

This implies that a maximal singular subspace of Π is spanned by two k-dimensional
singular subspaces if and only if n ≤ 2k + 2. In this case, for X,Y ∈ Gk(Π), we write
X ∼ Y if these singular subspaces span a maximal singular subspace, i.e., X ⊥ Y and
〈X ∪ Y 〉 is a maximal singular subspace.
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Remark 2 Let X,Y ∈ Gk(Π) and

dimp(X ∩ Y) = k − t.

If X ∼ Y , then (1) implies that

n − 1 = 2k − (k − t) and k = n − t − 1.

Since k + t = n − 1 and t ≤ k + 1, we have n ≥ 2t . Therefore, X ∼ Y is equivalent
to the fact that k = n − t − 1 and (X,Y ) ∈ R0,t , where t is an integer satisfying
n ≥ 2t ≥ 2.

Our second result describes all automorphisms of the graph

Γ ′′
k (Π) = (

Gk(Π),∼)
.

Recall that this graph is defined only in the case n ≤ 2k + 2.

Theorem 2 Every automorphism of Γ ′′
k (Π) is induced by an automorphism of Π .

Remark 3 The graph Γ ′′
n−2(Π) coincides with the Grassmann graph Γn−2(Π), and,

by [19, Theorem 4.8], every automorphism of this graph is induced by an automor-
phism of Π . Thus, we can restrict ourself to the case k ≤ n − 3; in particular, we can
suppose that n ≥ 4.

4 Cliques

From this moment we suppose that k ∈ {1, . . . , n−2}. For every singular subspace N

such that dimp N < k, we denote by [N〉k the set of all elements of Gk(Π) containing
N . This subset is said to be a big star if N ∈ Gk−1(Π).

If N and M are singular subspaces satisfying

N ⊂ M and dimp N < k < dimp M,

then we denote by [N,M]k the set of all S ∈ Gk(Π) such that N ⊂ S ⊂ M . This
subset is called a star if

N ∈ Gk−1(Π) and M ∈ Gn−1(Π).

In the case N = ∅, we write 〈M]k instead of [N,M]k . We say that 〈M]k is a top if
M ∈ Gk+1(Π).

All maximal cliques of the Grassmann graph

Γk(Π) = (
Gk(Π),R0,1

)

and the weak Grassmann graph

Γ w
k (Π) = (

Gk(Π),R0,1 ∪R1,1
)
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are known [19, Propositions 4.16 and 4.24]. Every maximal clique of Γ w
k (Π) is a big

star or a top. Every maximal clique of Γk(Π) is a star or a top. In the case k = n − 2,
every star is contained in a certain top, and all maximal cliques of Γk(Π) are tops.

Proposition 1 Every clique of Γ ′
k(Π) is contained in a big star.

Proof If C is a clique of Γ ′
k(Π), then it is a clique of Γ w

k (Π). Hence, C is contained
in a big star or a top. Since any two distinct elements of a top are nonadjacent vertices
of Γ ′

k(Π), C is a subset in a big star. �

Let N ∈ Gk−1(Π). For every M ∈ Gk+1(Π) containing N , the subset [N,M]k is
said to be a line. The big star [N〉k , together with all lines defined above, is a polar
space of rank n − k [19, Lemma 4.4]. This polar space will be denoted by ΠN . If Π

is a polar space of type Cn or Dn, then ΠN is a polar space of type Cn−k or Dn−k ,
respectively.

Lemma 1 Let N ∈ Gk−1(Π). Two distinct elements of the big star [N〉k are adjacent
vertices of the graph Γ ′

k(Π) if and only if they are noncollinear points of the polar
space ΠN .

Proof Easy verification. �

Proposition 2 Suppose that n ≤ 2k + 2. If S and U are adjacent vertices of Γ ′′
k (Π),

then M := 〈S ∪ U 〉 is a maximal singular subspace of Π , and every clique of Γ ′′
k (Π)

containing S and U is a subset in 〈M]k .

Proof It is clear that S ⊥ U and M is a maximal singular subspace. Let C be a clique
of Γ ′′

k (Π) containing S and U . Then for every A ∈ C, we have A ⊥ S and A ⊥ U .
By Fact 1, this implies that A ⊂ M . Hence, C is contained in 〈M]k . �

5 Proof of Theorem 1

Lemma 2 Let Π = (P,L) be a polar space such that one of the following possibili-
ties is realized:

(1) Π is a polar space of type Cn, n ≥ 2;
(2) Π is a polar space of type Dn, n ≥ 2, and each line of Π contains more than

three points.

Suppose that p and q are noncollinear points of Π and t ∈ P is collinear to at least
one of the points p,q . Then there exists a point of Π noncollinear to p,q, t .

Proof By our assumption, t is collinear to at least one of the points p and q . Let
t ⊥ q .

(1) Suppose that Π is a polar space of type Cn.
In the case where t 
⊥ p, we consider a maximal singular subspace M containing

the line qt . The singular subspace p⊥ ∩ M is (n − 2)-dimensional (Fact 2), and there
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is a maximal singular subspace N containing p⊥ ∩ M and different from M and
〈p⊥ ∩ M,p〉. Every point belonging to N \ (p⊥ ∩ M) is noncollinear to p,q, t .

Now suppose that t is collinear to both p and q . Since p⊥ ∩ q⊥ is a polar space
of rank n − 1 (if n = 2, then p⊥ ∩ q⊥ consists of mutually noncollinear points) [19,
Lemma 4.3], there exist a point u ∈ p⊥ ∩ q⊥ and an (n − 2)-dimensional singular
subspace U ⊂ p⊥ ∩ q⊥ such that t 
⊥ u and u ∈ U . We take a maximal singular
subspace M containing U and different from 〈U,p〉 and 〈U,q〉. Consider a line L ⊂
M that intersects U precisely in the point u. This line contains a unique point w

collinear to t . Every point of L different from u and w is noncollinear to p,q, t .
(2) Consider the case where each line of Π contains more than three points (we

do not assume that the polar space is of type Dn). Suppose that the statement fails and
every point of Π is collinear to at least one of the points p,q, t or, in other words,

P = p⊥ ∪ q⊥ ∪ t⊥. (2)

First we show that every maximal singular subspace of Π contains at least one of the
points p,q, t .

Let M be a maximal singular subspace of Π . If each of the points p,q, t does not
belong to M , then

p⊥ ∩ M, q⊥ ∩ M, t⊥ ∩ M

are (n− 2)-dimensional subspaces of M (Fact 2), and (2) implies that M is the union
of these subspaces. The latter is impossible since a projective space cannot be pre-
sented as the union of three hyperplanes if each line contains more than three points.

The line qt contains the unique point s collinear to p. One of the following possi-
bilities is realized:

(1) s = t ,
(2) s 
= t .

In the case (1), we take any point v on the line qt different from q and t . It is clear that
p 
⊥ v. By Fact 3, there exist maximal singular subspaces M and N such that M ∩
N = {v}. Since p 
⊥ v, they do not contain p. Then one of these subspaces contains
q , and the other contains t . So, each of these subspaces contains two distinct points
of the line qt . This means that this line is contained in M ∩ N , which is impossible.

In the case (2), we take any point w on the line ps different from p and s. As
in the previous case, we consider maximal singular subspaces M and N such that
M ∩N = {w}. One of these subspaces contains q or t . Then at least one of the points
q, t is collinear to w. Since q and t both are collinear to s and w is on the line ps,
one of the points q, t is collinear to all points of the line ps. Thus, p is collinear to q

or t , which is impossible. �

Remark 4 If Π is a polar space of type D2 and each line contains precisely three
points, then Π is a grid consisting of nine points. There are points p,q, t such that
p 
⊥ q and q ⊥ t , and every point of Π is collinear to at least one of the points p,q, t .
See Fig. 1.

From this moment we suppose that Π = (P,L) is a polar space of rank n ≥ 3
satisfying one of the conditions from Lemma 2. Let also k ∈ {1, . . . , n − 2}.
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Fig. 1 A grid

Lemma 3 Suppose that N ∈ Gk−1(Π). Let P,Q ∈ [N〉k be adjacent vertices of
Γ ′

k(Π), and let T ∈ [N〉k be a vertex of Γ ′
k(Π) nonadjacent to at least one of the

vertices P,Q. Then there exists S ∈ [N〉k adjacent to P,Q,T in Γ ′
k(Π).

Proof By Lemma 1, P and Q are noncollinear points of ΠN , and T is a point of ΠN

collinear to at least one of the points P,Q. We apply Lemma 2 to the polar space
ΠN (Π satisfies the conditions of Lemma 2, and the same holds for ΠN ) and get the
claim. �

Remark 5 Let k = n− 2. Then ΠN is a polar space of rank 2. If Π is a polar space of
type Dn and each line contains precisely three points, then ΠN is a polar space of type
D2 with lines containing precisely three points, and Remark 4 shows that Lemma 3
fails.

Let f be an automorphism of Γ ′
k(Π).

Let us show that f transfers big stars to subsets of big stars. We take any N ∈
Gk−1(Π). Let P and Q be adjacent vertices of Γ ′

k(Π) contained in the big star [N〉k .
Then f (P ) and f (Q) are adjacent vertices of Γ ′

k(Π) contained in the big star [N ′〉k ,
where

N ′ = f (P ) ∩ f (Q).

We assert that f (T ) ∈ [N ′〉k for every T ∈ [N〉k and prove this statement in several
steps.

(i) First, we consider the case where T is a vertex of Γ ′
k(Π) adjacent to both P

and Q. Then f (P ),f (Q),f (T ) form a clique in Γ ′
k(Π) that, by Proposition 1, is

contained in a certain big star [N ′′〉k . We have

N ′ = f (P ) ∩ f (Q) = N ′′,

which gives the claim.
(ii) Consider the case where T is a vertex of Γ ′

k(Π) adjacent to precisely one of
the vertices P,Q. Suppose that T is adjacent to P . Lemma 3 implies the existence
of a vertex S ∈ [N〉k in the graph Γ ′

k(Π) adjacent to P,Q,T . By (i), f (S) belongs
to [N ′〉k . Then

f (P ) ∩ f (S) = N ′,

and f (P ),f (S), f (T ) form a clique of Γ ′
k(Π). As in (i), we show that f (T ) ∈ [N ′〉k .
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(iii) Suppose that T is a vertex of Γ ′
k(Π) nonadjacent to both P and Q. As above,

we consider S ∈ [N〉k that is a vertex of Γ ′
k(Π) adjacent to P,Q,T and obtain that

f (S) ∈ [N ′〉k . We apply the arguments from (ii) to P,S,T and establish that f (T ) ∈
[N ′〉k .

So, f transfers big stars to subsets of big stars. The same arguments show that
f −1 sends big stars to subsets of big stars. This means that f and f −1 both map big
stars to big stars, i.e., there exists a bijective transformation g of Gk−1(Π) such that

f
([N〉k

) = [
g(N)

〉
k

for every N ∈ Gk−1(Π).
Let U ∈ Gk(Π). Then g transfers the top 〈U ]k−1 to the top 〈f (U)]k−1. Indeed, we

have

N ∈ 〈U ]k−1 ⇔ U ∈ [N〉k ⇔ f (U) ∈ [
g(N)

〉
k

⇔ g(N) ∈ 〈
f (U)

]
k−1.

Similarly, g−1 sends 〈U ]k−1 to the top 〈f −1(U)]k−1.
Therefore, g and g−1 both transfer tops to tops. Since for any two adjacent vertices

of the Grassmann graph Γk−1(Π), there is a top containing them, g is an automor-
phism of Γk−1(Π).

By [19, Theorems 4.8 and 4.9], every automorphism of Γk−1(Π) is induced by an
automorphism of Π except the case where k = 2 and Π is a polar space of type D4.
In this special case, every automorphism of Γk−1(Π) is induced by an automorphism
of Π or an isomorphism of Π to one of the half-spin Grassmann spaces of Π [19,
Theorem 4.9]. Automorphisms of the second type (induced by isomorphisms of Π

to the half-spin Grassmann spaces) do not send tops to tops. This means that g is an
automorphism of the first type.

So, g is induced by an automorphism of Π . An easy verification shows that this
automorphism also induces f .

6 Proof of Theorem 2

By Remarks 2 and 3, we can suppose that n ≥ 4 and k = n − t − 1, where t is an
integer satisfying n ≥ 2t ≥ 4, and for every X,Y ∈ Gk(Π), we have

X ∼ Y ⇐⇒ dimp

(
X⊥ ∩ Y

) = k, dimp(X ∩ Y) = k − t.

It is well known that every polar space of rank ≥ 4 is embeddable in a projective
space. This means that every maximal singular subspace of Π can be considered as
the projective space associated to an n-dimensional vector space.

Lemma 4 Let S,U be adjacent vertices of Γ ′′
k (Π). Let also M be the maximal sin-

gular subspace spanned by S and U . If T ∈ 〈M]k is a vertex of Γ ′′
k (Π) nonadjacent

to at least one of the vertices S,U , then there exists a vertex Q of Γ ′′
k (Π) adjacent to

S,U,T .
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Proof We suppose that T is nonadjacent to S (the case where T is nonadjacent to
U is similar). First of all, we show that the general case can be reduced to the case
where N := S ∩ U and T are disjoint.

Suppose that the projective dimension of W := N ∩T is equal to w ≥ 0. Then ΠW

is a polar space of rank n − w − 1, and every k-dimensional singular subspace of Π

containing W can be considered as a (k − w − 1)-dimensional singular subspace of
ΠW . Two k-dimensional singular subspaces containing W span a maximal singular
subspace of Π if and only if the corresponding (k−w−1)-dimensional singular sub-
spaces span a maximal singular subspace of ΠW . Therefore, the graph Γ ′′

k−w−1(ΠW)

is naturally isomorphic to the subgraph of Γ ′′
k (Π) induced on [W 〉k , and S,U,T can

be considered as vertices of Γ ′′
k−w−1(ΠW).

So, we restrict ourself to the case where N and T are disjoint. We identify M

with the projective space associated to a certain n-dimensional vector space V . Every
nonempty singular subspace of M will be identified with the corresponding subspace
of the vector space V . We set

m := dim l N = n − 2t

and suppose that

dim l(S ∩ T ) = i, dim l (U ∩ T ) = j.

Note that i > m since S and T are nonadjacent vertices of Γ ′′
k (Π).

First, we consider the case where i + j = n − t , i.e., T is spanned by S ∩ T and
U ∩ T . Since dim l(S/N) = dim l (U/N) = t , we can choose vectors

x1, . . . , xt ∈ S \ N and y1, . . . , yt ∈ U \ N

such that

S = N + 〈x1, . . . , xt 〉, U = N + 〈y1, . . . , yt 〉,
T = 〈x1, . . . , xi〉 + 〈yt−j+1, . . . , yt 〉.

The vectors x1 + y1, . . . , xt + yt are linearly independent. We define

Q := N + 〈x1 + y1, . . . , xt + yt 〉.
An easy verification shows that

S + Q = U + Q = T + Q = M,

which implies that Q is a vertex of Γ ′′
k (Π) adjacent to S,U,T .

Now suppose that

l := n − t − (i + j) > 0.

Then t = i + j − m + l. Since i > m, we have i + j − m > 0. We choose linearly
independent vectors

x1, . . . , xi+j−m,x′
1, . . . , x

′
l ∈ S \ N
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and linearly independent vectors

y1, . . . , yi+j−m,y′
1, . . . , y

′
l ∈ U \ N

such that

T = 〈x1, . . . , xi〉 + 〈yi−m+1, . . . , yi+j−m〉 + 〈
x′

1 + y′
1, . . . , x

′
l + y′

l

〉
.

We denote by Q the subspace spanned by N and the vectors

x1 + y′
1, x

′
1 + y′

2, . . . , x
′
l−1 + y′

l , x
′
l + y1, x2 + y2, . . . , xi+j−m + yi+j−m.

Using the equalities

S = N + 〈
x1, . . . , xi+j−m,x′

1, . . . , x
′
l

〉
,

U = N + 〈
y1, . . . , yi+j−m,y′

1, . . . , y
′
l

〉
,

we establish that S +Q = U +Q = M . To complete the proof, we need to check that
T + Q = M .

The conditions

x1, . . . , xi, yi−m+1, . . . , yi+j−m ∈ T and x2 + y2, . . . , xi+j−m + yi+j−m ∈ Q

imply that xp ∈ T + Q for every p and yp ∈ T + Q if p ≥ 2. Since x1 ∈ T and
x1 + y′

1 ∈ Q, we have y′
1 ∈ T + Q. Then x′

1 + y′
1 ∈ T implies that x′

1 ∈ T + Q.
Step by step, we establish that all x′

q and y′
q belong to T + Q. The conditions x′

l ∈
T + Q and x′

l + y1 ∈ Q guarantee that y1 ∈ T + Q. Therefore, Q+ T coincides with
S + U = M . �

Let f be an automorphism of Γ ′′
k (Π). We show that for every M ∈ Gn−1(Π),

there exists M ′ ∈ Gn−1(Π) such that

f
(〈M]k

) ⊂ 〈
M ′]

k
.

We choose S,U ∈ 〈M]k such that M is spanned by S ∪U . Then S and U are adjacent
vertices of Γ ′′

k (Π), and the same holds for f (S) and f (U). Hence,

M ′ := 〈
f (S) ∪ f (U)

〉

is a maximal singular subspace. We assert that f (T ) ∈ 〈M ′]k for every T ∈ 〈M]k and
prove this statement in several steps.

(i) If T ∈ 〈M]k is a vertex of Γ ′′
k (Π) adjacent to S and U , then f (S), f (U), f (T )

form a clique in Γ ′′
k (Π), and, by Proposition 2, we have f (T ) ∈ 〈M ′]k .

(ii) Now, let T ∈ 〈M]k be a vertex of Γ ′′
k (Π) adjacent to precisely one of the

vertices U and S. Suppose that T is adjacent to U and nonadjacent to S. Let Q ∈
〈M]k be a vertex of Γ ′′

k (Π) adjacent to S,U,T (Lemma 4). By (i), f (Q) belongs to
〈M ′]k . Then

〈
f (U) ∪ f (Q)

〉 = M ′. (3)
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We apply (i) to U,Q,T and establish that f (T ) belongs to 〈M ′]k .
(iii) Consider the case where T is a vertex of Γ ′′

k (Π) nonadjacent to both S and U .
As above, we consider Q ∈ 〈M]k that is a vertex of Γ ′′

k (Π) adjacent to S,U,T . Then
f (Q) ∈ 〈M ′]k , and (3) holds. We apply (ii) to U,Q,T and obtain that f (T ) ∈ 〈M ′]k .

We apply the above arguments to f −1 and establish the existence of a bijective
transformation g of Gn−1(Π) such that

f
(〈M]k

) = 〈
g(M)

]
k

for every M ∈ Gn−1(Π).
Let U be a singular subspace of Π such that k < dimp U < n−1. Then there exist

M1,M2 ∈ Gn−1(Π) satisfying U = M1 ∩ M2. We have

〈U ]k = 〈M1]k ∩ 〈M2]k,
f

(〈U ]k
) = 〈

g(M1)
]
k
∩ 〈

g(M2)
]
k
= 〈

g(M1) ∩ g(M2)
]
k
.

We set

g(U) := g(M1) ∩ g(M2)

and get an extension of g to a transformation of

Gk+1(Π) ∪ · · · ∪ Gn−1(Π) (4)

such that

f
(〈U ]k

) = 〈g(U)]k
for every U belonging to (4). We apply the same arguments to the pair g−1, f −1 and
show that g is bijective. It is clear that g is inclusion preserving, i.e.,

S ⊂ U ⇐⇒ g(S) ⊂ g(U)

for any S,U belonging to (4). The latter guarantees that g sends Gi (Π) to itself for
every integer i satisfying k < i ≤ n−1. Therefore, f and f −1 both send tops to tops,
which implies that f is induced by an automorphism of Π .
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