
J Algebr Comb (2014) 40:293–311
DOI 10.1007/s10801-013-0488-z

Markov degree of the Birkhoff model

Takashi Yamaguchi · Mitsunori Ogawa ·
Akimichi Takemura

Received: 22 April 2013 / Accepted: 14 November 2013 / Published online: 3 December 2013
© Springer Science+Business Media New York 2013

Abstract We prove the conjecture by Diaconis and Eriksson (J. Symbolic Comput.
41(2):182–195, 2006) that the Markov degree of the Birkhoff model is three. In fact,
we prove the conjecture in a generalization of the Birkhoff model, where each voter
is asked to rank a fixed number, say r , of candidates among all candidates.

Keywords Algebraic statistics · Markov basis · Normality of semigroup · Ranking
model

1 Preliminaries

Diaconis and Eriksson [4] conjectured that the Markov degree of the Birkhoff model
is three, i.e., the toric ideal associated with the Birkhoff model is generated by bi-
nomials of degree at most three. In this paper we give a proof of this conjecture in
a generalization of the Birkhoff model, where each voter is asked to rank a fixed
number of most preferred candidates among all candidates. Our proof is based on
arguments of Jacobson and Matthews [6] for Latin squares. The set of Latin squares
is a particular fiber in our setting and our result is also a generalization of [6]. See [1]
for terminology of algebraic statistics and toric ideals used in this paper.

Consider an election, where there are n candidates and N voters. Each voter is
asked to give r (1 ≤ r ≤ n) preferred candidates and to rank them. For example,

T. Yamaguchi · M. Ogawa (B) · A. Takemura
Graduate School of Information Science and Technology, University of Tokyo, 7-3-1, Hongo,
Bunkyo-ku, Tokyo 113-0033, Japan
e-mail: mitsunori_ogawa@mist.i.u-tokyo.ac.jp

T. Yamaguchi
e-mail: takashi_yamaguchi@mist.i.u-tokyo.ac.jp

A. Takemura
e-mail: takemura@stat.t.u-tokyo.ac.jp

mailto:mitsunori_ogawa@mist.i.u-tokyo.ac.jp
mailto:takashi_yamaguchi@mist.i.u-tokyo.ac.jp
mailto:takemura@stat.t.u-tokyo.ac.jp

294 J Algebr Comb (2014) 40:293–311

let n = 5, r = 3 and let the candidates be a, b, c, d, e. A vote (a, c, d) by a voter
means that he/she ranks a first, c second and d third. For a positive integer m, denote
[m] = {1, . . . ,m}. When the candidates are labeled as 1, . . . , n, the set of possible
votes is

Sn,r = {
σ = (

σ(1), . . . , σ (r)
) | σ : injection from [r] to [n]}, |Sn,r | = n!

(n − r)! ,

where σ(j) denotes the candidate chosen in the j th position in the vote σ =
(σ (1), . . . , σ (r)). Let ψjk, j ∈ [r], k ∈ [n], be positive parameters and define a prob-
ability distribution over Sn,r by

p(σ) = 1

Z

r∏

j=1

ψjσ(j), Z =
∑

σ∈Sn,r

r∏

j=1

ψjσ(j). (1)

If ψjk is large, then the candidate k is likely to be ranked in the j th position. When
r = n, this model is the Birkhoff model [4, 8]. In this paper we call (1) an (n, r)-
Birkhoff model. The sufficient statistic of the (n, r)-Birkhoff model consists of num-
bers of times the candidate k is ranked in the j th position, j ∈ [r], k ∈ [n]. We denote
the sufficient statistic as (tjk)j∈[r],k∈[n].

Define a 0-1 matrix A = An,r of size rn × (n!/(n − r)!), called a configuration
matrix for the (n, r)-Birkhoff model, whose columns are labeled by σ ∈ Sn,r and
rows are labeled by (j, k) = (position, candidate), such that the ((j, k), σ)-element
of A is one if and only if σ(j) = k. For example, for n = 4, r = 3, the configuration
matrix A4,3 with labels for its rows and columns is

(1
23

)
(1

24
)

(1
32

)
(1

34
)

(1
42

)
(1

43
)

(2
13

)
(2

14
)

(2
31

)
(2

34
)

(2
41

)
(2

43
)

(3
12

)
(3

14
)

(3
21

)
(3

24
)

(3
41

)
(3

42
)

(4
12

)
(4

13
)

(4
21

)
(4

23
)

(4
31

)
(4

32
)

(1,1) 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
(1,2) 0 0 0 0 0 0 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0
(1,3) 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 0 0 0 0 0 0
(1,4) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1
(2,1) 0 0 0 0 0 0 1 1 0 0 0 0 1 1 0 0 0 0 1 1 0 0 0 0
(2,2) 1 1 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 1 1 0 0
(2,3) 0 0 1 1 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 1 1
(2,4) 0 0 0 0 1 1 0 0 0 0 1 1 0 0 0 0 1 1 0 0 0 0 0 0
(3,1) 0 0 0 0 0 0 0 0 1 0 1 0 0 0 1 0 1 0 0 0 1 0 1 0
(3,2) 0 0 1 0 1 0 0 0 0 0 0 0 1 0 0 0 0 1 1 0 0 0 0 1
(3,3) 1 0 0 0 0 1 1 0 0 0 0 1 0 0 0 0 0 0 0 1 0 1 0 0
(3,4) 0 1 0 1 0 0 0 1 0 1 0 0 0 1 0 1 0 0 0 0 0 0 0 0

(2)

Let x(σ) ∈ N = {0,1, . . . } be the frequency of voters choosing a vote σ ∈ Sn,r and
let x = {x(σ) | σ ∈ Sn,r } be the vector of frequencies. Then t = An,rx is the sufficient
statistic vector. For a given t , Ft = {x ∈N

|Sn,r | | Ax = t} is the t -fiber.
Let K be any field and let K[{p(σ), σ ∈ Sn,r}] be the polynomial ring in the inde-

terminates p(σ), σ ∈ Sn,r . Similarly let K[{ψjk, j ∈ [r], k ∈ [n]}] be the polynomial

J Algebr Comb (2014) 40:293–311 295

ring in the indeterminates ψjk, j ∈ [r], k ∈ [n]. Let

πn,r : K[{
p(σ) | σ ∈ Sn,r

}] → K
[{

ψjk, j ∈ [r], k ∈ [n]}]

be a homomorphism defined by

πn,r : p(σ) �→
r∏

j=1

ψjσ(j).

Then the toric ideal IA = IAn,r for the (n, r)-Birkhoff model is the kernel of πn,r .
Moves for An,r are the elements of the integer kernel kerZ An,r = {z ∈ Z

|Sn,r | | Az =
0} of An,r .

Note that if a voter ranks r = n − 1 most preferred candidates, then he/she au-
tomatically ranks the last candidate. It is easy to see that the configuration matrix
An,n−1 for the (n,n − 1)-Birkhoff model and the configuration matrix An,n for the
Birkhoff model have the same number of columns and their integer kernels are the
same: kerZ An,n−1 = kerZ An,n.

2 Main result and its proof

The main result of this paper is the following theorem.

Theorem 1 For r ≥ 2 and n ≥ 3, the toric ideal IA for the (n, r)-Birkhoff model is
generated by binomials of degree two and three.

For r = 1 or r = n = 2, the toric ideal IA is trivial. For r ≥ 2 and n ≥ 3, any set of
generators for IA contains a binomial of degree three. In the terminology of algebraic
statistics, Theorem 1 states that the Markov degree of the (n, r)-Birkhoff model is
three for r ≥ 2 and n ≥ 3.

The rest of this section is devoted to a proof of this theorem. We define some
notation and terminology for our proof, mainly following [6]. Candidates are denoted
either by letters a, b, c, . . . or by numbers 1, . . . , n. The set of n candidates is denoted
by [n], using numbers.

First we give the definition for “valid” votes and definitions for two kinds of “in-
valid votes.” Our proof will be based on the idea of swapping candidates between two
votes.

Definition 1 An r ×n integer matrix V = (vjk) is a proper vote if vjk ∈ {0,1},∀j, k,
every row sum is one, and every column sum is zero or one. A proper data set of N

votes is the multiset of N proper votes.

Definition 2 An r × n integer matrix V = (vjk) is an improper vote if every row
sum is one, every column sum is zero or one, and there exists a unique cell (j∗, k∗) ∈
[r] × [n] such that

vj∗k∗ = −1, vjk ∈ {0,1}, ∀(j, k) 	= (
j∗, k∗).

296 J Algebr Comb (2014) 40:293–311

An improper data set of N votes is the multiset of r × n integer matrices V (1) =
(v

(1)
jk), . . . , V (N) = (v

(N)
jk) such that one of them is an improper vote, the others are

proper votes, and
∑N

i=1 v
(i)
jk ≥ 0,∀j, k.

Definition 3 An r × n integer matrix V = (vjk) is a vote with collision if vjk ∈
{0,1},∀j, k, every row sum is one and there exists a unique candidate k∗ ∈ [n] such
that

r∑

j=1

vjk∗ = 2,

r∑

j=1

vjk ∈ {0,1}, ∀k 	= k∗.

In this case we also say that the vote V contains a collision or the candidate k∗ collides
in V .

Definition 4 An r × n integer matrix V = (vjk) is an improper vote with collision if
every row sum is one, there exists a unique cell (j∗, k∗) ∈ [r] × [n] such that

vj∗k∗ = −1, vjk ∈ {0,1}, ∀(j, k) 	= (
j∗, k∗),

and there exists a unique candidate k∗∗ ∈ [n] such that

r∑

j=1

vjk∗∗ = 2,

r∑

j=1

vjk ∈ {0,1}, ∀k 	= k∗∗.

We call a multiset D of r × n integer matrices a data set if each matrix in D is one
of the votes defined in Definitions 1–4.

As in Sect. 1, we often denote votes by row vectors. For proper votes and votes
with collision, we denote them by r-dimensional row vectors whose j th entry is the
candidate ranked in the j th position for each j ∈ [r]. For improper votes we define
their row vector representation as follows. Let V = (vjk) be an improper vote with
vj∗k = vj∗k′ = 1, vj∗k′′ = −1. We denote V by an r-dimensional row vector whose
j th entry is the candidate ranked in the j th position for each j ∈ [r] with j 	= j∗ and
the j∗th entry is k + k′ − k′′. Here, k + k′ − k′′ is just a symbol and we call it an
improper element. The following vectors are examples of a proper vote, a vote with
collision and an improper vote, respectively:

(b, a, c, d), (b, a, c, a), (a, d, a, b + c − a).

We also define the row vector representation for improper votes with collision in the
similar manner.

Several kinds of data sets were defined as the multiset of integer matrices above.
For these data sets we use their matrix representation. The matrix representation D̄

for a data set D = {V (1), . . . , V (N)} is an N × r matrix whose ith row is the row
vector representation of vote V (i) for each i ∈ [N]. Although the order of the rows
of D̄ is arbitrary, this matrix representation is convenient for our proof. When there
is no confusion, D̄ is also called a data set. Latin squares are also of this form. They
are tables with N = n = r such that each candidate appears exactly once in each row

J Algebr Comb (2014) 40:293–311 297

and column. An example of improper data set I and its matrix representation Ī is as
follows:

I =
⎧
⎨

⎩

⎡

⎣
0 0 1
0 0 1
1 1 −1

⎤

⎦ ,

⎡

⎣
0 1 0
1 0 0
0 0 1

⎤

⎦ ,

⎡

⎣
1 0 0
0 1 0
0 0 1

⎤

⎦

⎫
⎬

⎭
,

Ī =
⎡

⎣
c c a + b − c

b a c

a b c

⎤

⎦ .

In the following, when we display a data set, we mainly use its matrix representation.
We now introduce some operations for data sets. Let D = {V (1), . . . , V (N)} be a

data set. Consider a pair of distinct votes in D, say V (i1) = (ν
(i1)
jk) and V (i2) = (ν

(i2)
jk).

A swap {i1, i2} : k1
j∗
↔ k2 for D is an operation transforming D into D′, where

D′ = (
D \ {

V (i1), V (i2)
}) ∪ {

Ṽ (i1), Ṽ (i2)
}
, Ṽ (i1) = (

ṽ
(i1)
jk

)
, Ṽ (i2) = (

ṽ
(i2)
jk

)
,

ṽ
(i)
jk =

⎧
⎪⎨

⎪⎩

v
(i)
jk + 1, (i, j, k) = (i1, j

∗, k2), (i2, j
∗, k1),

v
(i)
jk − 1, (i, j, k) = (i1, j

∗, k1), (i2, j
∗, k2),

v
(i)
jk , otherwise.

In general, D′ is not a data set, because Ṽ (i), i = i1, i2, may not be a vote defined
above. If D′ is also a data set, the swap is called an applicable swap. Since only appli-
cable swaps appear in our proof, applicable swaps are called merely swaps, hereafter.
The swap operation does not alter the sufficient statistic of the data set. Note that the
swap may cause a new collision or a new improper element in Ṽ (i), i = i1, i2.

The matrix representation of data sets helps intuitive understanding and manipu-
lation of the swap operation. The definition of the swap operation shows that the j∗th
row of Ṽ (i1) is the sum of the j∗th row of V (i1) and a row vector with 0 entries except
−1 for the k1th entry and 1 for the k2th entry. Similarly, the j∗th row of Ṽ (i2) is the
sum of the j∗th row of V (i2) and a row vector with 0 entries except 1 for the k1th
entry and −1 for the k2th entry. Hence, the matrix representation D̄′ of D′ is the sum
of the matrix representation D̄ of D and the matrix with 0 entries except k2 − k1 for
the (i1, j

∗)-entry and k1 − k2 for the (i2, j
∗)-entry where k2 − k1 and k1 − k2 are

symbols.
For illustration, we show an example of swap in the matrix representation of

data sets. Let P̄ = (pij) be a proper data set in its matrix representation with

p11 = a,p21 = b, a 	= b and consider a swap {1,2} : a 1↔ b. By adding

[
b − a

a − b

]

298 J Algebr Comb (2014) 40:293–311

to the submatrix
[a

b

]
we interchange two candidates a and b as

⎡

⎢⎢⎢
⎢⎢
⎣

a ∗ · · · ∗
b ∗ · · · ∗
∗ ∗ · · · ∗
...

...
...

...

∗ ∗ · · · ∗

⎤

⎥⎥⎥
⎥⎥
⎦

+

⎡

⎢⎢⎢
⎢⎢
⎣

b − a 0 · · · 0
a − b 0 · · · 0

0 0 · · · 0
...

...
...

...

0 0 · · · 0

⎤

⎥⎥⎥
⎥⎥
⎦

=

⎡

⎢⎢⎢
⎢⎢
⎣

b ∗ · · · ∗
a ∗ · · · ∗
∗ ∗ · · · ∗
...

...
...

...

∗ ∗ · · · ∗

⎤

⎥⎥⎥
⎥⎥
⎦

, (3)

where candidates denoted by ∗ are not changed. In this case a and b may collide after

the swap. In order to simplify the notation, we sometimes denote the swap by a
j↔ b

or a ↔ b.
Let us discuss a sequence of swaps. Consider swapping a and b in two different

positions j, j ′ in the same ith and i′th votes. In our proof below, we often perform
these two swaps sequentially, i.e., we swap a and b in the j th position first and then
in the j ′th position. We denote this operation by

a
j↔ b

j ′
↔ a or

{
i, i′

} : a j↔ b
j ′
↔ a

and call this a double swap. The double swap corresponds to the basic move for no

three-factor interaction model (cf. [2]). As an example, a double swap a
1↔ b

2↔ a,
where the second swap causes an improper element, is written as

[
a b

b c

]
+

[
b − a a − b

a − b b − a

]
=

[
b a

a b + c − a

]
. (4)

More generally, we consider a sequence of m swaps in positions j1, . . . , jm, such
that two consecutive swaps involve a common candidate, and denote it as

a1
j1↔ a2

j2↔ ·· · jm−1↔ am
jm↔ am+1 (5)

or indicating the votes as

{
i, i′

} : a1
j1↔ a2

j2↔ ·· · jm−1↔ am
jm↔ am+1. (6)

We call (5) (or (6)) a chain swap of length m (even when a1 = am+1, i.e., we do not
make a distinction between a chain and a loop). A chain swap of length one is just a
swap.

Suppose that we perform several chain swaps for the same two votes and ignore
the order of swaps. An even number of swaps on two proper elements at the same
position results in no swap and an odd number swaps on two proper elements at the
same position results in a single swap.

On the other hand, we need to be careful for swaps involving an improper element.
Let b + c − a be an improper element in the j th position in an improper data set Ī .
Since the elements of the sufficient statistic of I are assumed to be nonnegative, there

J Algebr Comb (2014) 40:293–311 299

is a vote of Ī containing a in the same position as b+c−a. If we make a swap a ↔ b

between these two elements, then b + c − a becomes c and a becomes b:
[
b + c − a

a

]
+

[
a − b

b − a

]
=

[
c

b

]
. (7)

Similarly a ↔ c results in
[

b
c

]
. Note that

[c
b

]
and

[
b
c

]
are swaps of each other. Hence

the result of several swaps can be regarded as a single swap a ↔ b or a ↔ c. Although
there is an ambiguity between a ↔ b or a ↔ c, the result of a swap between these
votes at the j th position is either

[
b
c

]
or

[c
b

]
.

Furthermore we consider a swap between two candidates in
(

b+c−a
d

)
, d 	= a, b, c.

We allow b ↔ d or c ↔ d between these two elements. After b ↔ d we have
[
b + c − a

d

]
→

[
d + c − a

b

]
(8)

and to
[

d+c−a
b

]
we can make further swaps c ↔ b or d ↔ b. The end result of several

swaps is one of the following three cases:

[
c + d − a

b

]
,

[
b + d − a

c

]
or

[
b + c − a

d

]
.

These three cases correspond to single swaps b ↔ d , c ↔ d and to no swap to[
b+c−a

d

]
.

Although there is an ambiguity on the result of chain swaps involving an improper
element, the end result of several chain swaps is a set of simultaneous swaps of a
subset of positions among the two votes. We call this a swap operation for a subset
of positions among two votes, or simply a swap operation among two votes. When
we apply a swap operation to a proper or an improper data set D for a subset J of
positions among two votes R = {i, i′} and the result is D′, we denote the operation
by a long double-sided arrow:

D
R←→ D′,

where we omit J , because it is often cumbersome to specify J . In this notation we
denote a proper data set by P and an improper data set by I , when we want to clarify
the kinds of data sets, instead of D.

We now give a proof of Theorem 1 in a series of lemmas. Let P and P ′ be two
proper data sets with the same sufficient statistic. Our strategy for a proof is to per-
form swap operations to P , involving at most three votes of P at each step, to increase
the number of the common elements in P̄ and P̄ ′. In each operation, elements at the
same position of the three votes of P̄ are permuted. This corresponds to a move of
degree at most three. In fact, each operation will be further decomposed into a series
of swap operations among two votes, which involve intermediate improper data sets.

For the ith vote of P̄ and the i′th vote of P̄ ′,

(pi1, . . . , pir),
(
p′

i′1, . . . , p
′
i′r

)
,

300 J Algebr Comb (2014) 40:293–311

let

C = Ci,i′ = ∣
∣{j | pij = p′

i′j
}∣∣ (9)

be the number of the same candidates in the same positions in these two votes. We
call C the number of concurrences. If C = r , then we can remove these two votes
from P̄ and P̄ ′ and consider other N − 1 votes. On the other hand, we will show that
if C < r , then we can always increase C by a series of swap operations involving at
most three votes of P̄ . The ith vote of P̄ will eventually coincide with the i′th vote
of P̄ ′. Then, Theorem 1 is proved by induction on N .

Our first lemma concerns resolving collisions.

Lemma 1 Let D̄ be a data set without any improper element and suppose that at
least one of the ith and i′th votes contains a collision. If each candidate appears at
most twice in these two votes in total, we can resolve all the collisions by a swap
operation among these two votes.

Remark 1 We can prove this lemma based on the normality of the semigroup gener-
ated by the configuration matrix An,r such as A4,3 in (2). The normality follows from
results in [7, 9] and [3]. We will discuss this point again in Sect. 3.2. However, we
give our own proof of Lemma 1, because we will use similar arguments for improper
data sets. Arguments based on the normality cannot be applied to improper data sets.

Proof We may assume i = 1 and i′ = 2 and at least the first vote contains a collision.
We first consider the case that there is only one collision in the two votes. Let a denote
the colliding candidate. Relabeling the positions, without loss of generality, the two
votes are displayed as

[
a a d ∗ · · · ∗
b c ∗ ∗ · · · ∗

]
,

where b 	= c. We choose one of the two a’s arbitrarily, say in the second position, and

make a swap a
2↔ c with the following result:

[
a c d ∗ . . . ∗
b a ∗ ∗ · · · ∗

]
. (10)

Since a appears at most twice in these two votes in total, a does not collide in the
second vote. However, c might again collide in the first vote, e.g.,

[
a c d c ∗ . . . ∗]

.

We then make a swap for c, which was in the first vote from the beginning (in this

example c
4↔ ∗). If we continue this process, we always have collisions in the first

vote. If this process ends in finite number of steps, then by a chain swap we resolve
the collisions of a and subsequent collisions due to swaps. We claim that this process
indeed ends in finite number of steps. Actually we show a stronger result that no
candidate appears twice in this process of resolving collisions.

J Algebr Comb (2014) 40:293–311 301

Suppose otherwise. Then there is a candidate, say α, which is swapped twice for
the first time. We consider two cases: α = a and α 	= a.

Consider the case α = a. The process of swaps is displayed as follows:

a ↔ c ↔ s1 ↔ ·· · ↔ sl−1 ↔ a ↔ ·· · .

Since the collision always occurs in the first vote, the candidate a was moved from
the second vote to the first vote in the swap sl−1 ↔ a. By (10) we have c = sl−1,
which contradicts the assumption that α = a is the first candidate colliding twice.

Consider the case α 	= a. The process of swaps is displayed as follows:

a ↔ c ↔ s1 ↔ ·· · ↔ sl−1 ↔ α ↔ sl+1 ↔ ·· · ↔ sm−1 ↔ α ↔ ·· · . (11)

Considering the subprocess of (11) which starts from the first α, we can apply the
discussion for the α = a and confirm that there exists a contradiction. We have shown
the lemma for the case that there is only one collision.

Now suppose that there are m colliding candidates a1, a2, . . . , am. Each of these
candidates appears in one of the votes twice. Temporarily, we assign different labels,
say a′

l , a
′′
l , l = 2, . . . ,m, to candidates except for a1, namely, we ignore collisions of

a2, . . . , am. By the above procedure we resolve the collision of a1 and subsequent
collisions. When this procedure is finished, we restore the labels a′

l , a
′′
l → al , l =

2, . . . ,m. Then some collisions of a2, . . . , am may have been already resolved, but
we do not have any new collision. Hence, by the above procedure we decrease the
number of collisions. As long as there is a remaining collision, we can repeat this
procedure and resolve all the collisions. �

So far we discussed resolving collisions. We now consider resolving an improper
element by a swap operation among two votes.

Lemma 2 Let Ī be an improper data set containing an element b + c − a. By a swap
operation among two votes, Ī can be transformed to a proper data set.

Proof Without loss of generality, assume that the first vote contains b + c − a and
the second vote contains a. We can then make a swap {1,2} : a ↔ b, as in (7). Here
a may collide in the first vote and b may collide in the second vote. However, both
a and b appear at most twice in these two votes. Hence we can now resolve these
possible collisions by Lemma 1 by a swap operation among these two votes. �

The operation of Lemma 2 is denoted by

I
R←→ P, (12)

where R is a set of two votes of I .
At this point we make the following two definitions.

Definition 5 We call two votes in Lemma 2 of the form

iim
ipr

[∗ · · · ∗ b + c − a ∗ · · · ∗
∗ · · · ∗ a ∗ · · · ∗

]

302 J Algebr Comb (2014) 40:293–311

a resolvable pair. Here iim is an improper vote and ipr is a proper vote. A resolvable
pair is denoted as [iim, ipr].

Note that any improper data set Ī contains a resolvable pair [iim, ipr] and R in (12) is
the set of votes of a resolvable pair.

Definition 6 A swap operation among two votes R = {i, i′} in I
R←→ I ′ is compati-

ble with improper data sets Ī and Ī ′ if there exists a common resolvable pair [iim, ipr]
of Ī and Ī ′ such that R ∩ {iim, ipr} 	= ∅, or equivalently |R ∪ {iim, ipr}| ≤ 3.

Lemma 3 Let P,P ′ be two proper data sets with the same sufficient statistic. Sup-
pose that the ith vote of P and the i′th vote of P ′ are different, i.e., V (i) 	= V ′(i′),
and let C < r in (9) be the number of concurrences in these two votes. Then, C can
be increased by at most three steps of swap operations among two votes of P , where
(1) each intermediate swap operation between two consecutive improper data sets is
compatible with them, and (2) if the resulting data set is improper then its improper
vote and the ith vote form a resolvable pair.

Proof Without loss of generality we consider the first votes of P and P ′. We consider
two disjoint cases.

Case 1 The same candidate appears in distinct positions in the two votes.
Let b be the candidate appearing in the distinct positions in the two votes.

Relabeling the positions, without loss of generality, let p11 = a, p′
11 = b, a 	= b,

and p12 = b. Since P ′ contains b in the first position and the sufficient statistic of
P and P ′ are the same, P has to contain b in the first position, say p21 = b. We

now perform a double swap a
1↔ b

2↔ a to P :

⎡

⎢⎢⎢⎢⎢
⎣

a b ∗ · · · ∗
b c ∗ · · · ∗
∗ ∗ ∗ · · · ∗
...

...
...

...
...

∗ ∗ ∗ · · · ∗

⎤

⎥⎥⎥⎥⎥
⎦

→

⎡

⎢⎢⎢⎢⎢
⎣

b a ∗ · · · ∗
a b + c − a ∗ · · · ∗
∗ ∗ ∗ · · · ∗
...

...
...

...
...

∗ ∗ ∗ · · · ∗

⎤

⎥⎥⎥⎥⎥
⎦

,

where ∗’s are not changed. By this double swap C is increased. If c = a, the swap
results in a proper data set. Otherwise, the swap results in an improper data set,
where [2,1] forms a resolvable pair. Therefore, C is increased by a process of the

form P
{1,2}←→ P or P

{1,2}←→ I .
Case 2 Every candidate appearing twice in the two votes appears in the same posi-

tion.
Again, let p11 = a, p′

11 = b, a 	= b. The candidate b does not appear in the
first vote of P and a does not appear in the first vote of P ′. As in Case 1, we can
assume p21 = b. Since the first vote of P ′ does not contain a, the total frequency
of the candidate a in P ′ is less than N . Since the sufficient statistic is common, it
follows that there is a vote of P which does not contain a.

J Algebr Comb (2014) 40:293–311 303

If the second vote does not contain a, we can make a swap a
1↔ b among the

first two votes and increase C without causing collision. This process is of the

form P
{1,2}←→ P .

If the second vote contains a, without loss of generality, let p22 = a and also
assume that the third vote of P does not contain a. Let p32 = c 	= a. Since a is
chosen in the second vote and not chosen in the third vote and both votes have the
same number r of candidates, there is a candidate d , who is chosen in the third
vote but is not chosen in the second vote. If d is in the position j > 2, then by
relabeling of positions we assume that p33 = d . Then P̄ looks like

⎡

⎢⎢⎢
⎢⎢⎢⎢
⎣

a ∗ ∗ · · · ∗
b a ∗ · · · ∗
d c ∗ · · · ∗
∗ ∗ ∗ · · · ∗
...

...
... · · · ...

∗ ∗ ∗ · · · ∗

⎤

⎥⎥⎥
⎥⎥⎥⎥
⎦

or

⎡

⎢⎢⎢
⎢⎢⎢⎢
⎣

a ∗ ∗ · · · ∗
b a ∗ · · · ∗
∗ d(= c) ∗ · · · ∗
∗ ∗ ∗ · · · ∗
...

...
... · · · ...

∗ ∗ ∗ · · · ∗

⎤

⎥⎥⎥
⎥⎥⎥⎥
⎦

or

⎡

⎢⎢⎢⎢⎢
⎢⎢
⎣

a ∗ ∗ · · · ∗
b a ∗ · · · ∗
∗ c d · · · ∗
∗ ∗ ∗ · · · ∗
...

...
... · · · ...

∗ ∗ ∗ · · · ∗

⎤

⎥⎥⎥⎥⎥
⎥⎥
⎦

.

We perform a swap {2,3} : a
2↔ d to the second position of the second and third

votes:
⎡

⎢⎢⎢⎢⎢⎢⎢
⎣

a ∗ ∗ · · · ∗
b d ∗ · · · ∗
d a + c − d ∗ · · · ∗
∗ ∗ ∗ · · · ∗
...

...
... · · · ...

∗ ∗ ∗ · · · ∗

⎤

⎥⎥⎥⎥⎥⎥⎥
⎦

or

⎡

⎢⎢⎢⎢⎢⎢⎢
⎣

a ∗ ∗ · · · ∗
b d ∗ · · · ∗
∗ a ∗ · · · ∗
∗ ∗ ∗ · · · ∗
...

...
... · · · ...

∗ ∗ ∗ · · · ∗

⎤

⎥⎥⎥⎥⎥⎥⎥
⎦

or

⎡

⎢⎢⎢⎢⎢⎢⎢
⎣

a ∗ ∗ · · · ∗
b d ∗ · · · ∗
∗ a + c − d d · · · ∗
∗ ∗ ∗ · · · ∗
...

...
... · · · ...

∗ ∗ ∗ · · · ∗

⎤

⎥⎥⎥⎥⎥⎥⎥
⎦

.

After the swap the second vote does not contain a. The result is proper if c = d

(the middle case) and improper if c 	= d .

Now we apply a swap {1,2} : a
1↔ b for the first position of the first and the

second votes and increase V . In the case c 	= d , the last swap was performed on

304 J Algebr Comb (2014) 40:293–311

an improper data set, but it is compatible with the data sets. Furthermore we can
resolve the improper element a + c − d by Lemma 2, since [3,2] is a resolvable

pair. The process in this case is summarized as P
{2,3}←→ P

{1,2}←→ P or P
{2,3}←→

I
{1,2}←→ I

{2,3}←→ P .

This proves the lemma. �

Lemma 4 Let I be an improper data set and P ′ be a proper data set with the same
sufficient statistic. Consider the i′th vote from P ′ and choose any resolvable pair
[iim, ipr] of I . Then, by at most three swap operations among two votes of I , we
can (1) increase the number of concurrences Cipr,i′ , or (2) make I proper without
changing the iprth vote of I . Furthermore, if the resulting data set is improper, then its
improper vote and the iprth vote form a resolvable pair, and each intermediate swap
operation between two consecutive improper data sets, is compatible with them.

To prove Lemma 4, we need the following two lemmas. For an improper data set
I , we denote Ī = {ιij }.

Lemma 5 Let I be an improper data set with ιiimj = b + c − a. Suppose that ιij ′ = a

where i 	= iim, j ′ 	= j . Then, letting ιij = d 	= a, I can be transformed by a swap
operation among two votes R = {iim, i} to another improper data set I ′ containing
the improper iimth vote where ι′

iimj ′ = a and ι′iimj is either of b + c − a, b + d − a or
of c + d − a.

Proof Without loss of generality, assume that iim = j = 1 and i = j ′ = 2. Let ι12 =
e 	= b, c. We first make a swap of {1,2} : a 2↔ e to I :

⎡

⎢⎢⎢⎢⎢
⎣

b + c − a e ∗ · · · ∗
d a ∗ · · · ∗
∗ ∗ ∗ · · · ∗
...

...
...

...
...

∗ ∗ ∗ · · · ∗

⎤

⎥⎥⎥⎥⎥
⎦

→

⎡

⎢⎢⎢⎢⎢
⎣

b + c − a a ∗ · · · ∗
d e ∗ · · · ∗
∗ ∗ ∗ · · · ∗
...

...
...

...
...

∗ ∗ ∗ · · · ∗

⎤

⎥⎥⎥⎥⎥
⎦

.

After the swap, a may collide in the first vote and e may collide in the second vote.
If there is no collision, the claim of this lemma is proved. Otherwise, we can resolve
these possible collisions in the following way.

We try to resolve the collision of e in the second vote as in Lemma 1 considering
a swap process:

{1,2} : e ↔ s1 ↔ s2 ↔ ·· · . (13)

In this process the collisions always occur in the second vote.
Consider the case that d is equal to b or c, say d = b. Since the first and the second

votes contain b only in the first position, b does not collide in (13), which implies that
c does not collide in (13). Since no a is in the second vote at the beginning of (13),
a does not collide in (13). Therefore, there is no swap involving the first position in
(13), which implies that the collision of e can be resolved as in Lemma 1.

J Algebr Comb (2014) 40:293–311 305

Consider the case d 	= b, c. The difference of this case from Lemma 1 is that the
process (13) may hit the first position. This happens when d appears in (13) for the

fist time as sl
j↔ d , j 	= 1, and d = ι1j in the first vote is swapped down to the second

vote in the j th position. Then we need to choose b or c and make the swap d ↔ b

or d ↔ c in the first position. By symmetry, without loss of generality, we perform

d
1↔ c:

[
b + c − a

d

]
→

[
b + d − a

c

]
.

This amounts to ignoring b and −a and we look at the improper element b + c − a

just as a proper element c in resolving the collision of e. We leave b − a in the (1,1)-
element of Ī as it is during the sequence in (13). Then just as in Lemma 1 it follows
that no candidate appears twice in (13). Note that b and −a which were left in the
(1,1)-element cause no trouble, because collision occurs always in the second vote.
Indeed, b causes no trouble because it does not leave the first vote. The candidate a

causes no trouble because the second vote does not initially contain a and when a is
swapped from the first vote to the second vote, then the process in (13) ends at that
point.

After the collision of e is resolved, a may still collide in the first vote. Let j1 and
j2, j1 	= j2, be the labels of positions containing a in the first vote other than the first
position. To resolve this collision we consider the following two swap processes:

{1,2} : a j1↔ s1 ↔ s2 ↔ ·· · , (14)

{1,2} : a j2↔ s′
1 ↔ s′

2 ↔ ·· · , (15)

where no swap in the j2th position is involved in (14) and no swap in the j1th po-
sition is involved in (15). Since every candidate in the first and second votes except
a appears in at most two positions, the common candidate involved both in (14) and
in (15) is a only. Then one of (14) and (15), say (14), involves neither b nor c, or
involves b and no c. Therefore, ignoring c,−a and a in the j2th column, we see that
the swap process (14) ends in finite number of steps as in Lemma 1. �

Lemma 6 Let I be an improper data set with an improper element ιiimj = b + c −
a. Let ιij = d, i 	= iim, and suppose that d 	= a, b, c. Then I can be transformed to
another improper data set I ′ by a swap operation among two votes R = {iim, i} such
that either ι′iimj = b + d − a, ι′ij = c or ι′iimj = c + d − a, ι′ij = b.

Proof Without loss of generality assume iim = j = 1 and i = 2. Then the upper-left
2 × 1 submatrix of I is

[
b+c−a

d

]
. Note that [1,2] is not a resolvable pair because

d 	= a.

We begin by considering two swaps of {1,2} : d 1↔ b and {1,2} : d 1↔ c. If {1,2} :
d

1↔ b is applied to I , b may collide in the second vote and d may collide in the

first vote. If {1,2} : d
1↔ c is applied to I , c may collide in the second vote and d

306 J Algebr Comb (2014) 40:293–311

may collide in the first vote. Considering the resolution of possible collisions in the
second vote for each swap, the following two swap processes are obtained:

{1,2} : d 1↔ b ↔ s1 ↔ s2 ↔ ·· · , (16)

{1,2} : d 1↔ c ↔ s′
1 ↔ s′

2 ↔ ·· · . (17)

Since the number of positions which contains a in the first or second vote is at most
three, one of (16) and (17), say (16), contains a at most once. Note that each candi-
dates other than a appears in the first and second votes at most twice. If (16) does
not contain a, we see that (16) ends in finite number of steps as in Lemma 1. If (16)
contains one a, the finiteness of (16) is proved by applying the similar discussion of
Lemma 1 for the subprocess of (16) which starts from a.

After resolving the collision of b in the second vote, d may still collide in the first
vote. At this point the second vote contains at most one a. Consider a swap process

{1,2} : d ↔ s′′
1 ↔ s′′

2 ↔ ·· · . (18)

Since b has already been involved in (16), no s′′
i is equal to b. If some s′′

i is c, the
chain swap

{1,2} : d ↔ s′′
1 ↔ s′′

2 ↔ ·· · ↔ c

resolves the collisions in the first vote. Since a appears in the second vote at most
once, the process (18) contains a at most once. If a does not appear in (18), the
process does not hit the first position and we see that (16) ends in finite number of
steps as in Lemma 1. If a appears in (18), the finiteness of (16) is proved by applying
the similar discussion of Lemma 1 for the subprocess of (16) which starts from a. �

Using Lemmas 5 and 6 we shall prove Lemma 4.

Proof of Lemma 4 Without loss of generality, let i′ = 1, [iim, ipr] = [2,1], ι11 = a,
and ι21 = b + c − a. Then Ī looks like

⎡

⎢⎢⎢
⎢⎢
⎣

a ∗ · · · ∗
b + c − a ∗ · · · ∗

∗ ∗ · · · ∗
...

...
...

...

∗ ∗ · · · ∗

⎤

⎥⎥⎥
⎥⎥
⎦

.

In the cases below, where a resulting data set is improper, [2,1] will be a resolvable
pair.

Case 1 p′
11 = a.

In this case in P ′ and hence in I , the candidate a appears at least once in the first
position. Therefore a is in the first position in some vote i > 2 in I . Let i = 3. Then
the votes [2,3] of I form a resolvable pair and I can be transformed to a proper
data set by Lemma 2. This corresponds to (2) of the lemma and is summarized as

I
{2,3}←→ P .

J Algebr Comb (2014) 40:293–311 307

Case 2 p′
11 	= a, but a appears in the first vote of P ′.

Without loss of generality let p′
12 = a. Let d = ι12.

Case 2-1 ι22 = a.

We perform the double swap a
1↔ d

2↔ a to the first two votes

⎡

⎢⎢⎢⎢⎢
⎣

a d ∗ · · · ∗
b + c − a a ∗ · · · ∗

∗ ∗ ∗ · · · ∗
...

...
...

...
...

∗ ∗ ∗ · · · ∗

⎤

⎥⎥⎥⎥⎥
⎦

→

⎡

⎢⎢⎢⎢⎢
⎣

d a ∗ · · · ∗
b + c − d d ∗ · · · ∗

∗ ∗ ∗ · · · ∗
...

...
...

...
...

∗ ∗ ∗ · · · ∗

⎤

⎥⎥⎥⎥⎥
⎦

.

This increases C11. This corresponds to (1) of the lemma and is summarized as

I
{1,2}←→ I .

Case 2-2 ι22 	= a.
Since p′

12 = a, a has to appear in the second position of I . Without loss of gener-
ality, let ι32 = a. Let e = ι31 and f = ι22. Then P̄ looks like

⎡

⎢⎢⎢⎢⎢⎢⎢
⎣

a d ∗ · · · ∗
b + c − a f ∗ · · · ∗

e a ∗ · · · ∗
∗ ∗ ∗ · · · ∗
...

...
...

...
...

∗ ∗ ∗ · · · ∗

⎤

⎥⎥⎥⎥⎥⎥⎥
⎦

.

From Lemma 5 applied to votes {2,3}, this case is reduced to Case 2-1. This

case together with the subsequent operation of Case 2-1 is summarized as I
{2,3}←→

I
{1,2}←→ I .

Case 3 a does not appear in the first vote of P ′.
Let d = p′

11, d 	= a. If d = b or d = c, we directly go to the Cases 3-1 or Case 3-2
below. If d 	= b, c, we need an extra step as follows. Let ι31 = d without loss of
generality. Then Ī looks like

⎡

⎢⎢⎢⎢
⎢⎢⎢
⎣

a ∗ · · · ∗
b + c − a ∗ · · · ∗

d ∗ · · · ∗
∗ ∗ · · · ∗
...

...
...

...

∗ ∗ · · · ∗

⎤

⎥⎥⎥⎥
⎥⎥⎥
⎦

.

By Lemma 6 applied to votes {2,3}, we move d to the second vote resolving the
possible collisions. At this point the (2,1)-element of I may be b + d − a or c +

308 J Algebr Comb (2014) 40:293–311

d − a. We consider the former case without loss of generality. Then Ī looks like

⎡

⎢⎢⎢⎢⎢⎢⎢
⎣

a ∗ · · · ∗
b + d − a ∗ · · · ∗

c ∗ · · · ∗
∗ ∗ · · · ∗
...

...
...

...

∗ ∗ · · · ∗

⎤

⎥⎥⎥⎥⎥⎥⎥
⎦

. (19)

Case 3-1 d appears in the first vote of I .

Let d = ι12 without loss of generality. We apply a double swap a
1↔ d

2↔ a:

⎡

⎢⎢⎢⎢
⎢
⎣

a d ∗ · · · ∗
b + d − a e ∗ · · · ∗

∗ ∗ ∗ · · · ∗
...

...
...

...
...

∗ ∗ ∗ · · · ∗

⎤

⎥⎥⎥⎥
⎥
⎦

→

⎡

⎢⎢⎢⎢
⎢
⎣

d a ∗ · · · ∗
b d + e − a ∗ · · · ∗
∗ ∗ ∗ · · · ∗
...

...
...

...
...

∗ ∗ ∗ · · · ∗

⎤

⎥⎥⎥⎥
⎥
⎦

.

This case is summarized as I
{1,2}←→ I or I

{2,3}←→ I
{1,2}←→ I , where I

{2,3}←→ I is needed
for the case d 	= b, c. We do not repeat this comment for the other cases below.

Case 3-2 d does not appear in the first vote of I .
If a appears only once in the second vote, say in the j th position, j > 1, then

we can apply the swap {1,2} : a
1↔ d to make I proper, which is summarized as

I
{1,2}←→ P or I

{2,3}←→ I
{1,2}←→ P .

Hence we consider the case that a appears in two positions labeled by j1, j2, 1 <

j1 < j2 of the second vote of I . Since P ′ does not contain a in the first vote, I has
a vote not containing a.

Case 3-2-1 The third vote of (19) contains a.
Without loss of generality, suppose the fourth vote of I does not contain a. Denote
e = ι41. Interpreting two a’s in the second vote as a collision, we try to resolve
the collision by swapping a down to the fourth vote. Then we have two processes
of swaps

{2,4} : a j1↔ s1 ↔ s2 ↔ ·· · , (20)

{2,4} : a j2↔ s′
1 ↔ s′

2 ↔ ·· · . (21)

During these processes the collisions occur in the second vote. Only one of these
two can contain d . Then we can choose a process, say (20), which does not con-
tain d . As in Lemma 1 no candidate appears twice in (20). Hence, (20) is a finite
chain swap resolving the collisions.

J Algebr Comb (2014) 40:293–311 309

At this stage Ī looks like

⎡

⎢⎢⎢⎢⎢⎢⎢
⎢⎢
⎣

a ∗ · · · ∗
b + d − a ∗ · · · ∗

c ∗ · · · ∗
e ∗ · · · ∗
∗ ∗ · · · ∗
...

...
...

...

∗ ∗ · · · ∗

⎤

⎥⎥⎥⎥⎥⎥⎥
⎥⎥
⎦

or

⎡

⎢⎢⎢⎢⎢⎢⎢
⎢⎢
⎣

a ∗ · · · ∗
e + d − a ∗ · · · ∗

c ∗ · · · ∗
b ∗ · · · ∗
∗ ∗ · · · ∗
...

...
...

...

∗ ∗ · · · ∗

⎤

⎥⎥⎥⎥⎥⎥⎥
⎥⎥
⎦

.

In either case, the swap {1,2} : a 1↔ d increases C and makes I proper. The whole

process for this case is summarized as I
{2,4}←→ I

{1,2}←→ P or I
{2,3}←→ I

{2,4}←→ I
{1,2}←→

P .
Case 3-2-2 The third vote of (19) does not contain a.
We can just use the third vote of (19) as the fourth vote of the previous case. Hence

I
{2,4}←→ I is replaced by I

{2,3}←→ I and this case is summarized as I
{2,3}←→ I

{1,2}←→ P .
�

We now summarize what we have proved so far. We will again discuss the follow-
ing result in Sect. 3.1.

Let P and P ′ be two proper data sets with the same sufficient statistic, respectively.
Suppose that the ith vote of P and the i′th vote of P ′ are different, i.e., V (i) 	= V (i′).
If we allow improper data sets, then by a sequence of swap operations among two
votes of P , we can make the ith vote of P identical with the i′th vote of P ′. Then
we throw away this common vote from the two data sets and repeat the procedure. It
should be noted that P may have been transformed to an improper data set I when
two votes coincide, but I contains a resolvable pair [iim, ipr] with ipr 	= i. Hence we
can continue this process until P is fully transformed to P ′.

In order to finish our proof of Theorem 1, we have to show that each interme-
diate improper data set can be temporarily transformed to a proper data set and the
consecutive proper data sets are connected by operations among three votes.

We decompose the whole process of transforming P to P ′ into segments that
consist of transformations from a proper data set to another proper data set with
improper intermediate steps. One segment is depicted as follows:

P1 ←→ I1 ←→ ·· · ←→ Ii ←→ Ii+1 ←→ ·· · ←→ Im ←→ Pm, (22)

where each ←→ (omitting R) denotes a swap operation among two votes in Lem-
mas 3 and 4. By these lemmas, the number of concurrences in Pm is larger than in
P1. We claim that for any consecutive improper data sets Ii , Ii+1, we can find proper
data sets Pi,P

′
i , P

′
i+1 satisfying

Pi ←→ Ii ←→ Ii+1 ←→ P ′
i+1, (23)

P ′
i ←→ Ii ←→ Pi. (24)

310 J Algebr Comb (2014) 40:293–311

The swap operation for Ii ←→ Ii+1 is compatible with both data sets. Hence if we
choose a common resolvable pair for Ii and Ii+1, then (23) for transforming Pi to P ′

i

involves three votes. On the other hand, since both P ′
i ←→ Ii and Ii ←→ Pi involve

an improper vote, the operation of transforming P ′
i to Pi involves three votes. This

completes the proof of Theorem 1.

3 Discussion

In this section we discuss some topics related to our main result.

3.1 Extension of fibers by allowing one negative element

As discussed after the proof of Lemma 4, we have shown the following result by our
proof of Theorem 1 (cf. (22)).

Proposition 1 Let P and P ′ be any two proper data sets with the same sufficient
statistic. If we allow improper data sets as the intermediate states, P and P ′ are
connected by swap operations among two votes, whose single operation is used at
each step.

Since an improper data set has one −1, Proposition 1 seems to suggest that every
fiber Ft for the configuration An,r becomes connected by degree two moves if we
extend Ft by allowing one negative element x(σ) = −1 in x which satisfies t = Ax.
However, this is incorrect. In fact, allowing −1 in data set and allowing −1 in Ft are
two different things.

For example, consider the case of n = 3 and r = 2 with candidates labeled as
a, b, c. It is easy to see that dim kerA3,2 = 1 and IA3,2 is a principal ideal generated
by a single binomial p(ab)p(bc)p(ca)−p(ac)p(cb)p(ba). Hence there is no degree
two move in kerZ A3,2. Yet, we can connect two data sets

P =
⎡

⎣
a b

b c

c a

⎤

⎦ , P ′ =
⎡

⎣
a c

c b

b a

⎤

⎦

by applying {2,3} : a 1↔ b, {1,2} : b 2↔ c and {2,3} : a 1↔ c in this order:
⎡

⎣
a b

b c

c a

⎤

⎦ →
⎡

⎣
a b

a c

b + c − a a

⎤

⎦ →
⎡

⎣
a c

a b

b + c − a a

⎤

⎦ →
⎡

⎣
a c

c b

b a

⎤

⎦ .

Note that the middle two data sets can be interpreted either as

adding (ab), (ac), (bc), (ca) and subtracting (ac)

or as

adding (ab), (ac), (ba), (cb) and subtracting (ab).

However the middle two data sets do not correspond to an element of a fiber for A3,2.

J Algebr Comb (2014) 40:293–311 311

3.2 Normality

It is natural to ask if the semigroup generated by An,r is normal. Consider the set Q

of n × r real matrices X = {xij } satisfying

0 ≤ xij ≤ 1, ∀i, j,

r∑

j=1

xij ≤ 1,∀i,

n∑

i=1

xij = 1,∀j.

The set Q is the Birkhoff polytope in R
n×r , which is a special case of transportation

polytopes [5]. By [3] the set of vertices of Q is exactly the same as the set of columns
of An,r . Then by the results of [7] and [9] the semigroup generated by An,r is normal.
Lemma 1 is a consequence of this normality, because by the normality there exist two
valid votes with the same sufficient statistic as the ith and the i′th votes in Lemma 1.
These two proper votes can be obtained from the two votes of a swap operation in
Lemma 1. However, the normality is not useful in proving Lemmas 5 and 6.

3.3 Generation of moves for running a Markov chain

Based on Theorem 1 we can run a Markov chain for general r as follows. We ran-
domly generate two or three proper votes of r candidates out of n candidates. Once
these votes are obtained, we randomly perform permutations of candidates in the
same position. We do this for each position. If no collision occurs, then we have two
or three proper votes. If the obtained set of votes is different from the initial set, then
the difference is a move. In this way, we obtain a random move of degree two or three
and then run a Markov chain over a given fiber. Extensive computational results on
Markov bases of (n, r)-Birkhoff models for r ≤ 5 and arbitrary n are available from
the authors.

Acknowledgements This work is partially supported by Grant-in-Aid for JSPS Fellows (No. 12J07561)
from Japan Society for the Promotion of Science (JSPS). The authors thank the anonymous referees for
their valuable comments.

References

1. Aoki, S., Hara, H., Takemura, A.: Markov Bases in Algebraic Statistics. Springer Series in Statistics.
Springer, New York (2012)

2. Aoki, S., Takemura, A.: Minimal basis for a connected Markov chain over 3 × 3 × K contingency
tables with fixed two-dimensional marginals. Aust. N. Z. J. Stat. 45(2), 229–249 (2003)

3. Brualdi, R.A., Dahl, G.: An extension of the polytope of doubly stochastic matrices. Linear Multilinear
Algebra 61(3), 393–408 (2013)

4. Diaconis, P., Eriksson, N.: Markov bases for noncommutative Fourier analysis of ranked data. J. Symb.
Comput. 41(2), 182–195 (2006)

5. Haase, C., Paffenholz, A.: Quadratic Gröbner bases for smooth 3 × 3 transportation polytopes. J. Al-
gebr. Comb. 30(4), 477–489 (2009)

6. Jacobson, M.T., Matthews, P.: Generating uniformly distributed random Latin squares. J. Comb. Des.
4(6), 405–437 (1996)

7. Ohsugi, H., Hibi, T.: Convex polytopes all of whose reverse lexicographic initial ideals are squarefree.
Proc. Am. Math. Soc. 129(9), 2541–2546 (2001) (electronic)

8. Sturmfels, B., Welker, V.: Commutative algebra of statistical ranking. J. Algebra 361, 264–286 (2012)
9. Sullivant, S.: Compressed polytopes and statistical disclosure limitation. Tohoku Math. J. 58(3), 433–

445 (2006)

	Markov degree of the Birkhoff model
	Abstract
	Preliminaries
	Main result and its proof
	Discussion
	Extension of ﬁbers by allowing one negative element
	Normality
	Generation of moves for running a Markov chain

	Acknowledgements
	References

