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Abstract We give a non-Abelian analogue of Whitney’s 2-isomorphism theorem
for graphs. Whitney’s theorem states that the cycle space determines a graph up to
2-isomorphism. Instead of considering the cycle space of a graph which is an Abelian
object, we consider a mildly non-Abelian object, the 2-truncation of the group algebra
of the fundamental group of the graph considered as a subalgebra of the 2-truncation
of the group algebra of the free group on the edges. The analogue of Whitney’s the-
orem is that this is a complete invariant of 2-edge connected graphs: let G, G′ be
2-edge connected finite graphs; if there is a bijective correspondence between the
edges of G and G′ that induces equality on the 2-truncations of the group algebras of
the fundamental groups, then G and G′ are isomorphic.

Keywords Graph theory · Fundamental group · Whitney’s 2-isomorphism theorem

1 Introduction

Let G be a finite graph which may have multiple edges and loops and let k be a field.
Pick an orientation for every edge of G. The chain group C1(G;k) is the vector space
over k generated by the edges of G. Within this space is the cycle space Z1(G;k),
the vector space generated by cycles in G. Whitney’s 2-isomorphism theorem ([8],
[5, Sect. 5.3]) states that Z1(G;k) ⊂ C1(G;k) determines G up to two moves: vertex
cleaving and Whitney twists. Specifically, it states that if G′ is another finite graph
and φ : −→E (G) → −→

E (G′) is bijective map of oriented edges (that is, if e−1 denotes e

with the opposite orientation then φ(e−1) = (φ(e))−1), and the induced map on chain
groups satisfies φ∗(Z1(G;k)) = Z1(G

′;k), then after performing some combination
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of these moves on G′, one has that φ is a graph isomorphism. Two graphs related after
these moves are said to be 2-isomorphic. Because these moves cannot be applied non-
trivially to a 3-connected graph, it implies that 3-connected graphs G,G′ satisfying
the hypotheses are isomorphic.

It is natural to ask if there is a modification of this theorem that in certain situ-
ations allows one to conclude that more general G and G′ are isomorphic without
performing any moves. Our approach is to consider invariants of graphs that are finer
than the cycle space. Our invariants interpolate between the cycle space which is
Abelian and homological in nature and the fundamental group which is non-Abelian
and homotopy-theoretic. The invariants are labelled by a positive integer k. In an intu-
itive sense, our invariants are refinements of the cycle space. The cycle space contains
information about which edges are in a cycle but nothing about their order. Our kth
invariant contains information about which edges are in a cycle but also for a cycle
and a list of k edges, ei1, ei2, . . . , eik , it contains information about how many times
ei1, ei2, . . . , eik occur in that order in the cycle (counted with signs and multiplicities).
It turns out that for k ≥ 2, our invariant is a complete invariant for 2-edge connected
graphs.

We now give the definition of our invariant deferring some notation and back-
ground about group algebras to the next section. Let v0 be a vertex of G which we
will call the base-point. Let π1(G,v0) be the fundamental group of G with base-
point v0. Pick arbitrary orientations on the edges of the graph. Each closed path G

based at v0 can be expressed as a word in the edges e±1
i1

e±1
i2

· · · e±1
in

where the path
consists of the edges ei1, ei2, . . . , ein traversed in order and the sign of the exponent
is determined by whether or not the edge occurs with its given orientation in G. This
association of words with closed paths gives a homomorphism

w : π1(G,v0) → FE(G),

where FE(G) is the free group on the edges.
One may take truncated group algebras of the groups involved to obtain finite

dimensional k-algebras. Consider the induced maps of group algebras,

w∗ : k
[
π1(G,v0)

] → k[FE(G)].

The group algebras are equipped with augmentation homomorphisms (see Sect. 2),

επ : k
[
π1(G,v0)

] → k, εF : k[FE(G)] → k

with kernels Jπ1(G,v0), JFE(G)
, respectively. For any non-negative integer k,

k[π1(G,v0)]/J k+1
π1(G,v0)

, k[FE(G)]/J k+1
FE(G)

are finite dimensional k-algebras, called the
k-truncations. The map w∗ descends to a map of truncated group algebras:

w∗ : k
[
π1(G,v0)

]
/J k+1

π1(G,v0)
→ k[FE(G)]/J k+1

FE(G)
.

The 2-truncation is sufficient to give a complete invariant of 2-edge connected finite
graphs according to our main theorem:
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Theorem 1.1 Let G,G′ be 2-edge connected finite graphs. Let φ : −→E (G) → −→
E (G′)

be a bijective map of oriented edges. If we have the following equality of subalgebras
in k[FE(G′)]/J 3

FE(G′) :

φ∗
(
w∗

(
k
[
π1(G,v0)

]
/J 3

π1(G,v0)

)) = w′∗
(
k
[
π1

(
G′, v′

0

)]
/J 3

π1(G
′,v′

0)

)
,

then φ is a graph isomorphism satisfying φ(v0) = v′
0.

We note that this theorem is similar to Whitney’s theorem. The hypotheses of the
theorem imply the analogous fact about a lower order truncation of group algebras:

φ∗
(
w∗

(
k
[
π1(G,v0)

]
/J 2

π1(G,v0)

)) = w′∗
(
k
[
π1

(
G′, v′

0

)]
/J 2

π1(G
′,v′

0)

)
.

As we will discuss below, k[π1(G,v0)]/J 2
π1(G,v0)

∼= k ⊕ Z1(G;k). On the other

hand, we have k[FE(G)]/J 2
FE(G)

∼= k ⊕ C1(G;k). Consequently, the hypotheses for

the 1-truncation imply that G and G′ have the same cycle space, and Whitney’s the-
orem states that they are 2-isomorphic.

The non-Abelian structure that is used in this paper is only very mildly noncom-
mutative. In fact, the fundamental group acts unipotently on its truncated group al-
gebra. We could perhaps also call this result the unipotent analogue of Whitney’s
theorem. One may ask if there are more places in combinatorics where one can in-
corporate noncommutativity to prove rigidity theorems. The author hopes, perhaps
overly speculatively, that there are similar results that make up a combinatorial the-
ory analogous to Grothendieck’s anabelian program in algebraic geometry [2].

This work, we hope, hints at an extension of the notion of matroids. Can one
axiomatize the map

w∗ : k
[
π1(G,v0)

]
/J 3

π1(G,v0)
→ k[FE(G)]/J 3

FE(G)

the way one axiomatizes the cycle space of a graph into a matroid? This suggests
a sort of unipotent matroid. Which ordinary matroids lift to unipotent matroids? If
not all, is there a combinatorial characterization of the obstruction to a unipotent
structure?

This paper was inspired by Hain’s theory of the mixed Hodge structure on the fun-
damental group of complex manifolds ([3], [7, Ch. 9]) which follows Morgan’s work
on the mixed Hodge structure on the truncation of the group ring of the fundamental
group [4]. Hain is able to put a Hodge structure on a unipotent completion of the
fundamental group. As an application, Hain [3] and Pulte [6] give a pointed Torelli
theorem for Riemann surfaces, that is, they show that the mixed Hodge structure on
the truncated group ring is a complete invariant of a pointed Riemann surface (up to
some finite ambiguity for the base-point). The recent work of Caporaso and Viviani
[1] proves a Torelli theorem for graphs and tropical curves by making use of Whit-
ney’s 2-isomorphism theorem, so it seemed natural to ask if there is an extension of
Whitney’s theorem that could be used to prove a pointed Torelli theorem for graphs
and tropical curves.
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2 Truncated group algebras of fundamental groups

With a group Γ and a field k, one can associate the group algebra k[Γ ]. The reader
loses nothing by taking k to be R. This is the algebra over k whose elements are for-
mal linear combinations of the form

∑
agg where ag ∈ k is 0 for all but finitely many

elements. Multiplication in the group algebra is the linear extension of g · g′ = gg′.
Therefore, when Γ = Fn, the free group on n generators, k[Fn], is the free non-
commutative polynomial algebra on n indeterminates. Let the augmentation map
ε : k[Γ ] → k be the linear extension of ε : g 
→ 1 for all g ∈ G. Let J = ker(ε) be the
augmentation ideal. It is the set of all elements of the form

∑
agg where

∑
ag = 0.

The k-truncation of the group algebra is k[π]/J k+1.
The assignment of group algebras to a group is functorial, so the homomor-

phism w (described above) induces a homomorphism of k-algebras,

w∗ : k
[
π1(G,v0)

] → k[FE(G)].

Moreover, one has an induced map of truncations:

w∗ : k
[
π1(G,v0)

]
/J k+1

π1(G,v0)
→ k[FE(G)]/J k+1

FE(G).

Now we can consider functoriality under graph morphisms. Let φ : G → G′ be a
morphism of graphs, that is a map φ : V (G) ∪ E(G) → V (G′) ∪ E(G′) such that
φ(V (G)) ⊆ V (G′) and for every v ∈ V (G), e ∈ E(G) with v ∈ e either φ(v) = φ(e)

or φ(e) ∈ E(G′) and φ(v) ∈ φ(e). Note that graph morphisms are allowed to col-
lapse edges. Given two directed graphs G,G′ with base-points v0, v

′
0 and a mor-

phism φ : G → G′ satisfying φ(v0) = v′
0, we have an induced map of fundamental

groups φ∗ : π1(G,v0) → π1(G
′, v′

0). Moreover, if φ is a graph morphism (not neces-
sarily satisfying φ(v0) = v′

0), there is an induced map φ∗ : FE(G) → FE(G′) defined
as follows: if φ(e) ∈ V (G′) then φ∗(e) = ∅, the empty word; if φ∗(e) ∈ E(G) then
φ∗(e) = φ(e)±1 where the sign of the exponent depends on whether φ is orientation
preserving or reversing on the edge e. Consequently, we have the following commu-
tative diagram of truncated group algebras:

k[π1(G,v0)]/J k+1
π1(G,v0)

φ∗

w

k[FE(G)]/J k+1
FE(G)

φ∗

k[π1(G
′, v′

0)]/J k+1
π1(G

′,v′
0)

w′
k[FE(G′)]/J k+1

FE(G′) .
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In this paper, we will work with the 1- and 2-truncations. In our situation, every
group will be a free group. In these cases, the description of the truncated group
algebra is rather straightforward. Let Fn be the free group on generators x1, . . . , xn.
We note that the there is a short exact sequence of vector spaces

0 J k
Fn

/J k+1
Fn

k[Fn]/J k+1
Fn

k[Fn]/J k
Fn

0.

Since k[Fn]/J k
Fn

is a vector space, the above exact sequence splits. Therefore, we
have the vector space isomorphism,

k[Fn]/J k+1
Fn

∼= k ⊕ J 1
Fn

/J 2
Fn

⊕ · · · ⊕ J k
Fn

/J k+1
Fn

.

Now, J k
Fn

/J k+1
Fn

is generated as a vector space by polynomials of the form

(xi1 − 1)(xi2 − 1) · · · (xik − 1),

where 1 is the element corresponding to the empty word ∅. This vector space can
be identified with J⊗k

Fn
. Consequently, the vector space k[Fn]/J 2

Fn
is generated by 1

together with the following basis of JFn/J
2
Fn

:

(x1 − 1), (x2 − 1), . . . , (xn − 1).

The element 1 acts as the identity, and the multiplication of two elements of JFn is
always 0. The natural map Fn → k[Fn]/J 2

Fn
takes xi to 1 + (xi − 1) and x−1

i to

1 − (xi − 1). Consequently, the word x
b1
i1

· · ·xbl

il
is mapped to 1 + b1(xi1 − 1) + · · · +

bil (xil − 1). It follows that k[Fn]/J 2
Fn

∼= k ⊕ (F ab
n ⊗ k) where F ab

n is the Abelianiza-
tion of Fn. Consequently, we have that the truncation of w∗,

w∗ : k
[
π1(G,v0)

]
/J 2

π1(G,v0)
→ k[FE(G)]/J 2

FE(G)
,

is isomorphic to

w∗ : k ⊕ H1(G;k) = k ⊕ Z1(G;k) → k ⊕ C1(G;k)

and therefore contains the description of the cycle space.
The 2-truncation is richer. It has a vector space basis given by

1, (xi − 1), (xi − 1)(xj − 1)

as i and j range from 1 to n. The natural map from Fn takes xi to 1 + (xi − 1) and
x−1
i to 1 − (xi − 1) + (xi − 1)2. Consequently, we may write for bi = ±1,

x
bi

i 
→ 1 + bi(xi − 1) + δbi ,−1(xi − 1)2,

where δi,j is the Kronecker delta, and we may conclude that a word of the form

x
b1
i1

· · ·xbl

il
where bi = ±1 is mapped as follows:

x
b1
i1

· · ·xbl

il

→ 1 +

∑

j

bj (xij − 1) +
∑

j<k

bj bk(xij − 1)(xik − 1) +
∑

j |bj =−1

(xij − 1)2.
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Note that this counts with signs the number of times xj comes before xk in a word.
In what follows, we will sometimes identify k[FE(G)]/J 3

FE(G)
with k ⊕ C1(G;k) ⊕

(C1(G;k) ⊗ C1(G;k)).
If φ : −→E (G) → −→

E (G′) is a bijective map of oriented edges (with no requirement
on the incidence of the edges), then it induces a homomorphism φ : FE(G) → FE(G′).
In the case where φ gives a graph isomorphism of a subgraph H ⊂ G onto its image,
we will denote the restriction of φ to H by φ|H . In this case, it makes sense to speak
of the value of φ|H on vertices of H .

3 Proof of the main theorem

The proof of the main theorem will take as input a bijective map of orientated edges
φ : −→

E (G) → −→
E (G′) and show that it is a base-point preserving isomorphism by

induction on the size of subgraphs on which it is known to be an isomorphism. Our
main tool is the following lemma:

Lemma 3.1 Let (G,v0), (G
′, v′

0) be 2-edge connected finite rooted graphs and let

φ : −→
E (G) → −→

E (G′) be a bijective map of oriented edges such that we have the
following equality of subalgebras in k[FE(G′)]/J 3

FE(G′) :

φ∗
(
w∗

(
k
[
π1(G,v0)

]
/J 3

π1(G,v0)

)) = w′∗
(
k
[
π1

(
G′, v′

0

)]
/J 3

π1(G
′,v′

0)

)
.

Let γ be a closed path in G based at v0. Let e be an edge that occurs exactly once
in γ so that γ = γ−eγ+ for paths γ−, γ+. Suppose φ is a graph isomorphism of the
path γ− onto its image. Then

(1) if γ− is the empty path then the initial vertex of φ(e) is v′
0, and

(2) if γ− is a non-empty path and φ|γ−(v0) = v′
0 then the terminal vertex of the path

φ|γ−(γ−) is the initial vertex of φ(e).

Proof Write e = xy where we may have x = y. We may suppose that e occurs with
its given orientation in γ . Express w∗(γ ) ∈ k[FE(G)]/J 3

FE(G)
in terms of the basis 1,

(ei − 1), (ei − 1)(ej − 1) for an enumeration {ei} of the edges in G. The coefficient
of (e − 1) is 1 because e occurs once in γ . Group together the terms in w∗(γ ) of the
form cj (ej − 1)(e − 1) for varying j as η(e − 1). Therefore, η corresponds to the
edges coming before e in γ and hence is the 1-chain representing γ− in C1(G;k).
Consequently, if ∂ : C1(G;k) → C0(G;k) is the differential in simplicial homology,
then ∂η = ∂γ− = x − v0.

Let e′ = φ(e). Write e′ = x′y′. We must show that φ|γ−(x) = x′. By hypothesis,
we can find an equality in k[FE(G′)]/J 3

FE(G′) of the form

φ∗
(
w∗(γ )

) =
∑

i

aiw
′∗
(
δ′
i

)
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for closed paths δ′
i based at v′

0 and ai ∈ k. Now, we decompose the path δ′
i into paths

according to each occurrence of e′ as follows:

δ′
i = (αi,1)

(
e′)bi,1(αi,2)

(
e′)bi,2 · · · (αi,l)

(
e′)bi,li (αi,li+1),

where bi,j = ±1 and the αi,j ’s do not involve e′. Since the coefficient of (e − 1) in
w∗(γ ) is 1, the coefficient of (e′ − 1) in φ∗(w∗(γ )) is also equal to 1. This implies
that we have

∑

i

li∑

j=1

aibi,j = 1.

We group together terms of the form c′
j (e

′
j − 1)(e′ − 1) for varying j in w′∗(δi) to get

η′
i (e

′ − 1) where we view η′
i as a chain in C1(G

′;k). As a chain, η′
i has the following

expression:

η′
i =

∑

j∈{1,...,li }
bi,j =1

(
αi,1 + bi,1e

′ + αi,2 + bi,2e
′ + · · · + αi,j

)

−
∑

j∈{1,...,li }
bi,j =−1

(
αi,1 + bi,1e

′ + αi,2 + bi,2e
′ + · · · + αi,j − e′).

Each term in parentheses is the chain of a path from v′
0 to x′. Consequently, we have

the following value for the differential ∂ : C1(G
′;k) → C0(G

′;k):

∂η′
i =

li∑

j=1

bi,j

(
x′ − v′

0

)
.

Then η′ = ∑
i aiη

′
i satisfies

∂η′ =
∑

i

li∑

j=1

aibi,j

(
x′ − v′

0

) = x′ − v′
0.

Now, by the description of the homomorphism φ∗ on k[FE(G)]/J 3
FE(G)

, we have that

φ∗(η) = η′.

If γ− is non-empty, by taking the differential of both sides of the above equality, we
get

φ|γ−(x) − φ|γ−(v0) = x′ − v′
0.

From φ|γ−(v0) = v′
0, we find φ|γ−(x) = x′. If γ− is the empty path, we have η = 0

and x′ = v′
0. �

We now give the proof of the main theorem:
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Proof We induct on the size of connected subgraphs H ⊆ G for which φ|H is an
isomorphism onto its image. We begin the induction with H = {v0}. If H �= {v0}, we
will require the additional assumption that φ|H (v0) = v′

0.
For the inductive step, if H is not all of G, let e be an edge of E(G) \ E(H) that

is incident to a vertex x of H . This is possible because G is connected. Write e = xy.
Let γ− be a path in H from v0 to x. Note that γ− may be the empty path.

Since e is not a cut edge, there is a path γ+ in G from y to v0 that avoids e.
Now, one can apply Lemma 3.1 to γ = γ−eγ+ and conclude that the terminal point
of φ|H (γ−) is equal to the initial point of φ(e). In particular, if γ− = ∅, we may
suppose φ|e(v0) = v′

0,
We must show that φ extends to an isomorphism of H ∪ {e} onto its image. First,

consider the case that y is a vertex of H . Let δ− be a path in H from v0 to y avoiding
e. By applying Lemma 3.1 to δ−e−1(γ−)−1, we get the terminal point of φ(e) is
φ|H (y). Consequently, φ extends to an isomorphism of H ∪ {e} onto its image. Now,
consider the case where y is not a vertex of H . We must show that the terminal point
of φ(e) is not a vertex of φ|H (H). If it was, one could apply the above argument to
the map φ−1 on φ(H) and conclude that the terminal point of e is a vertex of H . This
contradiction completes the proof. Note that we can now suppose φ|H (v0) = v′

0.
Since φ is a bijection on edges, once we have H = G, we can conclude that φ

induces an isomorphism between G and G′. �
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