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Abstract We study a family of infinite-type Coxeter groups defined by the avoidance
of certain rank 3 parabolic subgroups. For this family, rationally smooth elements can
be detected by looking at only a few coefficients of the Poincaré polynomial. We also
prove a factorization theorem for the Poincaré polynomial of rationally smooth ele-
ments. As an application, we show that a large class of infinite-type Coxeter groups
have only finitely many rationally smooth elements. Explicit enumerations and de-
scriptions of these elements are given in special cases.

Keywords Coxeter groups · Poincaré polynomials · Palindromic polynomials ·
Schubert varieties · Rational smoothness · Triangle groups · Pattern avoidance

1 Introduction

Let W be a Coxeter group with finite generating reflection set S, and let � and ≤
denote the length function and Bruhat order on W , respectively. Let e ∈ W denote
the identity of W . By definition, W is the group generated by S satisfying relations
(st)mst = e, where mst ∈ {1,2,3, . . . ,∞} such that mst = 1 if and only if s = t . If
mst = ∞, then by convention the relation (st)∞ = e is omitted. The Poincaré series

Pw(q) =
∑

x≤w

q�(x)
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of an element w ∈ W is a polynomial of degree �(w). An element w is said to be
palindromic (or rationally smooth) if the coefficients of Pw(q) are the same whether
read from top degree to bottom degree, or in reverse.1 In other words, if we write
Pw(q) = ∑

aiq
i , then w is palindromic when ai = a�(w)−i for all i.

An important question in the combinatorics of Coxeter groups is to describe
the set of palindromic elements of W . This question stems from its connection
with the topology of Schubert varieties. A Coxeter group is crystallographic if
mst ∈ {2,3,4,6,∞} for all s �= t . If W is crystallographic, then it can be realized
as the Weyl group of a Kac–Moody algebra. The Schubert subvarieties of the full flag
variety corresponding to this algebra are indexed by the elements of W . Carrell and
Peterson prove that the Schubert variety indexed by w is rationally smooth if and only
if w is palindromic [9]. Furthermore, w is palindromic if and only if the Kazhdan–
Lusztig polynomial indexed by (x,w) is equal to 1 for all x ≤ w [11, 12]. If W is
crystallographic, then it is sufficient that the Kazhdan–Lusztig polynomial indexed
by (e,w) be equal to 1 [9]. For Schubert varieties of simply laced types A,D, and E,
the notion of smooth and rationally smooth are equivalent. For finite Weyl groups,
the palindromic elements are well understood. In particular, they can be character-
ized using permutation pattern avoidance in classical types A,B,C, and D and using
root system avoidance in all types [3–5, 13]. The characterization using permutation
pattern avoidance has recently been extended to the affine type A case as well [2].
The generating series for the number of palindromic elements in An, as n varies, is
also known [3, 8, 16].

While the theory of palindromic elements is well-developed for finite and affine
Coxeter groups, the situation for general Coxeter groups is quite different. In par-
ticular, it seems to be quite difficult to determine whether or not an element of a
general Coxeter group is rationally smooth. In this paper, we introduce a family of
Coxeter groups (mostly) outside the finite and affine cases, for which it is possible to
determine if an element is rationally smooth by looking at just a few coefficients of
the Poincaré polynomial. The family in question is defined as the set of all Coxeter
groups which do not contain certain triangle groups as standard parabolic subgroups.
A triangle group is a Coxeter group with |S| = 3. Triangle groups arise naturally
in arithmetic geometry and the study of tessellations of triangles on Riemann sur-
faces, see e.g. [1]. We will denote a triangle group by the triple (mrs,mrt ,mst ) where
S = {r, s, t}. We say a Coxeter group W contains the triangle (a, b, c) if there exists a
subset {r, s, t} ⊆ S such that (a, b, c) = (mrs,mrt ,mst ). If S contains no such subset,
then we say W avoids the triangle (a, b, c). We are interested in the groups which
avoid the following special set of triangle groups:

HQ := {
(2, b, c)

∣∣ b, c ≥ 3 and b < ∞}
.

The set HQ (Hecke quotients) is the set of quotients of the Hecke triangle group
(2,p,∞), p ≥ 3, which is a generalization of the well-known modular group
(2,3,∞). Every finite Coxeter group of rank ≥ 3 contains a triangle in HQ, and

1The term rationally smooth seems to be more common in the literature; we use the term palindromic to
be inclusive of the non-crystallographic case.
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the same is true of affine Coxeter groups, with the exception of (3,3,3), which is the
affine group Ã2. However, there are many crystallographic Coxeter groups which do
avoid HQ; for example, any Coxeter group with no commuting relations (i.e. mst ≥ 3
for all s �= t) avoids HQ. Any Coxeter group defined by only by commuting and
infinite relations also avoids HQ.

To state our main theorem, we make the following definition:

Definition 1.1 Let w be an element of a Coxeter group W , and write Pw(q) =∑
aiq

i for the Poincaré polynomial of w. We say that w is k-palindromic if ai =
a�(w)−i for all 0 ≤ i < k.

Note that if k = ∞, then we recover the usual notion of palindromic elements, and
that every element is 1-palindromic with a0 = a�(w) = 1. If W is crystallographic,
then k-palindromicity can be detected from the Kazhdan–Lusztig polynomial. Let
Te,w = 1 +∑

i≥0 biq
i be the Kazhdan–Lusztig polynomial indexed by (e,w). A the-

orem of Bjorner and Ekedahl states that, for crystallographic groups, an element
w ∈ W is k-palindromic if and only if bi = 0 for 0 ≤ i < k [7] (note that b0 = 0
always).

We now state the main theorem:

Theorem 1.2 Let W be a Coxeter group which avoids all triangle groups in HQ.
Then every 4-palindromic w ∈ W is palindromic.

Furthermore, if W avoids all triangle groups (3,3, c) where 3 < c < ∞, then
every 2-palindromic w ∈ W is palindromic.

Given a Coxeter group, it is natural to ask whether there is a number k such that
every k-palindromic element is palindromic. This question appears to be open in
general. Billey and Postnikov have conjectured that if W is a finite simply laced
Weyl group with n generators, then every (n+1)-palindromic element of W is palin-
dromic [4]. In type An, it is known that every (n − 1)-palindromic element is palin-
dromic [4].

The proof of Theorem 1.2 is based on a factorization theorem for the Poincaré
polynomial of 2-palindromic elements in Coxeter groups which avoid HQ. In the
classical groups of finite type A,B,C, and D, it is known that the Poincaré polyno-
mial of a rationally smooth element factors into a product of q-integers (see Eq. (2))
[5, 10]. In fact, it is possible to see this factorization combinatorially, writing each
palindromic element w as a reduced product w1 · · ·w|S|, such that each q-integer
factor of the Poincaré polynomial equals the (relative) Poincaré polynomial of the
wi ’s. We prove a similar result for 2-palindromic elements in Coxeter groups which
avoid HQ. This result has a number of applications. For example, we show there are
many infinite Coxeter groups with only a finite number of palindromic elements. We
also give explicit descriptions of palindromic elements in special cases. In the case of
uniform Coxeter groups W(m,n), defined by mst = m for all s �= t and |S| = n, we
calculate the generating series for the number of palindromic elements weighted by
length. Formulas for these generating series are stated in Propositions 3.8 and 3.9. We
also observe that the HQ-avoiding groups form the largest class of Coxeter groups for
which our factorization theorem can hold.
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1.1 Organization

Section 2 contains some background material and elementary lemmas used to state
the factorization theorem. Section 3 states the main factorization theorem and its
consequences, including the proof of Theorem 1.2 and enumerative results. In Sect. 4,
we consider triangle groups in the set HQ and prove the main results cannot hold for
any Coxeter group containing these triangle groups. Section 5 gives some elementary
lemmas on the descent sets of Coxeter groups avoiding HQ. Finally, Sect. 6 proves
the main factorization theorem.

2 Background and terminology

Let W be a Coxeter group with simple generator set S. For basic facts on Coxeter
groups, we refer the reader to [6]. Let �(w) denote the length of w ∈ W . We say
w = uv ∈ W is a reduced factorization if �(w) = �(u) + �(v). A special type of
reduced factorization can be constructed from any subset J ⊆ S. Let WJ denote the
standard parabolic subgroup of W generated by J . Let WJ denote the set of minimal
length coset representatives of WJ \W . Every element w ∈ W can be written uniquely
as w = uv where u ∈ WJ , v ∈ WJ and �(w) = �(u) + �(v). We call this reduced
factorization of w the parabolic decomposition with respect to J .

Let ≤ denote the Bruhat order on W . If u ≤ v ∈ W , then the interval [u,v] denotes
the set of elements x ∈ W such that u ≤ x ≤ v. For any w ∈ W we can define the
Poincaré polynomial

Pw(q) :=
∑

x∈[e,w]
q�(x).

The Poincaré polynomial relative to J ⊆ S of an element w ∈ W is defined to be

P J
w (q) :=

∑

x∈[e,w]∩WJ

q�(x).

If w ∈ WJ , then P J
w (q) is a polynomial of degree �(w). If J = ∅, then P J

w (q) =
Pw(q). Recall that for any J , the poset [e,w] ∩ WJ has a unique maximal element.
The following proposition is due to Billey and Postnikov in [4, Theorem 6.4].

Proposition 2.1 [4] Let J ⊆ S and let w = uv be a parabolic decomposition with
respect to J . Then u is the unique maximal element of [e,w] ∩ WJ if and only if

Pw(q) = Pu(q) · P J
v (q).

While the proof of Proposition 2.1 given in [4] is stated only for finite Weyl groups,
it easily extends to all Coxeter groups. A parabolic decomposition w = uv is called a
BP-decomposition of w if u is the unique maximal element of [e,w] ∩ WJ .

For any w ∈ W , define the sets

S(w) := {
u ≤ w

∣∣ �(u) = 1
}
,
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D(w) := {
u ≤ w

∣∣ �(u) = �(w) − 1
}
,

DR(w) := {
s ∈ S

∣∣ �(ws) < �(w)
}
,

DL(w) := {
s ∈ S

∣∣ �(sw) < �(w)
}
.

The sets S(w) and D(w) are known as the support and divisor sets of w. The sets
DR(w) and DL(w) are called the right and left descent sets of w respectively and
are contained in S(w). We use these sets to give an equivalent characterization of a
BP-decomposition.

Lemma 2.2 A parabolic decomposition w = uv is a BP-decomposition if and only
if S(v) ∩ J ⊆ DR(u).

Proof If w = uv is a BP-decomposition, then u is the unique longest element of
[e,w] ∩ WJ . If there exist x ∈ S(v) ∩ J and x /∈ DR(u), then �(ux) = �(u) + 1 and
ux ∈ [e,w] ∩ WJ which is a contradiction.

Conversely, assume that S(v) ∩ J ⊆ DR(u) and let ū denote the maximal element
in [e,w] ∩ WJ . Since ū is unique, we have u ≤ ū. We now show that ū ≤ u. Let

ū = u′v′

be a reduced factorization which maximizes �(u′) under the conditions that u′ ≤ u

and v′ ≤ v. Suppose that v′ �= e. Then there exists y ∈ DL(v′)\DR(u′). By assump-
tion, we have y ∈ DR(u). Taking a reduced decomposition for u with y appearing at
the end, we see that u′ ≤ uy, and hence u′ can be extended, a contradiction. �

We remark that one direction of Lemma 2.2 is proved in [15, Lemma 10]. Another
property of BP-decompositions is the following lemma.

Lemma 2.3 Let J1 ⊆ J2 ⊆ S and let v1v2v3 be a reduced factorization such that
v1v2 and (v1v2)(v3) are BP-decompositions with respect to J1 and J2 respectively.
Then v1(v2v3) is a BP-decomposition with respect to J1.

Proof By definition, we have v1v2 is maximal in [e, v1v2v3]∩WJ2 . In particular, if u

denotes the maximal element in [e, v1v2v3] ∩ WJ1 , then u ≤ v1v2 since WJ1 ⊆ WJ2 .
But now u is maximal in [e, v1v2] ∩ WJ1 , which implies that u = v1. �

Clearly, if Pw(q) = ∑
aiq

i , then |S(w)| = a1 and |D(w)| = a�(w)−1. We now
consider a special class of parabolic decompositions.

Definition 2.4 We say that w = uv, a parabolic decomposition with respect to J , is
a Grassmannian factorization if J = S(u) and |S(w)| = |S(u)| + 1.

It is easy to see that every element w ∈ W of length ≥ 2 has a Grassmannian fac-
torization. The term “Grassmannian” comes from the fact that v is a Grassmannian
element of W which, by definition, has |DL(v)| = 1. Note that a Grassmannian fac-
torization is not necessarily a BP-decomposition. Although elementary, this concept
is quite useful. For example, we can use it to prove:



664 J Algebr Comb (2014) 39:659–681

Lemma 2.5 |D(w)| ≥ |S(w)|.

Proof We proceed by induction on �(w). The proposition is true if �(w) = 1, so
suppose �(w) ≥ 2. Let w = uv be a Grassmannian factorization with respect to J .
By induction, |D(u)| ≥ |S(u)|.

If u′ ∈ D(u), then u′v ∈ D(w), since v ∈ WJ . Now v is not the identity, so we
can write v′ = vs ∈ WJ with s ∈ S and �(v′) = �(v) − 1. Consequently uv′ ∈ D(w).
Moreover, uv′ �= u′v for any u′ ∈ D(u) since they are both parabolic decompositions
with respect to J and u �= u′. Hence

∣∣D(w)
∣∣ ≥ ∣∣D(u)

∣∣ + 1 ≥ ∣∣S(u)
∣∣ + 1 = ∣∣S(w)

∣∣. (1)

This completes the proof. �

We remark that, for crystallographic Coxeter groups, Bjorner and Ekedahl prove
a much stronger version of Lemma 2.5 concerning all the coefficients of Pw(q) [7,
Theorem A].

We can continue to decompose any Grassmannian factorization w = uv by taking
a Grassmannian factorization of u. We say that

w = v1v2 · · ·v|S(w)|

is a complete Grassmannian factorization of w if for every i < |S(w)|, we
see that (v1 · · ·vi)(vi+1) is a Grassmannian factorization. Observe that if each
(v1 · · ·vi)(vi+1) is also a BP-decomposition, then by Lemma 2.3, we have (v1 · · ·vi) ×
(vi+1 · · ·vk) is a BP decomposition for any i < k ≤ |S(w)|.

By definition, w is 2-palindromic if and only if |D(w)| = |S(w)|. The following
lemma gives an inductive characterization of the 2-palindromic property.

Lemma 2.6 Suppose that w = uv is a Grassmannian factorization. Then w is 2-
palindromic if and only if u is 2-palindromic and |u · D(v) ∩ D(w)| = 1.

Proof Equality holds in Eq. (1) if and only if |D(u)| = |S(u)| and u · D(v) ∩ D(w) =
{uvs} where s ∈ DR(v). �

3 The factorization theorem

The main technical theorem of this paper is the following:

Theorem 3.1 Suppose that W avoids all triangle groups in HQ. Let w ∈ W be 2-
palindromic and fix a Grassmannian factorization w = uv with respect to J ⊆ S.
Then w = uv is a BP-decomposition with respect to J such that |S(v)| ≤ 3.

Moreover, if |S(v)| = 3 and S(v) = {r, s, t}, then one of the following is true:

(1) v = trv′ with v′ = stst . . .︸ ︷︷ ︸
mst−1

where S(v) generates the triangle group (3,mrs,mst )

with mrt = 3 and 3 ≤ mst < ∞, 3 ≤ mrs ≤ ∞.
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(2) v = rstrv′ with v′ = stst . . .︸ ︷︷ ︸
mst−1

where S(v) generates the triangle group (3,3,mst )

with 3 < mst < ∞.
(3) v = strstr · · · is a spiral word2 of even length where S(v) generates the triangle

group (3,3,3).

Theorem 3.1 says that if W avoids triangle groups in HQ, then the Poincaré poly-
nomial Pw(q) of a 2-palindromic element w ∈ W factors along any Grassmannian
factorization of w = uv. Moreover, the possibilities for the factor P J

v (q) is limited
by the fact that |S(v)| ≤ 3. Note that parts (1) and (3) of the theorem overlap when
mrs = mst = 3. The proof of this theorem is the focus of Sect. 6. The remainder of
this section is devoted to consequences of Theorem 3.1.

Fix a 2-palindromic element w ∈ W and a Grassmannian factorization w = uv

with respect to J ⊆ S. Theorem 3.1 can be used, together with Lemma 2.6, to com-
pletely determine the polynomial Pw(q). By Theorem 3.1 and Proposition 2.1, we
have

Pw(q) = Pu(q) · P J
v (q),

so it suffices to characterize all possible polynomials P J
v (q). For any integer k ≥ 1

define the q-integer

[k]q := 1 + q · · · + qk−1. (2)

If |S(v)| ≤ 2, then any v′ ≤ v where v′ ∈ WJ is given by a prefix of the unique
reduced word of v. This implies

P J
v (q) = [

�(v) + 1
]
q
. (3)

If |S(v)| = 3, it suffices to compute P J
v (q) in all the cases of Theorem 3.1. We

have the following lemma.

Lemma 3.2 Suppose we have w = uv as in Theorem 3.1 with |S(v)| = 3. Then the
following are true:

(1) If v satisfies the conditions in Theorem 3.1 part (1), then

P J
v (q) = [

�(v) + 1
]
q

+ q2[�(v) − 3
]
q
.

(2) If v satisfies the conditions in Theorem 3.1 part (2), then

P J
v (q) = [

�(v) + 1
]
q

+ q2[�(v) − 3
]
q

+ q4[�(v) − 6
]
q
.

(3) If v satisfies the conditions in Theorem 3.1 part (3) with k = � �(v)
4 �, then

P J
v (q) =

k∑

i=0

q2i
[
�(v) − 4i + 1

]
q
.

2A spiral word is a word which cycles through a set of generators in a fixed order.
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Proof Part (3) is proved in [14, Proposition 2.4] where certain Poincaré polynomials
of Schubert varieties in the affine Grassmannian of type A are calculated. Parts (1)
and (2) can be deduced from elementary counting arguments of the sets

{
v′ ∈ WJ ∩ [e, v] ∣∣ �

(
v′) = i

}
.

In particular, for part (1), there are two q-integer contributions from reduced sub-
words of the form

tr stst . . .︸ ︷︷ ︸
k

and tstst . . .︸ ︷︷ ︸
k

.

For part (2) there are three q-integer contributions from reduced subwords of the form

r tsts . . .︸ ︷︷ ︸
k

and r stst . . .︸ ︷︷ ︸
k

and rstr stst . . .︸ ︷︷ ︸
k

.
�

The polynomials in parts (1) and (3) of the lemma are palindromic, while the
polynomial is part (2) is 3-palindromic but not 4-palindromic. We now prove the
theorem stated in the introduction.

Proof of Theorem 1.2 Suppose that W avoids all triangles in HQ. Let w =
v1v2 · · ·v|S(w)| ∈ W be a complete Grassmannian factorization. Then by Theorem 3.1
and Proposition 2.1, we have

Pw(q) =
|S(w)|∏

i=1

P Ji
vi

(q),

where Ji := S(v1)∪· · ·∪S(vi−1) and J1 := ∅. Moreover, the factors P
Ji
vi

(q) are given
by either Eq. (3) or by parts (1)–(3) of Lemma 3.2. Now Pw(q) is 4-palindromic if
the polynomial in Lemma 3.2 part (2) does not appear as one of the factors P

Ji
vi

(q).
Since all other possible choices for P

Ji
vi

(q) are palindromic, we see that Pw(q) is
4-palindromic if and only if it is palindromic. This proves part (1) of Theorem 1.2.

If W also avoids the triangles of the form (3,3, c), then Lemma 3.2 part (2) is
never an option for P

Ji
vi

(q). Hence every 2-palindromic w ∈ W is palindromic. This
completes the proof. �

3.1 Examples

Consider the Coxeter group W with S = {s1, s2, s3, s4} defined by the Dynkin dia-
gram in Fig. 1.

Unlabeled edges are assumed to have label mst = 3 and if there is no edge between
s and t , then mst = 2. Clearly, W avoids all triangle groups in HQ and hence we can
apply Theorem 3.1 to compute Poincaré polynomials.
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Fig. 1 Dynkin diagram of W in
Examples 3.3 and 3.4

Fig. 2 Dynkin diagram of a
HQ-avoiding Coxeter group
with commuting relations

Example 3.3 Let w = s1s2s1s3s2s1s3s2s1s4. Then w is 2-palindromic with |S(w)| =
|D(w)| = 4. The following is a complete Grassmannian factorization:

w = (s1)︸︷︷︸
v1

(s2s1)︸ ︷︷ ︸
v2

(s3s2s1s3s2s1)︸ ︷︷ ︸
v3

(s4)︸︷︷︸
v4

.

The corresponding Poincaré polynomial factorization is

Pw(q) = [2]q [3]q
([7]q + q2[3]q

)[2]q
= (1 + q)

(
1 + q + q2)(1 + q + 2q2 + 2q3 + 2q4 + q5 + q6)(1 + q),

so Pw(q) is palindromic.

Example 3.4 Let w = s2s4s2s4s1s2s4s1s2s4s2. Then w is 2-palindromic with |S(w)| =
|D(w)| = 3. A complete Grassmannian factorization of w is

w = (s2)︸︷︷︸
v1

(s4s2s4)︸ ︷︷ ︸
v2

(s1s2s4s1s2s4s2)︸ ︷︷ ︸
v3

.

The corresponding Poincaré polynomial factorization is

Pw(q) = [2]q [4]q
([8]q + q2[4]q + q4[1]q

)

= (1 + q)
(
1 + q + q2 + q3)(1 + q + 2q2 + 2q3 + 3q4 + 2q5 + q6 + q7).

Note that {s1, s2, s4} generates the triangle group (3,3,4). Since v3 = s1s2s4s1s2s4s2,
we find that w is 3-palindromic but not 4-palindromic.

An example of a HQ-avoiding Coxeter group W with commuting relations is given
by the Dynkin diagram in Fig. 2 where p ≥ 3.

Observe that W also avoids all triangle groups of the form (3,3, c). Hence every
2-palindromic element is palindromic by Theorem 1.2. Moreover, every palindromic
polynomial factors into a product of q-integers. We also remark that W is indecom-
posable with respect to products and free products of Coxeter groups.
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3.2 Enumeration and description of palindromic elements

Theorem 3.1 gives a description of the set of palindromic (resp. 2-palindromic) el-
ements of any HQ-avoiding Coxeter group. Specifically, the palindromic (resp. 2-
palindromic) elements are those with a certain Grassmannian factorization. In this
section we provide some applications of this idea. We start by proving a corollary
of Theorem 3.1 on the finiteness of the number of palindromic elements for all HQ-
avoiding Coxeter groups.

Corollary 3.5 Let (W,S) be a Coxeter group that avoids all triangle groups in HQ.
Then W has a finite number of palindromic elements if and only if mst < ∞ for all
s, t ∈ S and W avoids the triangle group (3,3,3).

Proof Theorem 3.1 part (3) implies that the triangle group (3,3,3) contains an in-
finite number of palindromic elements. Also, if mrs = ∞, then W{r,s} is infinite and
every element is palindromic.

Let m0 denote the largest value of mst for s, t ∈ S. Suppose that W avoids (3,3,3)

and m0 < ∞. Let w ∈ W be palindromic with complete Grassmannian factorization
w = v1 · · ·w|S(w)|. By Theorem 3.1, we find that each factor vi has length at most
m0 + 3, so

�(w) <
∣∣S(w)

∣∣(m0 + 3) ≤ |S|(m0 + 3)

and hence the number of palindromic elements in W is finite. �

Corollary 3.5 also holds if palindromic is replaced by 2-palindromic.
Note that the Grassmannian factorization of an element provided by Theorem 3.1

is not necessarily unique. When mst ≥ 3 for all s �= t , we give a modified factorization
which does not have this problem. To state the modified factorization we need the
following definition.

Definition 3.6 We say a reduced factorization w = u1u2 · · ·ud is separable if S(ui)∩
S(uj ) = ∅ for all i �= j . If no such non-trivial factorization exists, then we say that w

is inseparable.

Given any complete Grassmannian factorization of a palindromic element w =
v1 · · ·v|S(w)|, there is a simple method for constructing a separable factorization.
Let (i1, . . . , id ) denote the subsequence of integers for which �(vij ) = 1. Then
w = u1 · · ·ud is a separable factorization where

uj := vij vij +1 · · ·vij+1−1

and id+1 := |S(w)|+1. We remark that �(v1) = 1 and hence the sequence (i1, . . . , id )

is nonempty. Furthermore, each factor uj is inseparable. For example, let W be de-
fined by the Dynkin diagram in Fig. 1 and w = s4s2s4s2s3s1s3. Then w = u1u2 given
by
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w =
u1︷ ︸︸ ︷

s4︸︷︷︸
v1

s2s4s2︸ ︷︷ ︸
v2

u2︷ ︸︸ ︷
s3︸︷︷︸
v3

s1s3︸︷︷︸
v4

(4)

is a separable factorization. The following corollary follows from Theorem 3.1.

Corollary 3.7 Let W be a Coxeter group with mst ≥ 3 for all s �= t , and let w ∈ W

be palindromic. Then w has a unique separable factorization w = u1 · · ·ud where
each ui is inseparable and palindromic. Moreover, any complete Grassmannian fac-
torization ui = v1 · · ·v|S(ui)| is unique up to choice of v1.

Proof Any element w has a separable factorization w = u1 · · ·ud where each ui

is inseparable. Since S(ui) is distinct and W has no commuting braid relations,
the factorization is unique. If w is palindromic, then every ui is palindromic since
(u1 · · ·ui)(ui+1) is a BP-decomposition with respect to J = S\S(ui).

Let ui = v1 · · ·v|S(ui )| be a complete Grassmannian factorization, and let sj be
the unique element of DL(vj ). Note that v1 = s1. As mentioned above, since ui is
inseparable, we must have |S(vj )| ≥ 2 for j = 2, . . . , |S(ui)|. Indeed, if S(vj ) =
{sj } then sj is the unique right descent of v1 · · ·vj , since sj /∈ S(v1 · · ·vj−1). But by
Lemma 2.3, (v1 · · ·vj )(vj+1 · · ·v|S(ui)|) is a BP decomposition, so

S(vj+1 . . . v|S(ui )|) ∩ S(v1 · · ·vj ) ⊂ {sj }.
Thus (v1 · · ·vj−1)(vj · · ·v|S(ui )|) is a separable factorization, which is a contradiction.

We now show that sj is the unique left descent of vj · · ·v|S(ui )|, for j ≥ 2. In-
deed, looking ahead to Lemma 5.3, and using the fact that |S(vj )| ≥ 2, we see that
DL(vj · · ·v|S(ui)|) is a subset of S(vj ) \ S(v1 · · ·vj−1) = {sj }. Hence the sequence
(s2, . . . , s|S(ui )|) is uniquely determined given the choice of v1 = s1, and the vj ’s are
uniquely determined from the corresponding parabolic decomposition. �

Note that there are at most two complete Grassmannian factorizations of each ui

in Corollary 3.7. For example, taking u1 in Eq. (4), we have

u1 = s4︸︷︷︸
v1

s2s4s2︸ ︷︷ ︸
v2

= s2︸︷︷︸
v1

s4s2s4︸ ︷︷ ︸
v2

as the only two complete Grassmannian factorizations.
Corollary 3.7 implies that to count the number of palindromic elements of W ,

it is sufficient to enumerate elements of W which are inseparable and palindromic.
When mst is constant we compute an exponential generating series for the number
of palindromic elements. Specifically, let W(m,n) denote the uniform Coxeter group
such that |S| = n and mst = m for all s �= t . Uniform Coxeter groups satisfy the
property that every 2-palindromic element w is palindromic by Theorem 3.1. Define
the generating series

Φm(q, t) :=
∑

n,k≥0

Pn,k

qktn

n!



670 J Algebr Comb (2014) 39:659–681

where Pn,k denotes the number of palindromic w ∈ W(m,n) of length k. In the case
that m = 2, we have W(2, n) � (Z/2Z)n with every element palindromic, so Pn,k =(
n
k

)
. Hence the generating series

Φ2(q, t) = exp(qt + t).

For m ≥ 3, define

φm(q, t) :=
∑

n,k≥1

In,k

qktn

n!
where In,k denotes the number of palindromic w ∈ W(m,n) of length k that are
inseparable with |S(w)| = n. Note that Φm and φm are exponential in t and ordinary
in q . Corollary 3.7 implies

Proposition 3.8 For any 3 ≤ m ≤ ∞, the series

Φm(q, t) = exp(t)

1 − φm(q, t)
.

The following proposition completes the calculation.

Proposition 3.9 The exponential generating series for the number of inseparable
palindromic elements in W(m,n) is

φm(q, t) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

(2q−2q3)t−(3q3+q5)t2

2−2q2−4q2t
for m = 3,

2qt−3qmt2−qm+2[m−3]q t3

2−2q2t ([m−2]q+qm−3)
for 4 ≤ m < ∞,

qt−q2t

1−q−q2t
for m = ∞.

(5)

Proof By Theorem 3.1, |DR(w)| ≤ 2 for any palindromic w ∈ W(m,n). Hence we
can partition the set of inseparable palindromic elements into those with |DR(w)| =
1,2 respectively. For notation, let An,k be the number of inseparable palindromic
w ∈ W(m,n) of length k with |S(w)| = n and DR(w) = 1. Let Bn,k be the number
of those same elements with DR(w) = 2. We have In,k = An,k + Bn,k . Consider the
polynomials

An(q) := 1

n!
∑

k≥1

An,kq
k and Bn(q) := 1

n!
∑

k≥1

Bn,kq
k.

If n = 1, then

A1(q) = q and B1(q) = 0.

If 3 ≤ m < ∞, then for n = 2, the inseparable elements have the form s1s2s1 · · ·
or s2s1s2 · · · where the length is at least 3. There is also a unique longest element
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w0 := s1s2 · · ·︸ ︷︷ ︸
m

with |DR(w0)| = 2. This gives

A2(q) = q3[m − 3]q and B2(q) = qm

2
.

For the remainder of the proof, let w = v1 · · ·v|S(w)| ∈ W(m,n) be a complete Grass-
mannian factorization. We first consider the case when m = 3. If w is palindromic
and inseparable, then by Theorem 3.1, each vi is a spiral word as in Theorem 3.1
part 3. In particular, for each even length, there is a unique vi of up to S3 permuta-
tion symmetry on the generators {r, s, t}. Moreover, if |S(w)| ≥ 3, then |DL(w)| = 2.
Thus for all n ≥ 3, we have An(q) = 0 and

Bn(q) =
(

2q2

1 − q2

)
Bn−1(q) = q3

2

(
2q2

1 − q2

)n−2

.

Hence

φ3(q, t) = qt + q3t2

2
+ q5

1 − q2

∑

n≥3

(
2q2

1 − q2

)n−3

tn.

This proves the first equation in (5).
Now suppose 4 ≤ m < ∞. In this case, if w is palindromic and inseparable,

then Theorem 3.1 implies |S(vi)| ≤ 2. Hence each factor vi has a reduced ex-
pression stst · · · where t ∈ DL(v1 · · ·vi−1). In particular, when constructing w =
v1 · · ·v|S(w)|, there are exactly twice as many choices for vi if DL(v1 · · ·vi−1) = 2
than if DL(v1 · · ·vi−1) = 1. This yields, for n ≥ 3, the polynomials An(q) and Bn(q)

satisfy the first order recurrence

An(q) = q2[m − 3]q
(
An−1(q) + 2Bn−1(q)

)
,

Bn(q) = qm−1(An−1(q) + 2Bn−1(q)
)
.

This implies that

[
An(q)

Bn(q)

]
=

[
q2[m − 3]q 2q2[m − 3]q

qm−1 2qm−1

]n−2 [
A2(q)

B2(q)

]

= q5[m − 2]q
(
q2[m − 3]q + 2qm−1)n−3

[[m − 3]q
qm−3

]

= q7[m − 2]q
([m − 2]q + qm−2)n−3

[[m − 3]q
qm−3

]
.

Thus

φm(q, t) = qt +
(

q3[m − 3]q + qm

2

)
t2 + q7[m − 2]2

∑

n≥3

([m − 2]q + qm−3)n−3
tn

which proves the second equation in (5).
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Finally, we compute the exponential generating series for the uniform Coxeter
group W(∞, n) by taking the limit of φm in the second equation of (5) as m → ∞.
This is equivalent to taking

qm → 0 and [m]q → 1

1 − q

which yields the third equation in (5). �

The following equations are the first few terms in the Taylor expansion of Φm(q, t)

for m = 3,4,∞. These calculations were computed using the combinat package for
Mupad.

Φ3(q, t) =1 + (1 + q)t + (
1 + 2q + 2q2 + q3) t2

2

+ (
1 + 3q + 6q2 + 9q3 + 6q4 + 6q5 + 6q7 + O

(
q9)) t3

6

+ (
1 + 4q + 12q2 + 30q3 + 48q4 + 60q5 + 54q6 + O

(
q7)) t4

24
+ O

(
t5),

Φ4(q, t) =1 + (1 + q)t + (
1 + 2q + 2q2 + 2q3 + q4) t2

2

+ (
1 + 3q + 6q2 + 12q3 + 15q4 + 12q5 + 12q6 + 6q7) t3

6

+ (
1 + 4q + 12q2 + 36q3 + 78q4 + 120q5

+ 156q6 + 168q7 + 150q8 + 120q9 + 48q10) t4

24
+ O

(
t5),

Φ∞(q, t) =1 + (1 + q)t + (
1 + 2q + 2q2 + 2q3 + 2q4 + 2q5 + O

(
q6)) t2

2

+ (
1 + 3q + 6q2 + 12q3 + 18q4 + 24q5 + O

(
q6)) t3

6

+ (
1 + 4q + 12q2 + 36q3 + 84q4 + 156q5 + O

(
q6)) t4

24
+ O

(
t5).

By evaluating Φm(q, t) at q = 1, we can recover the total number of palindromic
elements in W(m,n). By Corollary 3.5, this value is finite only when 4 ≤ m < ∞.
We list these values for 4 ≤ m ≤ 8 and 1 ≤ n ≤ 7 in Fig. 3.

4 Properties of triangle groups in HQ

We discuss a few properties of triangle groups in HQ. The first property is that there
are k-palindromic Poincaré polynomials which are not palindromic for large k:
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m�n 1 2 3 4 5 6 7
4 2 8 67 893 15596 330082 8165963
5 2 10 115 2057 47356 1314292 42584795
6 2 12 175 3893 110436 3768982 150113447
7 2 14 247 6545 219956 8884312 418725119
8 2 16 331 10157 393916 18351562 997538291

Fig. 3 Number of palindromic elements in W(m,n)

Proposition 4.1 Let W be the triangle group (2, b, c) with S = {r, s, t} such that

(rs)2 = (rt)b = (st)c = e

where b, c ≥ 3 and c is finite. Then there exist elements w ∈ W which are (c − 2)-
palindromic but not palindromic.

Proof Consider w = uv where

u−1 = stst . . . and v = rtstst . . . (6)

with �(u) < c and �(v) ≤ c. Calculation of the polynomial Pw(q) reduces to deter-
mining the cardinality of the sets

Mk := {
w′ ≤ w

∣∣ �
(
w′) = k

}
.

First we partition

Mk = (Mk ∩ W{s,t}) � (Mk ∩ W\W{s,t}).

If w′ ∈ W{s,t}, then w′ has the form sts · · · or tst · · · . Hence

|Mk ∩ W{s,t}| =

⎧
⎪⎨

⎪⎩

2 if k < min{c, �(w) − 2},
1 if k = c or �(w) − 1,

0 if k > c.

If w′ ∈ W\W{s,t}, then it is uniquely determined by its parabolic decomposition w′ =
u′v′ where u′ ≤ u,v′ ≤ v and v′ is non-trivial in W {s,t}. Hence

W\W{s,t} � [e,u] × ([r, v] ∩ W {s,t}).

This gives

|Mk ∩ W\W{s,t}| =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

2k − 1 if k ≤ min{�(u), �(v)},
2�(v) if �(v) < k ≤ �(u),

2�(u) if �(u) < k ≤ �(v),

2�(w) − 2k + 1 if k ≥ max{�(u), �(v)}.
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In the case that �(u) = �(v) = c − 1, we have

Pw(q) = [
�(w) + 1

]
q

+ qc+1 +
c∑

k=1

2qk
[
�(w) − 2k + 1

]
q
.

In particular, if we write Pw(q) = ∑
aiq

i , then we have

ai = a�(w)−i = 2i + 1

for i ≤ c − 3 and

ac−2 = 2c − 1, ac = 2c − 2.

Hence Pw(q) is (c − 2)-palindromic but not palindromic. For example, if we take
c = 4 and w = uv = (sts)(rts), then

[e,w] ∩ W{s,t} = {e, s, t, st, ts, tst, sts, stst}
and

[e,w] ∩ W\W{s,t} = [e,u] · ([r, v] ∩ W {s,t}) = {e, s, t, st, ts, sts} · {r, rt, rts}.

In this case, the Poincaré polynomial Pw(q) = 1 + 3q + 5q2 + 7q3 + 6q4 + 3q5 + q6

is 2-palindromic but not 3-palindromic. �

It is tempting to conjecture that, for the triangle groups (2, b, c) as in Proposi-
tion 4.1, all (c − 1)-palindromic elements are palindromic. However, for triangle
group (2,3,5) (Coxeter type H3 with c = 5) there is a unique length 14 element
which is 4-palindromic but not palindromic given by w = tsrtsrtsrtsrtr .

Theorem 3.1 states that any Grassmannian factorization of a 2-palindromic ele-
ment w ∈ W is also a BP-decomposition if W avoids triangles in HQ. This statement
is not true for Coxeter groups which contain triangles in HQ.

Proposition 4.2 Let W be a Coxeter group. Then W avoids all triangle groups in
HQ if and only if every Grassmannian factorization w = uv where w is palindromic
is a BP-decomposition.

Proof By Theorem 3.1, it suffices to show that for triangle groups (2, b, c) as in
Proposition 4.1 there are Grassmannian factorizations w = uv of palindromic w

which are not BP-decompositions. Consider w = uv as in Eq. (6) with �(u) = 2
and �(v) = c = mst . It is easy to check that w is palindromic and that w = uv is a
Grassmannian factorization with respect to J = {s, t} but not a BP-decomposition. �

5 Descent sets of triangle avoiding groups

In this section, we prove several basic properties of Coxeter groups which avoid tri-
angle groups in HQ. We begin with a lemma that holds for all Coxeter groups:
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Lemma 5.1 Let W be a Coxeter group and u ∈ W . If s /∈ DL(u), then DL(su) \ {s}
consists of the elements t ∈ DL(u) such that u has a reduced factorization starting
with a braid tsts · · · of length mst − 1. (If mst = 2 then this braid consists of only
one element.) In other words,

DL(su) = {s} ∪ {
t ∈ DL(u) : u = u0u1, u0 ∈ W{s,t}, u1 ∈ W {s,t}, �(u0) = mst − 1

}
.

Proof Let J = DL(su). Then by [6], WJ is a finite Coxeter group and su has a
reduced factorization beginning with the maximal element w0 of WJ . If t is an ele-
ment of J \ {s}, then mst < ∞ and w0 has a reduced decomposition starting with the
longest element of W{s,t}. �

We now consider Coxeter groups which avoid triangle groups in HQ.

Lemma 5.2 If W is a Coxeter group which avoids all triangle groups in HQ, then
the only finite parabolic subgroups of W are products of rank 2 Coxeter groups.

In other words, if J ⊂ S is such that WJ is finite, then J can be written as a disjoint
union

J =
⊔

i

Ji,

where |Ji | ≤ 2 for all i, and mst = 2 if s ∈ Ji , t ∈ Jj , i �= j .

Proof Using the classification of finite Coxeter groups, we see that every finite irre-
ducible Coxeter group of rank ≥ 3 contains a triangle group in HQ. �

If J = DL(w), then WJ is a finite Coxeter group. In particular, Lemma 5.2 applies
to the parabolic subgroups generated by descent sets of HQ-avoiding Coxeter groups.
The following lemma is the main result of this section.

Lemma 5.3 Let (W,S) be a Coxeter group which avoids triangle groups in HQ. Let
r, s ∈ S such that 3 ≤ mrs ≤ ∞, and suppose u is an element of W such that (rs)u is
a reduced factorization. Then

DL(rsu) \ {r, s} = {
t ∈ DL(u) : mrt = mst = 2

}
.

Proof The proposition is obviously true if u = e. We proceed by induction on the
length of u. Let J = DL(su), and write J = ⊔

Ji as in Lemma 5.2. We can further
assume that if Ji = {x, y}, then mxy ≥ 3, and that s ∈ J0.

Now if t ∈ DL(rsu) \ {r, s}, then by Lemma 5.1 we must have mrt < ∞ and rsu

must have a reduced decomposition starting the longest element in W{r,t}. If t /∈ J0
then mst = 2. Since W avoids triangle groups in HQ, we have mrt = 2 as well.

This leaves the possibility that t ∈ J0, in which case mst ≥ 3. Once again, since
W avoids triangle groups in HQ, we conclude that mrt ≥ 3. Thus rsu has a reduced
factorization rsu = (rtr)u′, where �(u′) = �(u)−1. Now tru′ = su, so s ∈ DL(tru′).
But by induction, this implies that mts = mrs = 2, which is a contradiction. Hence
t /∈ J0. �
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6 Proof of Theorem 3.1

We now prove Theorem 3.1. The following assumptions are fixed for the remainder
of the section. Let W be a Coxeter group that avoids all triangle groups in HQ. Let
w ∈ W be 2-palindromic with a Grassmannian factorization w = uv with respect to
J = S(u). By Lemma 2.6 we have

∣∣u · D(v) ∩ D(w)
∣∣ = 1. (7)

This implies
∣∣WJ ∩ D(v)

∣∣ = 1, (8)

and in particular, |DR(v)| = 1. Let z ∈ DR(v) denote this unique simple reflection.
The element vz is the unique element in WJ ∩ D(v).

We divide the proof into three steps. The first step is to prove that S(v) has at most
three elements. Second, we prove the characterization of v when S(v) has exactly
three elements. For the last step, we show that w = uv is BP-decomposition. We
begin with the following technical lemma.

Lemma 6.1 Let s1, . . . , sk be the longest sequence of distinct simple reflections such
that v has a reduced decomposition

v = s1 · · · skv′,

and for all j < k, msj sj+1 ≥ 3. For any 1 ≤ j ≤ k, define the set Ij := {s1, . . . , sj }.
Then:

(1) sj · · · skv′ ∈ WIj−1 for all j ≤ k, and
(2) S(v′) ⊆ {s1, . . . , sk}.

Proof Clearly the lemma is true if �(v) = 1 and hence we assume that �(v) ≥ 2.
Observe that k ≥ 2, otherwise v /∈ WJ . For any j ≤ k, let

v = vjv
′
j

be a parabolic decomposition with respect to WIj
. It is easy to see that v1 = s1 and

hence v′
1 = s2 · · · skv′ ∈ WI1 .

Now let j ≥ 2 and suppose that �(vj ) > j . Then there exists s ∈ DR(vj ) such that

S(vj s) = S(vj ).

By Lemma 5.3, we have the left descent sets

DL

(
vj sv

′
j

) = DL(vj s) ∪ {
t ∈ DL

(
v′
j

) ∣∣ mtsi = 2 for i ≤ j
}

and

DL(v) = DL

(
vjv

′
j

) = DL(vj ) ∪ {
t ∈ DL

(
v′
j

) ∣∣ mtsi = 2 for i ≤ j
}
.
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Since S(vj s) = S(vj ), the descent sets above are equal. Hence vj sv
′
j ∈ WJ ∩D(v). If

j < k, then v′
j �= e and consequently vj sv

′
j �= vz, contradicting Eq. (8). Thus �(vj ) =

j which implies that vj = s1 · · · sj and v′
j = sj+1 · · · skv′ ∈ WIj . This proves part (1)

of the lemma.
For part (2), suppose that S(v′) � {s1, . . . , sk}. Then |S(v)| > k and v′

k �= e. We
get vk = s1 · · · sk and

DL

(
v′
k

) ∩ {s1, . . . , sk} = ∅
since v′

k ∈ WIk . By the maximality of k, we have msk,r = 2 for all r ∈ DL(v′
k). We

claim that

DL

(
s1 · · · sk−1v

′) = DL(v).

Indeed, if k ≥ 3, this follows from Lemma 5.3. Otherwise, if k = 2, then

ms1s2 = ms1r = ∞
since W avoids all triangle groups in HQ. This proves the claim when k = 2. In either
case we have

s1 · · · sk−1v
′ ∈ WJ ∩ D(v)

which contradicts Eq. (8). Therefore S(v′) ⊆ {s1, . . . , sk}. �

The following proposition completes the first step of in the proof of Theorem 3.1.

Proposition 6.2 We have that |S(v)| ≤ 3. Furthermore, if |S(v)| = 3, then S(v) gen-
erates a triangle group (a, b, c) with a, b, c ≥ 3.

Proof Suppose |S(v)| ≥ 4 and let v = s1 · · · skv′ as in Lemma 6.1. We first show by
induction on j that

(1) DL(sj · · · skv′) = {sj },
(2) msisj = 2 for i ∈ {1, . . . , j − 2}.

Indeed, part (1) is trivial for j = k. Suppose part (1) is true for some j ≤ k. Now by
Lemma 6.1, s1 · · · sj−2sj · · · skv′ is reduced, and therefore is not an element of WJ .
So by Lemma 5.3, we have sj ∈ DL(s1 · · · sj−2sj · · · skv′). Moreover, if j ≥ 4, then
msisj = 2 for all 1 ≤ i ≤ j − 2. If j = 3, then s1s3 · · · skv′ has a reduced expression
beginning with a braid s1s3s1 · · · of length ms1s3 < ∞. Since s1 /∈ DL(s4 · · · skv′), we
conclude that ms1s3 = 2. Hence part (2) holds for j .

Now suppose part (2) holds for all j > j0. Since |DL(v)| = 1, we have sj /∈
DL(sj0 · · · skv′) for any j > j0. Thus part (1) holds for j0. Hence (1) and (2) hold
for all j .

Now part (2), combined with the HQ-avoiding condition, implies that

msisj =
{

∞ |i − j | = 1,

2 |i − j | ≥ 2.



678 J Algebr Comb (2014) 39:659–681

In other words, if |S(v)| ≥ 4 then WS(v) is defined entirely by commuting relations.
We show that this hypothesis implies that |S(v)| ≤ 2. Indeed, suppose |S(v)| ≥ 3,
and let u = u1u0, where u1 ∈ S(v)W and u0 ∈ WS(v). Here the set S(v)W denotes the
minimal length representatives of the left cosets W/WS(v). By Eq. (7), the product
u0s2 · · · skv′ must not be reduced. We conclude that DR(u0) ∩ DL(s2 · · · skv′) = {s2}
since for any si , sj ∈ S(u0) ∪ S(v) = S(v) we have msisj = 2 or ∞. Moreover, since
DL(s1s3 · · · skv′) = {s1, s3}, the same argument shows that s3 ∈ DR(u0). But now we
have {s2, s3} ⊆ DR(u0) which implies that the ms2,s3 is finite. This contradicts the
fact that ms2,s3 = ∞. Hence, |S(v)| ≤ 3.

Finally, if |S(v)| = 3, then by Lemma 6.1, ms1s2,ms2s3 ≥ 3. If ms1s3 = 2, then the
HQ-avoiding condition implies ms1s2 = ms2s3 = ∞. We can now apply the previous
argument as above to show that {s2, s3} ⊆ DR(u0) and hence ms2,s3 is finite. Thus we
must have ms1s3 ≥ 3. This completes the proof. �

For the next step in the proof of Theorem 3.1, suppose that |S(v)| = 3 with
S(v) = {r, s, t}. By Proposition 6.2, we have mrs,mrt ,mst ≥ 3. Consider the reduced
factorization v = xy where

x−1 := tsrtsr · · ·
is the largest spiral word prefix of v. In other words, we can write

v = xy = (· · · rstrst) · y. (9)

Define x′ := xtst . It is easy to see that �(x′) = �(x) − 1 and that x′ equals x with the
second to last reflection s removed. For any 0 ≤ k ≤ �(x′) define a length k suffix x′

k

of x′ by

x′
k := · · · rstrt︸ ︷︷ ︸

k

.

Lemma 6.3 For any 0 ≤ k ≤ �(x′), the following are true:

(1) The product x′
ky is a reduced factorization.

(2) If k is even, then |DL(x′
ky)| = 1. If k is odd, then |DL(x′

ky)| ≤ 2.
(3) If |DL(x′

ky)| = 2 and k ≥ 5, then |DL(x′
k−2y)| = 2.

Proof If k = 0, then r, t /∈ DL(y) since x is a maximal length spiral word. This im-
plies that DL(y) = {s}. If k = 1, then ty is reduced and DL(ty) ⊆ {s, t}. Moreover,
rty is reduced and by Lemma 5.3, we have DL(rty) = {r} since r /∈ DL(y). This
proves the lemma for k ≤ 2.

We proceed with the proof by induction on k. Suppose k ≥ 3. Without loss of
generality, we can assume r ∈ DL(x′

k), so that s is the first element of x′
k−1. We

first consider the case where k is odd. Then by the inductive assumption, we have
DL(x′

k−1y) = {s}. Hence

x′
ky = rx′

k−1y
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is reduced and DL(x′
ky) ⊆ {r, s}. If k is even, then s and t are the first two elements

of x′
k−1; in particular, r is not one of the first two elements. Therefore

DL

(
x′
k−2y

) = {t} and DL

(
x′
k−1y

) ⊆ {s, t}.

So x′
ky is reduced and DL(x′

ky) = {r}. This proves parts (1) and (2) of the lemma.
To prove part (3), suppose that k ≥ 5 is odd with

t ∈ DL

(
x′
k−2y

) ⊆ {t, r} and r ∈ DL

(
x′
ky

) ⊆ {r, s}.

If |DL(x′
ky)| = 2, then r ∈ DL(x′

k−2y) since 3 ≤ mrs < ∞. Hence |DL(x′
k−2y)| = 2.

�

One immediate consequence of Lemma 6.3 is that x′y is a reduced factorization
and that if �(x′) is even, then x′y ∈ WJ ∩ D(v) which is a contradiction to Eq. (8).
Hence �(x′) is odd (i.e. �(x) is even). The following lemma is a preliminary charac-
terization of v.

Lemma 6.4 The spiral word x satisfies one of the following conditions:

(1) mrt = 3 and �(x) = 4.
(2) mrt = mrs = 3 and �(x) = 6.
(3) mrt = mrs = mst = 3 and �(x) ≥ 8.

Proof Since x′y is reduced, we have x′y /∈ WJ and �(x′) ≥ 3. Furthermore, by
Lemma 6.3 part (3), |DL(x′

ky)| = 2 for all k ≥ 3. In particular the following state-
ments are true:

(1) For k = 3, we have |DL(trty)| = 2 if and only if mrt = 3.
(2) For k = 5, we have |DL(rstrty)| = 2 if and only if mrt = mrs = 3.
(3) For k = 7, we have |DL(strstrty)| = 2 if and only if mrt = mrs = mst = 3.

This completes the proof. �

Now we consider the reduced factorization

v = xy = (· · · rstrst) · y =
x︷ ︸︸ ︷

(· · · rstr)(st
y︷ ︸︸ ︷

st · · ·︸ ︷︷ ︸
length k

) · ȳ, (10)

where k is the length of the longest possible prefix of sty the form stst · · · .

Lemma 6.5 With v as Eq. (10), the following are true:

(1) ȳ = e.
(2) k = mst − 1.



680 J Algebr Comb (2014) 39:659–681

Proof Suppose that ȳ �= e. Then DL(ȳ) = {r} by the maximality of k. If k = 2, then
x is not a maximal length spiral, and hence ȳ = e. Now assume that k ≥ 3 and let
v = x̄z̄ȳ be the reduced factorization given in (10) where z̄ ∈ W{s,t} is of length k.
Without loss of generality, let t ∈ DR(z̄) and define z̄′ := z̄t . Since k ≥ 3, we have
�(z̄′) ≥ 2 and thus x̄z̄′ȳ is a reduced factorization. Likewise, since �(z̄′) ≥ 2 and
DR(x̄) = {r}, we have x̄z̄′ȳ ∈ WJ and hence x̄z̄′ȳ ∈ WJ ∩ D(v). But this contradicts
Eq. (8). Therefore ȳ = e and part (1) of the lemma is proved.

Since �(x) is even, we have k < mst , otherwise v /∈ WJ . This completes the proof
in the case of x as in Lemma 6.4 part (3). Now suppose that k ≤ mst −2. If x satisfies
the condition in Lemma 6.4 part (1), then J = S(w) \ {t} and we can write

v = tr stst · · ·︸ ︷︷ ︸
length k

= trz̄.

But then t z̄ ∈ WJ ∩ D(v) which contradicts Eq. (8). If x satisfies the condition in
Lemma 6.4 part (2), then J = S(w) \ {r} and

v = rstr stst · · ·︸ ︷︷ ︸
length k

= rstrz̄.

But then rst z̄ ∈ WJ ∩ D(v) which also contradicts Eq. (8). Hence k > mst − 2 and
part (2) of the lemma is proved. �

It is easy to see that Lemmas 6.3, 6.4 and 6.5 prove the characterization v when
|S(v)| = 3 in Theorem 3.1.

The final step in the proof is to show that w = uv is a BP-decomposition. In this
step, we do not assume that |S(v)| = 3.

Lemma 6.6 For any s0 ∈ S(v) ∩ J , there exists v′′ ∈ WJ of length �(v′′) = �(v) − 2
such that s0v

′′ ∈ D(v).

Proof If |S(v)| ≤ 2, then the lemma is obvious. If |S(v)| = 3, then we can write
v = xy as in Eq. (9) with the notational change that

x = rstrst · · · .

In other words, we let r, s, t denote the first three simple reflections appearing in x,
rather than the last three. We want to find v′′ for s0 ∈ S(v)∩J = {s, t}. Note that with
the change in notation, we have mrs = 3. Recall the definition of x′ given after Eq. (9).
By Lemma 6.3 part (1) we find that x′y is reduced and hence x′y ∈ D(v) ∩ W {r,s}.
Thus we have a reduced factorization

x′y = (srs)y′

for some y′. For s0 = s, we set v′′ = rsy′. Then v′′ ∈ WJ since DL(v′′) = {r}.
We now find a v′′ for s0 = t . Consider the reduced factorization

v = (rs)
(
ty′′).
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Clearly r /∈ DL(ty′′), otherwise v /∈ WJ . Hence rty′′ ∈ D(v) and rty′′ /∈ WJ . This
implies that t ∈ DL(rty′′) and we can write a reduced factorization

rty′′ = (trt)y′′′

for some y′′′. We set v′′ = rty′′′ for s0 = t . Since DL(v′′) = {r}, we get v′′ ∈ WJ .
This completes the proof. �

If s0 ∈ S(v) ∩ J and v′′ ∈ WJ , such that s0v
′′ ∈ D(v), then s0 ∈ DR(u). Otherwise

us0v
′′ ∈ u · D(v) ∩ D(w) which contradicts Eq. (7). Applying Lemma 2.2, we find

that w = uv is a BP-decomposition. This completes the proof of Theorem 3.1.
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