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Abstract Given a non-singular quadratic form q of maximal Witt index on V :=
V (2n + 1,F), let Δ be the building of type Bn formed by the subspaces of V totally
singular for q and, for 1 ≤ k ≤ n, let Δk be the k-grassmannian of Δ. Let εk be
the embedding of Δk into PG(

∧k
V ) mapping every point 〈v1, v2, . . . , vk〉 of Δk to

the point 〈v1 ∧ v2 ∧ · · · ∧ vk〉 of PG(
∧k

V ). It is known that if char(F) �= 2 then
dim(εk) = (2n+1

k

)
. In this paper we give a new very easy proof of this fact. We also

prove that if char(F) = 2 then dim(εk) = (2n+1
k

) − (2n+1
k−2

)
. As a consequence, when

1 < k < n and char(F) = 2 the embedding εk is not universal. Finally, we prove that
if F is a perfect field of characteristic p > 2 or a number field, n > k and k = 2 or 3,
then εk is universal.

Keywords Orthogonal grassmannians · Weyl modules · Veronesean embeddings ·
Orthogonal groups

1 Introduction

1.1 Definitions and notation

Let V := V (2n + 1,F) for a field F and let q be a non-singular quadratic form of
V of Witt index n. Let Δ be the building of type Bn where the elements of type
k = 1,2, . . . , n are the k-dimensional subspaces of V totally singular for q .
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Let Gk and Δk be the k-grassmannians of PG(V ) and Δ respectively. We recall that
Gk is a point-line geometry where the points are the k-dimensional subspaces of V

and the lines are the sets

lX,Y := {
Z | X ⊂ Z ⊂ Y, dim(Z) = k

}

for subspaces X and Y of V with dim(X) = k − 1, dim(Y ) = k + 1 and X ⊂ Y . The
grassmannian Δk is a subgeometry of Gk . The points of Δk are the k-subspaces of
V that are totally singular for q . When k < n the lines of Δk are the lines lX,Y of Gk

with Y totally singular. When k = n the lines of Δn are the sets

lX := {
Z | X ⊂ Z ⊂ X⊥, dim(Z) = n, Z totally singular

}

where X is a totally singular (n − 1)-subspace of V and X⊥ is the subspace orthog-
onal to X with respect to q . Note that the points of lX form a conic in the projective
plane PG(X⊥/X). The geometry Δn is often called the dual of Δ1. The latter is the
polar space associated to the building Δ.

Let Wk := ∧k
V . The natural projective embedding ek : Gk → PG(Wk) of Gk

maps every k-subspace 〈v1, v2, . . . , vk〉 of V to the point 〈v1 ∧ v2 ∧ · · · ∧ vk〉 of
PG(Wk). Let εk := ek|Δk

be the restriction of ek to Δk . When k < n the mapping εk

is a projective embedding of Δk into the subspace 〈εk(Δk)〉 of PG(Wk) spanned by
εk(Δk). We call εk the Grassmann embedding of Δk .

If k = n then εn maps lines of Δn onto non-singular conics of PG(Wn). So, εn is
not a projective embedding. Indeed a projective embedding of a point-line geometry
Γ into the projective space PG(W) of a vector space W is an injective mapping ε

from the point-set of Γ to the set of points of PG(W) such that ε maps every line of
Γ surjectively onto a line of PG(W) and ε(Γ ) spans PG(W) (see [19], for instance).
The dimension of W is taken as the (vector) dimension dim(ε) of ε. Borrowing a
word from [22], we say that an injective mapping ε from the point set of Γ to the set
of points of PG(W) is a veronesean embedding if it maps every line of Γ onto a non-
singular conic of PG(W) and ε(Γ ) spans PG(W). (Of course, the underlying division
ring of W is assumed to be commutative.) We put dim(ε) = dim(W), as for projective
embeddings. With this terminology, εn is a veronesean embedding of Δn. We call it
the Grassmann veronesean embedding of Δn, also the Grassmann embedding of Δn,
for short. According to the previous conventions, dim(εn) := dim(〈εn(Δn)〉).

We recall that Δn admits a projective embedding, namely the spin embedding. We
shall denote it by the symbol εspin. The embedding εspin is hosted by the so-called spin
module, namely the Weyl module V (ωn) (see below). Note that dim(V (ωn)) = 2n.
Hence dim(εspin) = 2n.

Henceforth G := SO(2n+1,F) is the stabilizer of the form q in SL(V ) = SL(2n+
1,F). The group G also acts on Wk , according to the following rule:

g(v1 ∧ · · · ∧ vk) = g(v1) ∧ · · · ∧ g(vk) for g ∈ G and v1, . . . , vk ∈ V .

Note that SO(2n+ 1,F) = PSO(2n+ 1,F), namely G is the adjoint Chevalley group
of type Bn defined over F. The universal Chevalley group of type Bn is the spin group
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G̃ = Spin(2n + 1,F). It acts faithfully on V (ωn). If char(F) = 2 then G̃ = G. On the
other hand, if char(F) �= 2 then G̃ = 2·G, a non-split central extension of G by a
group of order two.

Finally, we fix some notation for Weyl modules. Let ω1,ω2, . . . ,ωn be the funda-
mental dominant weights for the root system of type Bn, numbered in the usual way
(see the picture at the beginning of this introduction). For a positive integral combi-
nation λ of ω1, . . . ,ωn, we denote by V (λ) the Weyl module over F with λ as the
highest weight. The group G̃ acts on V (λ). If its action is unfaithful then G̃ induces
G on V (λ), namely V (λ) is a G-module. On the other hand, if G̃ acts faithfully
on V (λ) and G̃ �= G then V (λ) is a G̃-module but not a G-module. For instance,
if char(F) �= 2 then V (ωn) is a G̃-module but not a G-module. On the other hand,
V (ω1),V (ω2), . . . , V (ωn−1) and V (2ωn) are G-modules.

Throughout this paper λk := ωk for k = 1,2, . . . , n − 1 and λn = 2ωn. Note that
dim(V (λk)) = (2n+1

k

)
, as one can see by applying the Weyl dimension formula (see

[18, 24.3], for instance).

1.2 Dimensions

The G-module 〈εk(Δk)〉 is a homomorphic image of V (λk) (see [12]; also Blok
[3, Sect. 9]). We say that V (λk) hosts εk (also that εk lives in V (λk)) if 〈εk(Δk)〉 ∼=
V (λk) (isomorphism of G-modules). Equivalently, dim(εk) = (2n+1

k

)
, namely εk(Δk)

spans Wk .
When char(F) �= 2 the G-module V (λk) is irreducible, hence 〈εk(Δk)〉 = V (λk)

(see [12]; also Blok [3, Sect. 9]). We state this fact as a theorem.

Theorem 1.1 Let char(F) �= 2. Then dim(εk) = (2n+1
k

)
. In other words, V (λk)

hosts εk .

In Sect. 2 we shall give a different and very easy proof of Theorem 1.1, relying
only on elementary properties of quadratic forms in odd characteristic, without asking
the irreducibility of V (λk) for help.

By contrast, when char(F) = 2 the following holds:

Theorem 1.2 Let char(F) = 2. Then dim(εk) = (2n+1
k

) − (2n+1
k−2

)
, where, if k = 1, we

adopt the convention that
(2n+1

−1

) = 0.

We shall prove this theorem in Sect. 3.3, obtaining it as a consequence of a more
detailed statement valid when F is perfect (see below, Theorem 1.3). Before stating
the latter result we must recall a few facts on symplectic grassmannians and their
natural embeddings.

Put V ′ := V (2n,F), let Δsp be the building of type Cn associated to the symplectic
group Sp(2n,F) in its natural action on V ′ and, for k = 1,2, . . . , n, let Δ

sp
k be the

k-grassmannian of Δsp . Then Δ
sp
k is a subgeometry of the k-grassmannian G′

k of

PG(V ′). Put W ′
k := ∧k

V ′ and let e′
k : G′

k → PG(W ′
k) be the natural embedding of G′

k ,
sending every totally isotropic subspace 〈v1, . . . , vk〉 of V ′ to the point 〈v1 ∧· · ·∧vk〉
of PG(W ′

k). Let ε
sp
k := e′

k|Δsp
k

be the restriction of e′
k to Δ

sp
k . Then ε

sp
k is a projective
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embedding of Δ
sp
k , called the natural or Grassmann embedding of Δ

sp
k . It is well

known that dim(ε
sp
k ) = (2n

k

) − ( 2n
k−2

)
.

Let now char(F) = 2. If moreover F is perfect then Δ ∼= Δsp . Indeed, denoted
by N0 the nucleus of the quadratic form q , namely the radical of the bilinear form
associated to q , the projection from V to V/N0 ∼= V ′ induces an isomorphism from
Δ1 to Δ

sp

1 , which can be regarded as an isomorphism from Δ to Δsp and immediately
induces an isomorphism from Δk to Δ

sp
k for every k > 1. Thus, both embeddings εk

and ε
sp
k can be considered for Δk .

Let k > 1. Given an element X of Δ of type k − 1, let St(X) be its upper residue,
formed by the elements of Δ of type k, k + 1, . . . , n that contain X. We call St(X)

the star of X. Clearly, St(X) is (the building of) an orthogonal polar space of rank
n − k + 1 defined in X⊥/X. Still assuming that char(F) = 2, let nX be the nucleus
of a quadratic form associated to the polar space St(X). Then nX = NX/X where
NX = 〈X,N0〉. Clearly, NX is a point of Gk and, since nX belongs to X⊥/X, which
is spanned by the 1-dimensional subspaces Y/X for Y ranging in the set of points of
St(X), the point ek(NX) of PG(Wk) belongs to 〈εk(Δk)〉. Put Nk := 〈ek(NX)〉X∈Δk−1 .
Clearly, Nk is stabilized by G.

In Sect. 3 we shall prove that the mapping ιk−1 : Δk−1 → PG(Nk) sending ev-
ery point X of Δk−1 to ek(NX) is a projective embedding and that Nk defines a
quotient εk/Nk of εk . More precisely, when k < n or k = n but F is perfect then
εk/Nk is a projective embedding in the usual sense, mapping lines of Δk onto lines
of PG(〈εk(Δk)〉/Nk). On the other hand, let k = n and let F be non-perfect. Then
εn/Nn is a lax embedding as defined in [24], namely the image of a line of Δn under
εn/Nn is properly contained in a line of PG(〈εn(Δn)〉/Nn). In Sect. 3.3 we will prove
the following:

Theorem 1.3 Let F be a perfect field of characteristic 2 and let k > 1.

(1) ιk−1 ∼= ε
sp

k−1. Consequently, dim(Nk) = ( 2n
k−1

) − ( 2n
k−3

)
.

(2) εk/Nk
∼= ε

sp
k , whence dim(〈εk(Δk)〉/Nk) = (2n

k

) − ( 2n
k−2

)
.

Conjecture 1 The equalities dim(Nk) = ( 2n
k−1

) − ( 2n
k−3

)
and dim(εk/Nk) = (2n

k

) −
( 2n
k−2

)
also hold if F is non-perfect.

Both claims of Conjecture 1 hold true when n ≤ 4 and F is any field of character-
istic 2, as one can check by crude computations.

Conjecture 2 Let char(F) = 2 and k > 2. Then the kernel of the projection of V (λk)

onto 〈εk(Δk)〉 is isomorphic to V (λk−2).

1.3 Results and conjectures on universality

Following Kasikova and Shult [19], we say that a projective embedding of a point-
line geometry Γ is relatively universal when it is not a proper quotient of any larger
embedding of Γ . A projective embedding ε of Γ is absolutely universal if all embed-
dings of Γ defined over the same division ring as ε are quotients of ε. If all projective
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embeddings of Γ are defined over the same division ring (as is the case for Δk) then
the absolutely universal embedding of Γ , if it exists, is uniquely determined up to
isomorphisms. Clearly, every absolutely universal projective embedding is relatively
universal. If Γ admits the absolutely universal embedding then the converse also
holds true: all relatively universal embeddings of Γ are absolutely universal. In this
case we may simply speak of universal embeddings, dropping the words ‘absolutely’
or ‘relatively’. We can do so when dealing with Δk . Indeed Δk admits the absolutely
universal projective embedding (Kasikova and Shult [19]).

As remarked earlier, the G-module 〈εk(Δk)〉 is a quotient of V (λk). Indeed an
embedding ε̃k of Δk can be created in PG(V (λk)). More explicitly, if v0 is a highest
weight vector of V (λk), then the G-orbit of 〈v0〉 corresponds to the set of points of
Δk and, if Pk is the minimal fundamental parabolic subgroup of G of type k and L0 is
the Pk-orbit of 〈v0〉, then the G-orbit of L0 corresponds to the set of lines of Δk . The
embedding ε̃k is projective when k < n and veronesean when k = n. The projection
of V (λk) onto 〈εk(Δk)〉 is a morphism from ε̃k to the Grassmann embedding εk .
Following Blok [3], when k < n we call ε̃k the Weyl embedding of Δk . We call ε̃n the
Weyl veronesean embedding of Δn.

It is well known that ε1 is universal (Tits [23, Chap. 8]), no matter what char(F)

is. Hence ε̃1 = ε1, for any field F. By Theorem 1.1, if char(F) �= 2 then ε̃k = εk .
Let char(F) = 2 and k > 1. Then dim(εk) < dim(̃εk) by Theorem 1.2. In this case

εk is a proper quotient of ε̃k . We state this fact as a corollary, but keeping aside the
case k = n for the moment, since εn is not a projective embedding. We will turn back
to εn in a few lines.

Corollary 1.4 Let char(F) = 2 and 1 < k < n. Then εk is not universal.

On the other hand, the following is quite plausible.

Conjecture 3 The Weyl embedding ε̃k is universal for any k = 2,3, . . . , n − 1 and
any field F.

The following theorem, to be proved in Sect. 4, is one of the reasons that make us
believe that the previous conjecture holds true.

Theorem 1.5 Let F be a perfect field of positive characteristic or a number field.

(1) If n > 2 then the Weyl embedding ε̃2 is universal.
(2) Let n > 3 and F �= F2. Then the Weyl embedding ε̃3 is universal.

The same conclusion as in (1) of Theorem 1.5 has been obtained by Cooperstein
[14], but under the stronger assumption that F is a finite field of prime order. In fact
Cooperstein [14] proves that when |F| is a prime integer, Δ2 can be generated by(2n+1

2

)
points. The universality of ε̃2 follows from this fact.

We now turn to the veronesean embeddings εn and ε̃n. Relative universality can
be defined for veronesean embeddings just in the same way as for projective em-
beddings. Let ε be a veronesean embedding of a point-line geometry Γ . The linear
hull of ε can be defined in the same way as for projective embeddings (see [21], for
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instance) and it is characterized as an initial object in the full sub-category of the
category of veronesean embeddings of Γ formed by those embeddings e′ for which
Hom(e′, e) �= ∅ (see [21] for details). We say that e is relatively universal if it is its
own linear hull. Thus, it makes sense to ask whether εn or ε̃n are relatively universal
or not. By Theorem 1.2 we immediately obtain the following:

Corollary 1.6 If char(F) = 2 then εn is not relatively universal.

Actually, when char(F) = 2 the Weyl veronesean embedding ε̃n is not relatively
universal either (see [11]), but perhaps ε̃n is relatively universal when char(F) �= 2.

We warn that now we are not allowed to jump from relative universality to absolute
universality as we can do when dealing with projective embeddings of Δk . Indeed
we do not know if Δn admits an absolutely universal veronesean embedding when
F �= F2. (If F = F2 then Δn admits an absolutely universal veronesean embedding,
obtained by taking the point-set of Δn as a basis of an F2-vector space.)

Another important difference exists between veronesean and projective embed-
dings: the dimension of a projective embedding of a point-line geometry Γ can-
not be larger than the minimal number of points needed to generate Γ while the
dimension of a veronesean embedding of Γ can be far larger than that number.
For instance, if char(F) �= 2 then Δn can be generated by 2n points (Blok and
Brouwer [4], Cooperstein and Shult [15]), whence every projective embedding of
Δn is at most 2n-dimensional. Actually dim(εspin) = 2n. Therefore εspin is universal
when char(F) �= 2. By contrast, dim(̃εn) = (2n+1

n

)
> 2n. In fact, the usual notion of

generation is unfit for veronesean embeddings. We will say more on this point in
Sect. 4.4.

As recalled above, εspin is universal when char(F) �= 2. On the other hand, let F be
a perfect field of characteristic 2. Then εspin is a quotient of ε

sp
n (Blok, Cardinali and

De Bruyn [5]; see also Cardinali and Lunardon [10]). In this case V (λn) = V (2ωn)

admits a chain of submodules V (λn) ⊃ A ⊃ B ⊃ C ⊃ 0 where dim(A) = (2n+1
n

)−2n,

dim(B) = (2n+1
n−1

)
and dim(C) = (2n+1

n−2

)
, C is the kernel of the projection of ε̃n onto

εn, V (λn)/B hosts ε
sp
n (by Lemma 1.3) and V (λn)/A ∼= V (ωn) hosts εspin. Moreover,

B/C = Nn hosts ε
sp

n−1 by Lemma 1.3 and A/B hosts a projective embedding of Δ
sp

n−2
(see [5], also [10]).

1.4 Non-universality of ε
sp
k when char(F) = 2 and k < n

It is known that Δ
sp
k admits the absolutely universal projective embedding, for every

k = 1,2, . . . , n (Kasikova and Shult [19]). When char(F) �= 2, the absolutely univer-
sal projective embedding of Δ

sp
k is just ε

sp
k [1, 2, 6, 13]. On the other hand, it is well

known that ε
sp

1 is not universal when char(F) = 2 (Tits [23, Chap. 8]; see also De
Bruyn and Pasini [17] for the non-perfect case). If F is a perfect field of characteristic
2 and 1 < k < n then ε

sp
k

∼= εk/Nk by (1) of Lemma 1.3. Therefore:

Corollary 1.7 Let F be a perfect field of characteristic 2 and let k < n. Then the
embedding ε

sp
k is not universal.
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In this corollary, the restriction k < n is essential. Indeed the isomorphism ε
sp
n

∼=
εn/Nn gives no information on the linear hull of ε

sp
n , since εn is not a projective

embedding. In fact, if |F| > 2 then ε
sp
n is universal (Cooperstein [13] in the finite

case, De Bruyn and Pasini [16] for the infinite case). On the other hand, if F = F2
then ε

sp
n is not universal (Li [20], Blokhuis and Brouwer [9]).

2 An elementary proof of Theorem 1.1

Throughout this section char(F) �= 2. We also assume that k > 1, since when k = 1
there is nothing to prove. Indeed ε1 is the natural embedding of the polar space Δ1
into W1 = V . Obviously, 〈ε1(Δ1)〉 = W1.

From now on we will often take the liberty of using the symbol Δk to denote
both the point-line geometry Δk and its point-set. However these little abuses will be
harmless. The context will always help to avoid any confusion.

For h = 0,1, . . . , k let G(h)
k be the set of k-subspaces X of V such that codX(X ∩

X⊥) ≤ h, where ⊥ is the orthogonality relation defined by the bilinear form fq asso-
ciated to q . So,

Δk = G(0)
k ⊂ G(1)

k ⊂ · · · ⊂ G(k−1)
k ⊂ G(k)

k = Gk.

Lemma 2.1 For every h = 1, . . . , k, if X ∈ G(h)
k then there exists a line l of Gk through

X such that |l ∩ G(h−1)
k | ≥ 2.

Proof Assume firstly that h = k and let X ∈ G(k)
k \ G(k−1)

k , namely X is a k-subspace
of V such that X ∩ X⊥ = 0. Then q induces a non-singular quadratic form on X.
Hence X contains at least one (k − 1)-subspace Z such that q induces a non-
singular form on Z. Consequently Z ∩ Z⊥ = 0, because char(F) �= 2. Therefore
V = Z ⊕ Z⊥ and q induces a non-singular quadratic form q ′ on Z⊥. Clearly,
dim(Z⊥) = (2n + 1) − (k − 1) = 2n + 2 − k. By this fact and the well known Grass-
mann formula for dimensions of sums and intersections of subspaces one easily sees
that every n-subspace of V meets Z⊥ non-trivially. In particular, every maximal to-
tally singular subspace of V has non-trivial intersection with Z⊥. It follows that Z⊥
contains at least one singular point of PG(V ). On the other hand, q ′ is non-singular.
It is also trace-valued, because char(F) �= 2. Hence Z⊥ is spanned by the singular
points contained in it (compare Tits [23, Lemma 8.1.6]).

Clearly, dim(Z⊥ ∩ X) = 1. Let x be a non-zero vector in Z⊥ ∩ X. Suppose that
every singular point of Z⊥ is orthogonal to x. Then Z⊥ ⊆ X⊥ because Z⊥ is spanned
by its singular points and X = 〈x,Z〉. This forces X ⊆ Z, contrary to the choice
of Z. It follows that x �⊥ x1 for at least one singular point 〈x1〉 of PG(Z⊥). The
non-degenerate projective line 〈x, x1〉 of PG(Z⊥) contains one more singular point
〈x2〉 of PG(Z⊥). Let Xi := 〈Z,xi〉, i = 1,2. Then Xi ∩ X⊥

i = 〈xi〉. Therefore Xi ∈
G(k−1)

k . Moreover, X,X1 and X2 contain Z and are contained in the (k + 1)-space
Y := 〈X,x1〉 = 〈X,x2〉. The line lZ,Y of Gk has the required properties: it contains X

and two points of G(k−1)
k , namely X1 and X2.
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Let now h < k. Put R = X∩X⊥, XR := X/R and VR := R⊥/R. Then dim(VR) =
2n + 1 − 2(k − h) and q induces a non-singular quadratic form qR on VR , with
maximal Witt index n − k + h. (We warn that the hypothesis that char(F) �= 2 is
implicitly used in this reduction.) We can now argue as in the previous case, replacing
X with XR , V with VR and q with qR . We leave the details for the reader. �

We recall that a set S of points of a point-line geometry Γ is a subspace of Γ if
S contains every line l of Γ such that |l ∩ S| ≥ 2. Intersections of subspaces are still
subspaces. So, given a set of points S of Γ we can consider the span 〈S〉Γ of S in Γ ,
namely the smallest subspace of Γ containing S, defined as the intersection of all
subspaces containing S. We say that a set S of points of Γ generates Γ if 〈S〉Γ = Γ .

Proposition 2.2 The point-set of Δk generates Gk .

Proof By Lemma 2.1, every point of G(h)
k belongs to at least one line meeting

G(h−1)
k in two distinct points. Hence G(h)

k ⊆ 〈G(h−1)
k 〉Gk

. So, Gk = 〈G(0)
k 〉Gk

, namely
Δk spans Gk . �

By Proposition 2.2, 〈εk(Δk)〉 = Wk . Equivalently, dim(εk) = dim(Wk) = (2n+1
k

)
.

This forces V (λk) = Wk , as claimed in Theorem 1.1.

3 A quotient of εk when char(F) = 2

Throughout this section, char(F) = 2 and k > 1. Up to rescaling the form q when F is
non-perfect, we can assume to have chosen an ordered basis B = (e1, e2, . . . , e2n+1)

of V with respect to which

q(x1, . . . , x2n+1) =
n∑

i=1

xixn+i + x2
2n+1.

We set I := {1,2, . . . ,2n + 1} and B∧ := (eJ )
J∈(I

k)
, where

(
I
k

)
stands for the set of

subsets of I of size k and eJ = ej1 ∧ej2 ∧· · ·∧ejk
for every k-subset J = {j1, . . . , jk}

of I , with the convention that j1 < j2 < · · · < jk .
The radical of the bilinear form associated to q is a 1-dimensional subspace N0

of V . It is called the nucleus of the quadric Q(2n,F) of PG(V ) represented by the
equation q(x1, . . . , x2n+1) = 0, also the nucleus of q , for short. With B as above, N0

is spanned by the vector n0 = (0,0, . . . ,0,1).
As in Sect. 2, in the sequel we will freely use symbols as Δk and Δk−1 to de-

note both point-line geometries and their point-sets. In order to avoid duplication of
notation, we will also often use the same symbols for vector subspaces and the cor-
responding projective subspaces. Every time the context will make it clear if we are
considering vector or projective spaces.



J Algebr Comb (2013) 38:863–888 871

3.1 The subspace Nk and the embedding ιk−1

Given a point X of Δk−1 let St(X) be its star, defined as in the introduction of this
paper. As noticed there, St(X) is isomorphic to an orthogonal polar space of rank
n − k + 1, naturally embedded in X⊥/X. Let qX be a quadratic form of X⊥/X

associated to that polar space and let nX be its nucleus. Then nX = NX/X for a
uniquely determined k-subspace NX of V containing X and contained in X⊥. On
the other hand, N0 ⊂ X⊥ and N0 ∩ X = 0. Hence 〈X,N0〉 is a k-subspace of X⊥
containing X. Moreover, 〈X,N0〉 ⊆ X⊥⊥. Therefore nX = 〈X,N0〉/X, namely

NX = 〈X,N0〉.
We warn that NX is totally isotropic but it is not totally singular. Hence NX is a
point of Gk (actually it belongs to G(1)

k ) but it is not a point of Δk . Put Nk :=
〈ek(NX)〉X∈Δk−1 . We call Nk the global nucleus of εk .

Lemma 3.1 Nk ⊆ 〈εk(Δk)〉.

Proof The mapping sending every Y ∈ Δk ∩ St(X) to Y/X is isomorphic to the
natural embedding of the polar space St(X). Hence the vector space X⊥/X is
spanned by the 1-dimensional subspaces Y/X for Y ∈ Δk ∩ St(X). Consequently,
ek(NX) ∈ 〈εk(Y )〉Y∈Δk∩St(X) ⊆ 〈εk(Δk)〉. Therefore Nk ⊆ 〈εk(Δk)〉. �

For every X ∈ Δk−1, put ιk−1(X) := ek(NX).

Lemma 3.2 The mapping ιk−1 is a projective embedding of Δk−1 into PG(Nk).

Proof Let νk−1 : Δk−1 → Gk be the mapping sending every point X of Δk−1 to the
point NX = 〈X,N0〉 of Gk . Then ιk−1 = ek ◦ νk−1. It is easily seen that the mapping
νk−1 is an embedding of Δk−1 into a subgeometry of Gk , namely it is injective and
it maps lines of Δk−1 onto lines of Gk . On the other hand ek , being a projective
embedding, is injective and maps lines of Gk onto lines of PG(Wk). Therefore ιk−1 is
injective and maps lines of Δk−1 onto lines of PG(Wk) (contained in PG(Nk)). �

We shall now give an explicit description of ιk−1. In the sequel we regard a vector
of V as the same thing as its sequence of coordinates with respect to the basis B .
Coordinates in Wk are given with respect to the standard basis B∧ of Wk , defined at
the beginning of Sect. 3.

For X ∈ Δk−1, let {x1, . . . , xk−1} be a basis of the (k − 1)-subspace X. Let MX =
(x1, . . . , xk−1) be the [(k − 1) × (2n + 1)]-matrix with x1, . . . , xk−1 as the rows and
let M ′

X = (x1, . . . , xk−1, n0) be the [k × (2n + 1)]-matrix obtained by adding n0 to
MX as a further row. Let (XJ )

J∈(I
k)

be the sequence of coordinates of a representative

vector vX of ιk−1(X) = ek(NX). Since NX = 〈X,N0〉 = 〈x1, . . . , xk−1, n0〉, we can
assume to have chosen vX in such a way that XJ is the determinant of the (k × k)-
submatrix of M ′

X formed by the columns indexed by the elements of J . Recall that
n0 = (0,0, . . . ,1). Hence XJ = 0 whenever 2n + 1 /∈ J while if 2n + 1 ∈ J then
XJ is the determinant of the [(k − 1) × (k − 1)]-submatrix of MX formed by the
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columns indexed by elements of J \{2n+1}. So, regarding NX/N0 = 〈X,N0〉/N0 as
a point of Gk−1 and (XJ )2n+1∈J∈(I

k)
as a vector of Wk−1, we have (XJ )2n+1∈J∈(I

k)
=

ek−1(NX/N0). Suppose to have ordered the set
(
I
k

)
in such a way that the k-subsets

containing 2n + 1 come as last. Then we can rephrase the above as follows:

Lemma 3.3 The last
( 2n
k−1

)
coordinates of ιk−1(X) are the same as the coordinates

of ek−1(NX/N0). The remaining coordinates of ιk−1(X) are null.

Proposition 3.4 Let F be perfect. Then ιk−1 ∼= ε
sp

k−1.

Proof When F is perfect the mapping sending every totally singular subspace X of
V to 〈X,N0〉/N0 is an isomorphism from Δ to Δsp . The isomorphism ιk−1 ∼= ε

sp

k−1
immediately follows from this remark and Lemma 3.3. �

3.2 The quotient εk/Nk

By Lemma 3.1 we know that Nk ⊆ 〈εk(Δk)〉. In this subsection we shall prove that
Nk satisfies both the following:

(Q1) PG(Nk) ∩ εk(Δk) = ∅;
(Q2) 〈εk(X1), εk(X2)〉 ∩ Nk = 0 for any two distinct points X1 and X2 of Δk .

Properties (Q1) and (Q2) allow us to define the quotient εk/Nk as the composition
of εk with the canonical projection of 〈εk(Δk)〉 onto 〈εk(Δk)〉/Nk . In view of (Q1),
this composition is a mapping from the point-set of Δk to the set of points of the
projective space PG(〈εk(Δk)〉/Nk) of 〈εk(Δk)〉/Nk , sending X ∈ Δk to the point
〈εk(X), Nk〉/Nk . By (Q2), this mapping is injective.

When k < n the mapping εk/Nk maps every line of Δk bijectively onto a line of
PG(〈εk(Δk)〉/Nk). Hence it is a projective embedding. As we shall see at the end
of this subsection, when F is perfect εn/Nn is a projective embedding in the usual
sense, mapping every line of Δn bijectively onto a line of PG(〈εn(Δn)〉/Nn). If F is
non-perfect then εn/Nn maps every line l of Δn into a line l̄ of PG(〈εn(Δn)〉/Nn),
but not all points of l̄ are images of points of l by εn/Nn.

In view of the above, it is convenient to slightly revise our terminology. From now
on we say that a projective embedding ε : Γ → PG(W) as defined in Sect. 1.1 is a
full projective embedding. On the other hand, following [24], if a mapping ε maps
the lines of Γ injectively but possibly non-surjectively into lines of PG(W) then we
say that ε is a lax projective embedding. So, we can rephrase as follows what we have
said above: if k < n then εk/Nk is full while εn/Nn is full when F is perfect and it is
lax but not full when F is non-perfect.

Lemma 3.5 Condition (Q1) holds.

Proof By way of contradiction, let εk(X) ∈ PG(Nk) for some X ∈ Δk . The group
G = SO(2n + 1,F) acts transitively on Δk and stabilizes Nk . Hence εk(Δk) ⊆
PG(Nk). This is a contradiction because every vector (XJ )

J∈(I
k)

∈ Nk has XJ = 0

whenever 2n + 1 /∈ J , but only some of the vectors of εk(Δk) have this property. �
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Lemma 3.6 Let k < n. Then (Q2) holds.

Proof By way of contradiction, let 〈εk(X1), εk(X2)〉∩ Nk �= 0 for two distinct points
X1,X2 ∈ Δk . As (Q1) holds, 〈εk(X1), εk(X2)〉 ∩ Nk does not contain any point of
εk(Δk). Hence 〈εk(X1), εk(X2)〉 ∩ Nk is a point nX1,X2 of PG(Wk) \ εk(Δk). Since
εk is full, the points X1 and X2 cannot be collinear in Δk . Let d = d(X1,X2) be the
distance between X1 and X2 in the collinearity graph of Δk . We have d > 1, since
X1 and X2 are non-collinear.

The group G acts transitively on the pairs of points of Δk at distance d and sta-
bilizes Nk . Hence 〈εk(X), εk(Y )〉 meets Nk in a point nX,Y ∈ PG(Wk) \ εk(Δk), for
every pair of points X,Y ∈ Δk at distance d .

For any two collinear points Y1, Y2 of Δk we can pick a point X at distance
d from both Y1 and Y2. Clearly, the point εk(X) does not belong to the projec-
tive line 〈εk(Y1), εk(Y2)〉. Consequently, nX,Y1 �= nX,Y2 and the points εk(X), εk(Y1)

and εk(Y2) span a projective plane which contains both of the lines 〈εk(Y1), εk(Y2)〉
and 〈nX,Y1, nX,Y2〉. These two lines, being coplanar, meet in a point, say z. On
the one hand z ∈ εk(Δk), as 〈εk(Y1), εk(Y2)〉 ⊂ εk(Δk) (recall that Y1 and Y2 are
collinear in Δk). On the other hand, z ∈ PG(Nk), since 〈nX,Y1, nX,Y2〉 ⊆ Nk . Hence
z ∈ εk(Δk) ∩ PG(Nk), contrary to (Q1). We have reached a final contradiction. �

We now turn to the case k = n. Recall that the lines of Δn are the stars of the
elements of Δ of type n− 1. For every (n− 1)-element X of Δ, the image εn(St(X))

of St(X) by εn is a conic CX of PG(Wk), spanning a plane πX of PG(Wn). Moreover,
πX ∩ εn(Δn) = CX . The nucleus of CX is the point νX := en(NX). (Recall that NX =
〈X,N0〉.)

Lemma 3.7 We have πX ∩ Nn = νX , for every (n − 1)-element X of Δ.

Proof Clearly, νX ∈ πX ∩ Nn. By way of contradiction, suppose that πX ∩ Nn is
larger than νX . Since CX ∩ PG(Nn) = ∅ by (Q1), πX ∩ Nn is a projective line
through νX . If F is perfect then the line πX ∩ Nn is tangent to CX , namely it meets
CX in one point. This is impossible, since CX ∩ PG(Nn) = ∅.

Therefore F is non-perfect. Let F̂ be the quadratic closure of F. Put V̂ := F̂ ⊗F V

(where vectors are linear combinations of the vectors of B with coefficients taken
from F̂) and Ŵn := ∧n

V̂ (= F̂ ⊗F Wn). The form q naturally extends to a non-
singular quadratic form q̂ of V̂ , admitting the same expression as q with respect
to B . Denoted by Δ̂ the building of type Bn associated to q̂ , every element X of Δ

is the intersection X = V ∩ X̂ of V with a uniquely determined element X̂ of Δ̂, of
the same type as X (in fact X̂ = F̂ ⊗F X). Accordingly, Gn and Δn can be regarded
as F-subgeometries of the n-grassmannians Ĝn and Δ̂n of PG(V̂ ) and Δ̂ respectively
and, if ên and ε̂n are the natural embeddings of Ĝn and the Grassmann embedding
of Δ̂n, then en and εn are induced by ên and ε̂n. Clearly, the global nucleus N̂n of ε̂n

contains the F̂-tensorization F̂ ⊗F Nn of the global nucleus Nn of εn.
Turning to the plane πX and the conic CX , we have πX = PG(Wk) ∩ π̂X for a

uniquely determined plane π̂X of PG(Ŵk) (in fact π̂X = F̂⊗F πX) and CX = πX ∩ĈX

for a uniquely determined conic ĈX of π̂X . The nucleus ν̂X of ĈX coincides with (the
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1-subspace of Ŵn spanned by) the nucleus νX of CX . By assumption, πX ∩ Nn is a
line of πX through νX . Hence π̂X ∩ N̂n contains a line of π̂X through ν̂X . However
this is impossible, in view of the first paragraph of this proof. Indeed F̂ is perfect. �

Lemma 3.8 Let k = n. Then (Q2) holds.

Proof By way of contradiction, let 〈εn(X1), εn(X2)〉∩ Nn �= 0 for two distinct points
X1,X2 ∈ Δn. By (Q1), nX1,X2 := 〈εn(X1), εn(X2)〉 ∩ Nn is a point of PG(Wn) \
εn(Δn).

Let d = d(X1,X2) be the distance between X1 and X2 in the collinearity graph
of Δn. Suppose firstly that d = 1, namely X1 and X2 are collinear. Then X1 ∩ X2 ∈
Δn−1 and St(X1 ∩ X2) is the line of Δn through X1 and X2. The image of St(X1 ∩
X2) by εn is a conic CX1∩X2 spanning a plane πX1∩X2 of PG(Wn). The projective
line 〈εn(X1), εn(X2)〉 is contained in πX1∩X2 . Hence nX1,X2 ∈ πX1∩X2 . However,
πX1∩X2 ∩ Nn is the nucleus νX1∩X2 of the conic CX1∩X2 , by Lemma 3.7. Hence
nX1,X2 = νX1∩X2 , namely 〈εn(X1), εn(X2)〉 is a line of πX1∩X2 through the nucleus
of CX1∩X2 . On the other hand, 〈εn(X1), εn(X2)〉 contains two distinct points of the
conic CX1∩X2 , namely εn(X1) and εn(X2). Thus, we have got a secant line of a conic
passing through the nucleus of that conic. This is impossible. Therefore d > 1.

As in the proof of Lemma 3.6, the distance-transitivity of G on the collinearity
graph of Δn implies that 〈εn(X), εn(Y )〉 ∩ Nn �= 0 for any two points X,Y ∈ Δn at
mutual distance d . We now choose two collinear points Y1, Y2 of Δn and a point X

at distance d from both of them. Then X has distance d − 1 from a unique point Y0
of the line St(Y1 ∩ Y2) of Δn through Y1 and Y2. The point εn(X) does not belong
to the plane πY1∩Y2 , since εn(St(Y1 ∩ Y2)) = πY1∩Y2 ∩ εn(Δn), and X /∈ St(Y1 ∩ Y2).
Hence εn(X), εn(Y1) and εn(Y2) span a 3-dimensional subspace S of PG(Wn). We
have d(X,Y ) = d for every Y ∈ St(Y1 ∩ Y2) \ {Y0}. Hence 〈εn(X), εn(Y )〉 ∩ Nn �= 0
for every such Y . Let σ be the subspace of S spanned by the points nX,Y for Y ∈
St(Y1 ∩ Y2) \ {Y0}. Clearly, σ ⊆ Nn.

Suppose firstly that σ contains (or is) a plane. Then σ ∩ πY1∩Y2 has projective
dimension at least 1. Accordingly, πY1∩Y2 ∩ Nn contains at least a line. This con-
tradicts Lemma 3.7. Hence σ must be a line. Suppose |F| > 2. If Y3 ∈ St(Y1 ∩ Y2) \
{Y0, Y1, Y2} ( �= ∅ because |F| > 2) then εn(Y1), εn(Y2) and εn(Y3) are non-collinear in
the projective plane πY1∩Y2 . Hence the points nX,Y1, nX,Y2 and nX,Y3 are non-collinear
as well, contrary to the fact that σ is a line. We are forced to conclude that F = F2.
The line σ meets πY1∩Y2 in a point. On the other hand, σ ⊆ Nn. Hence σ ∩ πY1∩Y2 is
the nucleus νY1∩Y2 of the conic CY1∩Y2 , by Lemma 3.7. Let π be the plane spanned
by nX,Y1 , nX,Y2 and εn(X). Then π ∩ πY1∩Y2 is a line, say l. The line l belongs to
πY1∩Y2 and contains the nucleus νY1∩Y2 of the conic CY1∩Y2 as well as two points of
it, namely εn(Y1) and εn(Y2). This is obviously impossible. We have reached a final
contradiction. �

So, the mapping εk/Nk is well-defined and injective. As remarked at the beginning
of this subsection, if k < n then εk/Nk is a full projective embedding.

Let k = n. For every (n − 1)-element X of Δ let λ̄X be the set of lines of πX

through νX and λX the set of lines of πX tangent to CX . Clearly, λX ⊆ λ̄X . More-
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over, by Lemma 3.7, the mapping θX sending every line l ∈ λ̄X to 〈l, Nn〉 is a bi-
jection from λ̄X to a line LX of PG(εn(Δn)/Nn). The set LX := θX(λX) is con-
tained in LX . Moreover, if ζX is the bijection from St(X) to λX sending every
Y ∈ St(X) to the line 〈εn(Y ), νX〉 of πX , then the composite ηX := θX ◦ ζX is a
bijection from St(X) to LX . Clearly, ηX is the mapping induced by εn/Nn on the
line St(X) of Δn.

If F is perfect then λX = λ̄X . In this case LX = LX . Hence εn/Nn maps the line
St(X) of Δn onto a line of PG(εn(Δn)/Nn). On the other hand, if F is non-perfect
then λX is a proper subset of λ̄X . Accordingly, LX ⊂ LX . In this case εn/Nn maps
the line St(X) onto a proper subset of a line of PG(εn(Δn)/Nn). Summarizing:

Lemma 3.9 Let k = n. If F is perfect then εn/Nn is a full projective embedding. If F

is non-perfect then εn/Nn is a non-full lax embedding.

Proposition 3.10 Let F be perfect. Then εk/Nk
∼= ε

sp
k , for k = 1,2, . . . , n.

Proof We recall that, since F is assumed to be perfect, the mapping sending every
element X of Δ to 〈X,N0〉/N0 is an isomorphism from Δ to a model of Δsp realized
inside V/N0. For X ∈ Δk , let (XJ )

J∈(I
k)

be the family of coordinates of εk(X) with

respect to the basis B∧ of Wk . If we take only those coordinates XJ with 2n + 1 /∈ J

then we get a family of coordinates for the image of X by εk/Nk−1. It is not difficult
to see that these coordinates are just the same as those that we obtain if we apply ε

sp
k

to 〈X,N0〉/N0. �

3.3 Proof of Theorems 1.2 and 1.3

Propositions 3.4 and 3.10 yield Theorem 1.3. Turning to the proof of Theorem 1.2,
suppose firstly that F is perfect. We also assume k > 1, since the statement of Theo-
rem 1.2 is trivial when k = 1. Under these hypotheses, Theorem 1.3 and the equality[( 2n

k−1

) − ( 2n
k−3

)] + [(2n
k

) − ( 2n
k−2

)] = (2n+1
k

) − (2n+1
k−2

)
imply that

dim(εk) =
(

2n + 1

k

)

−
(

2n + 1

k − 2

)

. (1)

Suppose now that F is non-perfect. Let F̂ be a perfect extension of F (e.g. the

quadratic closure of F). Let V̂ = F̂ ⊗F V and define Δ̂, Δ̂k and ε̂k accordingly (see
the proof of Lemma 3.7). Then (1) holds for ε̂k . Dimensions cannot decrease when
tensorizing with field extensions. Therefore:

dim(εk) ≤
(

2n + 1

k

)

−
(

2n + 1

k − 2

)

. (2)

On the other hand, F contains F2. Let Δ0
k be the subgeometry of Δk formed by

the subspaces spanned by F2-linear combinations of the vectors of B and ε0
k the

embedding induced by εk on Δ0
k . All vectors of ε0

k(Δ
0
k) are F2-linear combinations

of vectors of B∧. Thus (1) holds for ε0
k , since F2 is perfect. It follows that 〈εk(Δk)〉
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contains an independent set of
(2n+1

k

) − (2n+1
k−2

)
vectors. Consequently,

dim(εk) ≥
(

2n + 1

k

)

−
(

2n + 1

k − 2

)

. (3)

Equation (1) follows from (2) and (3).

4 Proof of Theorem 1.5

In our proof of Theorem 1.5 we will go back and forth between Bn-buildings and
Dn-buildings. So, we must firstly spend a few words on buildings of type Dn, their
grassmannians and embeddings.

4.1 Grassmannians of Dn-buildings and their embeddings

Henceforth Δ+ stands for the building of type Dn defined over F. It can be con-
structed as follows. Given a non-singular quadratic form q+ of Witt index n in
V ′ = V (2n,F), the non-trivial subspaces of V ′ totally singular for q+, with their
dimensions taken as types, form a non-thick building Δ′ of Coxeter type Cn. The
building Δ+ is obtained from Δ′ as follows: drop the elements of type n − 1 and
partition the set of n-elements in two families such that two n-elements X and Y are
in the same family precisely if codimX(X ∩ Y) is even. Two elements X and Y not
in the same family are declared to be incident precisely when dim(X ∩ Y) = n − 1.

It is customary to choose the integers n − 1 and n as types for these two families,
but the following different convention better suits our needs in this section: we take
the pairs (n,0) and (n,1) as types for them.

• • • ..... • •����

����

•

•

1 2 3 n − 3 n − 2
(n,0)

(n,1)

We allow n = 3. Recall that the diagram D3 is the same as A3, but with the usual
types 1, 2, 3 replaced with (3,0),1 and (3,1), respectively. If n = 3 then Δ+ is
isomorphic to PG(3,F) via the Klein correspondence, the elements of Δ+ of type 1,
(3,0) and (3,1) being respectively the lines, the points and the planes of PG(3,F)

(or lines, planes and points, if we prefer so).
For k < n the k-grassmannian of Δ′ is defined just in the same way as the k-

grassmannian Δk of Δ. We call it the k-grassmannian of Δ+ and we denote it by the
symbol Δ+

k , although when k = n − 1 this convention is not so consistent with the
terminology commonly used in the literature. (If we followed the custom, we should
rather call Δ+

n−1 the {(n,0), (n,1)}-grassmannian of Δ+.) The (n,0)- and (n,1)-
grassmannian can also be defined, called half spin geometries in the literature, but we
are not interested in them here.

The 1-grassmannian Δ+
1 of Δ+ is the polar space defined by q+ on V ′. Identify

V ′ with a hyperplane of V = (2n + 1,F) suitably chosen so that Δ+
1 is the polar

space induced by Δ1 on V ′. Similarly, Δ+
k is the subgeometry induced by Δk on
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the set of k-subspaces of V ′. Note that the points of Δ+
n−1 are the {(n,0), (n,1)}-

flags of Δ+ while the lines of Δ+
n−1 correspond to flags of Δ+ type {n − 2, (n,0)} or

{n−2, (n,1)}. In particular, if n = 3 then Δ+
2 is the so-called root-subgroup geometry

of SL(4,F), with the point-plane flags of PG(3,F) as points and the line-plane and
point-line flags of PG(3,F) as lines.

For k = 1,2, . . . , n − 1 we can define a projective embedding ε+
k of Δ+

k into a

subspace 〈εk(Δ
+
k )〉 of W ′

k = ∧k
V ′ sending every point 〈v1, . . . , vk〉 of Δ+

k to the
point 〈v1 ∧ · · · ∧ vk〉 of PG(W ′

k). We call ε+
k the Grassmann embedding of Δ+

k .
Moreover, let μ1, . . . ,μn−2,μn,0 and μn,1 be the fundamental dominant weights of
the root system of type Dn, corresponding to the nodes 1,2, . . . , n − 2, (n,0) and
(n,1) of the Dn-diagram in the obvious way. Put μn−1 := μn,0 + μn,1. Then for
k = 1,2, . . . , n − 1 the Weyl module V (μk) hosts a projective embedding ε̃+

k of Δ+
k

and ε+
k is a quotient of ε̃+

k . We call ε̃+
k the Weyl embedding of Δ+

k .

By the Weyl dimension formula, dim(̃ε+
k ) = (2n

k

)
. Clearly, ε̃+

1
∼= ε+

1 .

Proposition 4.1 Let k > 1.

(1) If char(F) �= 2 then ε+
k

∼= ε̃+
k , namely dim(ε+

k ) = (2n
k

)
.

(2) Let char(F) = 2. Then dim(ε+
k ) = (2n

k

) − ( 2n
k−2

)
. In this case ε+

k is a proper quo-

tient of the Weyl embedding ε̃+
k .

Proof Claim (1) can be proved by just the same argument used for Theorem 1.1. In-
deed Lemma 2.1 still holds if we replace the (2n + 1)-dimensional space V with
the 2n-dimensional space V ′, the quadratic form q with q+ and Gk with the k-
grassmannian G′

k of PG(V ′). The proof of Lemma 2.1 remains valid for this setting
word for word. By that lemma, when char(F) �= 2 the point-set of Δ+

k spans the k-
grassmannian G′

k of PG(2n − 1,F) (compare Proposition 2.2). Hence 〈ε+
k (Δ+

k )〉 =
W ′

k , namely dim(ε+
k ) = (2n

k

)
.

Let char(F) = 2. Let f be the bilinearization of q+ and Δ
sp

1 the polar space
defined by f on V ′. Then Δ+

1 is a subgeometry (but not a subspace) of Δ
sp

1 . Ac-
cordingly, Δ+

k is a subgeometry of Δ
sp
k and the natural embedding ε

sp
k of Δ

sp
k

(see Introduction) induces ε+
k on Δ+

k . We have dim(ε
sp
k ) = (2n

k

) − ( 2n
k−2

)
. Hence

dim(ε+
k ) ≤ (2n

k

) − ( 2n
k−2

)
. Moreover, claim (2) holds when F is perfect. Explicitly:

(2′) If F is perfect then dim(ε+
k ) = (2n

k

) − ( 2n
k−2

)
.

Indeed, let F be perfect. As Δ+
k is a subgeometry of Δ

sp
k which in its turn is a sub-

geometry of G′
k , in order to prove (2′) it suffices to prove that Δ

sp
k is contained in

the subgeometry 〈Δ+
k 〉G′

k
spanned by Δ+

k . Let X be a k-dimensional subspace of V ′

totally isotropic for f . We must prove that X ∈ 〈Δ+
k 〉G′

k
. Since F is perfect Δ

sp

1
∼= Δ1.

However Δ+
1 is a geometric hyperplane of Δ1. Hence Δ+

1 is also a geometric hyper-
plane of Δ

sp
k too. Consequently either X ∈ Δ+

k or X0 := {x ∈ X | q+(x) = 0} is a
hyperplane of X and X ⊆ X⊥

0 . In the first case there is nothing to prove. Assume
the latter. Then X0 ∈ Δ+

k−1 and dim(X⊥
0 /X0) = 2n − 2k − 2. Given a flag F of Δ+
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of type {1, . . . , k − 1} containing X0, no matter which, ResΔ+(F ) is isomorphic to
the building of type Dn−k−1 associated to a non-degenerate quadratic form q+

X0
of

X⊥
0 /X0 of maximal Witt index n − k − 1. The k-subspaces of V ′ containing X0 and

contained in X⊥
0 form a subspace G′

k(X0) of G′
k and the function mapping Y ∈ G′

k(X0)

onto Y/X0 is an isomorphism πX0 from the geometry induced by G′
k on G′

k(X0) to
PG(X⊥

0 /X0). Clearly πX0 maps the set of k-elements of Δ+ containing X0 onto the
set of points of the quadric Q+

X0
associated to q+

X0
. The point πX0(X) of PG(X⊥

0 /X0)

does not belong to Q+
X0

. On the other hand, every point of PG(X⊥
0 /X0) belongs to a

secant line of Q+
X0

. Hence there is a line L of G′
k contained in G′

k(X0) and contain-

ing X and two distinct points of Δ+
k . Therefore X ∈ 〈Δ+

k 〉G′
k
, as we wished to prove.

Claim (2′) is proved.
Having proved (2′) in the perfect case, claim (2) in the non-perfect case follows

by descent to F2, as in the proof of Theorem 1.2 (see Sect. 3.3). �

The geometry Δ+
k admits the absolutely universal embedding (Kasikova and Shult

[19] for k < n−1 and Blok and Pasini [8] for k = n−1). Therefore, if ε̃+
k is relatively

universal then it is also absolutely universal. It follows from Tits [23, 8.4.3] that ε+
1

(= ε̃+
1 ) is universal for any field F. On the other hand, by Proposition 4.1, when

char(F) = 2 and k > 1 the Grassmann embedding ε+
k is not universal. In the sequel,

as a by-product of our proof of Theorem 1.5, we shall show that, under the hypotheses
assumed on F in Theorem 1.5, the Weyl embedding ε̃+

k is universal for k = 2 or 3.

4.2 Back and forth between Bn and Dn

In this subsection k is 2 or 3, n > k and

ηk : Δk → PG(Uk), η+
k : Δ+

k → PG
(
U ′

k

)

are given projective embeddings of Δk and Δ+
k , for some F-vector spaces Uk and U ′

k .
As in the previous sections, we will freely use the symbols Δk and Δ+

k to denote the
point-line geometries Δk and Δ+

k as well as their point-sets. We will do the same with
other symbols like Δk,a , Δk,H etc. (see below). We denote spans in Δk , Δ+

k , Δ1 and
Δ+

1 by the symbols 〈.〉Δk
, 〈.〉Δ+

k
, 〈.〉Δ1 and 〈.〉Δ+

1
respectively, keeping the symbol 〈.〉

for spans in Uk or U ′
k .

Let H be a non-singular hyperplane of the polar space Δ1 such that the polar
space Δ1,H induced by Δ1 on H is isomorphic to Δ+

1 . Let Δk,H be the subge-
ometry of Δk induced on the set of totally singular k-subspaces of V contained
in H . Then Δk,H

∼= Δ+
k . The embedding ηk induces on Δk,H a projective embed-

ding ηk,H : Δk,H → PG(Uk,H ) where Uk,H := 〈ηk(Δk,H )〉.
Let a be a point of Δ1 exterior to H and Δk,a the subgeometry of Δk induced on

the set of totally singular k-subspaces of V containing a. Then Δk,a is isomorphic to
the (k−1)-grassmannian Δk−1 of a building Δ of type Bn−1 defined over F. The em-
bedding ηk,a : Δk,a → PG(Uk,a) induced by ηk on Δk,a , where Uk,a := 〈ηk(Δk,a)〉,
can be regarded as a projective embedding of Δk−1.

When k = 2 let l0 be a line of Δ1 not contained in H ∪ a⊥ and such that a⊥ ∩ l0 �=
H ∩ l0. Put S2 := 〈{l0} ∪ Δ2,a ∪ Δ2,H 〉Δ2 .
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When k = 3 (hence n > 3) the subgeometry Δ1,a,H of Δ1 induced on a⊥ ∩ H

is isomorphic to the polar space associated with a non-singular quadratic form of
V (2n − 1,F) of Witt index n − 1. It is well known that the latter admits a generating
set of 2n − 1 points. Hence the same holds for Δ1,a,H . Let {p1, . . . , p2n−1} be a
spanning set of 2n− 1 points of Δ1,a,H . For every i = 1, . . . ,2n− 1 let αi be a plane
of Δ1 through pi such that αi ∩H ∩a⊥ = {pi}. Put S3 := 〈{αi}2n−1

i=1 ∪Δ3,a ∪Δ3,H 〉Δ3 .

Lemma 4.2 S2 = Δ2.

Proof We firstly prove the following:

(1) All lines of Δ1 coplanar with a in Δ1 belong to S2.

Let α be a plane of Δ1 through a and l a line of α. If either a ∈ l or l ⊂ H there is
nothing to prove. Let a /∈ l � H and let p = l ∩ H . Then the lines of α through p

are the points of a line L of Δ2. The line L contains l, α ∩ H and the line 〈a,p〉Δ1

of Δ1 through a and p. Clearly, α ∩ H ∈ Δ2,H and 〈a,p〉Δ1 ∈ Δ2,a . Hence l ∈ S2.
Claim (1) is proved.

(2) All lines of Δ1 coplanar with l0 belong to S2.

Let α be a plane of Δ1 through l0. Then α contains three lines of S2, namely l0,
α ∩ H and α ∩ a⊥ (the latter belongs to S2 by (1)). These three lines form a triangle,
as l0 ∩ a⊥ /∈ H by assumption. It is now easy to see that all lines of α belong to S2.

(3) If l is a line of Δ1 meeting l0 non-trivially, then l belongs to S2.

Let p := l ∩ l0. Suppose firstly that p ∈ H . We can choose a plane α of Δ1 through l

such that l⊥0 ∩ α �= α ∩ H . We have α ∩ H ∈ Δ2,H and l⊥0 ∩ α ∈ S2 by (2). Moreover,
both α ∩ H and α ∩ l⊥0 pass through p ∈ l. Therefore l ∈ S2.

Let p /∈ H . By (2), we can assume that l and l0 are non-coplanar. We consider
two cases. Suppose firstly that we can choose a plane α of Δ1 through l0 such that
a⊥ ∩ α ∩ H �= l⊥ ∩ α ∩ H . Let β be the plane of Δ1 spanned by l and α ∩ l⊥. Then
α ∩ l⊥ ∈ S2 by (2), a⊥ ∩ β ∈ S2 by (1) and β ∩ H ∈ Δ2,H . Since a⊥ ∩ α ∩ H �=
l⊥ ∩ α ∩ H , these three lines form a triangle. Hence all lines of β belong to S2. In
particular, l ∈ S2.

Assume now that a⊥ ∩α ∩H = l⊥ ∩α ∩H for every plane α on l0. Clearly, there
is at least one plane β through l containing a line m through p, non-coplanar with l0
and such that a⊥ ∩ α ∩ H �= m⊥ ∩ α ∩ H . Then m ∈ S2 by the previous paragraph.
As l⊥0 ∩ β ∈ S2 by (2), all lines of β through p belong to S2.

(4) If l is a line of Δ1 meeting l⊥0 non-trivially, then l ∈ S2.

By (3) we can assume that l ∩ l0 = ∅. Suppose firstly that l ⊆ l⊥0 . Pick a point p ∈ l0,
p �⊥ a. By (3), all lines of the plane α := 〈p, l〉 through p are in S2. On the other
hand, the line α ∩ a⊥ belongs to S2 by (1). It does not pass through p, as p /∈ a⊥ by
assumption. Therefore all lines of α belong to S2. In particular, l ∈ S2.

Suppose that l ∩ l⊥0 is a point, say p1 := l ∩ l⊥0 . We may also assume that p1 /∈ l0,
by (3). Then p2 := l0 ∩ l⊥ is a point. Let α = 〈p2, l〉Δ1 . All lines of the plane α
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passing through p2 belong to S2, by (3). If p2 /∈ H then α ∩H is a line of α in S2 not
through p2. It follows that all lines of α belong to S2. In particular, l ∈ S2.

Let now p2 ∈ H . The line a⊥ ∩ α belongs to S2 by (1). It does not pass through
p2, as a⊥ ∩ l0 /∈ H by assumption. As above, all lines of α belong to S2. Whence
l ∈ S2.

We can now finish the proof of the lemma. Let l be any line of Δ1. We may assume
that a /∈ l � H . In view of (1)–(4) we can also assume that l ∩ a⊥ is a point and
l ∩ l⊥0 = ∅. Suppose that we can choose a plane α on l such that the point p := l⊥0 ∩α

does not belong to H ∩ a⊥. By (4), all lines of α through p belong to S2. Moreover,
a⊥ ∩ α ∈ S2 by (1) and α ∩ H ∈ Δ2,H ⊆ S2. Thus, α contains at least three lines of
S2 forming a triangle. Therefore all lines of α belong to S2. In particular, l ∈ S2.

Finally, suppose that p = l⊥0 ∩ α ∈ H ∩ a⊥ for every plane α through l. Pick a
point p1 ∈ l not in H and consider a line l1 of α through p1, different from either
of the lines l and l2 := 〈p1,p〉Δ1 . Clearly, we can choose a plane α1 on l1 such that
l⊥0 ∩ α1 /∈ H ∩ a⊥. Hence l1 ∈ S2 by the previous paragraph. Moreover, l2 ∈ S2 by
(4). Hence l ∈ S2. �

Corollary 4.3 Suppose that dim(U2,H ) ≤ (2n
2

)
. Then dim(U2) ≤ (2n+1

2

)
.

Proof This follows from Lemma 4.2, recalling that Δ2,a is isomorphic to a polar
space of type Bn−1, that every projective embedding of such a polar space has di-
mension equal to 2n − 1 or possibly 2n − 2 (the latter only when char(F) = 2) and
noticing that 1 + (2n − 1) + (2n

2

) = (2n+1
2

)
. �

Lemma 4.4 S3 = Δ3.

Proof It will be useful to have fixed some terminology. In the sequel, a totally sin-
gular 4-subspace of V will be called a space of Δ1, for short. We say that a point
p ∈ a⊥ ∩ H is S3-full if all planes of Δ1 on p belong to S3.

(1) All planes of Δ1 contained in a⊥ belong to S3.

Let α be a plane of Δ1 contained in a⊥. If a ∈ α then α ∈ Δ3,a ⊆ S3. Suppose that
a /∈ α and let X be the space of Δ1 spanned by a and α. Then all planes of X through
a belong to S3. Moreover, X∩H ∈ Δ3,H ⊆ S3. It follows that all planes of X belongs
to S3. In particular, α ∈ S3.

(2) Let p ∈ a⊥ ∩ H and let α0 be a plane of Δ1 on p such that a⊥ ∩ H ∩ α0 = {p}
and α0 ∈ S3. Then p is S3-full.

Let Δ3,p be the subgeometry of Δ3 induced on the set of planes of Δ1 through p.
Let Δ3,p be the induced subgeometry of Δ3,p formed by those planes α such that
α ∩ a⊥ ∩ H = {p}. So, α0 ∈ Δ3,p . It is not difficult to see that Δ3,p is connected.

Let now X be a space of Δ1 through p containing α0. Then X contains three
planes of S3 through p, namely α0, X ∩ H and X ∩ a⊥ (which belongs to S3 by (1)).
The intersection of these three planes is the point p. Hence all planes of X through p

belong to S3. Therefore, every plane through p contained in a common space with α0
belongs to S3. Let now α be any plane in Δ3,p contained in a common space with α0.
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We can repeat the above argument with α0 replaced by α, thus obtaining that all
planes through p contained in a common space with α belong to S3. In this way,
exploiting the connectedness of Δ3,p we obtain the result that every plane through
p contained in a common space with a plane α ∈ Δ3,p belongs to S3. However,
every plane β ∈ Δ3,p is contained in the same space as a plane α ∈ Δ3,p . Therefore
Δ3,p ⊆ S3, namely p is S3-full.

(3) Let x and y be two points of a⊥ ∩ H collinear in Δ1,a,H and z another point on
the line l of Δ1,a,H spanned by x and y. If both x and y are S3-full then z is
S3-full.

It is easy to see that there exists at least one space X of Δ1 containing l and such that
a⊥ ∩ X = H ∩ X = l. Let X be such a space. As both x and y are S3-full, all planes
of Δ1 contained in X and containing either x or y belong to S3. It follows that all
planes contained in X belong to S3. In particular, all planes through z contained in
X belong to S3. On the other hand, at least one of these planes meets a⊥ and H in
distinct lines. Therefore z satisfies the hypotheses of (2). Hence z is S3-full.

We can now finish the proof of the lemma. By (2), the points p1, . . . , p2n−1 con-
sidered in the definition of S3 are S3-full. Moreover they span Δ1,a,H . Hence all
points of a⊥ ∩ H are S3-full, by (3). On the other hand, every plane of Δ1 meets
a⊥ ∩ H non-trivially. Hence every plane of Δ1 belongs to S3. �

Corollary 4.5 Suppose that dim(U3,H ) ≤ (2n
3

)
and dim(U3,a) ≤ (2n−1

2

)
. Then

dim(U3) ≤ (2n+1
3

)
.

Proof Note that (2n− 1)+ (2n−1
2

)+ (2n
3

) = (2n+1
3

)
. The conclusion follows from this

equality and Lemma 4.4. �

We now turn to Δ+
k and its embedding η+

k : Δ+
k → PG(U ′

k). Let H be a non-
singular hyperplane of the polar space Δ+

1 . The polar space Δ+
1,H induced by Δ+

1 on

H is isomorphic to the polar space Δ1, for a building Δ of type Bn−1 defined over F.
Let Δ+

k,H be the subgeometry of Δ+
k induced on H . Then Δ+

k,H is isomorphic to the

k-grassmannian Δk of Δ. The embedding η+
k : Δ+

k → PG(U ′
k) induces on Δ+

k,H a

projective embedding η+
k,H : Δ+

k,H → PG(U ′
k,H ) where U ′

k,H := 〈η+
k (Δ+

k,H )〉.
Let a be a point of Δ+

1 exterior to H and Δ+
k,a the subgeometry of Δ+

k induced on

the set of points X ∈ Δ+
k such that a ∈ X. Then Δ+

k,a is isomorphic to the (k − 1)-

grassmannian Δ
+
k−1 of a building Δ

+
of type Dn−1 defined over F. The embedding

η+
k,a : Δ+

k,a → PG(U ′
k,a) induced by η+

k on Δ+
k,a , where U ′

k,a := 〈η+
k (Δ+

k,a)〉 can be

regarded as a projective embedding of Δ
+
k−1.

When k = 2 let l0 be a line of Δ+
1 not contained in H ∪a⊥ and such that a⊥ ∩ l0 �=

H ∩ l0. Put S+
2 := 〈{l0} ∪ Δ+

2,a ∪ Δ+
2,H 〉Δ+

2
.

When k = 3 the subgeometry Δ+
1,a,H of Δ+

1 induced on a⊥ ∩ H is isomorphic to
the polar space associated with a non-singular quadratic form of V (2n−2,F) of Witt
index n − 1. It is well known that the latter can be spanned by 2n − 2 points. Hence
the same holds for Δ+

1,a,H . Given a spanning set {p1, . . . , p2n−2} of Δ+
1,a,H , for every
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i = 1, . . . ,2n− 2 we pick a plane αi of Δ+
1 through pi such that αi ∩H ∩ a⊥ = {pi}.

We put S+
3 := 〈{αi}2n−2

i=1 ∪ Δ+
3,a ∪ Δ+

3,H 〉Δ+
3

.
The next lemma can be proved by arguments very similar to those exploited in the

proofs of Lemmas 4.2 and 4.3. We leave the details for the reader.

Lemma 4.6 We have S+
2 = Δ+

2 and S+
3 = Δ+

3 .

Lemma 4.6 immediately implies the following:

Corollary 4.7

(1) If dim(U ′
2,H ) ≤ (2n−1

2

)
then dim(U ′

2) ≤ (2n
2

)
.

(2) Let dim(U ′
3,H ) ≤ (2n−1

3

)
and dim(U ′

3,a) ≤ (2n−2
2

)
. Then dim(U ′

3) ≤ (2n
3

)
.

4.3 Proof of Theorem 1.5. The case k = 2

Let k = 2. Assume firstly that n = 3. Then, as we have recalled before, the points
of Δ+

2 can be regarded as point-plane flags of PG(3,F). The Weyl embedding ε̃+
2 :

Δ+
2 → PG(W ′

2) can be described as follows: W ′
2 is the vector space of null-traced

(4 × 4)-matrices and, for every non-zero vector v of V (4,F) and every non-trivial
linear functional f of V (4,F) such that f (v) = 0, the flag {〈v〉,Ker(f )} of PG(3,F)

is mapped by ε̃+
2 onto the linear subspace of W ′

2 spanned by the matrix f ⊗ v. Note

that dim(W ′
2) = 42 − 1 = 15 = (2·3

2

)
. The next lemma is contained in the main result

of Völklein [25] as a special case.

Lemma 4.8 Let F be a perfect field of positive characteristic or a number field and
let n = 3. Then the Weyl embedding ε̃+

2 is universal.

The next theorem can be proved by induction on n, using Lemma 4.8 to start and
Corollary 4.3 combined with part (1) of Corollary 4.7 to go on.

Theorem 4.9 Let F be a perfect field of positive characteristic or a number field and
let n ≥ 3. Then every projective embedding of Δ2 has dimension at most

(2n+1
2

)
and

every projective embedding of Δ+
2 has dimension at most

(2n
2

)
.

Since dim(̃ε2) = (2n+1
2

)
and dim(̃ε+

2 ) = (2n
2

)
, Theorem 4.9 immediately implies

the following corollary, which contains part (1) of Theorem 1.5.

Corollary 4.10 Let F be a perfect field of positive characteristic or a number field
and let n ≥ 3. Then both ε̃2 and ε̃+

2 are universal.

4.4 Quasi-veronesean embeddings of projective spaces

We can deal with the case k = 3 by induction just as we have done for k = 2 in
the previous subsection, but in order to start the induction we need an analog of
Lemma 4.8 for n = 4. We will obtain such a lemma in the next subsection. In the
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present subsection we prove a preliminary result to be exploited in the proof of that
lemma. We firstly state a few definitions.

The following class of embeddings includes both projective and veronesean em-
beddings. Given a point-line geometry Γ and a vector space U defined over a com-
mutative division ring, a quasi-veronesean embedding of Γ in PG(U) is an injective
mapping ν from the point-set of Γ to the set of points of PG(U) such that ν(Γ ) spans
PG(U) and every line of Γ is mapped by ν onto either a non-singular conic or a line
of PG(U). We set dim(ν) := dim(U), as usual.

Given a quasi-veronesean embedding ν : Γ → PG(U), the span 〈ν(l)〉 in PG(U)

of the image ν(l) of a line l of Γ is uniquely determined by any three of its points.
This suggests to consider the following notions. A set of points X of Γ is a 3-
subspace of Γ if every line meeting X in at least three points is contained in X.
Intersections of 3-subspaces are 3-subspaces. So, for every set X of points, the in-
tersection 〈X〉3

Γ of all 3-subspaces of Γ containing X is the smallest 3-subspace
of Γ containing X. We call it the 3-span of X in Γ . Note that every subspace of
Γ as defined in Sect. 2 is also a 3-subspace, but the converse is false in general.
Hence 〈X〉3

Γ ⊆ 〈X〉Γ , possibly with strict inclusion. We say that X 3-generates Γ if
〈X〉3

Γ = Γ .

Lemma 4.11 Let F �= F2. Then, for every positive integer d , every quasi-veronesean
embedding of PG(d,F) is at most

(
d+2

2

)
-dimensional.

Proof It suffices to prove that PG(d,F) can be 3-generated by a set of
(
d+2

2

)
points.

Explicitly,

(1) PG(d,F) admits a 3-generating set of size
(
d+2

2

)
.

It is convenient to combine (1) with the following:

(2) If X ⊂ PG(d,F) is such that |X| = (
d+1

2

)
and 〈X〉3

PG(d,F)
is a hyperplane of

PG(d,F), then we can find a set of points Y ⊂ PG(d,F) such that |Y | = d + 1,
Y ∩ X = ∅ and X ∪ Y 3-generates PG(d,F).

We shall prove the conjunction of (1) and (2) by induction on d . If d = 1 there is
nothing to prove. Let d > 1. Assume that we have already proved that (2) holds for
that d . Every hyperplane H of PG(d,F) admits a 3-generating set X of size

(
d+1

2

)
,

by the inductive hypothesis on (1). By (2), we can enlarge X to a 3-generating set
X ∪ Y of PG(d,F) of size d + 1 + (

d+1
2

) = (
d+2

2

)
. So, (1) holds for d .

It remains to prove (2). Given X as in (2), let H1 = 〈X〉3
PG(d,F) and let H2 be an-

other hyperplane of PG(d,F), different from H1. By the inductive hypothesis on (1),
H1 ∩ H2 admits a 3-generating set X′ of size

(
d
2

)
. By the inductive hypothesis on (2),

we can find Y ′ ⊂ H2 such that |Y ′| = d , Y ′ ∩ X′ = ∅ and 〈X′ ∪ Y ′〉3
PG(d,F)

= H2.

Thus, 〈X ∪Y ′〉3
PG(3,F)

⊇ H1 ∪H2. Pick now a point p ∈ PG(d,F) \ (H1 ∪H2) and let
H3 be the unique hyperplane of PG(d,F) containing {p} ∪ H1 ∩ H2. Every point x

of PG(d,F) exterior to H1 ∪ H2 ∪ H3 belongs to a line through p meeting H1 ∪ H2

in two distinct points. Hence 〈X ∪ Y ′ ∪ {p}〉3
PG(d,F)

contains all points of PG(d,F)

except possibly those of H3 different from p and exterior to H1 ∩H2. As F �= F2, this
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set of points is enough to 3-generate PG(d,F). So, Y := Y ′ ∪ {p} has the properties
required in (2). �

Remarks

1. The hypothesis F �= F2 cannot be dropped from Lemma 4.11. Indeed let Γ be a
point-line geometry where every line has just 3 points and let P be the point-set
of Γ . Then every subset of P is a 3-subspace of Γ and Γ admits a (universal)
veronesean embedding ν : Γ → PG(FP

2 ) where F
P
2 is the F2-vector space of all

functions f : P → F2 and ν sends p ∈ P to the characteristic function of {p}.
Clearly, dim(ν) = |P |.

2. Note that
(
d+2

2

)
is indeed the dimension of the usual veronesean embedding

of PG(d,F), sending a vector (xi)
d
i=0 ∈ V (d + 1,F) to the vector (xixj )i≤j ∈

V
((

d+2
2

)
,F

)
. So, by Lemma 4.11, that embedding is relatively universal when

F �= F2.

4.5 An analog of Lemma 4.8 for n = 4

In this subsection F is either a perfect field of positive characteristic different from F2
or a number field, n = 4 and η+

3 : Δ+
3 → PG(U ′

3) is a projective embedding of Δ+
3 .

For a point p of Δ+
1 , we denote by Δ+

3,p the subgeometry of Δ+
3 induced on

the set of planes of Δ+
1 containing p and η+

3,p is the restriction of η+
3 to Δ+

3,p .

Clearly, Δ+
3,p is isomorphic to the 2-grassmannian Δ

+
2 of a building Δ

+
of type

D3 defined over F and η+
3,p can be regarded as a projective embedding of Δ

+
2 into

U ′
3,p := 〈η+

3 (Δ+
3,p)〉. By Corollary 4.10, η+

3,p is a quotient of the Weyl embedding

of Δ
+
2 . Hence dim(U ′

3,p) ≤ 15.

Given two non-collinear points a and b of Δ+
1 , let Δ+

3,a,b be the set of planes of

Δ+
1 contained in a⊥ ∩ b⊥ and U ′

3,a,b := 〈η+
3 (Δ+

3,a,b)〉.

Lemma 4.12 dim(U ′
3,a,b) ≤ 20.

Proof The polar space Δ+
1 induces on a⊥ ∩ b⊥ the line grassmannian of a projective

geometry Πa,b
∼= PG(3,F). So, the set Δ+

3,a,b is partitioned in two sets P0 and P1,
corresponding to the points and the planes of Πa,b .

Let p ∈ a⊥ ∩ b⊥. The residue res(p) of p in Δ+ is a D3-building, Δ+
3,p is the

2-grassmannian of the building res(p) and the subgeometry Δ+
2,p induced by Δ+

2 on

the set of lines of Δ+
1 through p is the polar space associated to res(p). The lines la

and lb of Δ+
1 joining p with a or b respectively, are points of the polar space Δ+

2,p

and Sp := Δ+
3,p ∩ Δ+

3,a,b is the set of lines of Δ+
2,p contained in l⊥a ∩ l⊥b . The set

Sp is partitioned in two families Pp,0 = Sp ∩ P0 and Pp,1 = Sp ∩ P1. In the polar
space Δ+

2,p , the sets Pp,0 and Pp,1 form the two families of lines of a grid. On the
other hand, p is a line of the projective geometry Πa,b . Accordingly, Pp,0 is the set
of points of the line p of Πa,b and Pp,1 is the set of planes of Πa,b through p.
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The polar space Δ+
2,p can also be regarded as the line-grassmannian of a projective

geometry Πp
∼= PG(3,F). The lines la and lb appear as two skew lines in Πp while

the elements of Pp,0 and Pp,1 are point-plane flags, formed by a point in la and a
plane through lb or a point of lb and a plane on la . We can assume that the elements
of Pp,0 are flags {x,X} with x a point of la and X a plane through lb while those of
Pp,1 are flags {x,X} with x ∈ lb and X ⊃ la .

The embedding η+
3,p : Δ+

3,p → PG(U ′
3,p) is a quotient of the Weyl embedding

ε̃+
2,p : Δ+

3,p → PG(Ũ), where Ũ is the vector space of null-traced 4 × 4-matrices with
entries in F. We have given an explicit description of this embedding in Sect. 4.3.
Comparing that description with the above characterization of Pp,0 and Pp,1 as point-
plane flags of Πp , one can see that for i = 0,1 the embedding ε̃+

2,p maps Pp,i onto a

non-singular conic Cp,i of PG(Ũ). Explicitly, if {u1, u2, u3, u4} is a basis of V (4,F)

such that la and lb correspond to the lines 〈u1, u2〉 and 〈u3, u4〉 of PG(3,F) ∼= Πp ,
then Cp,0 = {〈M0(s, t)〉}s,t∈F and Cp,1 = {〈M1(s, t)〉}t,s∈F where

M0(t, s) =

⎡

⎢
⎢
⎣

−ts s2 0 0
−t2 ts 0 0

0 0 0 0
0 0 0 0

⎤

⎥
⎥
⎦ , M1(t, s) =

⎡

⎢
⎢
⎣

0 0 0 0
0 0 0 0
0 0 −ts s2

0 0 −t2 ts

⎤

⎥
⎥
⎦ .

Let ϕ be the projection of Ũ over U ′
3,p . Since η+

3,p is injective, 〈Cp,i〉 ∩ ker(ϕ) is
either the null subspace or the nucleus of the conic Cp,i , the latter case possibly
occurring only if char(F) = 2. In the first case ϕ maps Cp,i onto a conic of PG(U ′

3,p).
In the second case, since F is perfect by assumption, every line of 〈Cp,i〉 through the
nucleus of Cp,i meets Cp,i in exactly one point. Hence ϕ maps Cp,i onto a line of
PG(U ′

3,p). Thus, η+
3,p maps Pp,i onto either a conic or a line.

Let now η+
3,a,b be the restriction of η+

3 to Δ+
3,a,b . Clearly, η+

3,a,b and η+
3,p induce

the same mapping on Δ+
3,a,b ∩Δ+

3,p . As remarked above, every point p ∈ a⊥ ∩b⊥ is a
line of Πa,b and Pp,0 is the set of points of that line. Moreover P0 is the set of points
of Πa,b . As η+

3,p maps Pp,0 onto either a conic or a line, η+
3,a,b is a quasi-veronesean

embedding of Πa,b . By Lemma 4.11, dim(〈η+
3,a,b(P0)〉) ≤ 10. By a dual argument,

dim(〈η+
3,a,b(P1)〉) ≤ 10. Hence dim(〈η+

3,a,b(P0 ∪ P1)〉) ≤ 20. �

The polar space Δ+
1,a,b induced by Δ+

1 on a⊥ ∩ b⊥ can be generated by six points,

say p1,p1, . . . , p6. For every i = 1,2, . . . ,6, let αi be a plane of Δ+
1 on pi such that

a⊥ ∩ b⊥ ∩ αi = {pi}. Put S := 〈{αi}6
i=1 ∪ Δ+

3,a ∪ Δ+
3,b ∪ Δ+

3,a,b〉Δ+
3

.

Lemma 4.13 S = Δ+
3 .

Proof Throughout the proof of this lemma the words ‘point’, ‘line’, ‘plane’ and
‘space’ refer to a point, a line, a plane or a 3-space, respectively, of the polar space
Δ+

1 . We say that a point p ∈ a⊥ ∩b⊥ is S-full if all planes on p belong to S. We chop
our proof in a series of steps.

(1) Every plane contained in a common space with either a or b belongs to S.
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Let X be a space on a. Then b⊥ ∩X is a plane. It belongs to Δ+
3,a,b . Hence it belongs

to S. On the other hand, a /∈ b⊥ ∩ X since a �⊥ b by assumption. Moreover, all planes
of X through a belong to Δ+

3,a , whence they belong to S. It follows that all planes of
X are in S. Claim (1) follows.

(2) Given a point p ∈ a⊥ ∩ b⊥, if there is a plane α0 on p such that α0 ∈ S and
α0 ∩ a⊥ ∩ b⊥ = {p}, then p is S-full.

Let X be a space on α0. By (1), both planes a⊥ ∩ X and b⊥ ∩ X belong to S. These
two planes meet α0 in distinct lines passing through p. Therefore, and since α0 ∈ S,
all planes of X through p belong to S. Let H be the set of planes through p that meet
a⊥ ∩ b⊥ in at least a line. The complement Δ+

3,p \ H of H in Δ+
3,p is a connected

subgeometry of Δ+
3,p . It contains α0, which belongs to S. Hence, by the above, Δ+

3,p \
H ⊆ S. Moreover, still by the above, every plane through p contained in a common
subspace with a plane of Δ+

3,p \ H belongs to S. On the other hand, a plane through

p is not contained in a common space with any of the planes of Δ+
3,p \ H only if it

belongs to Δ+
3,a,b . If so, it belongs to S. Therefore S contains all planes through p.

(3) Let x, y, z be three points of a line l ⊂ a⊥ ∩ b⊥ and suppose that both x and y

are S-full. Then z is S-full too.

There exists at least one space X containing l and such that a⊥ ∩ b⊥ ∩ X = l. As x

and y are S-full, all planes of X through either x or y belong to S. Hence all planes
of X belong to S. On the other hand a⊥ ∩ b⊥ ∩ X = l. Therefore there exists at least
one plane α of X containing z and such that α ∩ a⊥ ∩ b⊥ = {z}. This plane belongs
to S, as all planes of X belong to S. So, z satisfies the hypotheses of (2). By (2), z is
S-full.

We can now finish the proof of the lemma. For every i = 1,2, . . . ,6, we have cho-
sen the plane αi on pi in such a way that the hypotheses of (2) hold for pi and αi .
Hence pi is S-full. On the other hand, p1, . . . , p6 span Δ+

1,a,b , by assumption. There-

fore every point of a⊥ ∩ b⊥ is S-full, by (3). Finally, every plane meets a⊥ ∩ b⊥ in at
least a point. Hence every plane belongs to S. �

Theorem 4.14 Let F be either a perfect field of positive characteristic, different from
F2, or a number field. Let n = 4. Then the Weyl embedding ε̃+

3 is universal.

Proof By Lemma 4.13, for every projective embedding η+
3 of Δ+

3 we have

dim
(
η+

3

) ≤ 6 + dim
(
η+

3,a

) + dim
(
η+

3,b

) + dim
(
U ′

3,a,b

)
.

On the other hand, dim(η+
3,a) and dim(η+

3,b) are less or equal to 15 by Lemma 4.8 and

dim(U ′
3,a,b) ≤ 20 by Lemma 4.12. Hence dim(η+

3 ) ≤ 56. However dim(̃ε+
3 ) = 56 and

Δ+
3 admits the absolutely universal embedding [8]. Hence ε̃+

3 is universal. �

4.6 Proof of Theorem 1.5. The case k = 3

By an inductive argument on n, using Theorem 4.14 to start and Corollary 4.5 com-
bined with part (2) of Corollary 4.7 to go on, we obtain the following:
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Theorem 4.15 Let F be a perfect field of positive characteristic, different from F2 or
a number field and let n > 3. Then every projective embedding of Δ3 has dimension
at most

(2n+1
3

)
and every projective embedding of Δ+

3 has dimension at most
(2n

3

)
.

Since dim(̃ε3) = (2n+1
3

)
and ε̃+

3 = (2n
3

)
, Theorem 4.15 immediately implies the

following corollary, which contains part (2) of Theorem 1.5.

Corollary 4.16 Let F be a perfect field of positive characteristic, different from F2,
or a number field and let n > 3. Then both ε̃3 and ε̃+

3 are universal.

4.7 Remarks

1. The assumptions n > 2 when k = 2 and n > 3 when k = 3 cannot be removed from
Theorem 1.5. Indeed when n = k = 2 or 3 the Weyl embedding ε̃k is veronesean.
Regretfully, we do not know so much on veronesean embeddings. We guess that
ε̃n is relatively universal when char(F) �= 2, but so far we have not found a way to
prove this conjecture, even in the case of n = 2. On the other hand, if F is a perfect
field of characteristic 2 then ε̃n is not universal, for any n (see [11]).

2. One might believe that the ideas exploited in Sect. 4.3 can be re-used to obtain
results similar to Corollaries 4.3, 4.5 and 4.7 for any k < n, but things are not so
easy as they look at first glance. For instance, let k = 4. Instead of choosing a gen-
erating set p1,p2, . . . , p2n−1 for the polar space induced by Δ1 on a⊥ ∩ H and
suitable planes α1, α2, . . . , α2n−1 on p1,p2, . . . , p2n−1 as we have done for Δ3,
we could consider a generating set {l1, . . . , lm} of the 2-grassmannian Δ2 of that
polar space and a suitable 4-space on each of l1, . . . , lm. However, for this move
to be effective we need m = (2n−1

2

)
. Thus, we should know that Δ2 admits a gen-

erating set of size
(2n−1

2

)
. However we do not know if this is true in general. It is

true when F is a finite prime field (Cooperstein [14]), but perhaps it is false for
other fields (compare Blok and Pasini [7]). Anyway, Theorem 1.5 is of no help
here. That theorem only tells us that every projective embedding of Δ2 is at most(2n−1

2

)
-dimensional. It says nothing on generating sets.

We face similar difficulties if, in the attempt to generalize Theorem 4.14 to
Δ+

n−1 with n > 4, we try to rephrase the proof of Lemma 4.13. Besides this,
in order to generalize Theorem 4.14 we must preliminarily prove an analog of
Lemma 4.11 for quasi-veronesean embeddings of half spin geometries, obtaining
an upper bound for the dimension of such an embedding, but this does not look so
easy to do. Perhaps, it is equivalent to determine an upper bound for the dimension
of a quasi-veronesean embedding of Δn.
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