Grassmann and Weyl embeddings of orthogonal grassmannians

Ilaria Cardinali • Antonio Pasini

Received: 20 January 2012 / Accepted: 29 January 2013 / Published online: 12 February 2013
© Springer Science+Business Media New York 2013

Abstract

Given a non-singular quadratic form q of maximal Witt index on $V:=$ $V(2 n+1, \mathbb{F})$, let Δ be the building of type B_{n} formed by the subspaces of V totally singular for q and, for $1 \leq k \leq n$, let Δ_{k} be the k-grassmannian of Δ. Let ε_{k} be the embedding of Δ_{k} into $\mathrm{PG}\left(\bigwedge^{k} V\right)$ mapping every point $\left\langle v_{1}, v_{2}, \ldots, v_{k}\right\rangle$ of Δ_{k} to the point $\left\langle v_{1} \wedge v_{2} \wedge \cdots \wedge v_{k}\right\rangle$ of $\operatorname{PG}\left(\bigwedge^{k} V\right)$. It is known that if $\operatorname{char}(\mathbb{F}) \neq 2$ then $\operatorname{dim}\left(\varepsilon_{k}\right)=\binom{2 n+1}{k}$. In this paper we give a new very easy proof of this fact. We also prove that if $\operatorname{char}(\mathbb{F})=2$ then $\operatorname{dim}\left(\varepsilon_{k}\right)=\binom{2 n+1}{k}-\binom{2 n+1}{k-2}$. As a consequence, when $1<k<n$ and $\operatorname{char}(\mathbb{F})=2$ the embedding ε_{k} is not universal. Finally, we prove that if \mathbb{F} is a perfect field of characteristic $p>2$ or a number field, $n>k$ and $k=2$ or 3 , then ε_{k} is universal.

Keywords Orthogonal grassmannians • Weyl modules • Veronesean embeddings • Orthogonal groups

1 Introduction

1.1 Definitions and notation

Let $V:=V(2 n+1, \mathbb{F})$ for a field \mathbb{F} and let q be a non-singular quadratic form of V of Witt index n. Let Δ be the building of type B_{n} where the elements of type $k=1,2, \ldots, n$ are the k-dimensional subspaces of V totally singular for q.

[^0]

Let \mathcal{G}_{k} and Δ_{k} be the k-grassmannians of $\mathrm{PG}(V)$ and Δ respectively. We recall that \mathcal{G}_{k} is a point-line geometry where the points are the k-dimensional subspaces of V and the lines are the sets

$$
l_{X, Y}:=\{Z \mid X \subset Z \subset Y, \operatorname{dim}(Z)=k\}
$$

for subspaces X and Y of V with $\operatorname{dim}(X)=k-1, \operatorname{dim}(Y)=k+1$ and $X \subset Y$. The grassmannian Δ_{k} is a subgeometry of \mathcal{G}_{k}. The points of Δ_{k} are the k-subspaces of V that are totally singular for q. When $k<n$ the lines of Δ_{k} are the lines $l_{X, Y}$ of \mathcal{G}_{k} with Y totally singular. When $k=n$ the lines of Δ_{n} are the sets

$$
l_{X}:=\left\{Z \mid X \subset Z \subset X^{\perp}, \operatorname{dim}(Z)=n, Z \text { totally singular }\right\}
$$

where X is a totally singular $(n-1)$-subspace of V and X^{\perp} is the subspace orthogonal to X with respect to q. Note that the points of l_{X} form a conic in the projective plane $\mathrm{PG}\left(X^{\perp} / X\right)$. The geometry Δ_{n} is often called the dual of Δ_{1}. The latter is the polar space associated to the building Δ.

Let $W_{k}:=\bigwedge^{k} V$. The natural projective embedding $e_{k}: \mathcal{G}_{k} \rightarrow \operatorname{PG}\left(W_{k}\right)$ of \mathcal{G}_{k} maps every k-subspace $\left\langle v_{1}, v_{2}, \ldots, v_{k}\right\rangle$ of V to the point $\left\langle v_{1} \wedge v_{2} \wedge \cdots \wedge v_{k}\right\rangle$ of $\operatorname{PG}\left(W_{k}\right)$. Let $\varepsilon_{k}:=\left.e_{k}\right|_{\Delta_{k}}$ be the restriction of e_{k} to Δ_{k}. When $k<n$ the mapping ε_{k} is a projective embedding of Δ_{k} into the subspace $\left\langle\varepsilon_{k}\left(\Delta_{k}\right)\right\rangle$ of $\mathrm{PG}\left(W_{k}\right)$ spanned by $\varepsilon_{k}\left(\Delta_{k}\right)$. We call ε_{k} the Grassmann embedding of Δ_{k}.

If $k=n$ then ε_{n} maps lines of Δ_{n} onto non-singular conics of $\operatorname{PG}\left(W_{n}\right)$. So, ε_{n} is not a projective embedding. Indeed a projective embedding of a point-line geometry Γ into the projective space $\mathrm{PG}(W)$ of a vector space W is an injective mapping ε from the point-set of Γ to the set of points of $\operatorname{PG}(W)$ such that ε maps every line of Γ surjectively onto a line of $\operatorname{PG}(W)$ and $\varepsilon(\Gamma)$ spans $\operatorname{PG}(W)$ (see [19], for instance). The dimension of W is taken as the (vector) dimension $\operatorname{dim}(\varepsilon)$ of ε. Borrowing a word from [22], we say that an injective mapping ε from the point set of Γ to the set of points of $\operatorname{PG}(W)$ is a veronesean embedding if it maps every line of Γ onto a nonsingular conic of $\mathrm{PG}(W)$ and $\varepsilon(\Gamma)$ spans $\mathrm{PG}(W)$. (Of course, the underlying division ring of W is assumed to be commutative.) We put $\operatorname{dim}(\varepsilon)=\operatorname{dim}(W)$, as for projective embeddings. With this terminology, ε_{n} is a veronesean embedding of Δ_{n}. We call it the Grassmann veronesean embedding of Δ_{n}, also the Grassmann embedding of Δ_{n}, for short. According to the previous conventions, $\operatorname{dim}\left(\varepsilon_{n}\right):=\operatorname{dim}\left(\left\langle\varepsilon_{n}\left(\Delta_{n}\right)\right\rangle\right)$.

We recall that Δ_{n} admits a projective embedding, namely the spin embedding. We shall denote it by the symbol $\varepsilon_{\text {spin }}$. The embedding $\varepsilon_{\text {spin }}$ is hosted by the so-called spin module, namely the Weyl module $V\left(\omega_{n}\right)$ (see below). Note that $\operatorname{dim}\left(V\left(\omega_{n}\right)\right)=2^{n}$. Hence $\operatorname{dim}\left(\varepsilon_{\text {spin }}\right)=2^{n}$.

Henceforth $G:=\mathrm{SO}(2 n+1, \mathbb{F})$ is the stabilizer of the form q in $\operatorname{SL}(V)=\operatorname{SL}(2 n+$ $1, \mathbb{F})$. The group G also acts on W_{k}, according to the following rule:

$$
g\left(v_{1} \wedge \cdots \wedge v_{k}\right)=g\left(v_{1}\right) \wedge \cdots \wedge g\left(v_{k}\right) \quad \text { for } g \in G \text { and } v_{1}, \ldots, v_{k} \in V
$$

Note that $\operatorname{SO}(2 n+1, \mathbb{F})=\operatorname{PSO}(2 n+1, \mathbb{F})$, namely G is the adjoint Chevalley group of type B_{n} defined over \mathbb{F}. The universal Chevalley group of type B_{n} is the spin group
$\widetilde{G}=\operatorname{Spin}(2 n+1, \mathbb{F})$. It acts faithfully on $V\left(\omega_{n}\right)$. If $\operatorname{char}(\mathbb{F})=2$ then $\widetilde{G}=G$. On the other hand, if $\operatorname{char}(\mathbb{F}) \neq 2$ then $\widetilde{G}=2 \cdot G$, a non-split central extension of G by a group of order two.

Finally, we fix some notation for Weyl modules. Let $\omega_{1}, \omega_{2}, \ldots, \omega_{n}$ be the fundamental dominant weights for the root system of type B_{n}, numbered in the usual way (see the picture at the beginning of this introduction). For a positive integral combination λ of $\omega_{1}, \ldots, \omega_{n}$, we denote by $V(\lambda)$ the Weyl module over \mathbb{F} with λ as the highest weight. The group \widetilde{G} acts on $V(\lambda)$. If its action is unfaithful then \widetilde{G} induces G on $V(\lambda)$, namely $V(\lambda)$ is a G-module. On the other hand, if \widetilde{G} acts faithfully on $V(\lambda)$ and $\widetilde{G} \neq G$ then $V(\lambda)$ is a \widetilde{G}-module but not a G-module. For instance, if $\operatorname{char}(\mathbb{F}) \neq 2$ then $V\left(\omega_{n}\right)$ is a \widetilde{G}-module but not a G-module. On the other hand, $V\left(\omega_{1}\right), V\left(\omega_{2}\right), \ldots, V\left(\omega_{n-1}\right)$ and $V\left(2 \omega_{n}\right)$ are G-modules.

Throughout this paper $\lambda_{k}:=\omega_{k}$ for $k=1,2, \ldots, n-1$ and $\lambda_{n}=2 \omega_{n}$. Note that $\operatorname{dim}\left(V\left(\lambda_{k}\right)\right)=\binom{2 n+1}{k}$, as one can see by applying the Weyl dimension formula (see [18, 24.3], for instance).

1.2 Dimensions

The G-module $\left\langle\varepsilon_{k}\left(\Delta_{k}\right)\right\rangle$ is a homomorphic image of $V\left(\lambda_{k}\right)$ (see [12]; also Blok [3, Sect. 9]). We say that $V\left(\lambda_{k}\right)$ hosts ε_{k} (also that ε_{k} lives in $V\left(\lambda_{k}\right)$) if $\left\langle\varepsilon_{k}\left(\Delta_{k}\right)\right\rangle \cong$ $V\left(\lambda_{k}\right)$ (isomorphism of G-modules). Equivalently, $\operatorname{dim}\left(\varepsilon_{k}\right)=\binom{2 n+1}{k}$, namely $\varepsilon_{k}\left(\Delta_{k}\right)$ spans W_{k}.

When $\operatorname{char}(\mathbb{F}) \neq 2$ the G-module $V\left(\lambda_{k}\right)$ is irreducible, hence $\left\langle\varepsilon_{k}\left(\Delta_{k}\right)\right\rangle=V\left(\lambda_{k}\right)$ (see [12]; also Blok [3, Sect. 9]). We state this fact as a theorem.

Theorem 1.1 Let $\operatorname{char}(\mathbb{F}) \neq 2$. Then $\operatorname{dim}\left(\varepsilon_{k}\right)=\binom{2 n+1}{k}$. In other words, $V\left(\lambda_{k}\right)$ hosts ε_{k}.

In Sect. 2 we shall give a different and very easy proof of Theorem 1.1, relying only on elementary properties of quadratic forms in odd characteristic, without asking the irreducibility of $V\left(\lambda_{k}\right)$ for help.

By contrast, when char $(\mathbb{F})=2$ the following holds:
Theorem 1.2 Let $\operatorname{char}(\mathbb{F})=2$. Then $\operatorname{dim}\left(\varepsilon_{k}\right)=\binom{2 n+1}{k}-\binom{2 n+1}{k-2}$, where, if $k=1$, we adopt the convention that $\binom{2 n+1}{-1}=0$.

We shall prove this theorem in Sect. 3.3, obtaining it as a consequence of a more detailed statement valid when \mathbb{F} is perfect (see below, Theorem 1.3). Before stating the latter result we must recall a few facts on symplectic grassmannians and their natural embeddings.

Put $V^{\prime}:=V(2 n, \mathbb{F})$, let $\Delta^{s p}$ be the building of type C_{n} associated to the symplectic group $\operatorname{Sp}(2 n, \mathbb{F})$ in its natural action on V^{\prime} and, for $k=1,2, \ldots, n$, let $\Delta_{k}^{s p}$ be the k-grassmannian of $\Delta^{s p}$. Then $\Delta_{k}^{s p}$ is a subgeometry of the k-grassmannian \mathcal{G}_{k}^{\prime} of $\operatorname{PG}\left(V^{\prime}\right)$. Put $W_{k}^{\prime}:=\bigwedge^{k} V^{\prime}$ and let $e_{k}^{\prime}: \mathcal{G}_{k}^{\prime} \rightarrow \operatorname{PG}\left(W_{k}^{\prime}\right)$ be the natural embedding of \mathcal{G}_{k}^{\prime}, sending every totally isotropic subspace $\left\langle v_{1}, \ldots, v_{k}\right\rangle$ of V^{\prime} to the point $\left\langle v_{1} \wedge \cdots \wedge v_{k}\right\rangle$ of $\operatorname{PG}\left(W_{k}^{\prime}\right)$. Let $\varepsilon_{k}^{s p}:=\left.e_{k}^{\prime}\right|_{\Delta_{k}^{s p}}$ be the restriction of e_{k}^{\prime} to $\Delta_{k}^{s p}$. Then $\varepsilon_{k}^{s p}$ is a projective
embedding of $\Delta_{k}^{s p}$, called the natural or Grassmann embedding of $\Delta_{k}^{s p}$. It is well known that $\operatorname{dim}\left(\varepsilon_{k}^{s p}\right)=\binom{2 n}{k}-\binom{2 n}{k-2}$.

Let now $\operatorname{char}(\mathbb{F})=2$. If moreover \mathbb{F} is perfect then $\Delta \cong \Delta^{s p}$. Indeed, denoted by N_{0} the nucleus of the quadratic form q, namely the radical of the bilinear form associated to q, the projection from V to $V / N_{0} \cong V^{\prime}$ induces an isomorphism from Δ_{1} to $\Delta_{1}^{s p}$, which can be regarded as an isomorphism from Δ to $\Delta^{s p}$ and immediately induces an isomorphism from Δ_{k} to $\Delta_{k}^{s p}$ for every $k>1$. Thus, both embeddings ε_{k} and $\varepsilon_{k}^{s p}$ can be considered for Δ_{k}.

Let $k>1$. Given an element X of Δ of type $k-1$, let $\operatorname{St}(X)$ be its upper residue, formed by the elements of Δ of type $k, k+1, \ldots, n$ that contain X. We call $\operatorname{St}(X)$ the star of X. Clearly, $\operatorname{St}(X)$ is (the building of) an orthogonal polar space of rank $n-k+1$ defined in X^{\perp} / X. Still assuming that $\operatorname{char}(\mathbb{F})=2$, let n_{X} be the nucleus of a quadratic form associated to the polar space $\operatorname{St}(X)$. Then $n_{X}=N_{X} / X$ where $N_{X}=\left\langle X, N_{0}\right\rangle$. Clearly, N_{X} is a point of \mathcal{G}_{k} and, since n_{X} belongs to X^{\perp} / X, which is spanned by the 1-dimensional subspaces Y / X for Y ranging in the set of points of $\operatorname{St}(X)$, the point $e_{k}\left(N_{X}\right)$ of $\operatorname{PG}\left(W_{k}\right)$ belongs to $\left\langle\varepsilon_{k}\left(\Delta_{k}\right)\right\rangle$. Put $\mathcal{N}_{k}:=\left\langle e_{k}\left(N_{X}\right)\right\rangle_{X \in \Delta_{k-1}}$. Clearly, \mathcal{N}_{k} is stabilized by G.

In Sect. 3 we shall prove that the mapping $t_{k-1}: \Delta_{k-1} \rightarrow \operatorname{PG}\left(\mathcal{N}_{k}\right)$ sending every point X of Δ_{k-1} to $e_{k}\left(N_{X}\right)$ is a projective embedding and that \mathcal{N}_{k} defines a quotient $\varepsilon_{k} / \mathcal{N}_{k}$ of ε_{k}. More precisely, when $k<n$ or $k=n$ but \mathbb{F} is perfect then $\varepsilon_{k} / \mathcal{N}_{k}$ is a projective embedding in the usual sense, mapping lines of Δ_{k} onto lines of $\operatorname{PG}\left(\left\langle\varepsilon_{k}\left(\Delta_{k}\right)\right\rangle / \mathcal{N}_{k}\right)$. On the other hand, let $k=n$ and let \mathbb{F} be non-perfect. Then $\varepsilon_{n} / \mathcal{N}_{n}$ is a lax embedding as defined in [24], namely the image of a line of Δ_{n} under $\varepsilon_{n} / \mathcal{N}_{n}$ is properly contained in a line of $\operatorname{PG}\left(\left\langle\varepsilon_{n}\left(\Delta_{n}\right)\right\rangle / \mathcal{N}_{n}\right)$. In Sect. 3.3 we will prove the following:

Theorem 1.3 Let \mathbb{F} be a perfect field of characteristic 2 and let $k>1$.
(1) $\iota_{k-1} \cong \varepsilon_{k-1}^{s p}$. Consequently, $\operatorname{dim}\left(\mathcal{N}_{k}\right)=\binom{2 n}{k-1}-\binom{2 n}{k-3}$.
(2) $\varepsilon_{k} / \mathcal{N}_{k} \cong \varepsilon_{k}^{s p}$, whence $\operatorname{dim}\left(\left\langle\varepsilon_{k}\left(\Delta_{k}\right)\right\rangle / \mathcal{N}_{k}\right)=\binom{2 n}{k}-\binom{2 n}{k-2}$.

Conjecture 1 The equalities $\operatorname{dim}\left(\mathcal{N}_{k}\right)=\binom{2 n}{k-1}-\binom{2 n}{k-3}$ and $\operatorname{dim}\left(\varepsilon_{k} / \mathcal{N}_{k}\right)=\binom{2 n}{k}-$ $\binom{2 n}{k-2}$ also hold if \mathbb{F} is non-perfect.

Both claims of Conjecture 1 hold true when $n \leq 4$ and \mathbb{F} is any field of characteristic 2 , as one can check by crude computations.

Conjecture 2 Let $\operatorname{char}(\mathbb{F})=2$ and $k>2$. Then the kernel of the projection of $V\left(\lambda_{k}\right)$ onto $\left\langle\varepsilon_{k}\left(\Delta_{k}\right)\right\rangle$ is isomorphic to $V\left(\lambda_{k-2}\right)$.

1.3 Results and conjectures on universality

Following Kasikova and Shult [19], we say that a projective embedding of a pointline geometry Γ is relatively universal when it is not a proper quotient of any larger embedding of Γ. A projective embedding ε of Γ is absolutely universal if all embeddings of Γ defined over the same division ring as ε are quotients of ε. If all projective
embeddings of Γ are defined over the same division ring (as is the case for Δ_{k}) then the absolutely universal embedding of Γ, if it exists, is uniquely determined up to isomorphisms. Clearly, every absolutely universal projective embedding is relatively universal. If Γ admits the absolutely universal embedding then the converse also holds true: all relatively universal embeddings of Γ are absolutely universal. In this case we may simply speak of universal embeddings, dropping the words 'absolutely' or 'relatively'. We can do so when dealing with Δ_{k}. Indeed Δ_{k} admits the absolutely universal projective embedding (Kasikova and Shult [19]).

As remarked earlier, the G-module $\left\langle\varepsilon_{k}\left(\Delta_{k}\right)\right\rangle$ is a quotient of $V\left(\lambda_{k}\right)$. Indeed an embedding $\widetilde{\varepsilon}_{k}$ of Δ_{k} can be created in $\operatorname{PG}\left(V\left(\lambda_{k}\right)\right)$. More explicitly, if v_{0} is a highest weight vector of $V\left(\lambda_{k}\right)$, then the G-orbit of $\left\langle v_{0}\right\rangle$ corresponds to the set of points of Δ_{k} and, if P_{k} is the minimal fundamental parabolic subgroup of G of type k and L_{0} is the P_{k}-orbit of $\left\langle v_{0}\right\rangle$, then the G-orbit of L_{0} corresponds to the set of lines of Δ_{k}. The embedding $\widetilde{\varepsilon}_{k}$ is projective when $k<n$ and veronesean when $k=n$. The projection of $V\left(\lambda_{k}\right)$ onto $\left\langle\varepsilon_{k}\left(\Delta_{k}\right)\right\rangle$ is a morphism from $\widetilde{\varepsilon}_{k}$ to the Grassmann embedding ε_{k}. Following Blok [3], when $k<n$ we call $\widetilde{\varepsilon}_{k}$ the Weyl embedding of Δ_{k}. We call $\widetilde{\varepsilon}_{n}$ the Weyl veronesean embedding of Δ_{n}.

It is well known that ε_{1} is universal (Tits [23, Chap. 8]), no matter what char(\mathbb{F}) is. Hence $\widetilde{\varepsilon}_{1}=\varepsilon_{1}$, for any field \mathbb{F}. By Theorem 1.1, if $\operatorname{char}(\mathbb{F}) \neq 2$ then $\widetilde{\varepsilon}_{k}=\varepsilon_{k}$.

Let $\operatorname{char}(\mathbb{F})=2$ and $k>1$. Then $\operatorname{dim}\left(\varepsilon_{k}\right)<\operatorname{dim}\left(\widetilde{\varepsilon}_{k}\right)$ by Theorem 1.2. In this case ε_{k} is a proper quotient of $\widetilde{\varepsilon}_{k}$. We state this fact as a corollary, but keeping aside the case $k=n$ for the moment, since ε_{n} is not a projective embedding. We will turn back to ε_{n} in a few lines.

Corollary 1.4 Let $\operatorname{char}(\mathbb{F})=2$ and $1<k<n$. Then ε_{k} is not universal.
On the other hand, the following is quite plausible.
Conjecture 3 The Weyl embedding $\widetilde{\varepsilon}_{k}$ is universal for any $k=2,3, \ldots, n-1$ and any field \mathbb{F}.

The following theorem, to be proved in Sect. 4, is one of the reasons that make us believe that the previous conjecture holds true.

Theorem 1.5 Let \mathbb{F} be a perfect field of positive characteristic or a number field.
(1) If $n>2$ then the Weyl embedding $\widetilde{\varepsilon}_{2}$ is universal.
(2) Let $n>3$ and $\mathbb{F} \neq \mathbb{F}_{2}$. Then the Weyl embedding $\widetilde{\varepsilon}_{3}$ is universal.

The same conclusion as in (1) of Theorem 1.5 has been obtained by Cooperstein [14], but under the stronger assumption that \mathbb{F} is a finite field of prime order. In fact Cooperstein [14] proves that when $|\mathbb{F}|$ is a prime integer, Δ_{2} can be generated by $\binom{2 n+1}{2}$ points. The universality of $\widetilde{\varepsilon}_{2}$ follows from this fact.

We now turn to the veronesean embeddings ε_{n} and $\widetilde{\varepsilon}_{n}$. Relative universality can be defined for veronesean embeddings just in the same way as for projective embeddings. Let ε be a veronesean embedding of a point-line geometry Γ. The linear hull of ε can be defined in the same way as for projective embeddings (see [21], for
instance) and it is characterized as an initial object in the full sub-category of the category of veronesean embeddings of Γ formed by those embeddings e^{\prime} for which $\operatorname{Hom}\left(e^{\prime}, e\right) \neq \emptyset$ (see [21] for details). We say that e is relatively universal if it is its own linear hull. Thus, it makes sense to ask whether ε_{n} or $\widetilde{\varepsilon}_{n}$ are relatively universal or not. By Theorem 1.2 we immediately obtain the following:

Corollary 1.6 If $\operatorname{char}(\mathbb{F})=2$ then ε_{n} is not relatively universal.
Actually, when $\operatorname{char}(\mathbb{F})=2$ the Weyl veronesean embedding $\widetilde{\varepsilon}_{n}$ is not relatively universal either (see [11]), but perhaps $\widetilde{\varepsilon}_{n}$ is relatively universal when $\operatorname{char}(\mathbb{F}) \neq 2$.

We warn that now we are not allowed to jump from relative universality to absolute universality as we can do when dealing with projective embeddings of Δ_{k}. Indeed we do not know if Δ_{n} admits an absolutely universal veronesean embedding when $\mathbb{F} \neq \mathbb{F}_{2}$. (If $\mathbb{F}=\mathbb{F}_{2}$ then Δ_{n} admits an absolutely universal veronesean embedding, obtained by taking the point-set of Δ_{n} as a basis of an \mathbb{F}_{2}-vector space.)

Another important difference exists between veronesean and projective embeddings: the dimension of a projective embedding of a point-line geometry Γ cannot be larger than the minimal number of points needed to generate Γ while the dimension of a veronesean embedding of Γ can be far larger than that number. For instance, if $\operatorname{char}(\mathbb{F}) \neq 2$ then Δ_{n} can be generated by 2^{n} points (Blok and Brouwer [4], Cooperstein and Shult [15]), whence every projective embedding of Δ_{n} is at most 2^{n}-dimensional. Actually $\operatorname{dim}\left(\varepsilon_{\text {spin }}\right)=2^{n}$. Therefore $\varepsilon_{\text {spin }}$ is universal when $\operatorname{char}(\mathbb{F}) \neq 2$. By contrast, $\operatorname{dim}\left(\widetilde{\varepsilon}_{n}\right)=\binom{2 n+1}{n}>2^{n}$. In fact, the usual notion of generation is unfit for veronesean embeddings. We will say more on this point in Sect. 4.4.

As recalled above, $\varepsilon_{\text {spin }}$ is universal when $\operatorname{char}(\mathbb{F}) \neq 2$. On the other hand, let \mathbb{F} be a perfect field of characteristic 2 . Then $\varepsilon_{\text {spin }}$ is a quotient of $\varepsilon_{n}^{s p}$ (Blok, Cardinali and De Bruyn [5]; see also Cardinali and Lunardon [10]). In this case $V\left(\lambda_{n}\right)=V\left(2 \omega_{n}\right)$ admits a chain of submodules $V\left(\lambda_{n}\right) \supset A \supset B \supset C \supset 0$ where $\operatorname{dim}(A)=\binom{2 n+1}{n}-2^{n}$, $\operatorname{dim}(B)=\binom{2 n+1}{n-1}$ and $\operatorname{dim}(C)=\binom{2 n+1}{n-2}, C$ is the kernel of the projection of $\widetilde{\varepsilon}_{n}$ onto $\varepsilon_{n}, V\left(\lambda_{n}\right) / B$ hosts $\varepsilon_{n}^{s p}$ (by Lemma 1.3) and $V\left(\lambda_{n}\right) / A \cong V\left(\omega_{n}\right)$ hosts $\varepsilon_{\text {spin }}$. Moreover, $B / C=\mathcal{N}_{n}$ hosts $\varepsilon_{n-1}^{s p}$ by Lemma 1.3 and A / B hosts a projective embedding of $\Delta_{n-2}^{s p}$ (see [5], also [10]).
1.4 Non-universality of $\varepsilon_{k}^{s p}$ when $\operatorname{char}(\mathbb{F})=2$ and $k<n$

It is known that $\Delta_{k}^{s p}$ admits the absolutely universal projective embedding, for every $k=1,2, \ldots, n$ (Kasikova and Shult [19]). When $\operatorname{char}(\mathbb{F}) \neq 2$, the absolutely universal projective embedding of $\Delta_{k}^{s p}$ is just $\varepsilon_{k}^{s p}[1,2,6,13]$. On the other hand, it is well known that $\varepsilon_{1}^{s p}$ is not universal when $\operatorname{char}(\mathbb{F})=2$ (Tits [23, Chap. 8]; see also De Bruyn and Pasini [17] for the non-perfect case). If \mathbb{F} is a perfect field of characteristic 2 and $1<k<n$ then $\varepsilon_{k}^{s p} \cong \varepsilon_{k} / \mathcal{N}_{k}$ by (1) of Lemma 1.3. Therefore:

Corollary 1.7 Let \mathbb{F} be a perfect field of characteristic 2 and let $k<n$. Then the embedding $\varepsilon_{k}^{s p}$ is not universal.

In this corollary, the restriction $k<n$ is essential. Indeed the isomorphism $\varepsilon_{n}^{s p} \cong$ $\varepsilon_{n} / \mathcal{N}_{n}$ gives no information on the linear hull of $\varepsilon_{n}^{s p}$, since ε_{n} is not a projective embedding. In fact, if $|\mathbb{F}|>2$ then $\varepsilon_{n}^{s p}$ is universal (Cooperstein [13] in the finite case, De Bruyn and Pasini [16] for the infinite case). On the other hand, if $\mathbb{F}=\mathbb{F}_{2}$ then $\varepsilon_{n}^{s p}$ is not universal (Li [20], Blokhuis and Brouwer [9]).

2 An elementary proof of Theorem 1.1

Throughout this section $\operatorname{char}(\mathbb{F}) \neq 2$. We also assume that $k>1$, since when $k=1$ there is nothing to prove. Indeed ε_{1} is the natural embedding of the polar space Δ_{1} into $W_{1}=V$. Obviously, $\left\langle\varepsilon_{1}\left(\Delta_{1}\right)\right\rangle=W_{1}$.

From now on we will often take the liberty of using the symbol Δ_{k} to denote both the point-line geometry Δ_{k} and its point-set. However these little abuses will be harmless. The context will always help to avoid any confusion.

For $h=0,1, \ldots, k$ let $\mathcal{G}_{k}^{(h)}$ be the set of k-subspaces X of V such that $\operatorname{cod}_{X}(X \cap$ $\left.X^{\perp}\right) \leq h$, where \perp is the orthogonality relation defined by the bilinear form f_{q} associated to q. So,

$$
\Delta_{k}=\mathcal{G}_{k}^{(0)} \subset \mathcal{G}_{k}^{(1)} \subset \cdots \subset \mathcal{G}_{k}^{(k-1)} \subset \mathcal{G}_{k}^{(k)}=\mathcal{G}_{k} .
$$

Lemma 2.1 For every $h=1, \ldots, k$, if $X \in \mathcal{G}_{k}^{(h)}$ then there exists a line l of \mathcal{G}_{k} through X such that $\left|l \cap \mathcal{G}_{k}^{(h-1)}\right| \geq 2$.

Proof Assume firstly that $h=k$ and let $X \in \mathcal{G}_{k}^{(k)} \backslash \mathcal{G}_{k}^{(k-1)}$, namely X is a k-subspace of V such that $X \cap X^{\perp}=0$. Then q induces a non-singular quadratic form on X. Hence X contains at least one $(k-1)$-subspace Z such that q induces a nonsingular form on Z. Consequently $Z \cap Z^{\perp}=0$, because $\operatorname{char}(\mathbb{F}) \neq 2$. Therefore $V=Z \oplus Z^{\perp}$ and q induces a non-singular quadratic form q^{\prime} on Z^{\perp}. Clearly, $\operatorname{dim}\left(Z^{\perp}\right)=(2 n+1)-(k-1)=2 n+2-k$. By this fact and the well known Grassmann formula for dimensions of sums and intersections of subspaces one easily sees that every n-subspace of V meets Z^{\perp} non-trivially. In particular, every maximal totally singular subspace of V has non-trivial intersection with Z^{\perp}. It follows that Z^{\perp} contains at least one singular point of $\operatorname{PG}(V)$. On the other hand, q^{\prime} is non-singular. It is also trace-valued, because $\operatorname{char}(\mathbb{F}) \neq 2$. Hence Z^{\perp} is spanned by the singular points contained in it (compare Tits [23, Lemma 8.1.6]).

Clearly, $\operatorname{dim}\left(Z^{\perp} \cap X\right)=1$. Let x be a non-zero vector in $Z^{\perp} \cap X$. Suppose that every singular point of Z^{\perp} is orthogonal to x. Then $Z^{\perp} \subseteq X^{\perp}$ because Z^{\perp} is spanned by its singular points and $X=\langle x, Z\rangle$. This forces $X \subseteq Z$, contrary to the choice of Z. It follows that $x \not \perp x_{1}$ for at least one singular point $\left\langle x_{1}\right\rangle$ of $\operatorname{PG}\left(Z^{\perp}\right)$. The non-degenerate projective line $\left\langle x, x_{1}\right\rangle$ of $\mathrm{PG}\left(Z^{\perp}\right)$ contains one more singular point $\left\langle x_{2}\right\rangle$ of $\operatorname{PG}\left(Z^{\perp}\right)$. Let $X_{i}:=\left\langle Z, x_{i}\right\rangle, i=1,2$. Then $X_{i} \cap X_{i}^{\perp}=\left\langle x_{i}\right\rangle$. Therefore $X_{i} \in$ $\mathcal{G}_{k}^{(k-1)}$. Moreover, X, X_{1} and X_{2} contain Z and are contained in the $(k+1)$-space $Y:=\left\langle X, x_{1}\right\rangle=\left\langle X, x_{2}\right\rangle$. The line $l_{Z, Y}$ of \mathcal{G}_{k} has the required properties: it contains X and two points of $\mathcal{G}_{k}^{(k-1)}$, namely X_{1} and X_{2}.

Let now $h<k$. Put $R=X \cap X^{\perp}, X_{R}:=X / R$ and $V_{R}:=R^{\perp} / R$. Then $\operatorname{dim}\left(V_{R}\right)=$ $2 n+1-2(k-h)$ and q induces a non-singular quadratic form q_{R} on V_{R}, with maximal Witt index $n-k+h$. (We warn that the hypothesis that $\operatorname{char}(\mathbb{F}) \neq 2$ is implicitly used in this reduction.) We can now argue as in the previous case, replacing X with X_{R}, V with V_{R} and q with q_{R}. We leave the details for the reader.

We recall that a set S of points of a point-line geometry Γ is a subspace of Γ if S contains every line l of Γ such that $|l \cap S| \geq 2$. Intersections of subspaces are still subspaces. So, given a set of points S of Γ we can consider the span $\langle S\rangle_{\Gamma}$ of S in Γ, namely the smallest subspace of Γ containing S, defined as the intersection of all subspaces containing S. We say that a set S of points of Γ generates Γ if $\langle S\rangle_{\Gamma}=\Gamma$.

Proposition 2.2 The point-set of Δ_{k} generates \mathcal{G}_{k}.
Proof By Lemma 2.1, every point of $\mathcal{G}_{k}^{(h)}$ belongs to at least one line meeting $\mathcal{G}_{k}^{(h-1)}$ in two distinct points. Hence $\mathcal{G}_{k}^{(h)} \subseteq\left\langle\mathcal{G}_{k}^{(h-1)}\right\rangle_{\mathcal{G}_{k}}$. So, $\mathcal{G}_{k}=\left\langle\mathcal{G}_{k}^{(0)}\right\rangle_{\mathcal{G}_{k}}$, namely Δ_{k} spans \mathcal{G}_{k}.

By Proposition 2.2, $\left\langle\varepsilon_{k}\left(\Delta_{k}\right)\right\rangle=W_{k}$. Equivalently, $\operatorname{dim}\left(\varepsilon_{k}\right)=\operatorname{dim}\left(W_{k}\right)=\binom{2 n+1}{k}$. This forces $V\left(\lambda_{k}\right)=W_{k}$, as claimed in Theorem 1.1.

3 A quotient of ε_{k} when $\operatorname{char}(\mathbb{F})=2$

Throughout this section, $\operatorname{char}(\mathbb{F})=2$ and $k>1$. Up to rescaling the form q when \mathbb{F} is non-perfect, we can assume to have chosen an ordered basis $B=\left(e_{1}, e_{2}, \ldots, e_{2 n+1}\right)$ of V with respect to which

$$
q\left(x_{1}, \ldots, x_{2 n+1}\right)=\sum_{i=1}^{n} x_{i} x_{n+i}+x_{2 n+1}^{2}
$$

We set $I:=\{1,2, \ldots, 2 n+1\}$ and $B_{\wedge}:=\left(e_{J}\right)_{J \in\binom{I}{k}}$, where $\binom{I}{k}$ stands for the set of subsets of I of size k and $e_{J}=e_{j_{1}} \wedge e_{j_{2}} \wedge \cdots \wedge e_{j_{k}}$ for every k-subset $J=\left\{j_{1}, \ldots, j_{k}\right\}$ of I, with the convention that $j_{1}<j_{2}<\cdots<j_{k}$.

The radical of the bilinear form associated to q is a 1-dimensional subspace N_{0} of V. It is called the nucleus of the quadric $Q(2 n, \mathbb{F})$ of $\operatorname{PG}(V)$ represented by the equation $q\left(x_{1}, \ldots, x_{2 n+1}\right)=0$, also the nucleus of q, for short. With B as above, N_{0} is spanned by the vector $n_{0}=(0,0, \ldots, 0,1)$.

As in Sect. 2, in the sequel we will freely use symbols as Δ_{k} and Δ_{k-1} to denote both point-line geometries and their point-sets. In order to avoid duplication of notation, we will also often use the same symbols for vector subspaces and the corresponding projective subspaces. Every time the context will make it clear if we are considering vector or projective spaces.
3.1 The subspace \mathcal{N}_{k} and the embedding ι_{k-1}

Given a point X of Δ_{k-1} let $\operatorname{St}(X)$ be its star, defined as in the introduction of this paper. As noticed there, $\operatorname{St}(X)$ is isomorphic to an orthogonal polar space of rank $n-k+1$, naturally embedded in X^{\perp} / X. Let q_{X} be a quadratic form of X^{\perp} / X associated to that polar space and let n_{X} be its nucleus. Then $n_{X}=N_{X} / X$ for a uniquely determined k-subspace N_{X} of V containing X and contained in X^{\perp}. On the other hand, $N_{0} \subset X^{\perp}$ and $N_{0} \cap X=0$. Hence $\left\langle X, N_{0}\right\rangle$ is a k-subspace of X^{\perp} containing X. Moreover, $\left\langle X, N_{0}\right\rangle \subseteq X^{\perp \perp}$. Therefore $n_{X}=\left\langle X, N_{0}\right\rangle / X$, namely

$$
N_{X}=\left\langle X, N_{0}\right\rangle
$$

We warn that N_{X} is totally isotropic but it is not totally singular. Hence N_{X} is a point of \mathcal{G}_{k} (actually it belongs to $\mathcal{G}_{k}^{(1)}$) but it is not a point of Δ_{k}. Put $\mathcal{N}_{k}:=$ $\left\langle e_{k}\left(N_{X}\right)\right\rangle_{X \in \Delta_{k-1}}$. We call \mathcal{N}_{k} the global nucleus of ε_{k}.

Lemma 3.1 $\mathcal{N}_{k} \subseteq\left\langle\varepsilon_{k}\left(\Delta_{k}\right)\right\rangle$.
Proof The mapping sending every $Y \in \Delta_{k} \cap \operatorname{St}(X)$ to Y / X is isomorphic to the natural embedding of the polar space $\operatorname{St}(X)$. Hence the vector space X^{\perp} / X is spanned by the 1-dimensional subspaces Y / X for $Y \in \Delta_{k} \cap \operatorname{St}(X)$. Consequently, $e_{k}\left(N_{X}\right) \in\left\langle\varepsilon_{k}(Y)\right\rangle_{Y \in \Delta_{k} \cap \operatorname{St}(X)} \subseteq\left\langle\varepsilon_{k}\left(\Delta_{k}\right)\right\rangle$. Therefore $\mathcal{N}_{k} \subseteq\left\langle\varepsilon_{k}\left(\Delta_{k}\right)\right\rangle$.

For every $X \in \Delta_{k-1}$, put $\iota_{k-1}(X):=e_{k}\left(N_{X}\right)$.
Lemma 3.2 The mapping t_{k-1} is a projective embedding of Δ_{k-1} into $\operatorname{PG}\left(\mathcal{N}_{k}\right)$.
Proof Let $v_{k-1}: \Delta_{k-1} \rightarrow \mathcal{G}_{k}$ be the mapping sending every point X of Δ_{k-1} to the point $N_{X}=\left\langle X, N_{0}\right\rangle$ of \mathcal{G}_{k}. Then $\iota_{k-1}=e_{k} \circ v_{k-1}$. It is easily seen that the mapping v_{k-1} is an embedding of Δ_{k-1} into a subgeometry of \mathcal{G}_{k}, namely it is injective and it maps lines of Δ_{k-1} onto lines of \mathcal{G}_{k}. On the other hand e_{k}, being a projective embedding, is injective and maps lines of \mathcal{G}_{k} onto lines of $\operatorname{PG}\left(W_{k}\right)$. Therefore ι_{k-1} is injective and maps lines of Δ_{k-1} onto lines of $\operatorname{PG}\left(W_{k}\right)$ (contained in $\left.\operatorname{PG}\left(\mathcal{N}_{k}\right)\right)$.

We shall now give an explicit description of t_{k-1}. In the sequel we regard a vector of V as the same thing as its sequence of coordinates with respect to the basis B. Coordinates in W_{k} are given with respect to the standard basis B_{\wedge} of W_{k}, defined at the beginning of Sect. 3 .

For $X \in \Delta_{k-1}$, let $\left\{x_{1}, \ldots, x_{k-1}\right\}$ be a basis of the $(k-1)$-subspace X. Let $M_{X}=$ $\left(x_{1}, \ldots, x_{k-1}\right)$ be the $[(k-1) \times(2 n+1)]$-matrix with x_{1}, \ldots, x_{k-1} as the rows and let $M_{X}^{\prime}=\left(x_{1}, \ldots, x_{k-1}, n_{0}\right)$ be the $[k \times(2 n+1)]$-matrix obtained by adding n_{0} to M_{X} as a further row. Let $\left(X_{J}\right)_{J \in\binom{l}{k}}$ be the sequence of coordinates of a representative vector v_{X} of $\iota_{k-1}(X)=e_{k}\left(N_{X}\right)$. Since $N_{X}=\left\langle X, N_{0}\right\rangle=\left\langle x_{1}, \ldots, x_{k-1}, n_{0}\right\rangle$, we can assume to have chosen v_{X} in such a way that X_{J} is the determinant of the $(k \times k)$ submatrix of M_{X}^{\prime} formed by the columns indexed by the elements of J. Recall that $n_{0}=(0,0, \ldots, 1)$. Hence $X_{J}=0$ whenever $2 n+1 \notin J$ while if $2 n+1 \in J$ then X_{J} is the determinant of the $[(k-1) \times(k-1)]$-submatrix of M_{X} formed by the
columns indexed by elements of $J \backslash\{2 n+1\}$. So, regarding $N_{X} / N_{0}=\left\langle X, N_{0}\right\rangle / N_{0}$ as a point of \mathcal{G}_{k-1} and $\left(X_{J}\right)_{2 n+1 \in J \in\binom{l}{k}}$ as a vector of W_{k-1}, we have $\left(X_{J}\right)_{2 n+1 \in J \in\binom{l}{k}}=$ $e_{k-1}\left(N_{X} / N_{0}\right)$. Suppose to have ordered the set $\binom{I}{k}$ in such a way that the k-subsets containing $2 n+1$ come as last. Then we can rephrase the above as follows:

Lemma 3.3 The last $\binom{2 n}{k-1}$ coordinates of $\iota_{k-1}(X)$ are the same as the coordinates of $e_{k-1}\left(N_{X} / N_{0}\right)$. The remaining coordinates of $\iota_{k-1}(X)$ are null.

Proposition 3.4 Let \mathbb{F} be perfect. Then $\iota_{k-1} \cong \varepsilon_{k-1}^{s p}$.
Proof When \mathbb{F} is perfect the mapping sending every totally singular subspace X of V to $\left\langle X, N_{0}\right\rangle / N_{0}$ is an isomorphism from Δ to $\Delta^{s p}$. The isomorphism $\iota_{k-1} \cong \varepsilon_{k-1}^{s p}$ immediately follows from this remark and Lemma 3.3.

3.2 The quotient $\varepsilon_{k} / \mathcal{N}_{k}$

By Lemma 3.1 we know that $\mathcal{N}_{k} \subseteq\left\langle\varepsilon_{k}\left(\Delta_{k}\right)\right\rangle$. In this subsection we shall prove that \mathcal{N}_{k} satisfies both the following:
(Q1) $\operatorname{PG}\left(\mathcal{N}_{k}\right) \cap \varepsilon_{k}\left(\Delta_{k}\right)=\emptyset$;
(Q2) $\left\langle\varepsilon_{k}\left(X_{1}\right), \varepsilon_{k}\left(X_{2}\right)\right\rangle \cap \mathcal{N}_{k}=0$ for any two distinct points X_{1} and X_{2} of Δ_{k}.
Properties (Q 1$)$ and (Q2) allow us to define the quotient $\varepsilon_{k} / \mathcal{N}_{k}$ as the composition of ε_{k} with the canonical projection of $\left\langle\varepsilon_{k}\left(\Delta_{k}\right)\right\rangle$ onto $\left\langle\varepsilon_{k}\left(\Delta_{k}\right)\right\rangle / \mathcal{N}_{k}$. In view of (Q1), this composition is a mapping from the point-set of Δ_{k} to the set of points of the projective space $\mathrm{PG}\left(\left\langle\varepsilon_{k}\left(\Delta_{k}\right)\right\rangle / \mathcal{N}_{k}\right)$ of $\left\langle\varepsilon_{k}\left(\Delta_{k}\right)\right\rangle / \mathcal{N}_{k}$, sending $X \in \Delta_{k}$ to the point $\left\langle\varepsilon_{k}(X), \mathcal{N}_{k}\right\rangle / \mathcal{N}_{k}$. By (Q2), this mapping is injective.

When $k<n$ the mapping $\varepsilon_{k} / \mathcal{N}_{k}$ maps every line of Δ_{k} bijectively onto a line of $\operatorname{PG}\left(\left\langle\varepsilon_{k}\left(\Delta_{k}\right)\right\rangle / \mathcal{N}_{k}\right)$. Hence it is a projective embedding. As we shall see at the end of this subsection, when \mathbb{F} is perfect $\varepsilon_{n} / \mathcal{N}_{n}$ is a projective embedding in the usual sense, mapping every line of Δ_{n} bijectively onto a line of $\operatorname{PG}\left(\left\langle\varepsilon_{n}\left(\Delta_{n}\right)\right\rangle / \mathcal{N}_{n}\right)$. If \mathbb{F} is non-perfect then $\varepsilon_{n} / \mathcal{N}_{n}$ maps every line l of Δ_{n} into a line \bar{l} of $\operatorname{PG}\left(\left\langle\varepsilon_{n}\left(\Delta_{n}\right)\right\rangle / \mathcal{N}_{n}\right)$, but not all points of \bar{l} are images of points of l by $\varepsilon_{n} / \mathcal{N}_{n}$.

In view of the above, it is convenient to slightly revise our terminology. From now on we say that a projective embedding $\varepsilon: \Gamma \rightarrow \mathrm{PG}(W)$ as defined in Sect. 1.1 is a full projective embedding. On the other hand, following [24], if a mapping ε maps the lines of Γ injectively but possibly non-surjectively into lines of $\operatorname{PG}(W)$ then we say that ε is a lax projective embedding. So, we can rephrase as follows what we have said above: if $k<n$ then $\varepsilon_{k} / \mathcal{N}_{k}$ is full while $\varepsilon_{n} / \mathcal{N}_{n}$ is full when \mathbb{F} is perfect and it is lax but not full when \mathbb{F} is non-perfect.

Lemma 3.5 Condition (Q1) holds.
Proof By way of contradiction, let $\varepsilon_{k}(X) \in \operatorname{PG}\left(\mathcal{N}_{k}\right)$ for some $X \in \Delta_{k}$. The group $G=\mathrm{SO}(2 n+1, \mathbb{F})$ acts transitively on Δ_{k} and stabilizes \mathcal{N}_{k}. Hence $\varepsilon_{k}\left(\Delta_{k}\right) \subseteq$ $\operatorname{PG}\left(\mathcal{N}_{k}\right)$. This is a contradiction because every vector $\left(X_{J}\right)_{J \in\binom{I}{k}} \in \mathcal{N}_{k}$ has $X_{J}=0$ whenever $2 n+1 \notin J$, but only some of the vectors of $\varepsilon_{k}\left(\Delta_{k}\right)$ have this property.

Lemma 3.6 Let $k<n$. Then (Q 2$)$ holds.
Proof By way of contradiction, let $\left\langle\varepsilon_{k}\left(X_{1}\right), \varepsilon_{k}\left(X_{2}\right)\right\rangle \cap \mathcal{N}_{k} \neq 0$ for two distinct points $X_{1}, X_{2} \in \Delta_{k}$. As (Q1) holds, $\left\langle\varepsilon_{k}\left(X_{1}\right), \varepsilon_{k}\left(X_{2}\right)\right\rangle \cap \mathcal{N}_{k}$ does not contain any point of $\varepsilon_{k}\left(\Delta_{k}\right)$. Hence $\left\langle\varepsilon_{k}\left(X_{1}\right), \varepsilon_{k}\left(X_{2}\right)\right\rangle \cap \mathcal{N}_{k}$ is a point $n_{X_{1}, X_{2}}$ of $\mathrm{PG}\left(W_{k}\right) \backslash \varepsilon_{k}\left(\Delta_{k}\right)$. Since ε_{k} is full, the points X_{1} and X_{2} cannot be collinear in Δ_{k}. Let $d=d\left(X_{1}, X_{2}\right)$ be the distance between X_{1} and X_{2} in the collinearity graph of Δ_{k}. We have $d>1$, since X_{1} and X_{2} are non-collinear.

The group G acts transitively on the pairs of points of Δ_{k} at distance d and stabilizes \mathcal{N}_{k}. Hence $\left\langle\varepsilon_{k}(X), \varepsilon_{k}(Y)\right\rangle$ meets \mathcal{N}_{k} in a point $n_{X, Y} \in \operatorname{PG}\left(W_{k}\right) \backslash \varepsilon_{k}\left(\Delta_{k}\right)$, for every pair of points $X, Y \in \Delta_{k}$ at distance d.

For any two collinear points Y_{1}, Y_{2} of Δ_{k} we can pick a point X at distance d from both Y_{1} and Y_{2}. Clearly, the point $\varepsilon_{k}(X)$ does not belong to the projective line $\left\langle\varepsilon_{k}\left(Y_{1}\right), \varepsilon_{k}\left(Y_{2}\right)\right\rangle$. Consequently, $n_{X, Y_{1}} \neq n_{X, Y_{2}}$ and the points $\varepsilon_{k}(X), \varepsilon_{k}\left(Y_{1}\right)$ and $\varepsilon_{k}\left(Y_{2}\right)$ span a projective plane which contains both of the lines $\left\langle\varepsilon_{k}\left(Y_{1}\right), \varepsilon_{k}\left(Y_{2}\right)\right\rangle$ and $\left\langle n_{X, Y_{1}}, n_{X, Y_{2}}\right\rangle$. These two lines, being coplanar, meet in a point, say z. On the one hand $z \in \varepsilon_{k}\left(\Delta_{k}\right)$, as $\left\langle\varepsilon_{k}\left(Y_{1}\right), \varepsilon_{k}\left(Y_{2}\right)\right\rangle \subset \varepsilon_{k}\left(\Delta_{k}\right)$ (recall that Y_{1} and Y_{2} are collinear in Δ_{k}). On the other hand, $z \in \operatorname{PG}\left(\mathcal{N}_{k}\right)$, since $\left\langle n_{X, Y_{1},}, n_{X, Y_{2}}\right\rangle \subseteq \mathcal{N}_{k}$. Hence $z \in \varepsilon_{k}\left(\Delta_{k}\right) \cap \operatorname{PG}\left(\mathcal{N}_{k}\right)$, contrary to (Q1). We have reached a final contradiction.

We now turn to the case $k=n$. Recall that the lines of Δ_{n} are the stars of the elements of Δ of type $n-1$. For every $(n-1)$-element X of Δ, the image $\varepsilon_{n}(\operatorname{St}(X))$ of $\operatorname{St}(X)$ by ε_{n} is a conic C_{X} of $\operatorname{PG}\left(W_{k}\right)$, spanning a plane π_{X} of $\operatorname{PG}\left(W_{n}\right)$. Moreover, $\pi_{X} \cap \varepsilon_{n}\left(\Delta_{n}\right)=C_{X}$. The nucleus of C_{X} is the point $\nu_{X}:=e_{n}\left(N_{X}\right)$. (Recall that $N_{X}=$ $\left.\left\langle X, N_{0}\right\rangle.\right)$

Lemma 3.7 We have $\pi_{X} \cap \mathcal{N}_{n}=\nu_{X}$, for every $(n-1)$-element X of Δ.
Proof Clearly, $\nu_{X} \in \pi_{X} \cap \mathcal{N}_{n}$. By way of contradiction, suppose that $\pi_{X} \cap \mathcal{N}_{n}$ is larger than ν_{X}. Since $C_{X} \cap \operatorname{PG}\left(\mathcal{N}_{n}\right)=\emptyset$ by (Q1), $\pi_{X} \cap \mathcal{N}_{n}$ is a projective line through ν_{X}. If \mathbb{F} is perfect then the line $\pi_{X} \cap \mathcal{N}_{n}$ is tangent to C_{X}, namely it meets C_{X} in one point. This is impossible, since $C_{X} \cap \operatorname{PG}\left(\mathcal{N}_{n}\right)=\emptyset$.

Therefore \mathbb{F} is non-perfect. Let $\widehat{\mathbb{F}}$ be the quadratic closure of \mathbb{F}. Put $\widehat{V}:=\widehat{\mathbb{F}} \otimes_{\mathbb{F}} V$ (where vectors are linear combinations of the vectors of B with coefficients taken from $\widehat{\mathbb{F}})$ and $\widehat{W}_{n}:=\bigwedge^{n} \widehat{V}\left(=\widehat{\mathbb{F}} \otimes_{\mathbb{F}} W_{n}\right)$. The form q naturally extends to a nonsingular quadratic form \hat{q} of \widehat{V}, admitting the same expression as q with respect to B. Denoted by $\widehat{\Delta}$ the building of type B_{n} associated to \hat{q}, every element X of Δ is the intersection $X=V \cap \widehat{X}$ of V with a uniquely determined element \widehat{X} of $\widehat{\Delta}$, of the same type as X (in fact $\widehat{X}=\widehat{\mathbb{F}} \otimes_{\mathbb{F}} X$). Accordingly, \mathcal{G}_{n} and Δ_{n} can be regarded as \mathbb{F}-subgeometries of the n-grassmannians $\widehat{\mathcal{G}}_{n}$ and ${\widehat{\Delta_{n}}}_{n}$ of $\operatorname{PG}(\widehat{V})$ and $\widehat{\Delta}$ respectively and, if \hat{e}_{n} and $\hat{\varepsilon}_{n}$ are the natural embeddings of $\widehat{\mathcal{G}}_{n}$ and the Grassmann embedding of $\widehat{\Delta}_{n}$, then e_{n} and ε_{n} are induced by \hat{e}_{n} and $\hat{\varepsilon}_{n}$. Clearly, the global nucleus $\widehat{\mathcal{N}}_{n}$ of $\hat{\varepsilon}_{n}$ contains the $\widehat{\mathbb{F}}$-tensorization $\widehat{\mathbb{F}} \otimes_{\mathbb{F}} \mathcal{N}_{n}$ of the global nucleus \mathcal{N}_{n} of ε_{n}.

Turning to the plane π_{X} and the conic C_{X}, we have $\pi_{X}=\operatorname{PG}\left(W_{k}\right) \cap \hat{\pi}_{X}$ for a uniquely determined plane $\hat{\pi}_{X}$ of $\operatorname{PG}\left(\widehat{W}_{k}\right)$ (in fact $\left.\hat{\pi}_{X}=\widehat{\mathbb{F}} \otimes_{\mathbb{F}} \pi_{X}\right)$ and $C_{X}=\pi_{X} \cap \widehat{C}_{X}$ for a uniquely determined conic \widehat{C}_{X} of $\hat{\pi}_{X}$. The nucleus \hat{v}_{X} of \widehat{C}_{X} coincides with (the

1 -subspace of \widehat{W}_{n} spanned by) the nucleus ν_{X} of C_{X}. By assumption, $\pi_{X} \cap \mathcal{N}_{n}$ is a line of π_{X} through ν_{X}. Hence $\hat{\pi}_{X} \cap \widehat{N}_{n}$ contains a line of $\hat{\pi}_{X}$ through \hat{v}_{X}. However this is impossible, in view of the first paragraph of this proof. Indeed $\widehat{\mathbb{F}}$ is perfect.

Lemma 3.8 Let $k=n$. Then $(\mathrm{Q} 2)$ holds.
Proof By way of contradiction, let $\left\langle\varepsilon_{n}\left(X_{1}\right), \varepsilon_{n}\left(X_{2}\right)\right\rangle \cap \mathcal{N}_{n} \neq 0$ for two distinct points $X_{1}, X_{2} \in \Delta_{n}$. By (Q1), $n_{X_{1}, X_{2}}:=\left\langle\varepsilon_{n}\left(X_{1}\right), \varepsilon_{n}\left(X_{2}\right)\right\rangle \cap \mathcal{N}_{n}$ is a point of $\operatorname{PG}\left(W_{n}\right) \backslash$ $\varepsilon_{n}\left(\Delta_{n}\right)$.

Let $d=d\left(X_{1}, X_{2}\right)$ be the distance between X_{1} and X_{2} in the collinearity graph of Δ_{n}. Suppose firstly that $d=1$, namely X_{1} and X_{2} are collinear. Then $X_{1} \cap X_{2} \in$ Δ_{n-1} and $\operatorname{St}\left(X_{1} \cap X_{2}\right)$ is the line of Δ_{n} through X_{1} and X_{2}. The image of $\operatorname{St}\left(X_{1} \cap\right.$ X_{2}) by ε_{n} is a conic $C_{X_{1} \cap X_{2}}$ spanning a plane $\pi_{X_{1} \cap X_{2}}$ of $\operatorname{PG}\left(W_{n}\right)$. The projective line $\left\langle\varepsilon_{n}\left(X_{1}\right), \varepsilon_{n}\left(X_{2}\right)\right\rangle$ is contained in $\pi_{X_{1} \cap X_{2}}$. Hence $n_{X_{1}, X_{2}} \in \pi_{X_{1} \cap X_{2}}$. However, $\pi_{X_{1} \cap X_{2}} \cap \mathcal{N}_{n}$ is the nucleus $\nu_{X_{1} \cap X_{2}}$ of the conic $C_{X_{1} \cap X_{2}}$, by Lemma 3.7. Hence $n_{X_{1}, X_{2}}=v_{X_{1} \cap X_{2}}$, namely $\left\langle\varepsilon_{n}\left(X_{1}\right), \varepsilon_{n}\left(X_{2}\right)\right\rangle$ is a line of $\pi_{X_{1} \cap X_{2}}$ through the nucleus of $C_{X_{1} \cap X_{2}}$. On the other hand, $\left\langle\varepsilon_{n}\left(X_{1}\right), \varepsilon_{n}\left(X_{2}\right)\right\rangle$ contains two distinct points of the conic $C_{X_{1} \cap X_{2}}$, namely $\varepsilon_{n}\left(X_{1}\right)$ and $\varepsilon_{n}\left(X_{2}\right)$. Thus, we have got a secant line of a conic passing through the nucleus of that conic. This is impossible. Therefore $d>1$.

As in the proof of Lemma 3.6, the distance-transitivity of G on the collinearity graph of Δ_{n} implies that $\left\langle\varepsilon_{n}(X), \varepsilon_{n}(Y)\right\rangle \cap \mathcal{N}_{n} \neq 0$ for any two points $X, Y \in \Delta_{n}$ at mutual distance d. We now choose two collinear points Y_{1}, Y_{2} of Δ_{n} and a point X at distance d from both of them. Then X has distance $d-1$ from a unique point Y_{0} of the line $\operatorname{St}\left(Y_{1} \cap Y_{2}\right)$ of Δ_{n} through Y_{1} and Y_{2}. The point $\varepsilon_{n}(X)$ does not belong to the plane $\pi_{Y_{1} \cap Y_{2}}$, since $\varepsilon_{n}\left(\operatorname{St}\left(Y_{1} \cap Y_{2}\right)\right)=\pi_{Y_{1} \cap Y_{2}} \cap \varepsilon_{n}\left(\Delta_{n}\right)$, and $X \notin \operatorname{St}\left(Y_{1} \cap Y_{2}\right)$. Hence $\varepsilon_{n}(X), \varepsilon_{n}\left(Y_{1}\right)$ and $\varepsilon_{n}\left(Y_{2}\right)$ span a 3-dimensional subspace S of $\operatorname{PG}\left(W_{n}\right)$. We have $d(X, Y)=d$ for every $Y \in \operatorname{St}\left(Y_{1} \cap Y_{2}\right) \backslash\left\{Y_{0}\right\}$. Hence $\left\langle\varepsilon_{n}(X), \varepsilon_{n}(Y)\right\rangle \cap \mathcal{N}_{n} \neq 0$ for every such Y. Let σ be the subspace of S spanned by the points $n_{X, Y}$ for $Y \in$ $\operatorname{St}\left(Y_{1} \cap Y_{2}\right) \backslash\left\{Y_{0}\right\}$. Clearly, $\sigma \subseteq \mathcal{N}_{n}$.

Suppose firstly that σ contains (or is) a plane. Then $\sigma \cap \pi_{Y_{1} \cap Y_{2}}$ has projective dimension at least 1. Accordingly, $\pi_{Y_{1} \cap Y_{2}} \cap \mathcal{N}_{n}$ contains at least a line. This contradicts Lemma 3.7. Hence σ must be a line. Suppose $|\mathbb{F}|>2$. If $Y_{3} \in \operatorname{St}\left(Y_{1} \cap Y_{2}\right) \backslash$ $\left\{Y_{0}, Y_{1}, Y_{2}\right\}(\neq \emptyset$ because $|\mathbb{F}|>2)$ then $\varepsilon_{n}\left(Y_{1}\right), \varepsilon_{n}\left(Y_{2}\right)$ and $\varepsilon_{n}\left(Y_{3}\right)$ are non-collinear in the projective plane $\pi_{Y_{1} \cap Y_{2}}$. Hence the points $n_{X, Y_{1}}, n_{X, Y_{2}}$ and $n_{X, Y_{3}}$ are non-collinear as well, contrary to the fact that σ is a line. We are forced to conclude that $\mathbb{F}=\mathbb{F}_{2}$. The line σ meets $\pi_{Y_{1} \cap Y_{2}}$ in a point. On the other hand, $\sigma \subseteq \mathcal{N}_{n}$. Hence $\sigma \cap \pi_{Y_{1} \cap Y_{2}}$ is the nucleus $\nu_{Y_{1} \cap Y_{2}}$ of the conic $C_{Y_{1} \cap Y_{2}}$, by Lemma 3.7. Let π be the plane spanned by $n_{X, Y_{1}}, n_{X, Y_{2}}$ and $\varepsilon_{n}(X)$. Then $\pi \cap \pi_{Y_{1} \cap Y_{2}}$ is a line, say l. The line l belongs to $\pi_{Y_{1} \cap Y_{2}}$ and contains the nucleus $\nu_{Y_{1} \cap Y_{2}}$ of the conic $C_{Y_{1} \cap Y_{2}}$ as well as two points of it, namely $\varepsilon_{n}\left(Y_{1}\right)$ and $\varepsilon_{n}\left(Y_{2}\right)$. This is obviously impossible. We have reached a final contradiction.

So, the mapping $\varepsilon_{k} / \mathcal{N}_{k}$ is well-defined and injective. As remarked at the beginning of this subsection, if $k<n$ then $\varepsilon_{k} / \mathcal{N}_{k}$ is a full projective embedding.

Let $k=n$. For every $(n-1)$-element X of Δ let $\bar{\lambda}_{X}$ be the set of lines of π_{X} through ν_{X} and λ_{X} the set of lines of π_{X} tangent to C_{X}. Clearly, $\lambda_{X} \subseteq \bar{\lambda}_{X}$. More-
over, by Lemma 3.7, the mapping θ_{X} sending every line $l \in \bar{\lambda}_{X}$ to $\left\langle l, \mathcal{N}_{n}\right\rangle$ is a bijection from $\bar{\lambda}_{X}$ to a line \bar{L}_{X} of $\operatorname{PG}\left(\varepsilon_{n}\left(\Delta_{n}\right) / \mathcal{N}_{n}\right)$. The set $L_{X}:=\theta_{X}\left(\lambda_{X}\right)$ is contained in \bar{L}_{X}. Moreover, if ζ_{X} is the bijection from $\operatorname{St}(X)$ to λ_{X} sending every $Y \in \operatorname{St}(X)$ to the line $\left\langle\varepsilon_{n}(Y), \nu_{X}\right\rangle$ of π_{X}, then the composite $\eta_{X}:=\theta_{X} \circ \zeta_{X}$ is a bijection from $\operatorname{St}(X)$ to L_{X}. Clearly, η_{X} is the mapping induced by $\varepsilon_{n} / \mathcal{N}_{n}$ on the line $\operatorname{St}(X)$ of Δ_{n}.

If \mathbb{F} is perfect then $\lambda_{X}=\bar{\lambda}_{X}$. In this case $L_{X}=\bar{L}_{X}$. Hence $\varepsilon_{n} / \mathcal{N}_{n}$ maps the line $\operatorname{St}(X)$ of Δ_{n} onto a line of $\operatorname{PG}\left(\varepsilon_{n}\left(\Delta_{n}\right) / \mathcal{N}_{n}\right)$. On the other hand, if \mathbb{F} is non-perfect then λ_{X} is a proper subset of $\bar{\lambda}_{X}$. Accordingly, $L_{X} \subset \bar{L}_{X}$. In this case $\varepsilon_{n} / \mathcal{N}_{n}$ maps the line $\operatorname{St}(X)$ onto a proper subset of a line of $\operatorname{PG}\left(\varepsilon_{n}\left(\Delta_{n}\right) / \mathcal{N}_{n}\right)$. Summarizing:

Lemma 3.9 Let $k=n$. If \mathbb{F} is perfect then $\varepsilon_{n} / \mathcal{N}_{n}$ is a full projective embedding. If \mathbb{F} is non-perfect then $\varepsilon_{n} / \mathcal{N}_{n}$ is a non-full lax embedding.

Proposition 3.10 Let \mathbb{F} be perfect. Then $\varepsilon_{k} / \mathcal{N}_{k} \cong \varepsilon_{k}^{s p}$, for $k=1,2, \ldots, n$.
Proof We recall that, since \mathbb{F} is assumed to be perfect, the mapping sending every element X of Δ to $\left\langle X, N_{0}\right\rangle / N_{0}$ is an isomorphism from Δ to a model of $\Delta^{s p}$ realized inside V / N_{0}. For $X \in \Delta_{k}$, let $\left(X_{J}\right)_{J \in\binom{I}{k}}$ be the family of coordinates of $\varepsilon_{k}(X)$ with respect to the basis B_{\wedge} of W_{k}. If we take only those coordinates X_{J} with $2 n+1 \notin J$ then we get a family of coordinates for the image of X by $\varepsilon_{k} / \mathcal{N}_{k-1}$. It is not difficult to see that these coordinates are just the same as those that we obtain if we apply $\varepsilon_{k}^{s p}$ to $\left\langle X, N_{0}\right\rangle / N_{0}$.

3.3 Proof of Theorems 1.2 and 1.3

Propositions 3.4 and 3.10 yield Theorem 1.3. Turning to the proof of Theorem 1.2, suppose firstly that \mathbb{F} is perfect. We also assume $k>1$, since the statement of Theorem 1.2 is trivial when $k=1$. Under these hypotheses, Theorem 1.3 and the equality $\left[\binom{2 n}{k-1}-\binom{2 n}{k-3}\right]+\left[\binom{2 n}{k}-\binom{2 n}{k-2}\right]=\binom{2 n+1}{k}-\binom{2 n+1}{k-2}$ imply that

$$
\begin{equation*}
\operatorname{dim}\left(\varepsilon_{k}\right)=\binom{2 n+1}{k}-\binom{2 n+1}{k-2} \tag{1}
\end{equation*}
$$

Suppose now that \mathbb{F} is non-perfect. Let $\widehat{\mathbb{F}}$ be a perfect extension of \mathbb{F} (e.g. the quadratic closure of \mathbb{F}). Let $\widehat{V}=\widehat{\mathbb{F}} \otimes_{\mathbb{F}} V$ and define $\widehat{\Delta}, \widehat{\Delta}_{k}$ and $\hat{\varepsilon}_{k}$ accordingly (see the proof of Lemma 3.7). Then (1) holds for $\hat{\varepsilon}_{k}$. Dimensions cannot decrease when tensorizing with field extensions. Therefore:

$$
\begin{equation*}
\operatorname{dim}\left(\varepsilon_{k}\right) \leq\binom{ 2 n+1}{k}-\binom{2 n+1}{k-2} \tag{2}
\end{equation*}
$$

On the other hand, \mathbb{F} contains \mathbb{F}_{2}. Let Δ_{k}^{0} be the subgeometry of Δ_{k} formed by the subspaces spanned by \mathbb{F}_{2}-linear combinations of the vectors of B and ε_{k}^{0} the embedding induced by ε_{k} on Δ_{k}^{0}. All vectors of $\varepsilon_{k}^{0}\left(\Delta_{k}^{0}\right)$ are \mathbb{F}_{2}-linear combinations of vectors of B_{\wedge}. Thus (1) holds for ε_{k}^{0}, since \mathbb{F}_{2} is perfect. It follows that $\left\langle\varepsilon_{k}\left(\Delta_{k}\right)\right\rangle$
contains an independent set of $\binom{2 n+1}{k}-\binom{2 n+1}{k-2}$ vectors. Consequently,

$$
\begin{equation*}
\operatorname{dim}\left(\varepsilon_{k}\right) \geq\binom{ 2 n+1}{k}-\binom{2 n+1}{k-2} \tag{3}
\end{equation*}
$$

Equation (1) follows from (2) and (3).

4 Proof of Theorem 1.5

In our proof of Theorem 1.5 we will go back and forth between B_{n}-buildings and D_{n}-buildings. So, we must firstly spend a few words on buildings of type D_{n}, their grassmannians and embeddings.

4.1 Grassmannians of D_{n}-buildings and their embeddings

Henceforth Δ^{+}stands for the building of type D_{n} defined over \mathbb{F}. It can be constructed as follows. Given a non-singular quadratic form q^{+}of Witt index n in $V^{\prime}=V(2 n, \mathbb{F})$, the non-trivial subspaces of V^{\prime} totally singular for q^{+}, with their dimensions taken as types, form a non-thick building Δ^{\prime} of Coxeter type C_{n}. The building Δ^{+}is obtained from Δ^{\prime} as follows: drop the elements of type $n-1$ and partition the set of n-elements in two families such that two n-elements X and Y are in the same family precisely if $\operatorname{codim}_{X}(X \cap Y)$ is even. Two elements X and Y not in the same family are declared to be incident precisely when $\operatorname{dim}(X \cap Y)=n-1$.

It is customary to choose the integers $n-1$ and n as types for these two families, but the following different convention better suits our needs in this section: we take the pairs $(n, 0)$ and $(n, 1)$ as types for them.

We allow $n=3$. Recall that the diagram D_{3} is the same as A_{3}, but with the usual types $1,2,3$ replaced with $(3,0), 1$ and $(3,1)$, respectively. If $n=3$ then Δ^{+}is isomorphic to $\operatorname{PG}(3, \mathbb{F})$ via the Klein correspondence, the elements of Δ^{+}of type 1 , $(3,0)$ and $(3,1)$ being respectively the lines, the points and the planes of $\operatorname{PG}(3, \mathbb{F})$ (or lines, planes and points, if we prefer so).

For $k<n$ the k-grassmannian of Δ^{\prime} is defined just in the same way as the k grassmannian Δ_{k} of Δ. We call it the k-grassmannian of Δ^{+}and we denote it by the symbol Δ_{k}^{+}, although when $k=n-1$ this convention is not so consistent with the terminology commonly used in the literature. (If we followed the custom, we should rather call Δ_{n-1}^{+}the $\{(n, 0),(n, 1)\}$-grassmannian of Δ^{+}.) The $(n, 0)$ - and $(n, 1)$ grassmannian can also be defined, called half spin geometries in the literature, but we are not interested in them here.

The 1-grassmannian Δ_{1}^{+}of Δ^{+}is the polar space defined by q^{+}on V^{\prime}. Identify V^{\prime} with a hyperplane of $V=(2 n+1, \mathbb{F})$ suitably chosen so that Δ_{1}^{+}is the polar space induced by Δ_{1} on V^{\prime}. Similarly, Δ_{k}^{+}is the subgeometry induced by Δ_{k} on
the set of k-subspaces of V^{\prime}. Note that the points of Δ_{n-1}^{+}are the $\{(n, 0),(n, 1)\}$ flags of Δ^{+}while the lines of Δ_{n-1}^{+}correspond to flags of Δ^{+}type $\{n-2,(n, 0)\}$ or $\{n-2,(n, 1)\}$. In particular, if $n=3$ then Δ_{2}^{+}is the so-called root-subgroup geometry of $\operatorname{SL}(4, \mathbb{F})$, with the point-plane flags of $\operatorname{PG}(3, \mathbb{F})$ as points and the line-plane and point-line flags of $\mathrm{PG}(3, \mathbb{F})$ as lines.

For $k=1,2, \ldots, n-1$ we can define a projective embedding ε_{k}^{+}of Δ_{k}^{+}into a subspace $\left\langle\varepsilon_{k}\left(\Delta_{k}^{+}\right)\right\rangle$of $W_{k}^{\prime}=\bigwedge^{k} V^{\prime}$ sending every point $\left\langle v_{1}, \ldots, v_{k}\right\rangle$ of Δ_{k}^{+}to the point $\left\langle v_{1} \wedge \cdots \wedge v_{k}\right\rangle$ of $\mathrm{PG}\left(W_{k}^{\prime}\right)$. We call ε_{k}^{+}the Grassmann embedding of Δ_{k}^{+}. Moreover, let $\mu_{1}, \ldots, \mu_{n-2}, \mu_{n, 0}$ and $\mu_{n, 1}$ be the fundamental dominant weights of the root system of type D_{n}, corresponding to the nodes $1,2, \ldots, n-2,(n, 0)$ and $(n, 1)$ of the D_{n}-diagram in the obvious way. Put $\mu_{n-1}:=\mu_{n, 0}+\mu_{n, 1}$. Then for $k=1,2, \ldots, n-1$ the Weyl module $V\left(\mu_{k}\right)$ hosts a projective embedding $\widetilde{\varepsilon}_{k}^{+}$of Δ_{k}^{+} and ε_{k}^{+}is a quotient of $\widetilde{\varepsilon}_{k}^{+}$. We call $\widetilde{\varepsilon}_{k}^{+}$the Weyl embedding of Δ_{k}^{+}.

By the Weyl dimension formula, $\operatorname{dim}\left(\widetilde{\varepsilon}_{k}^{+}\right)=\binom{2 n}{k}$. Clearly, $\widetilde{\varepsilon}_{1}^{+} \cong \varepsilon_{1}^{+}$.
Proposition 4.1 Let $k>1$.
(1) If $\operatorname{char}(\mathbb{F}) \neq 2$ then $\varepsilon_{k}^{+} \cong \widetilde{\varepsilon}_{k}^{+}$, namely $\operatorname{dim}\left(\varepsilon_{k}^{+}\right)=\binom{2 n}{k}$.
(2) Let $\operatorname{char}(\mathbb{F})=2$. Then $\operatorname{dim}\left(\varepsilon_{k}^{+}\right)=\binom{2 n}{k}-\binom{2 n}{k-2}$. In this case ε_{k}^{+}is a proper quotient of the Weyl embedding $\widetilde{\varepsilon}_{k}^{+}$.

Proof Claim (1) can be proved by just the same argument used for Theorem 1.1. Indeed Lemma 2.1 still holds if we replace the $(2 n+1)$-dimensional space V with the $2 n$-dimensional space V^{\prime}, the quadratic form q with q^{+}and \mathcal{G}_{k} with the k grassmannian \mathcal{G}_{k}^{\prime} of $\mathrm{PG}\left(V^{\prime}\right)$. The proof of Lemma 2.1 remains valid for this setting word for word. By that lemma, when $\operatorname{char}(\mathbb{F}) \neq 2$ the point-set of Δ_{k}^{+}spans the k grassmannian \mathcal{G}_{k}^{\prime} of $\operatorname{PG}(2 n-1, \mathbb{F})$ (compare Proposition 2.2). Hence $\left\langle\varepsilon_{k}^{+}\left(\Delta_{k}^{+}\right)\right\rangle=$ W_{k}^{\prime}, namely $\operatorname{dim}\left(\varepsilon_{k}^{+}\right)=\binom{2 n}{k}$.

Let $\operatorname{char}(\mathbb{F})=2$. Let f be the bilinearization of q^{+}and $\Delta_{1}^{s p}$ the polar space defined by f on V^{\prime}. Then Δ_{1}^{+}is a subgeometry (but not a subspace) of $\Delta_{1}^{s p}$. Accordingly, Δ_{k}^{+}is a subgeometry of $\Delta_{k}^{s p}$ and the natural embedding $\varepsilon_{k}^{s p}$ of $\Delta_{k}^{s p}$ (see Introduction) induces ε_{k}^{+}on Δ_{k}^{+}. We have $\operatorname{dim}\left(\varepsilon_{k}^{s p}\right)=\binom{2 n}{k}-\binom{2 n}{k-2}$. Hence $\operatorname{dim}\left(\varepsilon_{k}^{+}\right) \leq\binom{ 2 n}{k}-\binom{2 n}{k-2}$. Moreover, claim (2) holds when \mathbb{F} is perfect. Explicitly:
(2') If \mathbb{F} is perfect then $\operatorname{dim}\left(\varepsilon_{k}^{+}\right)=\binom{2 n}{k}-\binom{2 n}{k-2}$.
Indeed, let \mathbb{F} be perfect. As Δ_{k}^{+}is a subgeometry of $\Delta_{k}^{s p}$ which in its turn is a subgeometry of \mathcal{G}_{k}^{\prime}, in order to prove (2^{\prime}) it suffices to prove that $\Delta_{k}^{s p}$ is contained in the subgeometry $\left\langle\Delta_{k}^{+}\right\rangle_{\mathcal{G}_{k}^{\prime}}$ spanned by Δ_{k}^{+}. Let X be a k-dimensional subspace of V^{\prime} totally isotropic for f. We must prove that $X \in\left\langle\Delta_{k}^{+}\right\rangle_{\mathcal{G}_{k}^{\prime}}$. Since \mathbb{F} is perfect $\Delta_{1}^{s p} \cong \Delta_{1}$. However Δ_{1}^{+}is a geometric hyperplane of Δ_{1}. Hence Δ_{1}^{+}is also a geometric hyperplane of $\Delta_{k}^{s p}$ too. Consequently either $X \in \Delta_{k}^{+}$or $X_{0}:=\left\{x \in X \mid q^{+}(x)=0\right\}$ is a hyperplane of X and $X \subseteq X_{0}^{\perp}$. In the first case there is nothing to prove. Assume the latter. Then $X_{0} \in \Delta_{k-1}^{+}$and $\operatorname{dim}\left(X_{0}^{\perp} / X_{0}\right)=2 n-2 k-2$. Given a flag F of Δ^{+}
of type $\{1, \ldots, k-1\}$ containing X_{0}, no matter which, $\operatorname{Res}_{\Delta^{+}}(F)$ is isomorphic to the building of type D_{n-k-1} associated to a non-degenerate quadratic form $q_{X_{0}}^{+}$of X_{0}^{\perp} / X_{0} of maximal Witt index $n-k-1$. The k-subspaces of V^{\prime} containing X_{0} and contained in X_{0}^{\perp} form a subspace $\mathcal{G}_{k}^{\prime}\left(X_{0}\right)$ of \mathcal{G}_{k}^{\prime} and the function mapping $Y \in \mathcal{G}_{k}^{\prime}\left(X_{0}\right)$ onto Y / X_{0} is an isomorphism $\pi_{X_{0}}$ from the geometry induced by \mathcal{G}_{k}^{\prime} on $\mathcal{G}_{k}^{\prime}\left(X_{0}\right)$ to $\operatorname{PG}\left(X_{0}^{\perp} / X_{0}\right)$. Clearly $\pi_{X_{0}}$ maps the set of k-elements of Δ^{+}containing X_{0} onto the set of points of the quadric $Q_{X_{0}}^{+}$associated to $q_{X_{0}}^{+}$. The point $\pi_{X_{0}}(X)$ of $\operatorname{PG}\left(X_{0}^{\perp} / X_{0}\right)$ does not belong to $Q_{X_{0}}^{+}$. On the other hand, every point of $\operatorname{PG}\left(X_{0}^{\perp} / X_{0}\right)$ belongs to a secant line of $Q_{X_{0}}^{+}$. Hence there is a line L of \mathcal{G}_{k}^{\prime} contained in $\mathcal{G}_{k}^{\prime}\left(X_{0}\right)$ and containing X and two distinct points of Δ_{k}^{+}. Therefore $X \in\left\langle\Delta_{k}^{+}\right\rangle_{\mathcal{G}_{k}^{\prime}}$, as we wished to prove. Claim (2^{\prime}) is proved.

Having proved (2^{\prime}) in the perfect case, claim (2) in the non-perfect case follows by descent to \mathbb{F}_{2}, as in the proof of Theorem 1.2 (see Sect. 3.3).

The geometry Δ_{k}^{+}admits the absolutely universal embedding (Kasikova and Shult [19] for $k<n-1$ and Blok and Pasini [8] for $k=n-1$). Therefore, if $\widetilde{\varepsilon}_{k}^{+}$is relatively universal then it is also absolutely universal. It follows from Tits [23, 8.4.3] that ε_{1}^{+} $\left(=\widetilde{\varepsilon}_{1}^{+}\right)$is universal for any field \mathbb{F}. On the other hand, by Proposition 4.1 , when $\operatorname{char}(\mathbb{F})=2$ and $k>1$ the Grassmann embedding ε_{k}^{+}is not universal. In the sequel, as a by-product of our proof of Theorem 1.5, we shall show that, under the hypotheses assumed on \mathbb{F} in Theorem 1.5, the Weyl embedding $\widetilde{\varepsilon}_{k}^{+}$is universal for $k=2$ or 3 .

4.2 Back and forth between B_{n} and D_{n}

In this subsection k is 2 or $3, n>k$ and

$$
\eta_{k}: \Delta_{k} \rightarrow \mathrm{PG}\left(U_{k}\right), \quad \eta_{k}^{+}: \Delta_{k}^{+} \rightarrow \mathrm{PG}\left(U_{k}^{\prime}\right)
$$

are given projective embeddings of Δ_{k} and Δ_{k}^{+}, for some \mathbb{F}-vector spaces U_{k} and U_{k}^{\prime}. As in the previous sections, we will freely use the symbols Δ_{k} and Δ_{k}^{+}to denote the point-line geometries Δ_{k} and Δ_{k}^{+}as well as their point-sets. We will do the same with other symbols like $\Delta_{k, a}, \Delta_{k, H}$ etc. (see below). We denote spans in $\Delta_{k}, \Delta_{k}^{+}, \Delta_{1}$ and Δ_{1}^{+}by the symbols $\langle.\rangle_{\Delta_{k}},\langle.\rangle_{\Delta_{k}^{+}},\langle.\rangle_{\Delta_{1}}$ and $\langle.\rangle_{\Delta_{1}^{+}}$respectively, keeping the symbol \langle. for spans in U_{k} or U_{k}^{\prime}.

Let H be a non-singular hyperplane of the polar space Δ_{1} such that the polar space $\Delta_{1, H}$ induced by Δ_{1} on H is isomorphic to Δ_{1}^{+}. Let $\Delta_{k, H}$ be the subgeometry of Δ_{k} induced on the set of totally singular k-subspaces of V contained in H. Then $\Delta_{k, H} \cong \Delta_{k}^{+}$. The embedding η_{k} induces on $\Delta_{k, H}$ a projective embedding $\eta_{k, H}: \Delta_{k, H} \rightarrow \mathrm{PG}\left(U_{k, H}\right)$ where $U_{k, H}:=\left\langle\eta_{k}\left(\Delta_{k, H}\right)\right\rangle$.

Let a be a point of Δ_{1} exterior to H and $\Delta_{k, a}$ the subgeometry of Δ_{k} induced on the set of totally singular k-subspaces of V containing a. Then $\Delta_{k, a}$ is isomorphic to the ($k-1$)-grassmannian $\bar{\Delta}_{k-1}$ of a building $\bar{\Delta}$ of type B_{n-1} defined over \mathbb{F}. The embedding $\eta_{k, a}: \Delta_{k, a} \rightarrow \mathrm{PG}\left(U_{k, a}\right)$ induced by η_{k} on $\Delta_{k, a}$, where $U_{k, a}:=\left\langle\eta_{k}\left(\Delta_{k, a}\right)\right\rangle$, can be regarded as a projective embedding of $\bar{\Delta}_{k-1}$.

When $k=2$ let l_{0} be a line of Δ_{1} not contained in $H \cup a^{\perp}$ and such that $a^{\perp} \cap l_{0} \neq$ $H \cap l_{0}$. Put $S_{2}:=\left\langle\left\{l_{0}\right\} \cup \Delta_{2, a} \cup \Delta_{2, H}\right\rangle_{\Delta_{2}}$.

When $k=3$ (hence $n>3$) the subgeometry $\Delta_{1, a, H}$ of Δ_{1} induced on $a^{\perp} \cap H$ is isomorphic to the polar space associated with a non-singular quadratic form of $V(2 n-1, \mathbb{F})$ of Witt index $n-1$. It is well known that the latter admits a generating set of $2 n-1$ points. Hence the same holds for $\Delta_{1, a, H}$. Let $\left\{p_{1}, \ldots, p_{2 n-1}\right\}$ be a spanning set of $2 n-1$ points of $\Delta_{1, a, H}$. For every $i=1, \ldots, 2 n-1$ let α_{i} be a plane of Δ_{1} through p_{i} such that $\alpha_{i} \cap H \cap a^{\perp}=\left\{p_{i}\right\}$. Put $S_{3}:=\left\langle\left\{\alpha_{i}\right\}_{i=1}^{2 n-1} \cup \Delta_{3, a} \cup \Delta_{3, H}\right\rangle_{\Delta_{3}}$.

Lemma 4.2 $S_{2}=\Delta_{2}$.

Proof We firstly prove the following:
(1) All lines of Δ_{1} coplanar with a in Δ_{1} belong to S_{2}.

Let α be a plane of Δ_{1} through a and l a line of α. If either $a \in l$ or $l \subset H$ there is nothing to prove. Let $a \notin l \nsubseteq H$ and let $p=l \cap H$. Then the lines of α through p are the points of a line L of Δ_{2}. The line L contains $l, \alpha \cap H$ and the line $\langle a, p\rangle_{\Delta_{1}}$ of Δ_{1} through a and p. Clearly, $\alpha \cap H \in \Delta_{2, H}$ and $\langle a, p\rangle_{\Delta_{1}} \in \Delta_{2, a}$. Hence $l \in S_{2}$. Claim (1) is proved.
(2) All lines of Δ_{1} coplanar with l_{0} belong to S_{2}.

Let α be a plane of Δ_{1} through l_{0}. Then α contains three lines of S_{2}, namely l_{0}, $\alpha \cap H$ and $\alpha \cap a^{\perp}$ (the latter belongs to S_{2} by (1)). These three lines form a triangle, as $l_{0} \cap a^{\perp} \notin H$ by assumption. It is now easy to see that all lines of α belong to S_{2}.
(3) If l is a line of Δ_{1} meeting l_{0} non-trivially, then l belongs to S_{2}.

Let $p:=l \cap l_{0}$. Suppose firstly that $p \in H$. We can choose a plane α of Δ_{1} through l such that $l_{0}^{\perp} \cap \alpha \neq \alpha \cap H$. We have $\alpha \cap H \in \Delta_{2, H}$ and $l_{0}^{\perp} \cap \alpha \in S_{2}$ by (2). Moreover, both $\alpha \cap H$ and $\alpha \cap l_{0}^{\perp}$ pass through $p \in l$. Therefore $l \in S_{2}$.

Let $p \notin H$. By (2), we can assume that l and l_{0} are non-coplanar. We consider two cases. Suppose firstly that we can choose a plane α of Δ_{1} through l_{0} such that $a^{\perp} \cap \alpha \cap H \neq l^{\perp} \cap \alpha \cap H$. Let β be the plane of Δ_{1} spanned by l and $\alpha \cap l^{\perp}$. Then $\alpha \cap l^{\perp} \in S_{2}$ by (2), $a^{\perp} \cap \beta \in S_{2}$ by (1) and $\beta \cap H \in \Delta_{2, H}$. Since $a^{\perp} \cap \alpha \cap H \neq$ $l^{\perp} \cap \alpha \cap H$, these three lines form a triangle. Hence all lines of β belong to S_{2}. In particular, $l \in S_{2}$.

Assume now that $a^{\perp} \cap \alpha \cap H=l^{\perp} \cap \alpha \cap H$ for every plane α on l_{0}. Clearly, there is at least one plane β through l containing a line m through p, non-coplanar with l_{0} and such that $a^{\perp} \cap \alpha \cap H \neq m^{\perp} \cap \alpha \cap H$. Then $m \in S_{2}$ by the previous paragraph. As $l_{0}^{\perp} \cap \beta \in S_{2}$ by (2), all lines of β through p belong to S_{2}.
(4) If l is a line of Δ_{1} meeting l_{0}^{\perp} non-trivially, then $l \in S_{2}$.

By (3) we can assume that $l \cap l_{0}=\emptyset$. Suppose firstly that $l \subseteq l_{0}^{\perp}$. Pick a point $p \in l_{0}$, $p \not \perp a$. By (3), all lines of the plane $\alpha:=\langle p, l\rangle$ through p are in S_{2}. On the other hand, the line $\alpha \cap a^{\perp}$ belongs to S_{2} by (1). It does not pass through p, as $p \notin a^{\perp}$ by assumption. Therefore all lines of α belong to S_{2}. In particular, $l \in S_{2}$.

Suppose that $l \cap l_{0}^{\perp}$ is a point, say $p_{1}:=l \cap l_{0}^{\perp}$. We may also assume that $p_{1} \notin l_{0}$, by (3). Then $p_{2}:=l_{0} \cap l^{\perp}$ is a point. Let $\alpha=\left\langle p_{2}, l\right\rangle_{\Delta_{1}}$. All lines of the plane α
passing through p_{2} belong to S_{2}, by (3). If $p_{2} \notin H$ then $\alpha \cap H$ is a line of α in S_{2} not through p_{2}. It follows that all lines of α belong to S_{2}. In particular, $l \in S_{2}$.

Let now $p_{2} \in H$. The line $a^{\perp} \cap \alpha$ belongs to S_{2} by (1). It does not pass through p_{2}, as $a^{\perp} \cap l_{0} \notin H$ by assumption. As above, all lines of α belong to S_{2}. Whence $l \in S_{2}$.

We can now finish the proof of the lemma. Let l be any line of Δ_{1}. We may assume that $a \notin l \nsubseteq H$. In view of (1)-(4) we can also assume that $l \cap a^{\perp}$ is a point and $l \cap l_{0}^{\perp}=\emptyset$. Suppose that we can choose a plane α on l such that the point $p:=l_{0}^{\perp} \cap \alpha$ does not belong to $H \cap a^{\perp}$. By (4), all lines of α through p belong to S_{2}. Moreover, $a^{\perp} \cap \alpha \in S_{2}$ by (1) and $\alpha \cap H \in \Delta_{2, H} \subseteq S_{2}$. Thus, α contains at least three lines of S_{2} forming a triangle. Therefore all lines of α belong to S_{2}. In particular, $l \in S_{2}$.

Finally, suppose that $p=l_{0}^{\perp} \cap \alpha \in H \cap a^{\perp}$ for every plane α through l. Pick a point $p_{1} \in l$ not in H and consider a line l_{1} of α through p_{1}, different from either of the lines l and $l_{2}:=\left\langle p_{1}, p\right\rangle_{\Delta_{1}}$. Clearly, we can choose a plane α_{1} on l_{1} such that $l_{0}^{\perp} \cap \alpha_{1} \notin H \cap a^{\perp}$. Hence $l_{1} \in S_{2}$ by the previous paragraph. Moreover, $l_{2} \in S_{2}$ by (4). Hence $l \in S_{2}$.

Corollary 4.3 Suppose that $\operatorname{dim}\left(U_{2, H}\right) \leq\binom{ 2 n}{2}$. Then $\operatorname{dim}\left(U_{2}\right) \leq\binom{ 2 n+1}{2}$.
Proof This follows from Lemma 4.2, recalling that $\Delta_{2, a}$ is isomorphic to a polar space of type B_{n-1}, that every projective embedding of such a polar space has dimension equal to $2 n-1$ or possibly $2 n-2$ (the latter only when $\operatorname{char}(\mathbb{F})=2$) and noticing that $1+(2 n-1)+\binom{2 n}{2}=\binom{2 n+1}{2}$.

Lemma 4.4 $S_{3}=\Delta_{3}$.

Proof It will be useful to have fixed some terminology. In the sequel, a totally singular 4-subspace of V will be called a space of Δ_{1}, for short. We say that a point $p \in a^{\perp} \cap H$ is S_{3}-full if all planes of Δ_{1} on p belong to S_{3}.
(1) All planes of Δ_{1} contained in a^{\perp} belong to S_{3}.

Let α be a plane of Δ_{1} contained in a^{\perp}. If $a \in \alpha$ then $\alpha \in \Delta_{3, a} \subseteq S_{3}$. Suppose that $a \notin \alpha$ and let X be the space of Δ_{1} spanned by a and α. Then all planes of X through a belong to S_{3}. Moreover, $X \cap H \in \Delta_{3, H} \subseteq S_{3}$. It follows that all planes of X belongs to S_{3}. In particular, $\alpha \in S_{3}$.
(2) Let $p \in a^{\perp} \cap H$ and let α_{0} be a plane of Δ_{1} on p such that $a^{\perp} \cap H \cap \alpha_{0}=\{p\}$ and $\alpha_{0} \in S_{3}$. Then p is S_{3}-full.

Let $\Delta_{3, p}$ be the subgeometry of Δ_{3} induced on the set of planes of Δ_{1} through p. Let $\bar{\Delta}_{3, p}$ be the induced subgeometry of $\Delta_{3, p}$ formed by those planes α such that $\alpha \cap a^{\perp} \cap H=\{p\}$. So, $\alpha_{0} \in \bar{\Delta}_{3, p}$. It is not difficult to see that $\bar{\Delta}_{3, p}$ is connected.

Let now X be a space of Δ_{1} through p containing α_{0}. Then X contains three planes of S_{3} through p, namely $\alpha_{0}, X \cap H$ and $X \cap a^{\perp}$ (which belongs to S_{3} by (1)). The intersection of these three planes is the point p. Hence all planes of X through p belong to S_{3}. Therefore, every plane through p contained in a common space with α_{0} belongs to S_{3}. Let now α be any plane in $\bar{\Delta}_{3, p}$ contained in a common space with α_{0}.

We can repeat the above argument with α_{0} replaced by α, thus obtaining that all planes through p contained in a common space with α belong to S_{3}. In this way, exploiting the connectedness of $\bar{\Delta}_{3, p}$ we obtain the result that every plane through p contained in a common space with a plane $\alpha \in \bar{\Delta}_{3, p}$ belongs to S_{3}. However, every plane $\beta \in \Delta_{3, p}$ is contained in the same space as a plane $\alpha \in \bar{\Delta}_{3, p}$. Therefore $\Delta_{3, p} \subseteq S_{3}$, namely p is S_{3}-full.
(3) Let x and y be two points of $a^{\perp} \cap H$ collinear in $\Delta_{1, a, H}$ and z another point on the line l of $\Delta_{1, a, H}$ spanned by x and y. If both x and y are S_{3}-full then z is S_{3}-full.

It is easy to see that there exists at least one space X of Δ_{1} containing l and such that $a^{\perp} \cap X=H \cap X=l$. Let X be such a space. As both x and y are S_{3}-full, all planes of Δ_{1} contained in X and containing either x or y belong to S_{3}. It follows that all planes contained in X belong to S_{3}. In particular, all planes through z contained in X belong to S_{3}. On the other hand, at least one of these planes meets a^{\perp} and H in distinct lines. Therefore z satisfies the hypotheses of (2). Hence z is S_{3}-full.

We can now finish the proof of the lemma. By (2), the points $p_{1}, \ldots, p_{2 n-1}$ considered in the definition of S_{3} are S_{3}-full. Moreover they span $\Delta_{1, a, H}$. Hence all points of $a^{\perp} \cap H$ are S_{3}-full, by (3). On the other hand, every plane of Δ_{1} meets $a^{\perp} \cap H$ non-trivially. Hence every plane of Δ_{1} belongs to S_{3}.

Corollary 4.5 Suppose that $\operatorname{dim}\left(U_{3, H}\right) \leq\binom{ 2 n}{3}$ and $\operatorname{dim}\left(U_{3, a}\right) \leq\binom{ 2 n-1}{2}$. Then $\operatorname{dim}\left(U_{3}\right) \leq\binom{ 2 n+1}{3}$.

Proof Note that $(2 n-1)+\binom{2 n-1}{2}+\binom{2 n}{3}=\binom{2 n+1}{3}$. The conclusion follows from this equality and Lemma 4.4.

We now turn to Δ_{k}^{+}and its embedding $\eta_{k}^{+}: \Delta_{k}^{+} \rightarrow \mathrm{PG}\left(U_{k}^{\prime}\right)$. Let H be a nonsingular hyperplane of the polar space Δ_{1}^{+}. The polar space $\Delta_{1, H}^{+}$induced by Δ_{1}^{+}on H is isomorphic to the polar space $\bar{\Delta}_{1}$, for a building $\bar{\Delta}$ of type B_{n-1} defined over \mathbb{F}. Let $\Delta_{k, H}^{+}$be the subgeometry of Δ_{k}^{+}induced on H. Then $\Delta_{k, H}^{+}$is isomorphic to the k-grassmannian $\bar{\Delta}_{k}$ of $\bar{\Delta}$. The embedding $\eta_{k}^{+}: \Delta_{k}^{+} \rightarrow \mathrm{PG}\left(U_{k}^{\prime}\right)$ induces on $\Delta_{k, H}^{+}$a projective embedding $\eta_{k, H}^{+}: \Delta_{k, H}^{+} \rightarrow \mathrm{PG}\left(U_{k, H}^{\prime}\right)$ where $U_{k, H}^{\prime}:=\left\langle\eta_{k}^{+}\left(\Delta_{k, H}^{+}\right)\right\rangle$.

Let a be a point of Δ_{1}^{+}exterior to H and $\Delta_{k, a}^{+}$the subgeometry of Δ_{k}^{+}induced on the set of points $X \in \Delta_{k}^{+}$such that $a \in X$. Then $\Delta_{k, a}^{+}$is isomorphic to the ($k-1$)grassmannian $\bar{\Delta}_{k-1}^{+}$of a building $\bar{\Delta}^{+}$of type D_{n-1} defined over \mathbb{F}. The embedding $\eta_{k, a}^{+}: \Delta_{k, a}^{+} \rightarrow \operatorname{PG}\left(U_{k, a}^{\prime}\right)$ induced by η_{k}^{+}on $\Delta_{k, a}^{+}$, where $U_{k, a}^{\prime}:=\left\langle\eta_{k}^{+}\left(\Delta_{k, a}^{+}\right)\right\rangle$can be regarded as a projective embedding of $\bar{\Delta}_{k-1}^{+}$.

When $k=2$ let l_{0} be a line of Δ_{1}^{+}not contained in $H \cup a^{\perp}$ and such that $a^{\perp} \cap l_{0} \neq$ $H \cap l_{0}$. Put $S_{2}^{+}:=\left\langle\left\{l_{0}\right\} \cup \Delta_{2, a}^{+} \cup \Delta_{2, H}^{+}\right\rangle_{\Delta_{2}^{+}}$.

When $k=3$ the subgeometry $\Delta_{1, a, H}^{+}$of Δ_{1}^{+}induced on $a^{\perp} \cap H$ is isomorphic to the polar space associated with a non-singular quadratic form of $V(2 n-2, \mathbb{F})$ of Witt index $n-1$. It is well known that the latter can be spanned by $2 n-2$ points. Hence the same holds for $\Delta_{1, a, H}^{+}$. Given a spanning set $\left\{p_{1}, \ldots, p_{2 n-2}\right\}$ of $\Delta_{1, a, H}^{+}$, for every
$i=1, \ldots, 2 n-2$ we pick a plane α_{i} of Δ_{1}^{+}through p_{i} such that $\alpha_{i} \cap H \cap a^{\perp}=\left\{p_{i}\right\}$. We put $S_{3}^{+}:=\left\langle\left\{\alpha_{i}\right\}_{i=1}^{2 n-2} \cup \Delta_{3, a}^{+} \cup \Delta_{3, H}^{+}\right\rangle_{\Delta_{3}^{+}}$.

The next lemma can be proved by arguments very similar to those exploited in the proofs of Lemmas 4.2 and 4.3. We leave the details for the reader.

Lemma 4.6 We have $S_{2}^{+}=\Delta_{2}^{+}$and $S_{3}^{+}=\Delta_{3}^{+}$.
Lemma 4.6 immediately implies the following:

Corollary 4.7

(1) If $\operatorname{dim}\left(U_{2, H}^{\prime}\right) \leq\binom{ 2 n-1}{2}$ then $\operatorname{dim}\left(U_{2}^{\prime}\right) \leq\binom{ 2 n}{2}$.
(2) Let $\operatorname{dim}\left(U_{3, H}^{\prime}\right) \leq\binom{ 2 n-1}{3}$ and $\operatorname{dim}\left(U_{3, a}^{\prime}\right) \leq\binom{ 2 n-2}{2}$. Then $\operatorname{dim}\left(U_{3}^{\prime}\right) \leq\binom{ 2 n}{3}$.

4.3 Proof of Theorem 1.5. The case $k=2$

Let $k=2$. Assume firstly that $n=3$. Then, as we have recalled before, the points of Δ_{2}^{+}can be regarded as point-plane flags of $\operatorname{PG}(3, \mathbb{F})$. The Weyl embedding $\widetilde{\varepsilon}_{2}^{+}$: $\Delta_{2}^{+} \rightarrow \mathrm{PG}\left(W_{2}^{\prime}\right)$ can be described as follows: W_{2}^{\prime} is the vector space of null-traced (4×4)-matrices and, for every non-zero vector v of $V(4, \mathbb{F})$ and every non-trivial linear functional f of $V(4, \mathbb{F})$ such that $f(v)=0$, the flag $\{\langle v\rangle, \operatorname{Ker}(f)\}$ of $\operatorname{PG}(3, \mathbb{F})$ is mapped by $\widetilde{\varepsilon}_{2}^{+}$onto the linear subspace of W_{2}^{\prime} spanned by the matrix $f \otimes v$. Note that $\operatorname{dim}\left(W_{2}^{\prime}\right)=4^{2}-1=15=\binom{2 \cdot 3}{2}$. The next lemma is contained in the main result of Völklein [25] as a special case.

Lemma 4.8 Let \mathbb{F} be a perfect field of positive characteristic or a number field and let $n=3$. Then the Weyl embedding $\widetilde{\varepsilon}_{2}^{+}$is universal.

The next theorem can be proved by induction on n, using Lemma 4.8 to start and Corollary 4.3 combined with part (1) of Corollary 4.7 to go on.

Theorem 4.9 Let \mathbb{F} be a perfect field of positive characteristic or a number field and let $n \geq 3$. Then every projective embedding of Δ_{2} has dimension at most $\binom{2 n+1}{2}$ and every projective embedding of Δ_{2}^{+}has dimension at most $\binom{2 n}{2}$.

Since $\operatorname{dim}\left(\widetilde{\varepsilon}_{2}\right)=\binom{2 n+1}{2}$ and $\operatorname{dim}\left(\widetilde{\varepsilon}_{2}^{+}\right)=\binom{2 n}{2}$, Theorem 4.9 immediately implies the following corollary, which contains part (1) of Theorem 1.5.

Corollary 4.10 Let \mathbb{F} be a perfect field of positive characteristic or a number field and let $n \geq 3$. Then both $\widetilde{\varepsilon}_{2}$ and $\widetilde{\varepsilon}_{2}^{+}$are universal.
4.4 Quasi-veronesean embeddings of projective spaces

We can deal with the case $k=3$ by induction just as we have done for $k=2$ in the previous subsection, but in order to start the induction we need an analog of Lemma 4.8 for $n=4$. We will obtain such a lemma in the next subsection. In the
present subsection we prove a preliminary result to be exploited in the proof of that lemma. We firstly state a few definitions.

The following class of embeddings includes both projective and veronesean embeddings. Given a point-line geometry Γ and a vector space U defined over a commutative division ring, a quasi-veronesean embedding of Γ in $\mathrm{PG}(U)$ is an injective mapping v from the point-set of Γ to the set of points of $\operatorname{PG}(U)$ such that $v(\Gamma)$ spans $\mathrm{PG}(U)$ and every line of Γ is mapped by v onto either a non-singular conic or a line of $\operatorname{PG}(U)$. We set $\operatorname{dim}(\nu):=\operatorname{dim}(U)$, as usual.

Given a quasi-veronesean embedding $v: \Gamma \rightarrow \mathrm{PG}(U)$, the span $\langle v(l)\rangle$ in $\operatorname{PG}(U)$ of the image $v(l)$ of a line l of Γ is uniquely determined by any three of its points. This suggests to consider the following notions. A set of points X of Γ is a 3subspace of Γ if every line meeting X in at least three points is contained in X. Intersections of 3 -subspaces are 3 -subspaces. So, for every set X of points, the intersection $\langle X\rangle_{\Gamma}^{3}$ of all 3-subspaces of Γ containing X is the smallest 3-subspace of Γ containing X. We call it the 3-span of X in Γ. Note that every subspace of Γ as defined in Sect. 2 is also a 3-subspace, but the converse is false in general. Hence $\langle X\rangle_{\Gamma}^{3} \subseteq\langle X\rangle_{\Gamma}$, possibly with strict inclusion. We say that X 3-generates Γ if $\langle X\rangle_{\Gamma}^{3}=\Gamma$.

Lemma 4.11 Let $\mathbb{F} \neq \mathbb{F}_{2}$. Then, for every positive integer d, every quasi-veronesean embedding of $\mathrm{PG}(d, \mathbb{F})$ is at most $\binom{d+2}{2}$-dimensional.

Proof It suffices to prove that $\operatorname{PG}(d, \mathbb{F})$ can be 3-generated by a set of $\binom{d+2}{2}$ points. Explicitly,
(1) $\operatorname{PG}(d, \mathbb{F})$ admits a 3-generating set of size $\binom{d+2}{2}$.

It is convenient to combine (1) with the following:
(2) If $X \subset \operatorname{PG}(d, \mathbb{F})$ is such that $|X|=\binom{d+1}{2}$ and $\langle X\rangle_{\mathrm{PG}(d, \mathbb{F})}^{3}$ is a hyperplane of $\operatorname{PG}(d, \mathbb{F})$, then we can find a set of points $Y \subset \operatorname{PG}(d, \mathbb{F})$ such that $|Y|=d+1$, $Y \cap X=\emptyset$ and $X \cup Y$ 3-generates $\operatorname{PG}(d, \mathbb{F})$.

We shall prove the conjunction of (1) and (2) by induction on d. If $d=1$ there is nothing to prove. Let $d>1$. Assume that we have already proved that (2) holds for that d. Every hyperplane H of $\operatorname{PG}(d, \mathbb{F})$ admits a 3 -generating set X of size $\binom{d+1}{2}$, by the inductive hypothesis on (1). By (2), we can enlarge X to a 3-generating set $X \cup Y$ of $\operatorname{PG}(d, \mathbb{F})$ of size $d+1+\binom{d+1}{2}=\binom{d+2}{2}$. So, (1) holds for d.

It remains to prove (2). Given X as in (2), let $H_{1}=\langle X\rangle_{\mathrm{PG}(d, \mathbb{F})}^{3}$ and let H_{2} be another hyperplane of $\operatorname{PG}(d, \mathbb{F})$, different from H_{1}. By the inductive hypothesis on (1), $H_{1} \cap H_{2}$ admits a 3-generating set X^{\prime} of size $\binom{d}{2}$. By the inductive hypothesis on (2), we can find $Y^{\prime} \subset H_{2}$ such that $\left|Y^{\prime}\right|=d, Y^{\prime} \cap X^{\prime}=\emptyset$ and $\left\langle X^{\prime} \cup Y^{\prime}\right\rangle_{\mathrm{PG}(d, \mathbb{F})}^{3}=H_{2}$. Thus, $\left\langle X \cup Y^{\prime}\right\rangle_{\mathrm{PG}(3, \mathbb{F})}^{3} \supseteq H_{1} \cup H_{2}$. Pick now a point $p \in \mathrm{PG}(d, \mathbb{F}) \backslash\left(H_{1} \cup H_{2}\right)$ and let H_{3} be the unique hyperplane of $\operatorname{PG}(d, \mathbb{F})$ containing $\{p\} \cup H_{1} \cap H_{2}$. Every point x of $\operatorname{PG}(d, \mathbb{F})$ exterior to $H_{1} \cup H_{2} \cup H_{3}$ belongs to a line through p meeting $H_{1} \cup H_{2}$ in two distinct points. Hence $\left\langle X \cup Y^{\prime} \cup\{p\}\right\rangle_{\mathrm{PG}(d, \mathbb{F})}^{3}$ contains all points of $\mathrm{PG}(d, \mathbb{F})$ except possibly those of H_{3} different from p and exterior to $H_{1} \cap H_{2}$. As $\mathbb{F} \neq \mathbb{F}_{2}$, this
set of points is enough to 3-generate $\operatorname{PG}(d, \mathbb{F})$. So, $Y:=Y^{\prime} \cup\{p\}$ has the properties required in (2).

Remarks

1. The hypothesis $\mathbb{F} \neq \mathbb{F}_{2}$ cannot be dropped from Lemma 4.11. Indeed let Γ be a point-line geometry where every line has just 3 points and let P be the point-set of Γ. Then every subset of P is a 3 -subspace of Γ and Γ admits a (universal) veronesean embedding $v: \Gamma \rightarrow \operatorname{PG}\left(\mathbb{F}_{2}^{P}\right)$ where \mathbb{F}_{2}^{P} is the \mathbb{F}_{2}-vector space of all functions $f: P \rightarrow \mathbb{F}_{2}$ and v sends $p \in P$ to the characteristic function of $\{p\}$. Clearly, $\operatorname{dim}(\nu)=|P|$.
2. Note that $\binom{d+2}{2}$ is indeed the dimension of the usual veronesean embedding of $\operatorname{PG}(d, \mathbb{F})$, sending a vector $\left(x_{i}\right)_{i=0}^{d} \in V(d+1, \mathbb{F})$ to the vector $\left(x_{i} x_{j}\right)_{i \leq j} \in$ $V\left(\binom{d+2}{2}, \mathbb{F}\right)$. So, by Lemma 4.11, that embedding is relatively universal when $\mathbb{F} \neq \mathbb{F}_{2}$.

4.5 An analog of Lemma 4.8 for $n=4$

In this subsection \mathbb{F} is either a perfect field of positive characteristic different from \mathbb{F}_{2} or a number field, $n=4$ and $\eta_{3}^{+}: \Delta_{3}^{+} \rightarrow \mathrm{PG}\left(U_{3}^{\prime}\right)$ is a projective embedding of Δ_{3}^{+}.

For a point p of Δ_{1}^{+}, we denote by $\Delta_{3, p}^{+}$the subgeometry of Δ_{3}^{+}induced on the set of planes of Δ_{1}^{+}containing p and $\eta_{3, p}^{+}$is the restriction of η_{3}^{+}to $\Delta_{3, p}^{+}$. Clearly, $\Delta_{3, p}^{+}$is isomorphic to the 2-grassmannian $\bar{\Delta}_{2}^{+}$of a building $\bar{\Delta}^{+}$of type D_{3} defined over \mathbb{F} and $\eta_{3, p}^{+}$can be regarded as a projective embedding of $\bar{\Delta}_{2}^{+}$into $U_{3, p}^{\prime}:=\left\langle\eta_{3}^{+}\left(\Delta_{3, p}^{+}\right)\right\rangle$. By Corollary 4.10, $\eta_{3, p}^{+}$is a quotient of the Weyl embedding of $\bar{\Delta}_{2}^{+}$. Hence $\operatorname{dim}\left(U_{3, p}^{\prime}\right) \leq 15$.

Given two non-collinear points a and b of Δ_{1}^{+}, let $\Delta_{3, a, b}^{+}$be the set of planes of Δ_{1}^{+}contained in $a^{\perp} \cap b^{\perp}$ and $U_{3, a, b}^{\prime}:=\left\langle\eta_{3}^{+}\left(\Delta_{3, a, b}^{+}\right)\right\rangle$.

Lemma 4.12 $\operatorname{dim}\left(U_{3, a, b}^{\prime}\right) \leq 20$.
Proof The polar space Δ_{1}^{+}induces on $a^{\perp} \cap b^{\perp}$ the line grassmannian of a projective geometry $\Pi_{a, b} \cong \mathrm{PG}(3, \mathbb{F})$. So, the set $\Delta_{3, a, b}^{+}$is partitioned in two sets P_{0} and P_{1}, corresponding to the points and the planes of $\Pi_{a, b}$.

Let $p \in a^{\perp} \cap b^{\perp}$. The residue res (p) of p in Δ^{+}is a D_{3}-building, $\Delta_{3, p}^{+}$is the 2-grassmannian of the building res (p) and the subgeometry $\Delta_{2, p}^{+}$induced by Δ_{2}^{+}on the set of lines of Δ_{1}^{+}through p is the polar space associated to res (p). The lines l_{a} and l_{b} of Δ_{1}^{+}joining p with a or b respectively, are points of the polar space $\Delta_{2, p}^{+}$ and $S_{p}:=\Delta_{3, p}^{+} \cap \Delta_{3, a, b}^{+}$is the set of lines of $\Delta_{2, p}^{+}$contained in $l_{a}^{\perp} \cap l_{b}^{\perp}$. The set S_{p} is partitioned in two families $P_{p, 0}=S_{p} \cap P_{0}$ and $P_{p, 1}=S_{p} \cap P_{1}$. In the polar space $\Delta_{2, p}^{+}$, the sets $P_{p, 0}$ and $P_{p, 1}$ form the two families of lines of a grid. On the other hand, p is a line of the projective geometry $\Pi_{a, b}$. Accordingly, $P_{p, 0}$ is the set of points of the line p of $\Pi_{a, b}$ and $P_{p, 1}$ is the set of planes of $\Pi_{a, b}$ through p.

The polar space $\Delta_{2, p}^{+}$can also be regarded as the line-grassmannian of a projective geometry $\Pi_{p} \cong \mathrm{PG}(3, \mathbb{F})$. The lines l_{a} and l_{b} appear as two skew lines in Π_{p} while the elements of $P_{p, 0}$ and $P_{p, 1}$ are point-plane flags, formed by a point in l_{a} and a plane through l_{b} or a point of l_{b} and a plane on l_{a}. We can assume that the elements of $P_{p, 0}$ are flags $\{x, X\}$ with x a point of l_{a} and X a plane through l_{b} while those of $P_{p, 1}$ are flags $\{x, X\}$ with $x \in l_{b}$ and $X \supset l_{a}$.

The embedding $\eta_{3, p}^{+}: \Delta_{3, p}^{+} \rightarrow \mathrm{PG}\left(U_{3, p}^{\prime}\right)$ is a quotient of the Weyl embedding $\widetilde{\varepsilon}_{2, p}^{+}: \Delta_{3, p}^{+} \rightarrow \operatorname{PG}(\widetilde{U})$, where \widetilde{U} is the vector space of null-traced 4×4-matrices with entries in \mathbb{F}. We have given an explicit description of this embedding in Sect. 4.3. Comparing that description with the above characterization of $P_{p, 0}$ and $P_{p, 1}$ as pointplane flags of Π_{p}, one can see that for $i=0,1$ the embedding $\widetilde{\varepsilon}_{2, p}^{+}$maps $P_{p, i}$ onto a non-singular conic $C_{p, i}$ of $\operatorname{PG}(\tilde{U})$. Explicitly, if $\left\{u_{1}, u_{2}, u_{3}, u_{4}\right\}$ is a basis of $V(4, \mathbb{F})$ such that l_{a} and l_{b} correspond to the lines $\left\langle u_{1}, u_{2}\right\rangle$ and $\left\langle u_{3}, u_{4}\right\rangle$ of $\mathrm{PG}(3, \mathbb{F}) \cong \Pi_{p}$, then $C_{p, 0}=\left\{\left\langle M_{0}(s, t)\right\rangle\right\}_{s, t \in \mathbb{F}}$ and $C_{p, 1}=\left\{\left\langle M_{1}(s, t)\right\rangle\right\}_{t, s \in \mathbb{F}}$ where

$$
M_{0}(t, s)=\left[\begin{array}{cccc}
-t s & s^{2} & 0 & 0 \\
-t^{2} & t s & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right], \quad M_{1}(t, s)=\left[\begin{array}{cccc}
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & -t s & s^{2} \\
0 & 0 & -t^{2} & t s
\end{array}\right]
$$

Let φ be the projection of \tilde{U} over $U_{3, p}^{\prime}$. Since $\eta_{3, p}^{+}$is injective, $\left\langle C_{p, i}\right\rangle \cap \operatorname{ker}(\varphi)$ is either the null subspace or the nucleus of the conic $C_{p, i}$, the latter case possibly occurring only if $\operatorname{char}(\mathbb{F})=2$. In the first case φ maps $C_{p, i}$ onto a conic of $\operatorname{PG}\left(U_{3, p}^{\prime}\right)$. In the second case, since \mathbb{F} is perfect by assumption, every line of $\left\langle C_{p, i}\right\rangle$ through the nucleus of $C_{p, i}$ meets $C_{p, i}$ in exactly one point. Hence φ maps $C_{p, i}$ onto a line of $\mathrm{PG}\left(U_{3, p}^{\prime}\right)$. Thus, $\eta_{3, p}^{+}$maps $P_{p, i}$ onto either a conic or a line.

Let now $\eta_{3, a, b}^{+}$be the restriction of η_{3}^{+}to $\Delta_{3, a, b}^{+}$. Clearly, $\eta_{3, a, b}^{+}$and $\eta_{3, p}^{+}$induce the same mapping on $\Delta_{3, a, b}^{+} \cap \Delta_{3, p}^{+}$. As remarked above, every point $p \in a^{\perp} \cap b^{\perp}$ is a line of $\Pi_{a, b}$ and $P_{p, 0}$ is the set of points of that line. Moreover P_{0} is the set of points of $\Pi_{a, b}$. As $\eta_{3, p}^{+}$maps $P_{p, 0}$ onto either a conic or a line, $\eta_{3, a, b}^{+}$is a quasi-veronesean embedding of $\Pi_{a, b}$. By Lemma 4.11, $\operatorname{dim}\left(\left\langle\eta_{3, a, b}^{+}\left(P_{0}\right)\right\rangle\right) \leq 10$. By a dual argument, $\operatorname{dim}\left(\left\langle\eta_{3, a, b}^{+}\left(P_{1}\right)\right\rangle\right) \leq 10$. Hence $\operatorname{dim}\left(\left\langle\eta_{3, a, b}^{+}\left(P_{0} \cup P_{1}\right)\right\rangle\right) \leq 20$.

The polar space $\Delta_{1, a, b}^{+}$induced by Δ_{1}^{+}on $a^{\perp} \cap b^{\perp}$ can be generated by six points, say $p_{1}, p_{1}, \ldots, p_{6}$. For every $i=1,2, \ldots, 6$, let α_{i} be a plane of Δ_{1}^{+}on p_{i} such that $a^{\perp} \cap b^{\perp} \cap \alpha_{i}=\left\{p_{i}\right\}$. Put $S:=\left\langle\left\{\alpha_{i}\right\}_{i=1}^{6} \cup \Delta_{3, a}^{+} \cup \Delta_{3, b}^{+} \cup \Delta_{3, a, b}^{+}\right\rangle_{\Delta_{3}^{+}}$.

Lemma 4.13 $S=\Delta_{3}^{+}$.
Proof Throughout the proof of this lemma the words 'point', 'line', 'plane' and 'space' refer to a point, a line, a plane or a 3-space, respectively, of the polar space Δ_{1}^{+}. We say that a point $p \in a^{\perp} \cap b^{\perp}$ is S-full if all planes on p belong to S. We chop our proof in a series of steps.
(1) Every plane contained in a common space with either a or b belongs to S.

Let X be a space on a. Then $b^{\perp} \cap X$ is a plane. It belongs to $\Delta_{3, a, b}^{+}$. Hence it belongs to S. On the other hand, $a \notin b^{\perp} \cap X$ since $a \not \perp b$ by assumption. Moreover, all planes of X through a belong to $\Delta_{3, a}^{+}$, whence they belong to S. It follows that all planes of X are in S. Claim (1) follows.
(2) Given a point $p \in a^{\perp} \cap b^{\perp}$, if there is a plane α_{0} on p such that $\alpha_{0} \in S$ and $\alpha_{0} \cap a^{\perp} \cap b^{\perp}=\{p\}$, then p is S-full.
Let X be a space on α_{0}. By (1), both planes $a^{\perp} \cap X$ and $b^{\perp} \cap X$ belong to S. These two planes meet α_{0} in distinct lines passing through p. Therefore, and since $\alpha_{0} \in S$, all planes of X through p belong to S. Let H be the set of planes through p that meet $a^{\perp} \cap b^{\perp}$ in at least a line. The complement $\Delta_{3, p}^{+} \backslash H$ of H in $\Delta_{3, p}^{+}$is a connected subgeometry of $\Delta_{3, p}^{+}$. It contains α_{0}, which belongs to S. Hence, by the above, $\Delta_{3, p}^{+} \backslash$ $H \subseteq S$. Moreover, still by the above, every plane through p contained in a common subspace with a plane of $\Delta_{3, p}^{+} \backslash H$ belongs to S. On the other hand, a plane through p is not contained in a common space with any of the planes of $\Delta_{3, p}^{+} \backslash H$ only if it belongs to $\Delta_{3, a, b}^{+}$. If so, it belongs to S. Therefore S contains all planes through p.
(3) Let x, y, z be three points of a line $l \subset a^{\perp} \cap b^{\perp}$ and suppose that both x and y are S-full. Then z is S-full too.

There exists at least one space X containing l and such that $a^{\perp} \cap b^{\perp} \cap X=l$. As x and y are S-full, all planes of X through either x or y belong to S. Hence all planes of X belong to S. On the other hand $a^{\perp} \cap b^{\perp} \cap X=l$. Therefore there exists at least one plane α of X containing z and such that $\alpha \cap a^{\perp} \cap b^{\perp}=\{z\}$. This plane belongs to S, as all planes of X belong to S. So, z satisfies the hypotheses of (2). By (2), z is S-full.

We can now finish the proof of the lemma. For every $i=1,2, \ldots, 6$, we have chosen the plane α_{i} on p_{i} in such a way that the hypotheses of (2) hold for p_{i} and α_{i}. Hence p_{i} is S-full. On the other hand, p_{1}, \ldots, p_{6} span $\Delta_{1, a, b}^{+}$, by assumption. Therefore every point of $a^{\perp} \cap b^{\perp}$ is S-full, by (3). Finally, every plane meets $a^{\perp} \cap b^{\perp}$ in at least a point. Hence every plane belongs to S.

Theorem 4.14 Let \mathbb{F} be either a perfect field of positive characteristic, different from \mathbb{F}_{2}, or a number field. Let $n=4$. Then the Weyl embedding $\widetilde{\varepsilon}_{3}^{+}$is universal.

Proof By Lemma 4.13, for every projective embedding η_{3}^{+}of Δ_{3}^{+}we have

$$
\operatorname{dim}\left(\eta_{3}^{+}\right) \leq 6+\operatorname{dim}\left(\eta_{3, a}^{+}\right)+\operatorname{dim}\left(\eta_{3, b}^{+}\right)+\operatorname{dim}\left(U_{3, a, b}^{\prime}\right) .
$$

On the other hand, $\operatorname{dim}\left(\eta_{3, a}^{+}\right)$and $\operatorname{dim}\left(\eta_{3, b}^{+}\right)$are less or equal to 15 by Lemma 4.8 and $\operatorname{dim}\left(U_{3, a, b}^{\prime}\right) \leq 20$ by Lemma 4.12. Hence $\operatorname{dim}\left(\eta_{3}^{+}\right) \leq 56$. However $\operatorname{dim}\left(\widetilde{\varepsilon}_{3}^{+}\right)=56$ and Δ_{3}^{+}admits the absolutely universal embedding [8]. Hence $\widetilde{\varepsilon}_{3}^{+}$is universal.

4.6 Proof of Theorem 1.5. The case $k=3$

By an inductive argument on n, using Theorem 4.14 to start and Corollary 4.5 combined with part (2) of Corollary 4.7 to go on, we obtain the following:

Theorem 4.15 Let \mathbb{F} be a perfect field of positive characteristic, different from \mathbb{F}_{2} or a number field and let $n>3$. Then every projective embedding of Δ_{3} has dimension at most $\binom{2 n+1}{3}$ and every projective embedding of Δ_{3}^{+}has dimension at most $\binom{2 n}{3}$.

Since $\operatorname{dim}\left(\widetilde{\varepsilon}_{3}\right)=\binom{2 n+1}{3}$ and $\widetilde{\varepsilon}_{3}^{+}=\binom{2 n}{3}$, Theorem 4.15 immediately implies the following corollary, which contains part (2) of Theorem 1.5.

Corollary 4.16 Let \mathbb{F} be a perfect field of positive characteristic, different from \mathbb{F}_{2}, or a number field and let $n>3$. Then both $\widetilde{\varepsilon}_{3}$ and $\widetilde{\varepsilon}_{3}^{+}$are universal.

4.7 Remarks

1. The assumptions $n>2$ when $k=2$ and $n>3$ when $k=3$ cannot be removed from Theorem 1.5. Indeed when $n=k=2$ or 3 the Weyl embedding $\widetilde{\varepsilon}_{k}$ is veronesean. Regretfully, we do not know so much on veronesean embeddings. We guess that $\widetilde{\varepsilon}_{n}$ is relatively universal when $\operatorname{char}(\mathbb{F}) \neq 2$, but so far we have not found a way to prove this conjecture, even in the case of $n=2$. On the other hand, if \mathbb{F} is a perfect field of characteristic 2 then $\widetilde{\varepsilon}_{n}$ is not universal, for any n (see [11]).
2. One might believe that the ideas exploited in Sect. 4.3 can be re-used to obtain results similar to Corollaries 4.3, 4.5 and 4.7 for any $k<n$, but things are not so easy as they look at first glance. For instance, let $k=4$. Instead of choosing a generating set $p_{1}, p_{2}, \ldots, p_{2 n-1}$ for the polar space induced by Δ_{1} on $a^{\perp} \cap H$ and suitable planes $\alpha_{1}, \alpha_{2}, \ldots, \alpha_{2 n-1}$ on $p_{1}, p_{2}, \ldots, p_{2 n-1}$ as we have done for Δ_{3}, we could consider a generating set $\left\{l_{1}, \ldots, l_{m}\right\}$ of the 2 -grassmannian $\bar{\Delta}_{2}$ of that polar space and a suitable 4 -space on each of l_{1}, \ldots, l_{m}. However, for this move to be effective we need $m=\binom{2 n-1}{2}$. Thus, we should know that $\bar{\Delta}_{2}$ admits a generating set of size $\binom{2 n-1}{2}$. However we do not know if this is true in general. It is true when \mathbb{F} is a finite prime field (Cooperstein [14]), but perhaps it is false for other fields (compare Blok and Pasini [7]). Anyway, Theorem 1.5 is of no help here. That theorem only tells us that every projective embedding of $\bar{\Delta}_{2}$ is at most $\binom{2 n-1}{2}$-dimensional. It says nothing on generating sets.

We face similar difficulties if, in the attempt to generalize Theorem 4.14 to Δ_{n-1}^{+}with $n>4$, we try to rephrase the proof of Lemma 4.13. Besides this, in order to generalize Theorem 4.14 we must preliminarily prove an analog of Lemma 4.11 for quasi-veronesean embeddings of half spin geometries, obtaining an upper bound for the dimension of such an embedding, but this does not look so easy to do. Perhaps, it is equivalent to determine an upper bound for the dimension of a quasi-veronesean embedding of Δ_{n}.

Acknowledgements The authors wish to thank two anonymous referees for their very helpful remarks. In particular, the idea to exploit \mathbb{F}_{2} to prove the equality of Theorem 1.2 in the non-perfect case is due to one of them. In an earlier version of this paper the inequality (2) of Sect. 3.3 was the best we could prove in that case.

References

1. Blok, R.J.: The generating rank of the symplectic line-Grassmannian. Beitrage Algebra Geom. 44, 575-580 (2003)
2. Blok, R.J.: The generating rank of the symplectic Grassmannians: hyperbolic and isotropic geometry. Eur. J. Comb. 28, 1368-1394 (2007)
3. Blok, R.J.: Highest weight modules and polarized embeddings of shadow spaces. J. Algebr. Comb. 34(1), 67-113 (2011)
4. Blok, R.J., Brouwer, A.E.: Spanning point-line geometries in buildings of spherical type. J. Geom. 62, 26-35 (1998)
5. Blok, R., Cardinali, I., De Bruyn, B.: On the nucleus of the Grassmann embedding of the symplectic dual polar spaces $D S p(2 n, F), \operatorname{char}(F)=2$. Eur. J. Comb. 30(2), 468-472 (2009)
6. Blok, R.J., Cooperstein, B.N.: Projective subgrassmannians of polar Grassmannian. Bull. Belg. Math. Soc. Simon Stevin 17(4), 675-691 (2010)
7. Blok, R.J., Pasini, A.: Point-line geometries with a generating set that depends on the underlying field. In: Blokhuis, A., et al. (eds.) Finite Geometries, pp. 1-25. Kluwer Academic, Dordrecht (2001)
8. Blok, R.J., Pasini, A.: On absolutely universal embeddings. Discrete Math. 267, 45-62 (2003)
9. Blokhuis, A., Brouwer, A.E.: The universal embedding dimension of the binary symplectic dual polar space. Discrete Math. 264, 3-11 (2003)
10. Cardinali, I., Lunardon, G.: A geometrical description of the spin-embedding of symplectic dual polar spaces of rank 3. J. Comb. Theory, Ser. A 115(6), 1056-1064 (2008)
11. Cardinali, I., Pasini, A.: Veronesean embeddings of dual polar spaces of orthogonal type. J. Combin. Theor. A (to appear)
12. Carter, R.W.: Lie Algebras of Finite and Affine Type. Cambridge University Press, Cambridge (2005)
13. Cooperstein, B.N.: On the generation of dual polar spaces of symplectic type over finite fields. J. Comb. Theory, Ser. A 83, 221-232 (1998)
14. Cooperstein, B.N.: Generating long root subgroup geometries of classical groups over finite prime fields. Bull. Belg. Math. Soc. Simon Stevin 5(4), 531-548 (1998)
15. Cooperstein, B.N., Shult, E.E.: Frames and bases of Lie incidence geometries. J. Geom. 60, 17-46 (1997)
16. De Bruyn, B., Pasini, A.: Generating symplectic and Hermitian dual polar spaces over arbitrary fields nonisomorphic to \mathbb{F}_{2}. Electron. J. Comb. 14, 54 (2007), 17 pages
17. De Bruyn, B., Pasini, A.: On symplectic polar spaces over non-perfect fields of characteristic 2. Linear Multilinear Algebra 57, 567-575 (2009)
18. Humphreys, J.E.: Introduction to Lie Algebras and Representation Theory. Springer, New York (1972)
19. Kasikova, A., Shult, E.E.: Absolute embeddings of point-line geometries. J. Algebra 238, 265-291 (2001)
20. Li, P.: On the universal embedding of the $S p_{2 n}(2)$ dual polar space. J. Comb. Theory, Ser. A 94, 100-117 (2001)
21. Pasini, A.: Embeddings and expansions. Bull. Belg. Math. Soc. Simon Stevin 10, 585-626 (2003)
22. Thas, J.A., Van Maldeghem, H.: Generalized veronesean embeddings of projective spaces. Combinatorica 31, 615-629 (2011)
23. Tits, J.: Buildings of Spherical Type and Finite $B N$-Pairs. Lect. Notes in Math., vol. 386. Springer, Berlin (1974)
24. Van Maldeghem, H.: Generalized Polygons. Birkhäuser, Basel (1998)
25. Völklein, H.: On the geometry of the adjoint representation of a Chevalley group. J. Algebra 127, 139-154 (1989)

[^0]: I. Cardinali (\boxtimes) • A. Pasini

 Department of Information Engineering and Mathematics, University of Siena, Via Roma 56, 53100 Siena, Italy
 e-mail: ilaria.cardinali@unisi.it
 A. Pasini
 e-mail: antonio.pasini@unisi.it

