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Abstract We investigate the existence of difference sets in particular 2-groups. Be-
ing aware of the famous necessary conditions derived from Turyn’s and Ma’s theo-
rems, we develop a new method to cover necessary conditions for the existence of
(22d+2,22d+1 − 2d,22d − 2d) difference sets, for some large classes of 2-groups.

If a 2-group G possesses a normal cyclic subgroup 〈x〉 of order greater than
2d+3+p, where the outer elements act on the cyclic subgroup similarly as in the dihe-
dral, semidihedral, quaternion or modular groups and 2p describes the size of G′ ∩〈x〉
or CG(x)′ ∩ 〈x〉, then there is no difference set in such a group. Technically, we use a
simple fact on how sums of 2n-roots of unity can be annulated and use it to character-
ize properties of norm invariance (prescribed norm). This approach gives necessary
conditions when a linear combination of 2n-roots of unity remains unchanged under
homomorphism actions in the sense of the norm.
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1 Introduction and known results

A (v, k, λ) difference set in a finite group G of order v is a set D, of cardinality k, such
that the collection {d1d

−1
2 | d1 �= d2, di ∈ D} consists of λ copies of every element

of G \ {1G}. For given parameters v, k and λ, the existence question for a (v, k, λ)

difference set is often hard to be solved and it includes approaches which are not
commonly used in this theory, such as character theory or algebraic number theory.
A suggested reference for further reading in this field would be [1].

If we want to determine whether an abelian difference set exists, the following
classical result is very often decisive:

Lemma 1 Let G be a finite abelian group of order v. A subset D of order k is
a (v, k, λ) difference set if and only if |χ(D)| = √

k − λ, for every non-principal
character χ of the group G.

A more general sufficient condition for a difference set in any finite group can be
stated in the group representation theory language (for proofs and examples see [3]
and [6]).

Theorem 1 Let D be a subset of size k of a group G of order v. Let S be a com-
plete set of distinct, inequivalent, nontrivial, irreducible representations for G. If
φ(D)φ(D(−1)) = (k − λ)I for all φ ∈ S, then D is a (v, k, λ) difference set in G.

Also, it can be shown that if D is a difference set, then the relation from the
previous theorem is fulfilled for all nontrivial representations. In fact, this will be our
main approach in testing hypothetical difference sets.

The group G of order 4u2, which possesses a difference set with parameters
(4u2,2u2 − u,u2 − u), is called a Hadamard group. The problem of existence of
difference sets in 2-groups has been studied extensively in recent years, whereas the
starting point can be found in Turyn [8], where the following important result was
proved.

Theorem 2 Let G be a 2-group of order 22d+2, and H a normal subgroup such that
G/H is cyclic. If |H | < 2d , then G is not a Hadamard group.

Using Dillon’s and Ma’s results (see [4]), an important claim of similar kind holds.

Theorem 3 Let G be a 2-group of order 22d+2, and H a normal subgroup such that
G/H is dihedral. If |H | < 2d , then G is not a Hadamard group.

One general necessary condition on the group structure of an abelian Hadamard
2-group is that its exponent is not too large. The important result in [8] which we
quote next is nowadays called the Turyn exponent bound.

Theorem 4 If G is an abelian Hadamard group of order 22s+2, then G has exponent
at most 2s+2.
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Some other useful results on difference sets and 2-groups can be found in [5].
A series of non-abelian 2-groups, which are in a sense close to abelian ones, are

modular groups. A modular group M2n is defined in terms of generators and relations
by

M2n = 〈
x, y

∣∣ x2n−1 = y2 = 1, yxy = x2n−2+1〉.

It is easy to see that its every maximal subgroup is abelian. Note that M2n is non-
abelian for n > 2.

The smallest non-abelian candidate is

M16 = 〈
x, y

∣∣ x8 = y2 = 1, yxy = x5〉,

and that group is shown to be Hadamard, because the set (written in the group ring
Z[M16])

1 + x + x2 + x5 + x4y + x2y

is a (16,6,2) Hadamard difference set in M16.
Dillon [2] led a research programme in order to examine which of the 267 groups

of order 64 are Hadamard groups. The last stone in the complete classification was
the construction of a (64,28,12) difference set in the modular group M64, found by
Smith in [5]. This is indeed a very special case, because it was the first example which
showed that the Turyn exponent bound cannot be extended to non-abelian groups.

Notice that in every modular group M2n , the subgroup 〈x2n−2
, y〉 is normal of

order 4. It is then easy to check that M2n/〈x2n−2
, y〉 is cyclic, thus by Theorem 2 we

see that modular groups M2n , where n ≥ 8, are not Hadamard. We wanted to examine
next the situation in a larger class of groups. Their structure is characterized by the
existence of a normal cyclic subgroup, on which the outer elements act in a way
similar to the modular case. Of course, modular groups are contained in this class
and we shall call this class modular type groups. We tried to carry out a construction
of a difference set in a modular type group of order greater than 64 for several cases
using different explicit methods. In doing so, we achieved constantly only negative
results, which led us to the hypothesis that difference sets in modular type groups do
not exist. One of the main results of this paper is the proof of this hypothesis.

The next (natural) step of investigation was towards dihedral type groups. Theo-
rem 3 solves the case when a factor group is dihedral, while we had a look at the
situation when there exists a normal cyclic subgroup on which the outer elements
act similarly as in a dihedral group. We were able to prove that neither this class of
groups allows the existence of Hadamard difference sets. A slight modification in
the proofs mentioned above leads to analogous negative results for semi-dihedral and
quaternion type groups.

Using the representation theory techniques, it can be shown that there is a strong
link between the existence of difference sets in modular 2-groups and polynomials
of the form f (η) = ∑w

j=1 kjη
rj , where rj ∈ {0,1, . . . ,2n − 1}, ri �= rj for i �= j ,

η = exp( 2π
√−1
2n ), kj ∈ Z, n,w ∈ N, having the additional property that |f (ηp)| is
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constant for every p ∈ Z where ηp �= 1. Throughout the paper we shall use the stan-
dard notation

f
(
ηp

) =
w∑

j=1

kjη
prj =

(
w∑

j=1

kjη
rj

)(p)

.

Definition 1 Let η be a root of unity and f (η) = ∑w
j=1 kjη

rj ∈ Z[η]. If there is
some c, such that |f (ηp)| = c, for all integers p where ηp �= 1, then we say that f (η)

is norm invariant.

2 Norm invariant polynomials

In the following result we manage to find out more about the nature of zero-sums of
2-roots of unity. More precisely, we prove that in order to achieve a zero-sum of 2-
roots, it is necessary to do it in the simplest way, i.e. the only possibility is to force a
cancellation in pairs. It is obvious that this is definitely one way to create a zero-sum,
but surprisingly, it is also the only way.

Theorem 5 Let ε = exp( 2π
√−1
2k ), k ≥ 1. Suppose that

εα1 + εα2 + · · · + εαl = 0,

where αi ’s need not to be mutually different. Then l is even and there is a partition of
the multiset {α1, α2, . . . , αl} in 2-element subsets {αi,αj } such that

εαi + εαj = 0.

Proof Let f (x) = xα1 + xα2 +· · ·+ xαl . Then g(x) = x2k−1 + 1 is the minimal poly-
nomial for the algebraic number ε. We have assumed that ε is a root of f (x), therefore
g(x) divides f (x). Thus f (x) = g(x)h(x) for some h(x) ∈ Z[x] with nonnegative
coefficients, thus we have proved our assertion. �

Next we want to find out when a polynomial f (η) is norm invariant. First, we need
one classical result (for example see [7]).

Lemma 2 Let A be an element of the group ring Z[G], where G is an abelian group.
Let χ be a character of G of order w. Let a prime p be self-conjugate modulo w,
i.e. pj ≡ −1 (modw′) for some j ∈ N where m = paw′, w′ not divisible by p. If
χ(A)χ(A) ≡ 0 (modp2i ), then χ(A) ≡ 0 (modpi).

Now, we can present our main technical result which is broadly used in the intro-
duced norm invariance method.

Theorem 6 Let f (η) = ηr1 + · · · + ηrq be a norm invariant polynomial of norm 2d

where q = 2d(2d+1 −1) and η is a root of unity of order 22d+2. Let 2n = max{o(ηri )}.
Then for every k = 0,1,2, . . . , n − 1 there is an r(k) ∈ Z such that f (η2k

) = 2dηr(k) .

We call such polynomials f (η2k
) maximally abbreviated.
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Proof Let G = 〈x〉 ∼= Z22d+2 and let f (η) = ηr1 +· · ·+ηrq be a polynomial satisfying
conditions of the theorem. Then

f (η)f (η) = 22d .

Notice that f (η) can be seen as

f (η) = χ(A),

where

A = xr1 + · · · + xrq ∈ Z[G],
while χ is a character of order 22d+2. Therefore

χ(A)χ(A) ≡ 0
(
mod 22d

)
.

Using the notation from Lemma 2, we have w = 22d+2,p = 2. Furthermore w =
p2d+2w′, where w′ = 1. It is obvious that pj ≡ −1 (modw′). By Lemma 2 we have

χ(A) = f (η) ≡ 0
(
mod 2d

)
.

Thus, f (η) is of the form f (η) = 2dX, where X = ηs1 + · · · + ηsq1 . From here it is
necessary that

∣∣ηs1 + · · · + ηsq1
∣∣ = 1.

Assume that in X there are no two roots which can be abbreviated, i.e. there are no
two distinct i, j ∈ {1,2, . . . , q1} such that ηsi + ηsj = 0, and that q1 ≥ 2. Then

|X|2 =
q1∑

i,j=1

ηsi−sj = 1.

From here we can write
q1∑

i �=j

ηsi−sj + q1 − 1 = 0.

Since q1 −1 ≥ 1, by Theorem 5, it is necessary that
∑

i �=j ηsi−sj has at least one copy
of −1. Assume that ηs1−s2 = −1, then ηs1 + ηs2 = 0, but that is a contradiction with
our assumption. Thus q1 = 1 and f (η) = 2dηs1 . �

3 Modular type groups

Denote standardly by Φ(G) the Frattini subgroup of G, which is the intersection of
all maximal subgroups of G. Recall that elements g ∈ G\Φ(G) are generators of the
group G.

In this section we define groups which are, in some sense, a generalization of
modular groups.

Definition 2 Let G be a group of order 22d+2, and let 〈x〉 be its normal cyclic sub-
group of order 2t , where x is a generator. If every g ∈ G acts on x like xg = x

or xg = xx2t−1
, then the group G will be called a modular type group and such an

x ∈ G will be called a modular generator.
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Theorem 7 Let G be a modular type group of order 22d+2, d ≥ 3, let x ∈ G be a
modular generator and G′ ∩ 〈x〉 ≤ 〈x2t−p 〉, where p ∈ {1,2, . . . , t − 1}. If |〈x〉| ≥
2d+3+p , then G is not a Hadamard group.

Proof Suppose that G possesses a Hadamard difference set D with parameters

(v, k, λ) = (
22d+2,22d+1 − 2d,22d − 2d

)
,

and additionally assume that o(x) = 2t , t ≥ d + 3 + p.
We may assume that D is of the form

D =
a∑

i=1

xni +
r∑

j=1

( tj∑

s=1

xmjs

)

gj (1)

where gj are coset representatives of G/〈x〉, 〈x〉gj �= 〈x〉. Obviously, r ≤ [G : 〈x〉]−
1. Notice that it is always possible to achieve that D ∩ 〈x〉 �= ∅.

Observe that (modulo 2t )

ni1 �= ni2, i1 �= i2.

For a fixed j , mjs are mutually different and z = x2t−1 ∈ Z(G).
Let ε be a root of unity of order 2t and let w = 1,2, . . . ,2t−p . Since G/G′ is

abelian and xG′ is its generator we have

G/G′ = 〈
xG′〉 × A

for some abelian group A ≤ G/G′. There is a natural epimorphism ϕ : G → G/G′
defined by ϕ(g) = gG′. Let θw be a character of G/G′ defined by

θw

(
xiG′, a

) = ε2pwi .

Finally, introduce φw : G → C by

φw = θw ◦ ϕ.

Since φw is a composition of homomorphisms, so is φw . In fact, φw is a 1-
dimensional representation on G. Since D is a difference set, we must have

∣∣φw(D)
∣∣ = √

k − λ = 2d, w = 1,2, . . . ,2t−p − 1.

Considering the form of the difference set D, the previous relation can be written
as

∣∣∣∣∣

a∑

i=1

ε2pwni +
r∑

j=1

( tj∑

s=1

ε2pwmjs

)∣∣∣∣∣
= 2d, w = 1,2, . . . ,2t−p − 1.

Now, we conclude that the polynomial (in terms of ε2p
) f (ε2p

) = ∑a
i=1 ε2pni +

∑r
j=1(

∑tj
s=1 ε2pmjs ) is norm invariant, and so by Theorem 6, there is some integer

rp such that φ1(D) = 2dε2prp . But then, by Theorem 5, we conclude that we must
have 2d addends ε2prp in φ1(D). By (1), we have

φ1(D) =
r∑

j=0

φ1
(
D ∩ 〈x〉gj

)
,
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where g0 = 1. In those r + 1 sums, which can be treated as boxes, we can find 2d

addends ε2prp , which can be seen as elements to be distributed into mentioned boxes.
Now we use Dirichlet’s principle. The number of objects that are distributed is 2d .
The number of boxes over which distribution is done is r + 1. Thus, there is some
j ′ ∈ {0,1, . . . , r} such that φ1(D ∩ 〈x〉gj ′) has ω copies of ε2prp , where

ω ≥
⌊

2d − 1

r + 1

⌋
+ 1 ≥

⌊
2d − 1

22d+2−t

⌋
+ 1 =

⌊
2t−d−2 − 1

22d+2−t

⌋
+ 1

= 2t−d−2 ≥ 2d+3+p−d−2 = 2p+1.

Then we have

2p+1 ≤ ∣∣{i | 0 ≤ i < 2t , φ1
(
xigj ′

) = ε2prp
}∣∣

= ∣∣{i | 0 ≤ i < 2t , φ1
(
xi

) = ε2prp
}∣∣

= ∣∣(φ1|〈x〉)−1(ε2prp
)∣∣

= ∣∣Ker(φ1|〈x〉)
∣∣

= 2p,

which is a contradiction. �

4 Dihedral type groups

As in the previous section, we start with a definition of a class of groups on which we
shall apply our techniques.

Definition 3 Let G be a group of order 22d+2, and let 〈x〉 be its normal cyclic sub-
group of order 2t , where x is a generator. If every g ∈ G acts on x like xg = x or
xg = x−1, then the group G will be called a dihedral type group and such an x will
be called a dihedral generator.

On dihedral type groups we cannot apply 1-dimensional representations in order
to find out something about the possibilities of possessing a difference set. The reason
for that is that the commutator subgroup of a dihedral group is too large. It is of index
4, hence we would have at most four 1-dimensional representations, and so with the
original norm invariance method we would not be able to find anything new. But
with a few tricks, we shall show how to use 2-dimensional representations, in order
to apply successfully the norm invariance method.

Theorem 8 Let G be a dihedral type group of order 22d+2, d ≥ 3, let x ∈ G be
a modular generator and CG(x)′ ∩ 〈x〉 ≤ 〈x2t−p 〉, p ∈ {1,2, . . . , t − 1}. If |〈x〉| ≥
2d+3+p , then G is not a Hadamard group.

Proof Suppose that the claim of the theorem is not true, thus suppose that D is a
difference set with parameters:

(v, k, λ) = (
22d+2,22d+1 − 2d,22d − 2d

)
,

and additionally assume that o(x) = 2t , t ≥ d + 3 + p.
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We may again assume that D is of the form

D =
a∑

i=1

xni +
r∑

j=1

( tj∑

s=1

xmjs

)

gj =
∑

i

xni +
∑

j

xmj gj (2)

where gj are coset representatives of G/〈x〉, 〈x〉gj �= 〈x〉. Notice that r ≤ [G : 〈x〉]−
1.

Define δ : G → {−1,1} by xg = xδ(g). Since xδ(g1g2) = xg1g2 = (xg1)g2 =
(xδ(g1))g2 = (xg2)δ(g1) = xδ(g2)δ(g1), we conclude that δ is a homomorphism and its
kernel Ker(δ) = CG(x) is a subgroup of index 2 in G. If δ is not a surjection, then we
would have x ∈ Z(G), thus G would be of modular type, so that case has been cov-
ered by our previous result. Therefore, from now on, we assume that δ is surjective.

Thus, every g ∈ G can be presented as cyu, where c ∈ CG(x) and u ∈ {0,1}. From
the definition of G we have xy = x−1. Similarly as in the previous proof, there is a
natural epimorphism ϕ : CG(x) → CG(x)/CG(x)′ defined by ϕ(c) = cCG(x)′. The
factor group CG(x)/CG(x)′ is abelian, where xCG(x)′ is its generator. Hence, there
is some abelian group A such that

CG(x)/CG(x)′ = 〈
xCG(x)′

〉 × A.

Let ε be a root of unity of order 2t . For w = 1,2, . . . ,2t−p , we define a character of
the abelian group CG(x)/CG(x)′ as follows:

θw

(
xiCG(x)′, a

) = ε2pwi .

Finally, now we can define a representation of the maximal subgroup CG(x) by

φw = θw ◦ ϕ.

If c ∈ CG(x), then c = xic1, for some c1 ∈ CG(x) \ 〈x〉. Therefore, we have

φw(c) = φw

(
xic1

) = ε2pwi .

Now, we are interested in 2-dimensional representations of G. Since every g ∈ G is
of the form g = c or g = cy, where c ∈ CG(x), we define a map Φw : G → GL(2,C)

for w = 1,2, . . . ,2t−p as follows:

Φw(c) =
(

φw(c) 0
0 φw(cy)

)
, Φw(cy) =

(
0 φw(cy2)

φw(cy) 0

)
.

Indeed, Φw are induced 2-dimensional representations of G. Thus,

Φw(D)Φw

(
D(−1)

) = 22dI2 (3)

where I2 is a 2 × 2 identity matrix. Now, we have

Φw(D) =
∑

i

Φw

(
xni

) +
∑

j

Φw

(
xmj gj

)
.

In the second sum we will use index j1 for those gj with the property xgj = x, and
index j2 if xgj = x−1. When we apply the introduced notation, we get

Φw(D) =
∑

i

Φw

(
xni

) +
∑

j1

Φw

(
xmj1 gj1

) +
∑

j2

Φw

(
xmj2 gj2

)
.
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Notice that φw(CG(x)) = φw(〈x〉), thus, in every class 〈x〉g, g ∈ CG(x), there is an
element g′ such that φw(g′) = 1. So Φw(g′) = I .

For other representatives outside of CG(x), like y or gjy, where gj ∈ CG(x), the
following holds:

Φw(y) = Φw(gjy) =
(

0 φw(y2)

1 0

)
.

If we define

Aw =
∑

i

ε2pwni +
∑

j1

ε2pwmj1 , Bw =
∑

j2

ε2pwmj2 ,

then we get

φw(D) =
(

Aw Bwφw(y2)

B
(−1)
w A

(−1)
w

)
.

Similarly,

φw

(
D(−1)

) =
(

A
(−1)
w Bw

B
(−1)
w φw(y2)−1 Aw

)

.

Now, (3) becomes
(

Aw Bwφw(y2)

B
(−1)
w A

(−1)
w

)
·
(

A
(−1)
w Bw

B
(−1)
w φw(y2)−1 Aw

)

=
(

22d 0
0 22d

)
,

and after multiplication we get

|Aw|2 + |Bw|2 = 22d, AwBw = 0

for all w = 1,2, . . . ,2t−p − 1.
Because Aw = 0 or Bw = 0, we conclude that

|Aw|2 + |Bw|2 = |Aw + Bw|2 = 22d,

for all w = 1,2, . . . ,2t−p − 1. Hence, the polynomial g(ε2p
) := A1 + B1 is norm

invariant, and by Theorem 6, there is some ε2prp such that

A1 + B1 = 2dε2prp .

Therefore, 2d copies of the ε2prp have to be distributed over 22d+2−t cosets of G/〈x〉,
hence, from Dirichlet’s principle, we conclude that there is a coset image with at least
Ω ≥ 2p+1 copies of ε2prp . Here we get a contradiction, with the same argument as in
Theorem 7. �

5 Semi-dihedral and quaternion type groups

We begin with the definition of groups which possess a generator x, with an additional
property that other generators act via conjugation on x like in a semi-dihedral 2-
group.
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Definition 4 Let G be a group of order 22d+2, and let 〈x〉 be its normal cyclic sub-
group of order 2t , where x ∈ G \ Φ(G) i.e. x is a generator. If every g ∈ G acts on x

like xg = x or xg = x−1x2t−1
, then the group G will be called a semi-dihedral type

group, and x will be called a semi-dihedral generator.

Using the same techniques as before, we are going to prove the following result.

Theorem 9 Let G be a semi-dihedral type group of order 22d+2, d ≥ 3, let x ∈ G

be a semi-dihedral generator and CG(x)′ ∩ 〈x〉 ≤ 〈x2t−p 〉, t ∈ {1,2, . . . , t − 1}. If
|〈x〉| ≥ 2d+3+p , then G is not a Hadamard group.

Proof We use the same notation as before i.e. z = x2t−1
. Notice that z ∈ Z(G).

Assume the opposite. Let D be a difference set with parameters (22d+2,22d+1 −
2d,22d − 2d). As we have seen before, the set D can be written as

D =
t∑

i=1

xni +
r∑

j=1

xmj gj (4)

where each gj �= 1G is a class representative in G/〈x〉. Define a map δ : G →
{1,2t−1 − 1}, where {1,2t−1 − 1} is a group of order 2 with multiplication mod-
ulo 2t . As seen before, δ is homomorphism. The remaining part of the proof follows
the previous one. �

It remains to define quaternion type groups.

Definition 5 Let G be a group of order 22d+2, and let 〈x〉 be its normal cyclic sub-
group of order 2t , where x ∈ G \ Φ(G) i.e. x is a generator. If every g ∈ G acts on
x like xg = x or xg = x−1, with an additional property g2 = x2t−1

, then the group G

will be called a quaternion type group, and x will be called a quaternion generator.

Although it is easy to confirm that every quaternion type group is basically of di-
hedral type, we have defined such a class for the completeness sake. In a similar way,
the following result can be proved, using the same type of 2-dimensional representa-
tions as in the semi-dihedral case, so we omit the proof.

Corollary 1 Let G be a quaternion type group of order 22d+2, d ≥ 3, let x ∈ G be a
quaternion generator and CG(x)′ ∩ 〈x〉 ≤ 〈x2t−p 〉. If |〈x〉| ≥ 2d+3+p , then G is not a
Hadamard group.
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