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Abstract In a recent paper Konvalinka and Lauve proved several skew Pieri rules for
Hall–Littlewood polynomials. In this note we show that q-analogues of these rules
are encoded in a q-binomial theorem for Macdonald polynomials due to Lascoux and
the author.
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1 The Konvalinka–Lauve formulas and their q-analogues

We refer the reader to [15] for definitions concerning Hall–Littlewood and Macdonald
polynomials.

Let Pλ/μ = Pλ/μ(X; t) and Qλ/μ = Qλ/μ(X; t) be the skew Hall–Littlewood
polynomials, er = P(1r ) the r th elementary symmetric function, hr the r th com-
plete symmetric function and qr = Q(r). Then the ordinary Pieri formulas for Hall–
Littlewood polynomials are given by [15]

Pμer =
∑

λ

vsλ/μ(t)Pλ, (1.1a)

Pμqr =
∑

λ

hsλ/μ(t)Pλ, (1.1b)

where the sums on the right are over partitions λ such that |λ| = |μ| + r . The Pieri
coefficient vsλ/μ(t) is given by [15, p. 215, (3.2)]

vsλ/μ(t) =
∏

i≥1

[
λ′

i − λ′
i+1

λ′
i − μ′

i

]

t

, (1.2)
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so that vsλ/μ(t) is zero unless μ ⊆ λ with λ − μ a vertical strip. Similarly, hsλ/μ(t)

vanishes unless μ ⊆ λ with λ−μ a horizontal strip, in which case [15, p. 218, (3.10)]

hsλ/μ(t) =
∏

λ′
i=μ′

i+1
λ′

i+1=μ′
i+1

(
1 − tλ

′
i−λ′

i+1
)
. (1.3)

To express the skew Pieri formulas, Konvalinka and Lauve [9] (see also [8]) intro-
duced a third Pieri coefficient

skλ/μ(t) := tn(λ/μ)
∏

i≥1

[
λ′

i − μ′
i+1

λ′
i − μ′

i

]

t

, (1.4)

where n(λ/μ) := ∑
i≥1

(λ′
i−μ′

i
2

)
. Note that skλ/μ(t) = 0 if μ �⊆ λ.

It seems Konvalinka and Lauve have been unaware that the above function has
appeared in the literature before. Indeed, in exactly the above form and denoted as
gλ

μ(t), it was used by Kirillov to prove the Pieri rule [7, Lemma 4.1]

Pμhr =
∑

λ

skλ/μ(t)Pλ. (1.5)

Moreover, skλ/μ(t) arose in [20, Eq. (4.3)] as a formula for the modified Hall–
Littlewood polynomial Q′

λ/μ(1) = Qλ/μ(1, t, t2, . . . )—a result first stated in [12,
Theorem 3.1], albeit in the not-so-easily-recognisable form

Q′
λ/μ(1) =

⎧
⎪⎪⎨

⎪⎪⎩

tn(λ/μ)

l(μ)∏

i=1

1 − t
λ′

μi−i+1

(t; t)μ′
i−μ′

i+1

for μ ⊆ λ,

0 otherwise.

In a more general form pertaining to Macdonald polynomials it also appeared in [18,
p. 173, Remark 2] and [19, Proposition 3.2], see (1.8) below. Prior to the above-
mentioned papers skλ/μ(t) appeared in the theory of abelian p-groups:

skλ/μ(t) = tn(λ)−n(μ)αλ

(
μ; t−1),

where αλ(μ;p) is the number of subgroups of type μ in a finite abelian p-group of
type λ, [2–4, 21].

Theorem 1.1 (Konvalinka–Lauve [9, Theorems 2–4]) For partitions ν ⊆ μ,

Pμ/νer =
∑

λ,η

(−1)|ν−η| vsλ/μ(t) skν/η(t)Pλ/η, (1.6a)

Pμ/νhr =
∑

λ,η

(−1)|ν−η| skλ/μ(t)vsν/η(t)Pλ/η, (1.6b)

Pμ/νqr =
∑

λ,η,ω

(−1)|ν−ω|t |ω−η| hsλ/μ(t)vsν/ω(t) skω/η(t)Pλ/η, (1.6c)

where each of the multiple sums is subject to the restriction |λ| + |η| = |μ| + |ν| + r .
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For ν = 0 the first and third skew Pieri formulas reduce to (1.1a) and (1.1b), re-
spectively, whereas the second formula simplifies to (1.5) (see also [9, Theorem 1]).
Theorem 1.1 for t = 0 gives the skew Pieri rules for Schur functions due to Assaf
and McNamara [1] who, more generally, conjectured a skew Littlewood–Richardson
rule. The identities (1.6a) and (1.6b) were first conjectured by Konvalinka in [8]. The
subsequent proof of the theorem by Konvalinka and Lauve combines Hopf algebraic
techniques in the spirit of the proof of the Assaf–McNamara conjecture [10] with
intricate manipulations involving t-binomial coefficients.

The aim of this note is to point out that all of the skew Pieri formulas (1.6a)–(1.6c)
are implied by a generalized q-binomial theorem for Macdonald polynomials and,
consequently, have simple q-analogues.

From here on let Pλ/μ = Pλ/μ(X;q, t) and Qλ/μ = Qλ/μ(X;q, t) denote skew
Macdonald polynomials. Let f be an arbitrary symmetric function. Adopting plethys-
tic or λ-ring notation, see, e.g., [5, 11], we define f ((a − b)/(1 − t)) in terms of the
power sums with positive index r as

pr

(
a − b

1 − t

)
= ar − br

1 − t r
.

In other words, pr((a − b)/(1 − t)) = arεb/a,t (pr) with εu,r Macdonald’s evaluation
homomorphism [15, p. 338, (6.16)]. Equivalently, in terms of complete symmetric
functions,

hr

(
a − b

1 − t

)
= [

zr
] (bz; t)∞
(az; t)∞ .

We now define the following five Pieri coefficients for Macdonald polynomials:

vsλ/μ(q, t) := ψ ′
λ/μ(q, t) = (−1)|λ−μ|Qλ/μ

(
q − 1

1 − t

)
, (1.7a)

hsλ/μ(q; t) := ϕλ/μ(q, t) = Qλ/μ(1), (1.7b)

skλ/μ(q, t) := Qλ/μ

(
1 − q

1 − t

)
, (1.7c)

ŝkλ/μ(q, t) := Qλ/μ

(
1 − q/t

1 − t

)
, (1.7d)

ksλ/μ(q, t) := Qλ/μ(−1), (1.7e)

where ψ ′
λ/μ(q, t) and ϕλ/μ(q, t) is notation used by Macdonald, and where the −1

in Qλ/μ(−1) is a plethystic −1, i.e., applied to the power sum pr of positive index
r it gives the number −1. The Pieri coefficients vsλ/μ(q, t) and hsλ/μ(q, t) have
nice factorized forms generalising (1.2) and (1.3), see [16, pp. 336–342]. So does
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ŝkλ/μ(q, t) [18, p. 173, Remark 2], [19, Proposition 3.2]:

ŝkλ/μ(q, t) =
⎧
⎨

⎩
tn(λ)−n(μ)

∏l(λ)
i,j=1

(qtj−i−1;q)λi−μj
(qtj−i ;q)μi−μj

(qtj−i−1;q)μi−μj
(qtj−i ;q)λi−μj

for μ ⊆ λ,

0 otherwise,
(1.8)

where (a;q)k := (a;q)∞/(aqk;q)∞ for all k ∈ Z. We leave it to the reader to verify
that the above right-hand side for q = 0 reduces to the right-hand side of (1.4). The
remaining two Pieri coefficients do not factor into binomials. For example

sk(2,1)/(1,0)(q, t) = 1 − q − q2 + t + qt − q2t

1 − q2t
,

ks(2,1)/(1,0)(q, t) = (1 − t)(1 + q − t + qt − t2 − qt2)

(1 − q)(1 − q2t)
.

Of course, skλ/μ(0, t) = skλ/μ(t) so it does factorize in the classical limit. This is,
however, not the case for ksλ/μ(0, t), and

ks(2,1)/(1,0)(0, t) = (1 − t)
(
1 − t − t2).

Let gr = gr(X;q, t) = Q(r)(X;q, t), so that gr(X;0, t) = qr(X; t). Then the fol-
lowing q-analogue of Theorem 1.1 holds.

Theorem 1.2 For partitions ν ⊆ μ,

Pμ/νer =
∑

λ,η

(−1)|ν−η| vsλ/μ(q, t) skν/η(q, t)Pλ/η, (1.9a)

Pμ/νhr =
∑

λ,η

(−1)|ν−η| skλ/μ(q, t)vsν/η(q, t)Pλ/η, (1.9b)

Pμ/νgr =
∑

λ,η

hsλ/μ(q, t)ksν/η(q, t)Pλ/η (1.9c)

=
∑

λ,η,ω

(−1)|ν−ω|t |ω−η| hsλ/μ(q, t)vsν/ω(q, t) ŝkω/η(q, t)Pλ/η, (1.9d)

where each of the multiple sums is subject to the restriction |λ| + |η| = |μ| + |ν| + r .

2 The q-binomial theorem for Macdonald polynomials

In [14, Eq. (2.11)] Lascoux and the author proved the following q-binomial theorem
for Macdonald polynomials:

∑

λ

Qλ/ν

(
a − b

1 − t

)
Pλ/μ(X) =

(∏

x∈X

(bx;q)∞
(ax;q)∞

)∑

λ

Qμ/λ

(
a − b

1 − t

)
Pν/λ(X). (2.1)
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For μ = ν = 0 and (a, b) �→ (1, a) this is the well-known Kaneko–Macdonald
q-binomial theorem [6, 16]

∑

λ

tn(λ) (a)λ

c′
λ

Pλ(X) =
∏

x∈X

(ax;q)∞
(x;q)∞

, (2.2)

where we have used [15, p. 338, (6.17)]

Qλ

(
1 − a

1 − t

)
= tn(λ) (a)λ

c′
λ

.

Here (a)λ = (a;q, t)λ := ∏
i≥1(at1−i;q)λi

and c′
λ = c′

λ(q, t) is the generalized hook
polynomial c′

λ = ∏
s∈λ(1 − qa(s)+1t l(s)) with a(s) and l(s) the arm-length and leg-

length of the square s ∈ λ.
To show that (2.1) encodes the skew Pieri formulas (1.9a)–(1.9d) we first consider

the μ = 0 case

∑

λ

Qλ/ν

(
a − b

1 − t

)
Pλ(X) = Pν(X)

∏

x∈X

(bx;q)∞
(ax;q)∞

. (2.3)

If we multiply this by Qν/μ((b − a)/(1 − t)) and sum over ν using (2.3) with
(λ, ν, a, b) �→ (ν,μ,b, a) we obtain

∑

λ,ν

Qλ/ν

(
a − b

1 − t

)
Qν/μ

(
b − a

1 − t

)
Pλ(X) = Pμ(X).

This implies the orthogonality relation (implicit in [17] and given in its more general
nonsymmetric form in [13, Eq. (6.5)])

∑

ν

Qλ/ν

(
a − b

1 − t

)
Qν/μ

(
b − a

1 − t

)
= δλμ. (2.4)

Thanks to (2.4), identity (2.1) is equivalent to

∑

λ,η

Qν/η

(
a − b

1 − t

)
Qλ/μ

(
b − a

1 − t

)
Pλ/η(X) = Pμ/ν(X)

∏

x∈X

(ax;q)∞
(bx;q)∞

.

There are now three special cases to consider. First, if b = aq then

Pμ/ν(X)
∏

x∈X

(1 − ax) =
∑

λ,η

a|λ−μ|+|ν−η|Qλ/μ

(
q − 1

1 − t

)
Qν/η

(
1 − q

1 − t

)
Pλ/η(X).

Equating coefficients of (−a)r and using definition (1.7a) and (1.7c) yields (1.9a).
Next, if a = bq

Pμ/ν(X)
∏

x∈X

1

1 − bx
=

∑

λ,η

b|λ−μ|+|ν−η|Qλ/μ

(
1 − q

1 − t

)
Qν/η

(
q − 1

1 − t

)
Pλ/η(X).
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Equating coefficients of br and again using (1.7a) and (1.7c) yields (1.9b). Finally, if
a = bt

Pμ/ν(X)
∏

x∈X

(btx;q)∞
(bx;q)∞

=
∑

λ,η

b|λ−μ|+|ν−η|Qλ/μ(1)Qν/η(−1)Pλ/η(X).

Equating coefficients of br and using (1.7b) and (1.7e) gives (1.9c). To show that
(1.9c) and (1.9d) are equivalent, we recall Rains’ q-Pfaff–Saalschütz summation for
Macdonald polynomials [17, Corollary 4.9]:

∑

ν

(a)ν

(c)ν
Qλ/ν

(
a − b

1 − t

)
Qν/μ

(
b − c

1 − t

)
= (a)μ(b)λ

(b)μ(c)λ
Qλ/μ

(
a − c

1 − t

)
, (2.5)

which for c = a is (2.4). Setting b = a/q and c = a/t and using (1.7a), (1.7d) and
(1.7e) yields

ksλ/μ(q, t) = (t/q)|λ−μ| (a/q)μ(a/t)λ

(a)μ(a/q)λ

∑

ν

(−1)|λ−ν| (a)ν

(a/t)ν
vsλ/ν(q, t)ŝkν/μ(q, t).

Taking the a → ∞ limit this further simplifies to

ksλ/μ(q, t) =
∑

ν

(−1)|λ−ν|t |ν−μ| vsλ/ν(q, t) ŝkν/μ(q, t),

which proves the equality between (1.9c) and (1.9d).
To conclude let us mention that all other identities of [9] admit simple q-analogues.

For example, if we take (2.5) and specialize b = a/q and c = at then

∑

μ

(a)μ

(at)μ
(−1)|λ−μ| vsλ/μ(q, t)Qμ/ν

(
1 − qt

1 − t

)
= (a)ν(a/q)λ

(a/q)ν(at)λ
q |λ−ν| hsλ/ν(q, t).

Letting a → ∞ this reduces to

∑

μ

(−t)|λ−μ| vsλ/μ(q, t)Qμ/ν

(
1 − qt

1 − t

)
= hsλ/ν(q, t).

For q = 0 this is [9, Lemma 5]
∑

μ

(−t)|λ−μ| vsλ/μ(t) skμ/ν(t) = hsλ/ν(t).

Similarly, according to [13, Eq. (6.23)]

∑

ν

tn(ν) (a)ν

c′
ν

f λ
μν(q, t) = Qλ/μ

(
1 − a

1 − t

)
. (2.6)

For a = q = 0 this is [7, Corollary 4.2], [9, Corollary 6]
∑

ν

tn(ν)f λ
μν(t) = skλ/μ(t).
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Finally, to obtain a q-analogue of [9, Theorem 7] we have to work a little harder.
First note that

Pν(X)em(X)

∞∑

r=0

hr(X) =
∑

μ

skμ/ν(q, t)Pμ(X)em(X)

=
∑

μ

∑

λ|λ−μ|=m

vsλ/μ(q, t) skμ/ν(q, t)Pλ(X). (2.7)

To compute this in a different way, observe that if we set a = q in (2.2) then

∑

λ

tn(λ) (q)λ

c′
λ

Pλ(X) =
∏

x∈X

1

1 − x
=

∞∑

r=0

hr(X).

Using this as well as em = P(1m) we get

Pν(X)em(X)

∞∑

r=0

hr(X) =
∑

η

tn(η) (q)η

c′
η

Pν(X)Pη(X)P(1m)(X).

By a double use of PμPν = f λ
μνPλ this leads to

Pν(X)em(X)

∞∑

r=0

hr(X) =
∑

η

tn(η) (q)η

c′
η

Pν(X)Pη(X)P(1m)(X)

=
∑

μ,η

tn(η) (q)η

c′
η

f
μ

η,(1m)(q, t)Pμ(X)Pν(X)

=
∑

λ,μ,η

tn(η) (q)η

c′
η

f
μ

η,(1m)
(q, t)f λ

μν(q, t)Pλ(X)

=
∑

λ,μ

skμ/(1m)(q, t)f λ
μν(q, t)Pλ(X), (2.8)

where the final equality follows from the a = q case of (2.6). Equating coefficients
of Pλ(X) in (2.7) and (2.8) yields

∑

μ
|λ−μ|=m

vsλ/μ(q, t) skμ/ν(q, t) =
∑

μ

skμ/(1m)(q, t)f λ
μν(q, t).

By (1.4),

skλ/(1m)(0, t) = skλ/(1m)(t) = tn(λ/(1m))

[
λ′

1
m

]

t

= tn(λ)−(m
2)

[
λ′

1
m

]

t−1
,
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so that for q = 0 we obtain [9, Theorem 7]

∑

μ
|λ−μ|=m

vsλ/μ(t) skμ/ν(t) =
∑

μ

tn(λ)−(m
2)f λ

μν(t)

[
λ′

1
m

]

t−1
.
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