Remarks on the paper "Skew Pieri rules for Hall-Littlewood functions" by Konvalinka and Lauve

S. Ole Warnaar

Received: 16 August 2012 / Accepted: 15 January 2013 / Published online: 29 January 2013
© Springer Science+Business Media New York 2013

Abstract

In a recent paper Konvalinka and Lauve proved several skew Pieri rules for Hall-Littlewood polynomials. In this note we show that q-analogues of these rules are encoded in a q-binomial theorem for Macdonald polynomials due to Lascoux and the author.

Keywords Pieri rules • Hall-Littlewood polynomials • Macdonald polynomials

1 The Konvalinka-Lauve formulas and their \boldsymbol{q}-analogues

We refer the reader to [15] for definitions concerning Hall-Littlewood and Macdonald polynomials.

Let $P_{\lambda / \mu}=P_{\lambda / \mu}(X ; t)$ and $Q_{\lambda / \mu}=Q_{\lambda / \mu}(X ; t)$ be the skew Hall-Littlewood polynomials, $e_{r}=P_{\left(1^{r}\right)}$ the r th elementary symmetric function, h_{r} the r th complete symmetric function and $q_{r}=Q_{(r)}$. Then the ordinary Pieri formulas for HallLittlewood polynomials are given by [15]

$$
\begin{align*}
& P_{\mu} e_{r}=\sum_{\lambda} \mathrm{vs}_{\lambda / \mu}(t) P_{\lambda}, \tag{1.1a}\\
& P_{\mu} q_{r}=\sum_{\lambda} \mathrm{hs}_{\lambda / \mu}(t) P_{\lambda}, \tag{1.1b}
\end{align*}
$$

where the sums on the right are over partitions λ such that $|\lambda|=|\mu|+r$. The Pieri coefficient $\mathrm{vs}_{\lambda / \mu}(t)$ is given by [15, p. 215, (3.2)]

$$
\operatorname{vs}_{\lambda / \mu}(t)=\prod_{i \geq 1}\left[\begin{array}{c}
\lambda_{i}^{\prime}-\lambda_{i+1}^{\prime} \tag{1.2}\\
\lambda_{i}^{\prime}-\mu_{i}^{\prime}
\end{array}\right]_{t},
$$

[^0]so that $\operatorname{vs}_{\lambda / \mu}(t)$ is zero unless $\mu \subseteq \lambda$ with $\lambda-\mu$ a vertical strip. Similarly, $\mathrm{hs}_{\lambda / \mu}(t)$ vanishes unless $\mu \subseteq \lambda$ with $\lambda-\mu$ a horizontal strip, in which case [15, p. 218, (3.10)]
\[

$$
\begin{equation*}
\mathrm{hs}_{\lambda / \mu}(t)=\prod_{\substack{\lambda_{i}^{\prime}=\mu_{i}^{\prime}+1 \\ \lambda_{i+1}^{\prime}=\mu_{i+1}^{\prime}}}\left(1-t^{\lambda_{i}^{\prime}-\lambda_{i+1}^{\prime}}\right) \tag{1.3}
\end{equation*}
$$

\]

To express the skew Pieri formulas, Konvalinka and Lauve [9] (see also [8]) introduced a third Pieri coefficient

$$
\operatorname{sk}_{\lambda / \mu}(t):=t^{n(\lambda / \mu)} \prod_{i \geq 1}\left[\begin{array}{c}
\lambda_{i}^{\prime}-\mu_{i+1}^{\prime} \tag{1.4}\\
\lambda_{i}^{\prime}-\mu_{i}^{\prime}
\end{array}\right]_{t},
$$

where $n(\lambda / \mu):=\sum_{i \geq 1}\binom{\lambda_{i}^{\prime}-\mu_{i}^{\prime}}{2}$. Note that $\mathrm{sk}_{\lambda / \mu}(t)=0$ if $\mu \nsubseteq \lambda$.
It seems Konvalinka and Lauve have been unaware that the above function has appeared in the literature before. Indeed, in exactly the above form and denoted as $g_{\mu}^{\lambda}(t)$, it was used by Kirillov to prove the Pieri rule [7, Lemma 4.1]

$$
\begin{equation*}
P_{\mu} h_{r}=\sum_{\lambda} \mathrm{sk}_{\lambda / \mu}(t) P_{\lambda} . \tag{1.5}
\end{equation*}
$$

Moreover, $\mathrm{sk}_{\lambda / \mu}(t)$ arose in [20, Eq. (4.3)] as a formula for the modified HallLittlewood polynomial $Q_{\lambda / \mu}^{\prime}(1)=Q_{\lambda / \mu}\left(1, t, t^{2}, \ldots\right)$-a result first stated in [12, Theorem 3.1], albeit in the not-so-easily-recognisable form

$$
Q_{\lambda / \mu}^{\prime}(1)= \begin{cases}t^{n(\lambda / \mu)} \prod_{i=1}^{l(\mu)} \frac{1-t^{\lambda_{\mu_{i}-i+1}^{\prime}}}{(t ; t)_{\mu_{i}^{\prime}-\mu_{i+1}^{\prime}}^{\prime}} & \text { for } \mu \subseteq \lambda \\ 0 & \text { otherwise }\end{cases}
$$

In a more general form pertaining to Macdonald polynomials it also appeared in [18, p. 173, Remark 2] and [19, Proposition 3.2], see (1.8) below. Prior to the abovementioned papers $\mathrm{sk}_{\lambda / \mu}(t)$ appeared in the theory of abelian p-groups:

$$
\mathrm{sk}_{\lambda / \mu}(t)=t^{n(\lambda)-n(\mu)} \alpha_{\lambda}\left(\mu ; t^{-1}\right),
$$

where $\alpha_{\lambda}(\mu ; p)$ is the number of subgroups of type μ in a finite abelian p-group of type $\lambda,[2-4,21]$.

Theorem 1.1 (Konvalinka-Lauve [9, Theorems 2-4]) For partitions $v \subseteq \mu$,

$$
\begin{align*}
& P_{\mu / \nu} e_{r}=\sum_{\lambda, \eta}(-1)^{|\nu-\eta|} \mathrm{vs}_{\lambda / \mu}(t) \mathrm{sk}_{\nu / \eta}(t) P_{\lambda / \eta}, \tag{1.6a}\\
& P_{\mu / \nu} h_{r}=\sum_{\lambda, \eta}(-1)^{|\nu-\eta|} \mathrm{sk}_{\lambda / \mu}(t) \mathrm{vs}_{\nu / \eta}(t) P_{\lambda / \eta}, \tag{1.6b}\\
& P_{\mu / \nu} q_{r}=\sum_{\lambda, \eta, \omega}(-1)^{|\nu-\omega|} t^{|\omega-\eta|} \mathrm{hs}_{\lambda / \mu}(t) \mathrm{vs}_{\nu / \omega}(t) \mathrm{sk}_{\omega / \eta}(t) P_{\lambda / \eta}, \tag{1.6c}
\end{align*}
$$

where each of the multiple sums is subject to the restriction $|\lambda|+|\eta|=|\mu|+|\nu|+r$.

For $v=0$ the first and third skew Pieri formulas reduce to (1.1a) and (1.1b), respectively, whereas the second formula simplifies to (1.5) (see also [9, Theorem 1]). Theorem 1.1 for $t=0$ gives the skew Pieri rules for Schur functions due to Assaf and McNamara [1] who, more generally, conjectured a skew Littlewood-Richardson rule. The identities (1.6a) and (1.6b) were first conjectured by Konvalinka in [8]. The subsequent proof of the theorem by Konvalinka and Lauve combines Hopf algebraic techniques in the spirit of the proof of the Assaf-McNamara conjecture [10] with intricate manipulations involving t-binomial coefficients.

The aim of this note is to point out that all of the skew Pieri formulas (1.6a)-(1.6c) are implied by a generalized q-binomial theorem for Macdonald polynomials and, consequently, have simple q-analogues.

From here on let $P_{\lambda / \mu}=P_{\lambda / \mu}(X ; q, t)$ and $Q_{\lambda / \mu}=Q_{\lambda / \mu}(X ; q, t)$ denote skew Macdonald polynomials. Let f be an arbitrary symmetric function. Adopting plethystic or λ-ring notation, see, e.g., $[5,11]$, we define $f((a-b) /(1-t))$ in terms of the power sums with positive index r as

$$
p_{r}\left(\frac{a-b}{1-t}\right)=\frac{a^{r}-b^{r}}{1-t^{r}}
$$

In other words, $p_{r}((a-b) /(1-t))=a^{r} \epsilon_{b / a, t}\left(p_{r}\right)$ with $\epsilon_{u, r}$ Macdonald's evaluation homomorphism [15, p. 338, (6.16)]. Equivalently, in terms of complete symmetric functions,

$$
h_{r}\left(\frac{a-b}{1-t}\right)=\left[z^{r}\right] \frac{(b z ; t)_{\infty}}{(a z ; t)_{\infty}} .
$$

We now define the following five Pieri coefficients for Macdonald polynomials:

$$
\begin{align*}
& \operatorname{vs}_{\lambda / \mu}(q, t):=\psi_{\lambda / \mu}^{\prime}(q, t)=(-1)^{|\lambda-\mu|} Q_{\lambda / \mu}\left(\frac{q-1}{1-t}\right), \tag{1.7a}\\
& \mathrm{hs}_{\lambda / \mu}(q ; t):=\varphi_{\lambda / \mu}(q, t)=Q_{\lambda / \mu}(1), \tag{1.7b}\\
& \mathrm{sk}_{\lambda / \mu}(q, t):=Q_{\lambda / \mu}\left(\frac{1-q}{1-t}\right), \tag{1.7c}\\
& \widehat{\operatorname{sk}}_{\lambda / \mu}(q, t):=Q_{\lambda / \mu}\left(\frac{1-q / t}{1-t}\right), \tag{1.7d}\\
& \mathrm{ks}_{\lambda / \mu}(q, t):=Q_{\lambda / \mu}(-1) \tag{1.7e}
\end{align*}
$$

where $\psi_{\lambda / \mu}^{\prime}(q, t)$ and $\varphi_{\lambda / \mu}(q, t)$ is notation used by Macdonald, and where the -1 in $Q_{\lambda / \mu}(-1)$ is a plethystic -1 , i.e., applied to the power sum p_{r} of positive index r it gives the number -1 . The Pieri coefficients $\mathrm{vs}_{\lambda / \mu}(q, t)$ and $\mathrm{hs}_{\lambda / \mu}(q, t)$ have nice factorized forms generalising (1.2) and (1.3), see [16, pp. 336-342]. So does
$\widehat{\mathrm{sk}}_{\lambda / \mu}(q, t)[18$, p. 173, Remark 2], [19, Proposition 3.2]:

$$
\widehat{\mathrm{sk}}_{\lambda / \mu}(q, t)= \begin{cases}t^{n(\lambda)-n(\mu)} \prod_{i, j=1}^{l(\lambda)} \frac{\left(q t^{j-i-1} ; q\right) \lambda_{i}-\mu_{j}\left(q t^{j-i} ; q\right) \mu_{i}-\mu_{j}}{\left(q t^{j-i-1} ; q\right) \mu_{i}-\mu_{j}\left(q^{j-i} ; q\right) \lambda_{i}-\mu_{j}} & \text { for } \mu \subseteq \lambda \tag{1.8}\\ 0 & \text { otherwise }\end{cases}
$$

where $(a ; q)_{k}:=(a ; q)_{\infty} /\left(a q^{k} ; q\right)_{\infty}$ for all $k \in \mathbb{Z}$. We leave it to the reader to verify that the above right-hand side for $q=0$ reduces to the right-hand side of (1.4). The remaining two Pieri coefficients do not factor into binomials. For example

$$
\begin{aligned}
\operatorname{sk}_{(2,1) /(1,0)}(q, t) & =\frac{1-q-q^{2}+t+q t-q^{2} t}{1-q^{2} t} \\
\operatorname{ks}_{(2,1) /(1,0)}(q, t) & =\frac{(1-t)\left(1+q-t+q t-t^{2}-q t^{2}\right)}{(1-q)\left(1-q^{2} t\right)}
\end{aligned}
$$

Of course, $\operatorname{sk}_{\lambda / \mu}(0, t)=\mathrm{sk}_{\lambda / \mu}(t)$ so it does factorize in the classical limit. This is, however, not the case for $\mathrm{ks}_{\lambda / \mu}(0, t)$, and

$$
\mathrm{ks}_{(2,1) /(1,0)}(0, t)=(1-t)\left(1-t-t^{2}\right)
$$

Let $g_{r}=g_{r}(X ; q, t)=Q_{(r)}(X ; q, t)$, so that $g_{r}(X ; 0, t)=q_{r}(X ; t)$. Then the following q-analogue of Theorem 1.1 holds.

Theorem 1.2 For partitions $v \subseteq \mu$,

$$
\begin{align*}
P_{\mu / \nu} e_{r} & =\sum_{\lambda, \eta}(-1)^{|\nu-\eta|} \mathrm{vs}_{\lambda / \mu}(q, t) \mathrm{sk}_{\nu / \eta}(q, t) P_{\lambda / \eta}, \tag{1.9a}\\
P_{\mu / \nu} h_{r} & =\sum_{\lambda, \eta}(-1)^{|\nu-\eta|} \mathrm{sk}_{\lambda / \mu}(q, t) \mathrm{vs}_{\nu / \eta}(q, t) P_{\lambda / \eta}, \tag{1.9b}\\
P_{\mu / \nu} g_{r} & =\sum_{\lambda, \eta} \mathrm{hs}_{\lambda / \mu}(q, t) \mathrm{ks}_{\nu / \eta}(q, t) P_{\lambda / \eta} \tag{1.9c}\\
& =\sum_{\lambda, \eta, \omega}(-1)^{|\nu-\omega|} t^{|\omega-\eta|} \mathrm{hs}_{\lambda / \mu}(q, t) \mathrm{vs}_{\nu / \omega}(q, t) \widehat{\mathrm{sk}}_{\omega / \eta}(q, t) P_{\lambda / \eta}, \tag{1.9d}
\end{align*}
$$

where each of the multiple sums is subject to the restriction $|\lambda|+|\eta|=|\mu|+|\nu|+r$.

2 The \boldsymbol{q}-binomial theorem for Macdonald polynomials

In [14, Eq. (2.11)] Lascoux and the author proved the following q-binomial theorem for Macdonald polynomials:

$$
\begin{equation*}
\sum_{\lambda} Q_{\lambda / v}\left(\frac{a-b}{1-t}\right) P_{\lambda / \mu}(X)=\left(\prod_{x \in X} \frac{(b x ; q)_{\infty}}{(a x ; q)_{\infty}}\right) \sum_{\lambda} Q_{\mu / \lambda}\left(\frac{a-b}{1-t}\right) P_{\nu / \lambda}(X) \tag{2.1}
\end{equation*}
$$

For $\mu=v=0$ and $(a, b) \mapsto(1, a)$ this is the well-known Kaneko-Macdonald q-binomial theorem $[6,16]$

$$
\begin{equation*}
\sum_{\lambda} t^{n(\lambda)} \frac{(a)_{\lambda}}{c_{\lambda}^{\prime}} P_{\lambda}(X)=\prod_{x \in X} \frac{(a x ; q)_{\infty}}{(x ; q)_{\infty}}, \tag{2.2}
\end{equation*}
$$

where we have used [15, p. 338, (6.17)]

$$
Q_{\lambda}\left(\frac{1-a}{1-t}\right)=t^{n(\lambda)} \frac{(a)_{\lambda}}{c_{\lambda}^{\prime}}
$$

Here $(a)_{\lambda}=(a ; q, t)_{\lambda}:=\prod_{i \geq 1}\left(a t^{1-i} ; q\right)_{\lambda_{i}}$ and $c_{\lambda}^{\prime}=c_{\lambda}^{\prime}(q, t)$ is the generalized hook polynomial $c_{\lambda}^{\prime}=\prod_{s \in \lambda}\left(1-q^{a(s)+1} t^{l(s)}\right)$ with $a(s)$ and $l(s)$ the arm-length and leglength of the square $s \in \lambda$.

To show that (2.1) encodes the skew Pieri formulas (1.9a)-(1.9d) we first consider the $\mu=0$ case

$$
\begin{equation*}
\sum_{\lambda} Q_{\lambda / v}\left(\frac{a-b}{1-t}\right) P_{\lambda}(X)=P_{\nu}(X) \prod_{x \in X} \frac{(b x ; q)_{\infty}}{(a x ; q)_{\infty}} \tag{2.3}
\end{equation*}
$$

If we multiply this by $Q_{\nu / \mu}((b-a) /(1-t))$ and sum over v using (2.3) with $(\lambda, \nu, a, b) \mapsto(\nu, \mu, b, a)$ we obtain

$$
\sum_{\lambda, \nu} Q_{\lambda / v}\left(\frac{a-b}{1-t}\right) Q_{\nu / \mu}\left(\frac{b-a}{1-t}\right) P_{\lambda}(X)=P_{\mu}(X)
$$

This implies the orthogonality relation (implicit in [17] and given in its more general nonsymmetric form in [13, Eq. (6.5)])

$$
\begin{equation*}
\sum_{\nu} Q_{\lambda / v}\left(\frac{a-b}{1-t}\right) Q_{\nu / \mu}\left(\frac{b-a}{1-t}\right)=\delta_{\lambda \mu} . \tag{2.4}
\end{equation*}
$$

Thanks to (2.4), identity (2.1) is equivalent to

$$
\sum_{\lambda, \eta} Q_{\nu / \eta}\left(\frac{a-b}{1-t}\right) Q_{\lambda / \mu}\left(\frac{b-a}{1-t}\right) P_{\lambda / \eta}(X)=P_{\mu / v}(X) \prod_{x \in X} \frac{(a x ; q)_{\infty}}{(b x ; q)_{\infty}} .
$$

There are now three special cases to consider. First, if $b=a q$ then

$$
P_{\mu / \nu}(X) \prod_{x \in X}(1-a x)=\sum_{\lambda, \eta} a^{|\lambda-\mu|+|\nu-\eta|} Q_{\lambda / \mu}\left(\frac{q-1}{1-t}\right) Q_{\nu / \eta}\left(\frac{1-q}{1-t}\right) P_{\lambda / \eta}(X) .
$$

Equating coefficients of $(-a)^{r}$ and using definition (1.7a) and (1.7c) yields (1.9a). Next, if $a=b q$

$$
P_{\mu / v}(X) \prod_{x \in X} \frac{1}{1-b x}=\sum_{\lambda, \eta} b^{|\lambda-\mu|+|\nu-\eta|} Q_{\lambda / \mu}\left(\frac{1-q}{1-t}\right) Q_{\nu / \eta}\left(\frac{q-1}{1-t}\right) P_{\lambda / \eta}(X)
$$

Equating coefficients of b^{r} and again using (1.7a) and (1.7c) yields (1.9b). Finally, if $a=b t$

$$
P_{\mu / v}(X) \prod_{x \in X} \frac{(b t x ; q)_{\infty}}{(b x ; q)_{\infty}}=\sum_{\lambda, \eta} b^{|\lambda-\mu|+|v-\eta|} Q_{\lambda / \mu}(1) Q_{\nu / \eta}(-1) P_{\lambda / \eta}(X)
$$

Equating coefficients of b^{r} and using (1.7b) and (1.7e) gives (1.9c). To show that (1.9c) and (1.9d) are equivalent, we recall Rains' q-Pfaff-Saalschütz summation for Macdonald polynomials [17, Corollary 4.9]:

$$
\begin{equation*}
\sum_{\nu} \frac{(a)_{\nu}}{(c)_{\nu}} Q_{\lambda / \nu}\left(\frac{a-b}{1-t}\right) Q_{\nu / \mu}\left(\frac{b-c}{1-t}\right)=\frac{(a)_{\mu}(b)_{\lambda}}{(b)_{\mu}(c)_{\lambda}} Q_{\lambda / \mu}\left(\frac{a-c}{1-t}\right), \tag{2.5}
\end{equation*}
$$

which for $c=a$ is (2.4). Setting $b=a / q$ and $c=a / t$ and using (1.7a), (1.7d) and (1.7e) yields

$$
\operatorname{ks}_{\lambda / \mu}(q, t)=(t / q)^{|\lambda-\mu|} \frac{(a / q)_{\mu}(a / t)_{\lambda}}{(a)_{\mu}(a / q)_{\lambda}} \sum_{\nu}(-1)^{|\lambda-\nu|} \frac{(a)_{\nu}}{(a / t)_{\nu}} \operatorname{vs}_{\lambda / \nu}(q, t) \widehat{\mathrm{sk}}_{\nu / \mu}(q, t) .
$$

Taking the $a \rightarrow \infty$ limit this further simplifies to

$$
\operatorname{ks}_{\lambda / \mu}(q, t)=\sum_{\nu}(-1)^{|\lambda-\nu|} t^{|\nu-\mu|} \operatorname{vs}_{\lambda / v}(q, t) \widehat{\operatorname{sk}}_{\nu / \mu}(q, t),
$$

which proves the equality between (1.9c) and (1.9d).
To conclude let us mention that all other identities of [9] admit simple q-analogues. For example, if we take (2.5) and specialize $b=a / q$ and $c=a t$ then

$$
\sum_{\mu} \frac{(a)_{\mu}}{(a t)_{\mu}}(-1)^{|\lambda-\mu|} \operatorname{vs}_{\lambda / \mu}(q, t) Q_{\mu / v}\left(\frac{1-q t}{1-t}\right)=\frac{(a)_{\nu}(a / q)_{\lambda}}{(a / q)_{\nu}(a t)_{\lambda}} q^{|\lambda-\nu|} \mathrm{hs}_{\lambda / v}(q, t)
$$

Letting $a \rightarrow \infty$ this reduces to

$$
\sum_{\mu}(-t)^{|\lambda-\mu|} \operatorname{vs}_{\lambda / \mu}(q, t) Q_{\mu / v}\left(\frac{1-q t}{1-t}\right)=\mathrm{hs}_{\lambda / v}(q, t) .
$$

For $q=0$ this is [9, Lemma 5]

$$
\sum_{\mu}(-t)^{|\lambda-\mu|} \mathrm{vs}_{\lambda / \mu}(t) \mathrm{sk}_{\mu / v}(t)=\mathrm{hs}_{\lambda / v}(t)
$$

Similarly, according to [13, Eq. (6.23)]

$$
\begin{equation*}
\sum_{\nu} t^{n(\nu)} \frac{(a)_{\nu}}{c_{v}^{\prime}} f_{\mu \nu}^{\lambda}(q, t)=Q_{\lambda / \mu}\left(\frac{1-a}{1-t}\right) . \tag{2.6}
\end{equation*}
$$

For $a=q=0$ this is [7, Corollary 4.2], [9, Corollary 6]

$$
\sum_{\nu} t^{n(\nu)} f_{\mu \nu}^{\lambda}(t)=\mathrm{sk}_{\lambda / \mu}(t)
$$

Finally, to obtain a q-analogue of [9, Theorem 7] we have to work a little harder. First note that

$$
\begin{align*}
P_{\nu}(X) e_{m}(X) \sum_{r=0}^{\infty} h_{r}(X) & =\sum_{\mu} \mathrm{sk}_{\mu / v}(q, t) P_{\mu}(X) e_{m}(X) \\
& =\sum_{\mu} \sum_{\substack{\lambda \\
|\lambda-\mu|=m}} \operatorname{vs}_{\lambda / \mu}(q, t) \mathrm{sk}_{\mu / v}(q, t) P_{\lambda}(X) . \tag{2.7}
\end{align*}
$$

To compute this in a different way, observe that if we set $a=q$ in (2.2) then

$$
\sum_{\lambda} t^{n(\lambda)} \frac{(q)_{\lambda}}{c_{\lambda}^{\prime}} P_{\lambda}(X)=\prod_{x \in X} \frac{1}{1-x}=\sum_{r=0}^{\infty} h_{r}(X)
$$

Using this as well as $e_{m}=P_{\left(1^{m}\right)}$ we get

$$
P_{\nu}(X) e_{m}(X) \sum_{r=0}^{\infty} h_{r}(X)=\sum_{\eta} t^{n(\eta)} \frac{(q)_{\eta}}{c_{\eta}^{\prime}} P_{\nu}(X) P_{\eta}(X) P_{\left(1^{m}\right)}(X) .
$$

By a double use of $P_{\mu} P_{\nu}=f_{\mu \nu}^{\lambda} P_{\lambda}$ this leads to

$$
\begin{align*}
P_{\nu}(X) e_{m}(X) \sum_{r=0}^{\infty} h_{r}(X) & =\sum_{\eta} t^{n(\eta)} \frac{(q)_{\eta}}{c_{\eta}^{\prime}} P_{\nu}(X) P_{\eta}(X) P_{\left(1^{m}\right)}(X) \\
& =\sum_{\mu, \eta} t^{n(\eta)} \frac{(q)_{\eta}}{c_{\eta}^{\prime}} f_{\eta,\left(1^{m}\right)}^{\mu}(q, t) P_{\mu}(X) P_{\nu}(X) \\
& =\sum_{\lambda, \mu, \eta} t^{n(\eta)} \frac{(q)_{\eta}}{c_{\eta}^{\prime}} f_{\eta,\left(1^{m}\right)}^{\mu}(q, t) f_{\mu \nu}^{\lambda}(q, t) P_{\lambda}(X) \\
& =\sum_{\lambda, \mu} \operatorname{sk}_{\mu /\left(1^{m}\right)}(q, t) f_{\mu \nu}^{\lambda}(q, t) P_{\lambda}(X), \tag{2.8}
\end{align*}
$$

where the final equality follows from the $a=q$ case of (2.6). Equating coefficients of $P_{\lambda}(X)$ in (2.7) and (2.8) yields

$$
\sum_{\substack{\mu \\|\lambda-\mu|=m}} \mathrm{vs}_{\lambda / \mu}(q, t) \mathrm{sk}_{\mu / v}(q, t)=\sum_{\mu} \mathrm{sk}_{\mu /\left(1^{m}\right)}(q, t) f_{\mu \nu}^{\lambda}(q, t) .
$$

By (1.4),

$$
\operatorname{sk}_{\lambda /\left(1^{m}\right)}(0, t)=\operatorname{sk}_{\lambda /\left(1^{m}\right)}(t)=t^{n\left(\lambda /\left(1^{m}\right)\right)}\left[\begin{array}{c}
\lambda_{1}^{\prime} \\
m
\end{array}\right]_{t}=t^{n(\lambda)-\binom{m}{2}}\left[\begin{array}{c}
\lambda_{1}^{\prime} \\
m
\end{array}\right]_{t^{-1}},
$$

so that for $q=0$ we obtain [9, Theorem 7]

$$
\sum_{\mu}^{|\lambda-\mu|=m} \left\lvert\, \operatorname{vs}_{\lambda / \mu}(t) \operatorname{sk}_{\mu / v}(t)=\sum_{\mu} t^{n(\lambda)-\binom{m}{2}} f_{\mu v}^{\lambda}(t)\left[\begin{array}{c}
\lambda_{1}^{\prime} \\
m
\end{array}\right]_{t^{-1}}\right.
$$

Acknowledgements I thank Matjaž Konvalinka and Aaron Lauve for helpful discussions.
Work supported by the Australian Research Council.

References

1. Assaf, S.H., McNamara, P.R.W.: A Pieri rule for skew shapes. J. Comb. Theory, Ser. A 118, 277-290 (2011)
2. Butler, L.M.: Subgroup lattices and symmetric functions. Mem. Am. Math. Soc. 112, 539 (1994)
3. Delsarte, S.: Fonctions de Möbius sur les groupes abelian finis. Ann. Math. 49, 600-609 (1948)
4. Djubjuk, P.E.: On the number of subgroups of a finite abelian group. Izv. Akad. Nauk SSSR, Ser. Mat. 12, 351-378 (1948)
5. Haglund, J.: The q, t-Catalan Numbers and the Space of Diagonal Harmonics. Univ. Lecture Ser., vol. 41. Am. Math. Soc., Providence (2008)
6. Kaneko, J.: q-Selberg integrals and Macdonald polynomials. Ann. Sci. Éc. Norm. Super. 29, 583-637 (1996)
7. Kirillov, A.N.: New combinatorial formula for modified Hall-Littlewood polynomials. In: q-Series from a Contemporary Perspective. Contemp. Math., vol. 254, pp. 283-333. AMS, Providence (2000)
8. Konvalinka, M.: Skew quantum Murnaghan-Nakayama rule. J. Algebr. Comb. 35, 519-545 (2012)
9. Konvalinka, M., Lauve, A.: Skew Pieri rules for Hall-Littlewood functions. J. Algebr. Comb. (2012). doi:10.1007/s10801-012-0390-0
10. Lam, T., Lauve, A., Sottile, F.: Skew Littlewood-Richardson rules from Hopf algebras. Int. Math. Res. Not. 2011, 1205-1219 (2011)
11. Lascoux, A.: Symmetric Functions and Combinatorial Operators on Polynomials. CBMS Regional Conference Series in Math., vol. 99. AMS, Providence (2003)
12. Lascoux, A.: Adding 1 to the argument of a Hall-Littlewood polynomial. Sémin. Lothar. Comb. 54, B54n (2005), 17 pp.
13. Lascoux, A., Rains, E.M., Warnaar, S.O.: Nonsymmetric interpolation Macdonald polynomials and $\mathfrak{g l}_{n}$ basic hypergeometric series. Transform. Groups 14, 613-647 (2009)
14. Lascoux, A., Warnaar, S.O.: Branching rules for symmetric Macdonald polynomials and $\mathfrak{s l}_{n}$ basic hypergeometric series. Adv. Appl. Math. 46, 424-456 (2011)
15. Macdonald, I.G.: Symmetric Functions and Hall Polynomials, 2nd edn. Clarendon Press, Oxford (1995)
16. Macdonald, I.G.: Hypergeometric series II. Unpublished manuscript
17. Rains, E.M.: $B C_{n}$-symmetric polynomials. Transform. Groups 10, 63-132 (2005)
18. Rains, E.M.: $B C_{n}$-symmetric Abelian functions. Duke Math. J. 135, 99-180 (2006)
19. Warnaar, S.O.: q-Selberg integrals and Macdonald polynomials. Ramanujan J. 10, 237-268 (2005)
20. Warnaar, S.O., Zudilin, W.: Dedekind's η-function and Rogers-Ramanujan identities. Bull. Lond. Math. Soc. 44, 1-11 (2012)
21. Yeh, Y.: On prime power Abelian groups. Bull. Am. Math. Soc. 54, 323-327 (1948)

[^0]: S.O. Warnaar (\triangle)

 School of Mathematics and Physics, The University of Queensland, Brisbane, QLD 4072, Australia e-mail: o.warnaar@maths.uq.edu.au

