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Abstract We show that a recent identity of Beck–Gessel–Lee–Savage on the gen-
erating function of symmetrically constrained compositions of integers generalizes
naturally to a family of convex polyhedral cones that are invariant under the action
of a finite reflection group. We obtain general expressions for the multivariate gener-
ating functions of such cones, and work out their general form more specifically for
all symmetry groups of type A (previously known) and types B and D (new). We ob-
tain several applications of these expressions in type B, including identities involving
permutation statistics and lecture hall partitions.
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1 Introduction

Motivated by the “constrained compositions” introduced by Andrews–Paule–Riese
[1], Beck–Gessel–Lee–Savage [3] enumerated symmetrically constrained composi-
tions, i.e., compositions of an integer M into n nonnegative parts

M = λ1 + λ2 + · · · + λn,

where the sequence λ := (λ1, λ2, . . . , λn) satisfies the symmetric system of linear
inequalities

a1λπ(1) + a2λπ(2) + · · · + anλπ(n) ≥ 0 for all π ∈ Sn.

Specifically, [3] discusses various approaches to compute, for a fixed set of parame-
ters a1, a2, . . . , an, the generating functions

F(z1, z2, . . . , zn) :=
∑

λ

z
λ1
1 z

λ2
2 · · · zλn

n

and

F(q) := F(q, q, . . . , q) =
∑

λ

qλ1+λ2+···+λn,

where both sums extend over all symmetrically constrained compositions λ. One
viewpoint of [3] is geometric: The compositions (λ1, λ2, . . . , λn) are interpreted as
integer lattice points in the cone

{
x ∈ Rn

∣∣ ∀σ ∈ W : (σx, a) ≥ 0
}
, (1)

where W is the image of the permutation representation of Sn, a = (a1, . . . , an), and
( , ) is the standard inner product on Rn. This viewpoint together with permutation
statistics of Sn gave rise to explicit (and in some instances surprising) generating
function formulas.

Our goal is to generalize the results in [3] to cones of the form (1) where W

is another reflection group. In addition to obtaining general multivariate generating
function identities, we obtain several applications of these results for hyperoctahedral
groups. These applications are similar in spirit to the applications in the symmetric-
group case found in [3].

The outline of our paper is as follows. The general setup for our approach is
discussed in the next section, which also contains our central result, Theorem 2.8.
Section 3 illustrates our approach by re-deriving the main result in [3]. Sections 4
and 5 consider cones constrained by reflection groups of type B and D, respectively.
Further, Sect. 4 contains applications obtained through specializing our generating
functions in the type-B case.

2 General theory

Our goal in this section is to study integer points in cones that are constrained by the
orbit of a single linear constraint under an appropriate group action on real space. This
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goal is realized in Theorem 2.8, where the multivariate generating function encoding
the integer points in such a cone is expressed as a sum of simpler generating func-
tions. Theorem 2.8 is an algebraic consequence of a geometric triangulation of the
symmetric cone, which we obtain in Lemma 2.5. Proposition 2.6 makes the triangu-
lation disjoint by using combinatorics of Coxeter groups as a tiebreaker for the walls
separating the maximal cones in the triangulation. This is critical for our subsequent
applications.

2.1 Almost irreducible finite reflection groups, Coxeter groups, and descents

In the following, we will consider finite reflection groups (i.e., finite subgroups of
O(V ) for some Euclidean space V that are generated by reflections—see, e.g., [10]
for background) that act on the underlying Euclidean space in a restricted fashion.
Namely, a finite reflection group W ⊂ O(V ) acting on a Euclidean vector space V is
called almost irreducible if V decomposes into W -invariant subspaces V = V1 ⊕ V2

such that W acts irreducibly and nontrivially on V1 and trivially on V2, and that V2 is
1-dimensional.

Example 2.1 Sn acts almost irreducibly on Rn by permutation of the components.
The irreducible summand consists of all vectors with component sum 0, and the triv-
ial summand consists of all vectors with equal components. This is the case consid-
ered in [3].

Example 2.2 Let V1 be a Euclidean vector space and W ⊂ O(V1) a nontrivial ir-
reducible reflection group, i.e., a nontrivial reflection group such that V1 does not
contain any nontrivial proper W -invariant subspaces. Let W act trivially on R and set
V = V1 ⊕ R. Then W acts almost irreducibly on V .

A Coxeter group of rank r is a group admitting a presentation with generators
s1, . . . , sr and relations (sj sk)

mjk = 1 for mjk ∈ {1,2,3, . . .} ∪ {∞} subject to the
conditions that mjk = mkj and mjk = 1 ⇐⇒ j = k. Here, a value of mjk = ∞ is
to be understood as the absence of the corresponding relation. Such generators are
called simple generators. For each Coxeter group considered, we will suppose that
simple generators have been fixed once and for all. We refer the reader to [5] or
[10] for further information regarding Coxeter groups and their relation to reflection
groups.

The length l(σ ) of an element σ ∈ W of a Coxeter group W is the smallest integer
such that there is a decomposition σ = sj1 · · · sjl(σ )

of σ as a product of l(σ ) not
necessarily distinct simple generators. For any σ ∈ W , the right descent set of σ is

Dr(σ ) := {
j ∈ {1, . . . , r} | l(σ sj ) < l(σ )

}
. (2)

Remark 2.3 Propositions 3.1, 4.1, and 5.1 review the connection between the defini-
tion of descent given here and definitions of descent for Coxeter groups of types A,
B , and D in terms of the one-line notation.
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Recall that if W is a finite reflection group, it is automatically a Coxeter group.
Simple generators can be found as follows. Let H be the union of all reflection hy-
perplanes for W ; denote by F the closure of a connected component in V \H. It is
immediate that F is a convex polyhedral cone. Let H1, . . . ,Hr be the facet hyper-
planes of F and let si be the reflection at Hi . Then s1, . . . , sr are simple generators
of the Coxeter group W . See [6, V.3.2, Theorem 1] for the proof of these statements.

A subset F ⊂ V is a fundamental domain for W if F is the closure of an open set
and each W -orbit intersects F in exactly one point. By [10, Sect. I.12], every such
F is polyhedral, and is bounded by hyperplanes fixed by a set of simple reflections
in W . Through the rest of this paper, when given a set of simple generators s1, . . . , sr
of a reflection group W , we denote by F a fixed fundamental domain with bounding
hyperplanes corresponding to s1, . . . , sr .

2.2 Triangulations of monoconditional cones

Denote the value of a linear form ϕ ∈ V ∗ on a vector x ∈ V by 〈x,ϕ〉. Let W ⊂
O(V ) be an almost irreducible reflection group. A symmetric cone C ⊂ V is a convex
polyhedral cone that is W -invariant. A symmetric cone is called monoconditional if
there is a linear form ϕ ∈ V ∗, such that V1,V2 �⊂ ker(ϕ) and

C = {
x ∈ V | ∀σ ∈ W : 〈σx,ϕ〉 ≥ 0

}
. (3)

This generalizes (1).

Example 2.4 The positive orthant Rn
≥0 is a monoconditional symmetric cone for the

almost irreducible action of Sn on Rn by permutation of the components. A possible
linear form defining it is the projection on the first component.

Recall that a convex polyhedral cone is pointed if it does not contain a line, and it
is simplicial if it is the set of linear combinations with nonnegative coefficients of a
set of linearly independent vectors. A triangulation of a cone C is a finite collection
T of simplicial cones such that C is the union of the elements of T and for any
�1,�2 ∈ T , �1 ∩ �2 is a face common to both �1 and �2.

Lemma 2.5 Let W ⊂ O(V ) be an almost irreducible reflection group. Let C ⊂ V be
a monoconditional symmetric cone. Then C is pointed. Let F ⊂ V be a fundamental
domain for the action of W on V . Then the cone C+ := C ∩ F is simplicial. In
particular, C admits the triangulation

C =
⋃

σ∈W

σC+.

Proof Some of the notation used in this proof is shown in Fig. 1 for convenience. Let
ϕ ∈ V ∗ be a linear form defining C as in (3); note that ( , ) is a W -invariant inner
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Fig. 1 Notation used in the
proof of Lemma 2.5. The cyclic
group of order 2 acts almost
irreducibly on R2 by sign
change in the first component

product on V . Let xϕ ∈ V such that 〈x,ϕ〉 = −(x, xϕ) for all x ∈ V . Let x0 be the
unique element of Wxϕ ∩ F . Then

C+ = {
x ∈ F | ∀σ ∈ W : (σx, x0) ≤ 0

}
.

Let V = V1 ⊕ V2 be the decomposition of V into the irreducible and trivial compo-
nent. Let x0 = x′

0 + x′′
0 with x′

0 ∈ V1 and x′′
0 ∈ V2. By definition V2 �⊂ ker(ϕ), and

so xϕ /∈ V1, thus x0 /∈ V1, and hence x′′
0 �= 0. As ϕ is only determined up to multi-

plication by a positive scalar, suppose without loss of generality that (x′′
0 , x′′

0 ) = 1.
Note that every nonzero element of C+ has a nonzero V2-component; otherwise, for
some x ∈ C+ it would hold that (σx, x′

0) ≤ (σx, x′′
0 ) = 0 for all σ ∈ W . This would

imply that (x, σx′
0) ≤ 0 for all σ ∈ W , which leads to a contradiction since x �= 0 and∑

σ∈W σx′
0 = 0 by the irreducibility of the action of W on V1.

This implies that every nonzero element of C has a nonzero V2-component, in
particular, C is pointed.

Let

P+ = {
x ∈ F ∩ V1 | ∀σ ∈ W : (σx, x′

0

) ≤ 1
}
.

Consider the reflections at the facet hyperplanes of F as simple generators of W .
Let l denote the corresponding length function. Let x ∈ F ∩V1 and σ ∈ W . Let H be
a facet hyperplane of σF , such that l(sσ ) > l(σ ) for the reflection s at H . We claim
that in this situation

(
sσx, x′

0

) ≤ (
σx, x′

0

)
. (4)

Indeed, consider the decomposition V1 = (H ∩ V1) ⊕ H⊥. According to this de-
composition, write x′

0 = v0 + w0 and σx = v1 + w1; then sσx = v1 − w1. We have
(σx, x′

0) = (v1, v0) + (w1,w0) and (sσx, x′
0) = (v1, v0) − (w1,w0). Hence

(
sσx, x′

0

) = (
σx, x′

0

) − 2(w1,w0). (5)
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Generally, if τ ∈ W , then l(τ ) equals the number of reflection hyperplanes between
F and τF . As l(sσx) > l(σx), this implies that x0 and σx lie on the same side of H .
Hence (w1,w0) ≥ 0, and so (5) implies the claim (4).

By induction on l(σ ), (4) implies that

P+ = {
x ∈ F ∩ V1

∣∣ (
x, x′

0

) ≤ 1
}
.

The cone C+ is the cone over P − x′′
0 , thus C+ = {x ∈ F | (x, x0) ≤ 0}. The cone

F ∩V1 is a fundamental domain for the action of W on V1. Hence F ∩V1 is simplicial,
as it is defined by the hyperplanes corresponding to the simple generators of W ,
and there are dim(V1) many such hyperplanes. We have F = (F ∩ V1) + V2, and so
dim(F ) = dim(F ∩ V1) + 1. The cone C+ is defined in F by the single additional
inequality (x, x0) ≤ 0, thus C+ is simplicial. �

Consider the situation of Lemma 2.5. Choose an order H1, . . . ,Hn−1 of the facet
hyperplanes of F with the corresponding simple reflections s1, . . . , sn−1. For any
subset J ⊂ {1, . . . , n − 1}, let

CJ := C+
∖ ⋃

j∈J

Hj .

For example, C∅ = C+. If J �= ∅ some of the facets of C+ are removed.

Proposition 2.6 In the situation of Lemma 2.5, C decomposes as a disjoint union

C =
⊎

σ∈W

σCDr(σ ).

Proof For x ∈ C, let

W(x) := {σ ∈ W | x ∈ σC+}.
Let x+ ∈ Wx ∩ C+ be the (unique) W -conjugate of x contained in the fundamental
domain C+. Let W̃ := {σ ∈ W | σx+ = x+} be the isotropy subgroup of x+ in W . By
Lemma 2.5, C = ⋃

σ∈W σC+, and so the set W(x) is nonempty. Fix any σ ∈ W(x).
We claim that W(x) = σW̃ . Indeed, it is obvious that W(x) ⊇ σW̃ . For the oppo-

site inclusion, let σ̄ ∈ W(x). Then σ̄−1x ∈ C+, so σ̄−1 = x+. By the same argument
σ−1x = x+, so σ−1σ̄ ∈ W̃ . Hence σ̄ = σσ−1σ̄ ∈ σW̃ , proving the claim.

By [10, Theorem 1.12(c)], the isotropy subgroup W̃ is generated by the reflections
it contains. So W̃ is a parabolic subgroup of W . Hence W(x) = σW̃ contains a unique
element of minimal length [10, §1.10], denoted by σx .

Assume that σ−1
x x ∈ Hj for some j ∈ Dr(σx). Then sj σ

−1
x x = σ−1

x x, and so
x = σxsjσ

−1
x x. As σ−1

x x ∈ C+, this implies that σxsj ∈ W(x). On the other hand
l(σxsj ) < l(σx), a contradiction. Hence σ−1

x x /∈ Hj for all j ∈ Dr(σx). Hence
σ−1

x x ∈ CDr(σx), and so x ∈ σxCDr(σx). This proves that C = ⋃
σ∈W σCDr(σ ).

To prove disjointness, let x ∈ σCDr(σ ) for some σ ∈ W . We have to show that
σ = σx . Clearly σ ∈ W(x). It remains to show that σ has minimal length in W(x).
Assume that σ has not minimal length in W(x). Then there is j ∈ {1, . . . , n − 1}
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such that l(σ sj ) < l(σ ) and σsj ∈ W(x) [10, §1.10]. From σ ∈ W(x) we conclude
that σ−1x ∈ C+ and from σsi ∈ W(x) that sj σ

−1x ∈ C+. Hence σ−1x ∈ Hj . Since
l(σ sj ) < l(σ ) we have j ∈ Dr(σ ). Hence σ−1x /∈ CDr(σ ), and so x /∈ σCDr(σ ), a
contradiction. �

Our proposition above is reminiscent of the theory of P -partitions [12, 13]. For a
given finite poset P , one can produce a cone of P -partitions. The standard approach
to studying a P -partition cone, originating in the work of Stanley referenced above,
is to recognize that each such cone is a disjoint union of various chambers of the
type A braid arrangement where each chamber has some of its facets removed. The
removal of facets in a given chamber is controlled by the descent statistic for the
permutation indexing that chamber. Thus, each P -partition cone admits a unimodular
triangulation of form similar to Proposition 2.6.

2.3 Generating functions for monoconditional cones

Let V ∗
C = V ∗ ⊗R C. Extend 〈 , 〉 to V ×V ∗

C by C-linearity in the second argument. Let
Γ ⊂ V be a lattice and S ⊂ V . Suppose that there is a nonempty open subset B ⊂ V ∗

C
such that the series

∑
x∈S∩Γ e−〈x,ϕ〉 converges for ϕ ∈ B and has a meromorphic

continuation to V ∗
C . We denote this continuation by fS and call it the generating

function of S with respect to Γ .

Example 2.7 If C ⊂ V is a cone, let

C∨ := {
ϕ ∈ V ∗ ∣∣ ∀x ∈ C : 〈x,ϕ〉 ≥ 0

} ⊂ V ∗

be its dual cone. The complexified dual of C is defined as

C∨
C := {

ϕ ∈ V ∗
C

∣∣ ∀x ∈ C : �(〈x,ϕ〉) ≥ 0
} = C∨ + iV ∗.

Let C ⊂ V be a pointed cone, rational with respect to Γ . Then
∑

x∈C∩Γ e−〈x,ϕ〉
converges on the interior of C∨

C and has a meromorphic continuation fC to V ∗
C ; see,

e.g., [2, Chap. 13].

From now on, suppose that W is crystallographic, i.e., that there is a W -invariant
lattice Γ in V . A full-dimensional simplicial cone C ⊂ V is called unimodular (with
respect to Γ ) if it is generated by a basis of Γ . These generators are called primitive.

Theorem 2.8 In the situation of Lemma 2.5, suppose that C+ is unimodular with
respect to Γ . Let b1, . . . , bn be the primitive generators of C+, enumerated in the
unique way such that bj /∈ Hj for j ∈ {1, . . . , n − 1}. Then the generating function of
C is

fC(ϕ) =
∑

σ∈W

∏
j∈Dr(σ ) e

−〈σbj ,ϕ〉

(1 − e−〈σb1,ϕ〉) · · · (1 − e−〈σbn,ϕ〉)
.

In practice, Γ is often endowed with a distinguished basis. In this case, it is often
more convenient to work with the following formulation.
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Corollary 2.9 In the situation of Theorem 2.8, let e1, . . . , en be a basis of Γ . Define
coordinates zj on V ∗

C by zj (ϕ) := e−〈ej ,ϕ〉. For a = a1e1 + · · · + anen ∈ Γ , let za :=
z
a1
1 · · · zan

n . Then

fC =
∑

σ∈W

∏
j∈Dr(σ ) z

σbj

(1 − zσb1) · · · (1 − zσbn)
.

Proof of Theorem 2.8 Since C is pointed (by Lemma 2.5), its generating series con-
verges on a nonempty domain and the generating series of all W -conjugates of C+
converge there. As C+ is unimodular with primitive generators b1, . . . , bn, its gener-
ating function is

fC+(ϕ) = 1

(1 − e−〈b1,ϕ〉) · · · (1 − e−〈bn,ϕ〉)
.

With unimodularity it also follows that each generator of C+ is only one lattice hy-
perplane away from the opposite facet. Hence

C{j} ∩ Γ = (C+\Hj) ∩ Γ = (C+ ∩ Γ ) + bj

for all j ∈ {1, . . . , n−1}. More generally, CJ ∩Γ = (C+∩Γ )+∑
j∈J bj for any J ⊂

{1, . . . , n − 1}. Applying this observation to J = Dr(σ ) for a σ ∈ W and rephrasing
it in terms of generating functions, one obtains

fCDr(σ )
(ϕ) =

∏
j∈Dr(σ ) e

−〈bj ,ϕ〉

(1 − e−〈b1,ϕ〉) · · · (1 − e−〈bn,ϕ〉)
.

Hence for all σ ∈ W it follows that

fσCDr(σ )
(ϕ) =

∏
j∈Dr(σ ) e

−〈σbj ,ϕ〉

(1 − e−〈σb1,ϕ〉) · · · (1 − e−〈σbn,ϕ〉)
.

By Proposition 2.6, fC = ∑
σ∈W fσCDr(σ )

, which proves the formula. �

3 Cones with the symmetry of a simplex

Theorem 2.8 specializes to more concrete identities once we fix a particular almost
irreducible reflection group W . The case of W being the group of symmetries of a
simplex has been treated in [3]. We include this case here to show how the result can
be derived from Theorem 2.8.

Let Sn denote the group of permutations of the set {1, . . . , n}. For π ∈ Sn, we
define the descent set of π as

D(π) := {
j ∈ {1, . . . , n − 1} | π(j) > π(j + 1)

}
. (6)

This is the standard definition used in the literature on permutations.
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The group Sn acts on Rn by permutation of the components. For π ∈ Sn, let σπ ∈
O(Rn) denote the transformation by which π acts on Rn. Let W = {σπ | π ∈ Sn} ⊂
O(Rn). Then W is the group of symmetries of the (n − 1)-dimensional standard
simplex. For j = 1, . . . , n−1, let sj ∈ W be the transposition of the j th and (j +1)st
component in Rn. Then s1, . . . , sn−1 are simple generators of W .

The following shows that the definitions of descent given in (2) and (6) agree.

Proposition 3.1 [5, Proposition 1.5.3] Dr(σπ ) = D(π) for all π ∈ Sn.

Our main result in this section is the following.

Proposition 3.2 [3, Theorem 1] Fix integers a1 ≤ · · · ≤ an such that a1 + · · · +
an = 1. Let

C := {
x ∈ Rn

∣∣ ∀π ∈ Sn : a1xπ(1) + · · · + anxπ(n) ≥ 0
}
.

Let Σj := a1 + · · · + aj for j ∈ {1, . . . , n − 1}. The generating function of C with
respect to Zn is

fC = 1

1 − z1 · · · zn

∑

π∈Sn

∏
j∈D(π)(z1 · · · zn)

−Σj
∏j

i=1 zπ(i)

∏n−1
j=1(1 − (z1 · · · zn)

−Σj
∏j

i=1 zπ(i))
.

Note that the condition on the ai to be increasing is a normalization rather than a
restriction.

Proof The cone C is symmetric and monoconditional for W . Let F = {x ∈ Rn |
x1 ≥ · · · ≥ xn}, a fundamental domain for W . Then our chosen simple genera-
tors s1, . . . , sn−1 of W are the reflections at the facet hyperplanes of F . Let x0 =
(−a1, . . . ,−an) ∈ F . By the proof of Lemma 2.5,

C+ = {
x ∈ F | (x, x0) ≤ 0

} = {x ∈ F | a1x1 + · · · + anxn ≥ 0}
= {

x ∈ Rn
∣∣ Ax ≥ 0

}
,

where

A =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1

1

−1

−1

0 0

0

0

0 0
a1 an

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

The determinant of A is a1 + · · · + an = 1, i.e., A is unimodular and so is C+. Let
b1, . . . , bn be the primitive generators of C+, enumerated in the unique way such that
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bj /∈ Hj for j ∈ {1, . . . , n − 1}. Then by Corollary 2.9, the generating function of C

is

fC =
∑

σ∈W

∏
j∈Dr(σ ) z

σbj

(1 − zσb1) · · · (1 − zσbn)
.

Proposition 3.2 follows once we describe Dr(σ ), bj , and the action of W explicitly.
The inverse of A is

B := A−1 =

⎛

⎜⎜⎜⎜⎜⎜⎜⎝

Σ ′
1 Σ ′

n−1

Σ ′
n−1

−Σ1

−Σ1 −Σn−1

1

1

⎞

⎟⎟⎟⎟⎟⎟⎟⎠

,

where Σ ′
j := 1 − Σj . Then bj is the j th column vector of B . Let

bij :=

⎧
⎪⎨

⎪⎩

1 if j = n,

1 − Σj if i ≤ j < n,

−Σj if j < i

be the ith component of bj , i.e., the (i, j)th component of B . As defined above, with
π ∈ Sn we associate σπ ∈ O(n) by σπei = eπ(i). Then W = {σπ | π ∈ Sn} and we
have Dr(σπ ) = D(π). Hence

fC =
∑

σ∈W

∏
j∈Dr(σ ) z

σbj

∏n
j=1(1 − zσbj )

=
∑

π∈Sn

∏
j∈Dr(σπ ) z

σπbj

∏n
j=1(1 − zσπbj )

=
∑

π∈Sn

∏
j∈D(π)

∏n
i=1 z

bij

π(i)
∏n

j=1(1 − ∏n
i=1 z

bij

π(i))

= 1

1 − z1 · · · zn

∑

π∈Sn

∏
j∈D(π)(z1 · · · zn)

−Σj
∏j

i=1 zπ(i)

∏n−1
j=1(1 − (z1 · · · zn)

−Σj
∏j

i=1 zπ(i))
.

�

4 Cones with hyperoctahedral symmetry

We now consider the case of cones which are symmetric under the action of a hy-
peroctahedral group. Let W ⊂ O(n) be the hyperoctahedral group on the first n − 1
components of Rn. Let s1 ∈ W be the sign change in the first component and, for
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j = 2, . . . , n − 1, let sj ∈ W be the transposition of the (j − 1)st and j th component
in Rn. Then s1, . . . , sn−1 are simple generators of W .

For combinatorial (as opposed to geometric) arguments, it is often more con-
venient to use the following parameterization of the hyperoctahedral group: For
π ∈ Sn−1 and ε ∈ {±1}n−1, define σπ,ε ∈ O(n) by

σπ,εei = εieπ(i), (7)

where we use the convention that π(n) := n for π ∈ Sn−1 and εn := 1 for ε ∈
{±1}n−1. Then W = {σπ,ε | π ∈ Sn−1, ε ∈ {±1}n−1}. Let Bn−1 denote the set
Sn−1 ×{±1}n−1, endowed with the group structure such that σ : Bn−1 → W becomes
an isomorphism of groups.

In terms of this parameterization, the right descent set of W can be expressed more
explicitly. For (π, ε) ∈ Bn−1 let

D(π, ε) := {
j ∈ {1, . . . , n − 1} | εj−1π(j − 1) > εjπ(j)

}
(8)

with the convention that ε0π(0) := 0. Then the following holds.

Proposition 4.1 [5, Proposition 8.1.2] For all (π, ε) ∈ Bn−1, we have

Dr(σπ,ε) = D(π, ε).

Note that the descent set defined in (8) is translated by +1 with respect to def-
initions found in the literature on signed permutations. This is because to have a
consistent setup in Sect. 2, we always start the enumeration of the simple reflections
with 1, whereas from a signed permutations perspective it is convenient to start this
enumeration with 0.

We define the descent statistic on the hyperoctahedral group by setting the descent
number

des(π, ε) := ∣∣D(π, ε)
∣∣

for (π, ε) ∈ Bn−1. Similarly, the major index is

maj(π, ε) :=
∑

j∈D(π,ε)

(j − 1)

and the comajor index is

comaj(π, ε) :=
∑

j∈D(π,ε)

(n − j)

for (π, ε) ∈ Bn−1. It follows that we have the relationship

comaj(π, ε) = (n − 1)des(π, ε) − maj(π, ε). (9)
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4.1 The multivariate generating function

In this situation, Corollary 2.9 specializes as follows.

Proposition 4.2 Fix integers 0 ≤ a1 ≤ · · · ≤ an−1 �= 0. Let

C := {
x ∈ Rn

∣∣∀π ∈ Sn−1, ε ∈ {±1}n−1 :
ε1a1xπ(1) + · · · + εn−1an−1xπ(n−1) ≤ xn

}
.

The generating function of C with respect to Zn is

fC = 1

1 − zn

∑

π∈Sn−1

∑

ε∈{±1}n−1

∏
j∈D(π,ε)

∏n−1
i=j z

εi

π(i)z
ai
n

∏n−1
j=1(1 − ∏n−1

i=j z
εi

π(i)z
ai
n )

.

Note that the condition on the ai to be nonnegative and increasing is a normaliza-
tion rather than a restriction.

Proof The cone C is symmetric and monoconditional for W . Let

F := {
x ∈ Rn

∣∣ 0 ≤ x1 ≤ · · · ≤ xn−1
}
,

a fundamental domain for W . The s1, . . . , sn−1 defined previously are the simple
generators of W corresponding to F . Let x0 := (a1, . . . , an−1,−1) ∈ F . By the proof
of Lemma 2.5,

C+ = {
x ∈ F | (x, x0) ≤ 0

} = {x ∈ F | a1x1 + · · · + an−1xn−1 ≤ xn}
= {

x ∈ Rn
∣∣ Ax ≥ 0

}
,

where

A =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1

1

−1

−1

0 0

0

0

0 0
−a1 −an−1 1

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

The matrix A and hence C+ is unimodular. Let b1, . . . , bn be the primitive gener-
ators of C+, enumerated in the unique way such that bj /∈ Hj for j < n. Then by
Corollary 2.9, the generating function of C is

fC =
∑

σ∈W

∏
j∈Dr(σ ) z

σbj

(1 − zσb1) · · · (1 − zσbn)
.
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The inverse of A is

B := A−1 =

⎛

⎜⎜⎜⎜⎜⎜⎜⎝

1

1 1

0 0

0

Σ1 Σn−1 1

⎞

⎟⎟⎟⎟⎟⎟⎟⎠

,

where Σj := aj + · · · + an−1. Then bj is the j th column vector of B . Let

bij :=

⎧
⎪⎨

⎪⎩

0 if i < j,

1 if j ≤ i < n or i = j = n,

Σj if j < i = n

be the ith component of bj , i.e., the (i, j)th component of B . By Proposition 4.1 and
using our notation introduced at the beginning of this section,

fC =
∑

σ∈W

∏
j∈Dr(σ ) z

σbj

∏n
j=1(1 − zσbj )

=
∑

(π,ε)∈Bn−1

∏
j∈Dr(σπ,ε)

zσπ,εbj

∏n
j=1(1 − zσπ,εbj )

=
∑

(π,ε)∈Bn−1

∏
j∈D(π,ε)

∏n
i=1 z

εibij

π(i)
∏n

j=1(1 − ∏n
i=1 z

εibij

π(i)
)

= 1

1 − zn

∑

(π,ε)∈Bn−1

∏
j∈D(π,ε)

∏n−1
i=j z

εi

π(i)z
ai
n

∏n−1
j=1(1 − ∏n−1

i=j z
εi

π(i)z
ai
n )

.

�

4.2 Hyperoctahedral Eulerian polynomials

In the remainder of Sect. 4, we provide applications of Proposition 4.2 with connec-
tions to permutation statistics and Ehrhart theory. Our first application is well known,
going back to [8] and [14]; the polyhedral perspective of the following identity was
first established in [14], also using Ehrhart theory.

Corollary 4.3 [8, 14] The hyperoctahedral Eulerian polynomials are given by

∑

(π,ε)∈Bn−1

tdes(π,ε) = (1 − t)n
∞∑

k=0

(2k + 1)n−1tk.

Proof Let

P = [−1,1]n−1.
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be the (n− 1)-dimensional hypercube. Our strategy to prove Corollary 4.3 is to com-
pute the Ehrhart series

EhrP (t) :=
∑

k≥0

∣∣kP ∩ Zn−1
∣∣ · tk

of P in two different ways and to conclude by comparing the results.
On the one hand, note that the cone C over P ,

C = {
x ∈ Rn

∣∣ ∀j < n : |xj | ≤ xn

}
,

is the cone considered in Proposition 4.2 for a1 = · · · = an−2 = 0, an−1 = 1, so by
Proposition 4.2 its generating function is

fC = 1

1 − zn

∑

(π,ε)∈Bn−1

∏
j∈D(π,ε)(zn

∏n−1
i=j z

εi

π(i))∏n−1
j=1(1 − zn

∏n−1
i=j z

εi

π(i))
.

Since EhrP (t) is obtained by evaluating fC at z1 = · · · = zn−1 = 1, zn = t , we obtain

EhrP (t) = 1

1 − t

∑

(π,ε)∈Bn−1

∏
j∈D(π,ε) t∏n−1
j=1(1 − t)

= 1

(1 − t)n

∑

(π,ε)∈Bn−1

tdes(π,ε).

On the other hand, by definition

EhrP (t) =
∑

k≥0

(2k + 1)n−1tk.

Together, we obtain

1

(1 − t)n

∑

(π,ε)∈Bn−1

tdes(π,ε) =
∑

k≥0

(2k + 1)n−1tk

and Corollary 4.3 follows. �

4.3 The distribution of the comajor index

For k ∈ N and a variable t , let

[k]t := 1 + t + t2 + · · · + tk−1 and [k]t ! := [1]t [2]t · · · [k]t .
We show here how to derive the distribution of the comajor index. This is likely well
known, as for example it follows from (10) below, but we could not find an explicit
statement in the literature. It is worth comparing Corollary 4.4 with the distribution

∑

(π,ε)∈Bn−1

tmaj(π,ε) = 2n−1[n − 1]t !,

which can also be derived from (10).
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Corollary 4.4 The distribution of the comajor index on the hyperoctahedral group is
given by

∑

(π,ε)∈Bn−1

tcomaj(π,ε) = (1 + t)n−1[n − 1]t !.

Proof Let

P = {
x ∈ Rn−1

∣∣ |x1| + · · · + |xn−1| ≤ 1
}

be the (n − 1)-dimensional cross-polytope. Our strategy to prove Corollary 4.4 is to
compute the Ehrhart series

EhrP (t) :=
∑

k≥0

∣∣kP ∩ Zn−1
∣∣ · tk

of P in two different ways and to conclude by comparing the results.
On the one hand, note that the cone C over P ,

C = {
x ∈ Rn

∣∣ |x1| + · · · + |xn−1| ≤ xn

}
,

is the cone considered in Proposition 4.2 for a1 = · · · = an−1 = 1, so by Proposi-
tion 4.2 its generating function is

fC = 1

1 − zn

∑

(π,ε)∈Bn−1

∏
j∈D(π,ε)

∏n−1
i=j z

εi

π(i)
zn

∏n−1
j=1(1 − ∏n−1

i=j z
εi

π(i)zn)
.

Since EhrP (t) is obtained by evaluating fC at z1 = · · · = zn−1 = 1, zn = t , we obtain

EhrP (t) = 1

1 − t

∑

(π,ε)∈Bn−1

∏
j∈D(π,ε)

∏n−1
i=j t

∏n−1
j=1(1 − ∏n−1

i=j t)

=
∑

(π,ε)∈Bn−1

∏
j∈D(π,ε) t

n−j

(1 − t)
∏n−1

j=1(1 − tn−j )

=
∑

(π,ε)∈Bn−1
tcomaj(π,ε)

(1 − t)
∏n−1

j=1(1 − tn−j )
.

On the other hand, it is known [4, Theorem 2.7] that

EhrP (t) = (1 + t)n−1

(1 − t)n
.

Together, we obtain

∑
(π,ε)∈Bn−1

tcomaj(π,ε)

(1 − t)
∏n−1

j=1(1 − tn−j )
= (1 + t)n−1

(1 − t)n
,
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so

∑

(π,ε)∈Bn−1

tcomaj(π,ε) = (1 + t)n−1(1 − t)
∏n−1

j=1(1 − tn−j )

(1 − t)n

= (1 + t)n−1 ∏n−1
j=1(1 − tn−j )

(1 − t)n−1

= (1 + t)n−1
n−1∏

j=1

1 − tn−j

1 − t

= (1 + t)n−1[n − 1]t !. �

Remark 4.5 The distributions for the descent and comajor index statistics on Bn arise
from studying simple choices of the ai from the set of 0/1-vectors. It would be in-
teresting to determine the structure of the multivariate generating functions (or their
specializations) when other 0/1-vectors are used; due to the hyperoctahedral symme-
try of our cones, this amounts to studying the case

(a1, a2, . . . , an−1) = (0, . . . ,0,1, . . . ,1).

The resulting cones interpolate naturally between cones over hypercubes and cones
over cross-polytopes. While we were not able to treat this family of polytopes using
the methods exposed in this article, the following section shows how to do so for a
different interpolation.

4.4 Almost constant coefficients

In this section, we show how to use Proposition 4.2 to obtain a closed form expres-
sion for the Ehrhart series of a family of rational polytopes interpolating between
the hypercube and the cross-polytope (considered in Sects. 4.2 and 4.3, respectively).
These are the polytopes P such that the cone over P is of the form considered in
Proposition 4.2 such that a1 through an−2 coincide. An example of such a polytope
is shown in Fig. 2.

Corollary 4.6 Let b, c ≥ 0, not both 0. Let

P = {
x ∈ Rn−1

∣∣ c · (|x1| + · · · + |xn−1|
) + b · max

{|x1|, . . . , |xn−1|
} ≤ 1

}
.

Then the Ehrhart series of P is

EhrP (t) =
{

[c]t (1 + tc)n−1/(1 − tc)n if b = 0,

[b]t ∑k≥0([k + 1]tc + tc[k]tc )n−1tbk if b ≥ 1.

Proof In Proposition 4.2, we set a1 = · · · = an−2 = c and an−1 = c + b. Then
EhrP (t) = fC(t) := fC(1, . . . ,1, t), the generating function of C evaluated at
z1, . . . , zn−1 = 1, zn = t .

For b > 0, the generating function fC(t) becomes
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Fig. 2 The rational polytope
P = {x ∈ R3 | |x1| + |x2| +
|x3| + max{|x1|, |x2|, |x3|} ≤ 1}.
Its Ehrhart series can be
computed by Corollary 4.6

fC(t) =
∑

(π,ε)∈Bn−1

∏
j∈D(π,ε) t

c(n−j)+b

(1 − t)
∏n−1

j=1(1 − tc(n−j)+b)

=
∑

(π,ε)∈Bn−1
(tc)comaj(π,ε)(tb)des(π,ε)

(1 − t)
∏n−1

j=1(1 − (tc)j tb)
.

For c ≥ 1, if b = 0 then fC(t) = fP (tc)[c]t where P is the (n − 1)-dimensional
cross-polytope discussed in Sect. 4.3; this can be seen by direct computation using
Proposition 4.2, and is also a consequence of the fact that cross-polytopes are reflex-
ive [4, Chap. 4]. Otherwise, to simplify, we make use of a result of Chow and Gessel
[9, Eq. (26)] to compute the joint distribution of descent and comajor index over Bn,
namely

∑

k≥0

([k + 1]q + [k]q
)n

xk =
∑

(π,ε)∈Bn
xdes(π,ε)qmaj(π,ε)

∏n
j=0(1 − xqi)

. (10)

Observe that for (π, ε) ∈ Bn, using (9),

qcomaj(π,ε) = (
qn

)des(π,ε)
(1/q)maj(π,ε).

Thus, substituting into (10), we get

∑

(π,ε)∈Bn

xdes(π,ε)qcomaj(π,ε) =
∑

(π,ε)∈Bn

(
xqn

)des(π,ε)
(1/q)maj(π,ε)
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=
n∏

i=0

(
1 − xqn−i

)∑

k≥0

([k + 1]1/q + [k]1/q

)n(
xqn

)k

=
n∏

i=0

(
1 − xqi

)∑

k≥0

([k + 1]q + q[k]q
)n

(x)k.

To get the numerator of fC(t), we set n = n − 1, x = tb and q = tc in the last line
above and get

fC(t) =
∏n−1

i=0 (1 − tci+b)
∑

k≥0([k + 1]tc + tc[k]tc )n−1tbk

(1 − t)
∏n−1

j=1(1 − tcj+b)

=[b]t
∑

k≥0

([k + 1]tc + tc[k]tc
)n−1

tbk.
�

4.5 Coefficients in arithmetic progression and lecture hall partitions

If we further generalize the results of the previous subsections to allow ai to be a
linear function of i, then fC(t) can be expressed in terms of lecture hall partitions.

Lecture hall partitions, introduced by Bousquet-Mélou and Eriksson [7], are ele-
ments of the set

Ln =
{
λ ∈ Zn

∣∣∣∣ 0 ≤ λ1

1
≤ λ2

2
≤ · · · ≤ λn

n

}
.

The following relationship between statistics on lecture hall partitions and statis-
tics on signed permutations follows from work of Pensyl and Savage [11]. Define the
lecture hall polytope Pn,2 by

Pn,2 =
{
λ ∈ R

n

∣∣∣∣ 0 ≤ λ1

2
≤ λ2

4
≤ · · · ≤ λn

2n
≤ 1

}
.

For λ ∈ Ln, (π, ε) ∈ Bn, and �x� = inf([x,∞) ∩ Z), set

stat1(λ) =
n∑

i=1

⌈
λi

2i

⌉
, stat2(λ) =

n∑

i=1

2i

⌈
λi

2i

⌉
,

cobin(π, ε) =
∑

j∈D(π,ε)

(j + · · · + n).

Setting k = 2, w = 1, and z = y in [11, Theorem 6], and using the bijection of [11,
Theorem 3], the following holds. For a positive integer n, using the notation

fn,2(t;q, y) =
∑

λ∈tPn,2 ∩Zn

qstat1(λ)ystat2(λ), (11)
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we have that

∑

t≥0

fn,2(t;q, y)xt =
∑

(π,ε)∈Bn
qcomaj(π,ε)xdes(π,ε)(y2)cobin(π,ε)

(1 − x)
∏n−1

i=0 (1 − xqn−iy2((i+1)+···+n))
. (12)

Thus,
∑

λ∈Ln

x�λn/(2n)�qstat1(λ)ystat2(λ) =
∑

t≥0

xt
∑

λ∈Ln:�λn/(2n)�=t

qstat1(λ)ystat2(λ)

= 1 +
∑

t≥1

xt
(
fn,2(t;q, y) − fn,2(t − 1;q, y)

)

= (1 − x)
∑

t≥0

xtfn,2(t;q, y)

=
∑

(π,ε)∈Bn
qcomaj(π,ε)xdes(π,ε)(y2)cobin(π,ε)

∏n−1
i=0 (1 − xqn−iy2((i+1)+···+n))

,

from which it follows that

∑

λ∈Ln

x� λn
2n

�qstat1(λ)ystat2(λ) =
∑

(π,ε)∈Bn
qcomaj(π,ε)xdes(π,ε)(y2)cobin(π,ε)

∏n−1
i=0 (1 − xqn−iy2((i+1)+···+n))

. (13)

We can apply Proposition 4.2, with z1 = · · · = zn−1 = 1, zn = t and appropriate
choices of ai , to establish a surprising connection between lecture hall partitions and
type B symmetrically constrained cones.

Corollary 4.7 Let d ≥ 0, c ≥ −2d , and b ≥ 0, not all 0. Define a1, . . . , an−1 by

ai = 2di + c (i = 1, . . . , n − 2), an−1 = 2d(n − 1) + c + b.

Then

fC(t) = 1

1 − t

∑

λ∈Ln−1

t
∑n−1

i=1 ai� λi
2i

�.

Proof Observe that for 1 ≤ i ≤ n−2, substituting the values of ai into Proposition 4.2
with z1 = · · · = zn−1 = 1, zn = t , and then using (13), we obtain

fC(t) =
∑

(π,ε)∈Bn−1

∏
j∈D(π,ε) t

aj +···+an−1

(1 − t)
∏n−1

j=1(1 − taj +···+an−1)

=
∑

(π,ε)∈Bn−1

∏
j∈D(π,ε) t

b+(n−j)c+2d(j+···+(n−1))

(1 − t)
∏n−1

i=1 (1 − t (b+c(n−i)+2d(i+···+(n−1))

=
∑

(π,ε)∈Bn−1
(tc)comaj(π,ε)(tb)des(π,ε)(t2d)cobin(π,ε)

(1 − t)
∏n−1

i=1 (1 − t (b+c(n−i)+2d(i+···+(n−1))
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=
∑

(π,ε)∈Bn−1
(tc)comaj(π,ε)(tb)des(π,ε)(t2d)cobin(π,ε)

(1 − t)
∏n−1

i=1 (1 − t (b+c(n−i)+2d(i+···+(n−1))

= 1

1 − t

∑

λ∈Ln−1

tb� λn−1
2n−2 �+c stat1(λ)+d stat2(λ)

= 1

1 − t

∑

λ∈Ln−1

t
∑n−1

i=1 ai� λi
2i

�.
�

As an example, let n = 3, a1 = 2 and a2 = 4. Then

C = {
x ∈ R3

∣∣ ∀π ∈ S2, ε ∈ {±1}2 : 2ε1xπ(1) + 4ε2xπ(2) ≤ x3
}
,

and from Proposition 4.2,

∑

x∈C

tx3 = 1 + 3t3 + 3t6 + t10

(1 − t)(1 − t6)(1 − t4)

= 1 + t + t2 + t3 + 5t4 + 5t5 + 9t6 + 9t7 + 13t8 + 13t9 + · · · .

On the other hand, checking the corollary, we have

1

1 − t

∑

λ∈L2

t2� λ1
2 �+4� λ2

4 � = 1 + 4t4 + 4t6 + 4t8 + 8t10 + 8t12 + 8t14 + · · ·
1 − t

= 1 + t + t2 + t3 + 5t4 + 5t5 + 9t6

+ 9t7 + 13t8 + 13t9 + · · · .

Remark 4.8 It would be interesting to find a direct correspondence between lecture
hall partitions and the points in the cone considered in Corollary 4.7.

5 Cones with symmetry of type D

In this section, we consider the case of monoconditional cones with symmetry given
by a Coxeter group of type D. Unsurprisingly, much of the setup in this section is
similar to the hyperoctahedral case; the most notable new feature is that we consider
lattice point enumeration with respect to a sublattice of the standard integer lattice.

Throughout this section, let W be the finite reflection group of type Dn−1 on the
first n−1 components of Rn. Specifically, let s1 ∈ O(n) be the reflection at the hyper-
plane {x ∈ Rn | x1 + x2 = 0}. For j = 2, . . . , n − 1, let sj ∈ O(n) be the transposition
of the (j −1)st and j th component in Rn. Then s1, . . . , sn−1 are the simple generators
of W .

We next describe Dr(σ ) and the action of W explicitly. Let

En−1 := {
ε ∈ {±1}n−1

∣∣ ε1 · · · εn−1 = 1
}
.



J Algebr Comb (2013) 38:543–566 563

For π ∈ Sn−1 and ε ∈ En−1, define σπ,ε ∈ O(n) by σπ,εei = εieπ(i) for i < n and
σπ,εen = en. Then W = {σπ,ε | π ∈ Sn−1, ε ∈ En−1}. We use the convention that
π(n) := n for π ∈ Sn−1 and εn := 1 for ε ∈ En−1.

For π ∈ Sn−1 and ε ∈ En−1 let

D(π, ε) := {
j ∈ {1, . . . , n − 1} | εj−1π(j − 1) > εjπ(j)

}

with the convention that ε0π(0) := −ε2π(2).

Proposition 5.1 [5, Proposition 8.2.2] For all σπ,ε ∈ W we have

Dr(σπ,ε) = D(π, ε).

For a proposition P , we use the symbol

[P ] :=
{

1 if P is true,

0 if P is false.

Proposition 5.2 Fix integers a1, . . . , an−1 such that |a1| ≤ a2 ≤ · · · ≤ an−1 �= 0. Let

C := {
x ∈ Rn

∣∣ ∀π ∈ Sn−1, ε ∈ En−1 :
ε1a1xπ(1) + · · · + εn−1an−1xπ(n−1) ≤ xn

}
.

Let

Γ := {
x ∈ Zn

∣∣ x1 ≡ · · · ≡ xn−1 mod (2)
}
.

The generating function of C with respect to Γ is

fC = 1

1 − zn

∑

π∈Sn−1

∑

ε∈En−1

∏
j∈D(π,ε)(z

−ε1
π(1)

z
−a1
n )[j=2](

∏n−1
i=j z

εi

π(i)
z
ai
n )1+[j≥3]

∏n−1
j=1(1 − (z

−ε1
π(1)z

−a1
n )[j=2](

∏n−1
i=j z

εi

π(i)z
ai
n )1+[j≥3])

,

where z1, . . . , zn are the coordinates corresponding to the standard lattice Zn ⊂ Rn.

Note that the conditions on the ai are normalizations rather than restrictions.

Proof The cone C is symmetric and monoconditional for W . Let

F := {
x ∈ Rn

∣∣ |x1| ≤ x2 ≤ · · · ≤ xn−1
}
,

a fundamental domain for W . Our simple generators s1, . . . , sn−1 defined at the be-
ginning of this section are the simple generators of W corresponding to the facets
of F . Let x0 := (a1, . . . , an,−1) ∈ F . By the proof of Lemma 2.5,

C+ = {
x ∈ F | (x, x0) ≤ 0

} = {x ∈ F | a1x1 + · · · + an−1xn−1 ≤ xn}
= {

x ∈ Rn
∣∣ Ax ≥ 0

}
,
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where

A :=

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1

1

−1

−1

1 1 0 0

0 0

0

0

0 0
−a1 −an−1 1

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

The inverse of A is

A−1 =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1/2 −1/2

1/2

1/2

1/2

1/2

1

1 1

0 0

0 0

0

Σ1/2 Σ ′
2/2 Σ3 Σn−1 1

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

where Σj := aj + · · · + an−1 and Σ ′
2 := Σ2 − a1. Hence the Γ -primitive generators

of C+ are the column vectors b1, . . . , bn of the matrix

B :=

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 −1

1

1

1

1

2

2 2

0 0

0 0

0

Σ1 Σ ′
2 2Σ3 2Σn−1 1

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

As det(B) = 2n−2 = |Zn/Γ | it follows that C+ is unimodular. Note that b1, . . . , bn

are enumerated in the unique way such that bj /∈ Hj for j < n, where Hj is the
reflection hyperplane for the reflection sj . Hence by Corollary 2.9 the generating
function of C is

fC =
∑

σ∈W

∏
j∈Dr(σ ) z

σbj

(1 − zσb1) · · · (1 − zσbn)
.
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Let

bij :=

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

−1 if i = 1, j = 2,

1 if j ≤ i < n or i = j = n,

0 if i < j ≥ 2,

Σ1 if i = n, j = 1,

Σ ′
2 if i = n, j = 2,

2Σj if i = n, 2 < j < n

be the ith component of bj , i.e., the (i, j)th component of B . Thus

fC =
∑

σ∈W

∏
j∈Dr(σ ) z

σbj

∏n
j=1(1 − zσbj )

=
∑

π∈Sn−1

∑

ε∈En−1

∏
j∈Dr(σπ,ε)

zσπ,εbj

∏n
j=1(1 − zσπ,εbj )

=
∑

π∈Sn−1

∑

ε∈En−1

∏
j∈D(π,ε)

∏n
i=1 z

εibij

π(i)
∏n

j=1(1 − ∏n
i=1 z

εibij

π(i) )

= 1

1 − zn

∑

π∈Sn−1

∑

ε∈En−1

∏
j∈D(π,ε)(z

−ε1
π(1)z

−a1
n )[j=2](

∏n−1
i=j z

εi

π(i)z
ai
n )1+[j≥3]

∏n−1
j=1(1 − (z

−ε1
π(1)

z
−a1
n )[j=2](

∏n−1
i=j z

εi

π(i)
z
ai
n )1+[j≥3])

.
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