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Abstract Bicovering arcs in Galois affine planes of odd order are a powerful tool for
the construction of complete caps in spaces of arbitrarily higher dimensions. The aim
of this paper is to investigate whether the arcs contained in elliptic cubic curves are
bicovering. As a result, bicovering k-arcs in AG(2, q) of size k ≤ q/3 are obtained,
provided that q −1 has a prime divisor m with 7 < m < (1/8)q1/4. Such arcs produce
complete caps of size kq(N−2)/2 in affine spaces of dimension N ≡ 0 (mod 4). When
q = ph with p prime and h ≤ 8, these caps are the smallest known complete caps in
AG(N,q), N ≡ 0 (mod 4).

Keywords Galois affine spaces · Bicovering arcs · Complete caps · Quasi-perfect
codes · Elliptic curves

1 Introduction

In an (affine or projective) space of dimension N ≥ 2 over the finite field with q el-
ements Fq , a k-cap is a set of k points no three of which are collinear. A k-cap is
said to be complete if its secants cover all the points of the space. In the plane, that is
for N = 2, k-caps are also called k-arcs. The general theory of k-caps was developed
in the 1960s by the pioneering work of Segre; see [20]. Ever since, k-caps and their
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generalizations, especially (k, d)-arcs, saturating sets and k-arcs in higher dimen-
sions, have played an important role in Finite Geometry; see [10, 11, 14]. All these
objects are relevant not only in Finite Geometry but also in Coding Theory, being the
geometrical counterpart of distinguished types of error-correcting and covering linear
code, such as MDS codes, Near MDS codes, and quasi-perfect codes with minimum
distance 4.

In this direction, an important issue is to ask for explicit constructions of complete
k-caps in higher dimensional spaces. Since the theory of plane k-arcs is well devel-
oped and quite rich of constructions, the natural idea is to try to use some kind of
lifting methods for plane k-arcs to obtain complete caps in higher dimension.

For this purpose, bicovering arcs in affine planes have recently emerged as a po-
tential powerful tool. Here, a k-arc A in the affine plane AG(2, q), q odd, is said to
be bicovering if its completeness holds in a stronger sense: it is required that every
point P off A is covered by at least two secants of A, in such a way that P is external
to the segment cut out by one of the secants but it is internal when the other secant
is considered (cf. Definition 1). Complete caps from bicovering arcs can be obtained
via the product method for caps; see Proposition 1.

To establish whether a complete arc is bicovering can be a difficult task. In the
simplest case where the arc A consists of the affine points of an irreducible conic, if
q is large enough then A bicovers all the points off A with at most one exception.
This follows from previous results by Segre [21]. Beside some computer assisted
constructions for small q’s [4], the only other known examples of bicovering or al-
most bicovering arcs are some arcs arising from singular cubic curves. In [7] it is
shown that if q > 762, then a certain subset of (q − 3)/2 Fq -rational points of a
singular cubic curve is a bicovering arc. Cosets of subgroups of the abelian group
of the non-singular Fq -rational points of a singular cubic with a cusp are consid-
ered in [1].

In this paper, we deal with the non-singular (or elliptic) case. We investigate
the bicovering properties of the arcs arising from cosets of the abelian group G =
(X (Fq),⊕) of the set of Fq -rational points of a non-singular cubic curve X defined
over Fq . Such arcs were introduced by Voloch in [26], and were the main ingredient of
some constructions of small complete arcs due to Szőnyi [23, 24]. Their construction
relies on the notion of a maximal 3-independent subset of abelian groups. According
to [26], a subset X of a finite abelian group G is said to be maximal 3-independent
if (a) x1 + x2 + x3 �= 0 for all x1, x2, x3 ∈ X, and (b) for each y ∈ G \ X there exist
x1, x2 ∈ X with x1 + x2 + y = 0. Our main achievement is Theorem 1.

Theorem 1 For an odd prime power q , let m be a prime divisor of q − 1, with 7 <

m < 1
8

4
√

q . Assume that the finite group of order m admits a maximal 3-independent
subset of size s. Then there exists a bicovering k-arc in AG(2, q) with

s ·
⌊

q − 2
√

q + 1

m

⌋
≤ k ≤ s ·

(⌊
q − 2

√
q + 1

m

⌋
+ 31

)
,

consisting of the union of s cosets of a subgroup of index m of the abelian group of
the Fq -rational points of a non-singular plane cubic curve.
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The proof of Theorem 1 heavily relies on concepts and results from Algebraic Ge-
ometry in positive characteristic; see Propositions 2, 4, 6, 7 and 8. It should be noted
that Proposition 6 fills a gap in the proof of a major result in [26] on the completeness
of the arcs arising from cosets of subgroups of index m of G, in the case where m is
a prime dividing q − 1, see Remark 4.

It has been shown in [26] that if m > 7 is a prime, then there always exists a
maximal 3-independent subset of size s ≤ (m + 1)/3 in the finite group of order m.
Then a straightforward corollary to Theorem 1 and Proposition 1 is the following
result on complete caps.

Theorem 2 For an odd prime power q , let m be a prime divisor of q − 1, with 7 <

m < 1
8

4
√

q . Assume that the finite group of order m admits a maximal 3-independent
subset of size s. Then for any positive integer N ≡ 0 (mod 4), there exists a complete
cap in AG(N,q) of size k with

s · q N−2
2 ·

⌊
q − 2

√
q + 1

m

⌋
≤ k ≤ s · q N−2

2 ·
(⌊

q − 2
√

q + 1

m

⌋
+ 31

)
.

In particular, in AG(N,q), N ≡ 0 (mod 4), there exists a complete cap of size less
than or equal to

m + 1

3
· q N−2

2 ·
(⌊

q − 2
√

q + 1

m

⌋
+ 31

)
∼ 1

3
qN/2.

Theorem 2 is of particular relevance in the context of small complete caps in Ga-
lois spaces, which are the geometrical counterpart of quasi-perfect 3-error-detecting
linear codes with small density (see [2, 3, 13] and the references therein). For the
size of the smallest complete cap in AG(N,q) the trivial lower bound is

√
2q(N−1)/2.

Complete caps of size about cq
N−1

2 , with c a constant less than 3, are known to exist
for q even and N odd [3, 8, 9, 18]. On the other hand, when either q is odd or N

is even, constructions of complete caps of size less than qN/2 are quite rare. Theo-
rem 2 yields the existence of complete caps in AG(N,q) of size of the same order of
magnitude as cqN/2 with c ≤ 1/3, provided that q − 1 has a prime divisor m greater
than 7 and smaller than 4

√
q/8. For specific values of m, the upper bound on c can be

improved, as there exist maximal 3-independent subsets of the finite group of order
m of size significantly less than m/3, see Propositions 10 and 11.

The paper is organized as follows. In Sect. 2 we review some of the standard facts
on algebraic function fields. We also briefly sketch the connection between complete
caps and bicovering arcs; moreover, we summarize without proofs the material on
plane algebraic curves that will be relevant to our proofs. Section 3 presents prelimi-
nary results on some covers of low degree of non-singular plane cubic curves defined
over a finite field. The proof that under the assumptions of Theorem 1 each point
P0 not on X is bicovered by a coset of a subgroup of index m in G is the object of
Sect. 4, see Theorem 4. In Sect. 5 we deal with the case P0 ∈ X . The proof of our
main result is completed in Sect. 6.
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2 Notation and preliminaries

Let q be an odd prime power, and let Fq denote the finite field with q elements. Let
K be the algebraic closure of Fq .

2.1 Complete caps from bicovering arcs

Throughout this section, N is assumed to be a positive integer divisible by 4. Let
q ′ = q(N−2)/2. Fix a basis of F

q
′ as a linear space over Fq , and identify points in

AG(N,q) with vectors of F
q

′ × F
q

′ × Fq × Fq .
For an arc A in AG(2, q), let

CA = {(
α,α2, u, v

) ∈ AG(N,q)
∣∣ α ∈ F

q
′ , (u, v) ∈ A

}
.

As noticed in [7], the set CA is a cap whose completeness in AG(N,q) depends on
whether the completeness of A in AG(2, q) holds in a stronger sense, see Proposi-
tion 1 below. According to Segre [21], given three pairwise distinct points P,P1,P2
on a line � in AG(2, q), P is external or internal to the segment P1P2 depending on
whether

(x − x1)(x − x2) is a non-zero square or a non-square in Fq, (1)

where x, x1 and x2 are the coordinates of P , P1 and P2 with respect to any affine
frame of �.

Definition 1 Let A be a complete arc in AG(2, q). A point P ∈ AG(2, q) \ A is said
to be bicovered by A if there exist P1,P2,P3,P4 ∈ A such that P is external to
the segment P1P2 and internal to the segment P3P4. If every P ∈ AG(2, q) \ A is
bicovered by A, then A is said to be a bicovering arc.

The following result is proven in [7].

Proposition 1 If A is a bicovering k-arc, then CA is a complete cap in AG(N,q) of
size kq(N−2)/2.

2.2 Curves and function fields

Throughout this paper, by curve we will mean a projective absolutely irreducible
algebraic curve defined over K. We recall that a function field over a field L is an
extension F of L such that F is a finite algebraic extension of L(α), with α transcen-
dental over L. For basic definitions on function fields we refer to [22].

To a curve C one can associate a function field over K, namely the field of rational
functions of C , which will be denoted by K(C).

A curve C is defined over Fq if the ideal of C is generated by polynomials with
coefficients in Fq . In this case, Fq(C) denotes the subfield of K(C) consisting of the
rational functions defined over Fq . This subfield is a function field over Fq .
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A place γ of K(C) determines a unique point of C , called the center of γ . If C is
non-singular, this correspondence is a bijection, and sometimes in this paper points
of a non-singular curve C will be identified with places of K(C). If in addition C is
defined over Fq , then the places of Fq(C) correspond to the orbits of points of C under
the q-Frobenius map. A place of Fq(C) is rational precisely when the corresponding
orbit consists of a single point.

Given a place γ of K(C) and a rational function α ∈ K(C) such that γ is not a
pole of α, the image of α by the residue class map with respect to γ is α(γ ) ∈ K.
If C is defined over Fq the same definition can be given for a place γ of Fq(X ) and
α ∈ Fq(X ). In this case, α(γ ) is an element of the residue class field of γ , which is a
finite extension of Fq . If γ is a rational place, then α(γ ) belongs to Fq .

Let F be a function field over Fq . The full constant field of F (also called the field
of constants of F ) is the finite extension of Fq consisting of the elements in F that are
algebraic over Fq . It is contained in every residue class field with respect to a place
of F . To a function field F over Fq whose full constant field is Fqm one can associate
a curve C defined over Fqm (up to Fqm -birational equivalence) such that Fqm(C) is
Fqm -isomorphic to F . The genus of F as a function field coincides with the genus of
C as a curve.

If F is a function field over Fq such that the full constant field of F is Fq , then by
the Hasse–Weil bound the number N of rational places of F satisfies

q + 1 − 2g
√

q ≤ N ≤ q + 1 + 2g
√

q,

where g is the genus of F .
If F ′ is a finite extension of a function field F , then a place γ ′ of F ′ is said to

be lying over a place γ of F if γ ⊂ γ ′. This holds precisely when γ = γ ′ ∩ F . In
this paper e(γ ′|γ ) will denote the ramification index of γ ′ over γ , and f (γ ′|γ ) the
relative degree of γ ′ over γ , that is the degree of the extension of the residue class
field of γ ′ over the residue class field of γ . By the Fundamental Equality ([22, The-
orem 3.1.11]), for a place γ of F we have

∑
e(γ ′|γ )f (γ ′|γ ) = deg(F ′/F ), where

γ ′ ranges over the places of F ′ lying over γ . If F is a function field over Fq , then a
rational place γ of F is said to split completely over F ′ if e(γ ′|γ ) = f (γ ′|γ ) = 1 for
each γ ′ lying over γ .

A finite extension F ′ of a function field F is said to be unramified if e(γ ′|γ ) = 1
for every γ ′ place of F ′ and every γ place of F with γ ′ lying over γ .

If F1 and F2 are finite extensions of a function field F over Fq , then the composi-
tum F1F2 is the subfield of the algebraic closure of F generated by F1 and F2. It is
possible that the full constant field of F1F2 is a proper extension of Fq , even when
Fq is the full constant field of both F1 and F2. In order to investigate the full constant
field of the compositum of two function fields, the following results can be useful.

Lemma 1 Let F1/F and F2/F be finite separable extensions of a function field F .
Assume that Fq is the full constant field of both F1 and F2. Let F ′ be the compositum
of F1 and F2. Let γ ′ be a place of F ′ lying over the place γ of F , and set γi := γ ′ ∩Fi

for i = 1,2. If

e(γ1|γ ) = 1 and e(γ2|γ ) = deg(F2/F ),

then the full constant field of F ′ is Fq .
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Proof Note that

e
(
γ ′ ∣∣ γ1

) ≤ deg
(
F ′/F1

) ≤ deg(F2/F ).

By Abhyankar’s Lemma (see e.g. [22, Theorem 3.9.1]) we have

e
(
γ ′|γ ) = deg(F2/F ) = e

(
γ ′|γ1

)
.

Therefore, both

deg
(
F ′/F1

) = deg(F2/F ) and e
(
γ ′|γ1

) = deg
(
F ′/F1

)
hold. From e(γ ′|γ1) = deg(F ′/F1) it is easy to deduce that there cannot exist any
intermediate constant field extension between F1 and F ′. �

Lemma 2 Let F1/F and F2/F be finite separable extensions of a function field F ,
and let F ′ be the compositum of F1 and F2. Assume that the full constant field of F

is Fq . If γ is a rational place of F splitting completely in both F1/F and F2/F , then
the full constant field of F ′ is Fq .

Proof By [22, Proposition 3.9.6(b)], the place γ splits completely in F ′/F . In par-
ticular, f (γ ′|γ ) = 1 holds for every place γ ′ of F ′ lying over γ . As γ is rational and
the full constant field of F is Fq , the residue class field of γ ′ is Fq . This proves that
the full constant field of F ′ is contained in Fq . As Fq ⊂ F ′, the claim follows. �

2.3 Order and class of a place with respect to a plane model

Let C be the algebraic plane curve defined by the equation f (X,Y ) = 0, where
f (X,Y ) is an irreducible polynomial over the algebraically closed field K, and let
K(C) be the function field of C . Let x̄ and ȳ denote the rational functions associated to
the affine coordinates X and Y , respectively. Then K(C) = K(x̄, ȳ) with f (x̄, ȳ) = 0.
Let PC denote the set of all places of K(C), and let Div(K(C)) be the group of divisors
of K(C), that is the free abelian group generated by PC .

Let D be the subset of Div(K(C)) given by

D := {
div(ax̄ + bȳ + c) + E

∣∣ a, b, c ∈ K, (a, b, c) �= (0,0,0)
}
,

where

E =
∑

γ∈PC

eγ γ, with eγ = −min
{
vγ (x̄), vγ (ȳ), vγ (1)

}
.

This set D is a linear series, which is usually called the linear series cut out by the
lines of P

2(K). For basic definitions on linear series we refer to [12]. There is a one-
to-one correspondence between D and the set of all lines in P

2(K): a line � with
homogeneous equation aX0 + bX1 + cX2 = 0 corresponds to the divisor D(�) :=
div(ax̄ + bȳ + c) + E.

For a place γ with (D, γ ) order sequence (0, j1(γ ), j2(γ )), and for every line �,
we have

vγ

(
D(�)

) ∈ {
0, j1(γ ), j2(γ )

}
.
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A line � passes through the center of γ if and only if vγ (D(�)) > 0; also, there exists a
unique line � with vγ (D(�)) = j2(γ ), which is called the tangent line of the place γ .
The tangent line of a place γ is one of the tangent lines of C at the center of γ . The
integers j1(γ ) and j2(γ )− j1(γ ) are called the order and the class of γ , respectively.
A place with order equal to 1 is called a linear place of C .

Theorem 3 Let Q be a point of C and � be a line in P
2(K). Then the sum

∑
γ centered at Q

vγ

(
D(�)

)

is equal to the intersection multiplicity I(Q, C ∩ �) of C and � at Q.

If � is a line through Q which is not a tangent of C at Q, then vγ (D(�)) = j1(γ )

for each place γ centered at Q. Therefore, if Q is an m-fold point of C , then the sum
of the orders of the places centered at Q coincides with m. Also, the number of places
centered at Q is greater than or equal to the number of distinct tangents at Q.

3 On some covers of small degree of non-singular cubic curves

Let X be a plane elliptic curve with affine equation Y 2 = g(X), with g(X) = X3 +
AX2 + BX + C, A,B,C ∈ Fq . As X is non-singular, the places of K(X ) can be
identified with the points of X , and the rational places of Fq(X ) with the points in
X (Fq). Assume that the j -invariant j (X ) of X is different from 0.

For a point P0 = (a, b) ∈ AG(2, q) \ X , let Y be the following space curve:

Y :

⎧⎪⎪⎨
⎪⎪⎩

1

Z − X

(((
Y − b

X − a

)
(Z − a) + b

)2

− g(Z)

)
= 0

Y 2 − g(X) = 0.

It has been shown in [15] that the hypothesis j (X ) �= 0 guarantees that Y is ab-
solutely irreducible (and defined over Fq ); see also [5]. In [25] it has been observed
that if P = (x̃, ỹ, z̃) is an affine Fq -rational point in Y with x̃ �= a, then (x̃, ỹ) and
(z̃, ((ỹ − b)/(x̃ − a))(z̃ − a) + b) are both Fq -rational points of X ; moreover, if they
are distinct, then the line passing through them contains P0.

Let x̄, ȳ and z̄ denote the rational functions on Y associated to the affine coordi-
nates X,Y,Z.

Lemma 3 The map φ : Fq(Y ) → Fq(Y ) fixing Fq elementwise and such that

x̄ �→ z̄, ȳ �→
(

ȳ − b

x̄ − a

)
(z̄ − a) + b, z̄ �→ x̄

is an involutory Fq -automorphism of Fq(Y ).



378 J Algebr Comb (2013) 38:371–392

Proof It is straightforward to check that the equations of Y are satisfied by
(z̄, (

ȳ−b
x̄−a

)(z̄ − a) + b, x̄). As

(
((

ȳ−b
x̄−a

)(z̄ − a) + b) − b

z̄ − a

)
(x̄ − a) + b = ȳ

holds, the order of φ is 2. �

Lemma 4 (Theorem 5.1 in [15]) The genus of Y is at most 4.

Let E be the set of places γ of K(Y ) for which at least one of the following holds:

− γ is a pole of one of the functions x̄, ȳ, z̄;
− x̄(γ ) = a;
− the line through (a, b) and (x̄(γ ), ȳ(γ )) is a tangent to X .

Note that if γ /∈ E, then z̄(γ ) �= a since (a, b) /∈ X yields the result that (x̃(γ ), ỹ(γ ), a)

cannot satisfy the equations of Y whenever x̃(γ ) �= a.
By the proof of [15, Theorem 5.1] (see also [6, Lemma 3.2]), we have an upper

bound on the size of E.

Lemma 5 The size of E is at most 18.

Remark 1 If γ is a rational place of Fq(Y ), γ /∈ E, then let x̃ = x̄(γ ), ỹ = ȳ(γ ), z̃ =
z̄(γ ). It has already been pointed out that P0 is collinear with (x̃, ỹ) and (z̃, (

ỹ−b
x̃−a

)(z̃−
a)+ b), which are distinct Fq -rational points of X . As γ /∈ E, the line joining P0 and

(x̃, ỹ) meets X in a third point (z̃′, ( ỹ−b
x̃−a

)(z̃′ − a) + b), which lies in X (Fq) as well.
It is easily seen that z̃′ = z̄(γ ′), where γ, γ ′ are the places of Fq(Y ) lying over (x̃, ỹ).

The aim of the remaining part of this section is to show that the equation T 2 =
c(x̄ − a)(z̄ − a), with c a non-zero element in Fq , defines a double cover of K(Y ).
To this end, it will be useful to deal with a plane model of the space curve Y . Let
x̄′ = x̄ − a and z̄′ = z̄ − a. Clearly, K(x̄′, z̄′) = K(x̄, z̄) holds.

Lemma 6 If b �= 0, then ȳ belongs to K(x̄, z̄). Moreover,

H(x̄, z̄) = 0, (2)

where H(X,Z) is the polynomial

4b2g(X + a)Z2 − (
X2Z2 − XZ

(
2Aa + B + 3a2) − (X + Z)g(a) + b2(X − Z)

)2
.

Proof From
((

ȳ − b

x̄ − a

)
(z̄ − a) + b

)2

− g(z̄) = 0
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we obtain (
(ȳ − b)z̄′ + bx̄′)2 − g

(
z̄′ + a

)(
x̄′)2 = 0.

Then

(
ȳ2 + b2 − 2bȳ

)(
z̄′)2 + b2(x̄′)2 + 2bx̄′(ȳ − b)z̄′ − g

(
z̄′ + a

)(
x̄′)2 = 0.

Taking into account that ȳ2 = g(x̄) = g(x̄′ + a) we get

2bȳ
(
x̄′z̄′ − (

z̄′)2) = −(
g
(
x̄′ + a

) + b2)(z̄′)2 − b2(x̄′)2 + 2b2x̄′z̄′ + g
(
z̄′ + a

)(
x̄′)2

.

As b �= 0, this proves that ȳ ∈ K(x̄′, z̄′) = K(x̄, z̄). In order to find an equation in-
volving x̄′ and z̄′ we take the square of both sides of the previous equation; then, we
substitute ȳ2 with g(x̄′ + a) and divide both sides by (x̄′ − z̄′)2, so that

4b2g
(
x̄′ + a

)(
z̄′)2 −

(
g(z̄′ + a)(x̄′)2 − g(x̄′ + a)(z̄′)2

x̄′ − z̄′ − b2(x̄′ − z̄′))2

= 0.

By straightforward computation

g(z̄′ + a)(x̄′)2 − g(x̄′ + a)(z̄′)2

x̄′ − z̄′ = −(
x̄′z̄′)2 + x̄′z̄′(2Aa +B + 3a2)+ (

z̄′ + x̄′)g(a),

whence (2) holds. �

Note that for b �= 0, (2) defines an irreducible plane curve. In fact, the degree of
the extension K(x̄, z̄) : K(x̄) is equal to 4. This follows from K(x̄, z̄) = K(x̄, ȳ, z̄) =
K(Y ), together with

[
K(Y ) : K(x̄)

] = [
K(Y ) : K(X )

] · [K(X ) : K(x̄)
] = 2 · 2 = 4.

If b = 0, then by the proof of Lemma 6 it follows that

(
x̄′z̄′)2 − x̄′z̄′(2Aa + B + 3a2) − (

z̄′ + x̄′)g(a) = 0. (3)

In particular, the degree of K(x̄, z̄) over K(x̄) is equal to 2.
From now on in this section we distinguish two cases, according to whether b is

zero or not.

3.1 Case (1): b �= 0

Let C be the irreducible plane curve with equation H(X,Z) = 0, where H(X,Z) is
as in Lemma 6. By Lemma 6, C is an irreducible plane model of Y .

In order to prove that T 2 = c(x̄ − a)(z̄ − a) = cx̄′z̄′, with c a non-zero element in
Fq , defines a double cover of K(Y ) ∼= K(C), we need to compute the divisors of the
rational functions x̄′ and z̄′. Note that if x̄′ and z̄′ are viewed as rational functions of
C , then x̄′ = X/T and z̄′ = Z/T .
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It is straightforward to check that the only affine point that is the center of a zero
of either x̄′ or z̄′ is O := (0,0). Note that O is a double point of C . One can check
that up to the constant factor (g(a) − b2) the quadratic part of H(X,Z) is

X2(g(a) − b2) + 2XZ
(
g(a) + b2) + Z2(g(a) − b2).

Its discriminant is equal to

(
g(a) + b2)2 − (

g(a) − b2)2 = 4b2g(a).

If g(a) �= 0, then O is a node and hence two distinct places of K(C) are centered at O .
Otherwise, we have the only tangent X − Z = 0, and at this stage it is not possible to
deduce the number of places centered at O .

The ideal points of C are clearly the infinite points of the X-axis and the Z-axis,
say X∞ and Z∞. It is easily seen that they are both 4-fold points of C . There is a
unique tangent at both points: the line with equation X = 0 at Z∞, and the line Z = 0
at X∞. The intersection multiplicity of both of these tangents and C at their tangency
point is equal to 6.

Write vP (ξ) = ∑
γ centered at P vγ (ξ). Then by Theorem 3 we have

vO(X/T ) = vO(Z/T ) = 2.

We investigate the valuations of x̄′ and z̄′ at the places centered at X∞ and Z∞. By
Theorem 3, we have

vX∞(X/T ) = −4, vX∞(Z/T ) = 2,

vZ∞(X/T ) = 2, vZ∞(Z/T ) = −4.

Therefore,

vO

(
XZ/T 2) = 4, vX∞

(
XZ/T 2) = −2, vZ∞

(
XZ/T 2) = −2.

Note that Z = 0 is the common tangent of all places centered at X∞, and that simi-
larly X = 0 is the common tangent of all places centered at Z∞. Therefore, by The-
orem 3, we have ∑

γ∈PC ,γ centered at X∞
j1(γ ) = 4,

∑
γ∈PC ,γ centered at X∞

j2(γ ) = 6, (4)

∑
γ∈PC ,γ centered at Z∞

j1(γ ) = 4,
∑

γ∈PC ,γ centered at Z∞
j2(γ ) = 6. (5)

Hence, ∑
γ∈PC ,γ centered at X∞

(
j2(γ ) − j1(γ )

) =
∑

γ∈PC ,γ centered at Z∞

(
j2(γ ) − j1(γ )

) = 2. (6)

As j2(ξ) − j1(ξ) is a positive integer for any place ξ , this implies that there are
at most two places of K(C) centered at X∞, and similarly for Z∞. Assume that
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there are precisely two places of K(C) centered at X∞, say γ1 and γ2. Then we
can assume that either j1(γ1) = j1(γ2) = 2, or j1(γ1) = 1 and j1(γ2) = 3. In the
former case, j2(γ1) = j2(γ1) = 3 and hence vγ1(XZ/T 2) = vγ2(XZ/T 2) = −1. In
the latter case, j2(γ1) = 2 and j2(γ2) = 4, which yields vγ1(Z/T ) = vγ2(Z/T ) = 1,
vγ1(X/T ) = −1, vγ2(X/T ) = −3. Therefore, z̄′ = Z/T would be a local parameter
at γ1. Then the valuation of 4b2g(x̄′ + a)(z̄′)2 at γ1 would be odd, contradicting the
fact that by (2) the rational function 4b2g(x̄′ + a)(z̄′)2 is a square in K(C).

Similarly, it can be proved that if there are precisely two places of K(C) centered
at Z∞, then they both have order 2, and the valuation of XZ/T 2 at each of them
is −1.

The following result is then obtained.

Lemma 7 One of the following holds:

(I) there exists a place γ in K(Y ) ∼= K(C) with vγ ((x̄ − a)(z̄ − a)) = −1;
(II) there exist two places γ1, γ2 in K(Y ) ∼= K(C) with vγi

((x̄ − a)(z̄ − a)) = −2 for
i = 1,2, vγ1(x̄ − a) = −4, vγ2(x̄ − a) = 2; also, any other place different from
γ1 and γ2 is not a pole of either x̄ − a or z̄ − a.

Proposition 2 If b �= 0, then the rational function (x̄ − a)(z̄ − a) is not a square
in K(Y ). For a non-zero element c in Fq , the equation cT 2 = (x̄ − a)(z̄ − a) defines
a double cover of Fq(Y ) whose full constant field is Fq .

Proof The assertion is trivial in Case (I). Therefore, we can assume that Case (II)
holds. Then

vγi

(
(x̄ − a)(z̄ − a)

) = −2 for i = 1,2,

and

vγ1(x̄ − a) = −4, vγ2(x̄ − a) = 2.

Note also that for any place ξ of K(Y ) different from γi we have vξ ((x̄ − a)

(z̄ − a)) ≥ 0.
Suppose, contrary to our claim, that (x̄ − a)(z̄ − a) is a square in K(Y ), and let

s ∈ K(Y ) be such that s2 = (x̄ − a)(z̄ − a). Then,

vγi
(s) = −1 for i = 1,2.

Note that

− the pole divisor of x̄ − a is 4γ1;
− the pole divisor of s · (x̄ − a) is 5γ1;
− the pole divisor of s−1 · (x̄ − a) is 3γ1.

Therefore, the Weierstrass semigroup at γ1 contains {3,4,5,6, . . .}. This means that
the genus g of Y is at most 2. By applying the Hurwitz genus formula to the double
cover Y → X we deduce that g = 2 and that the degree of the ramification divisor is
2. One of the ramification places is γ1, which is the only pole of x̄ −a. So there exists
precisely one affine point (x0, y0) of X over which Y ramifies. We are going to show
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that actually this cannot occur. Note that if (u, v) is a point in X with u �= a whose
tangent line � passes through (a, b), then the line � contains a point over which Y
ramifies.

If g(a) �= 0, then in X there are two zeros of x̄ − a. In K(C), the number of zeros
of x̄ − a is 3. Therefore, one of these zeros is a ramification place. In order to get a
contradiction, we only need one tangent at an affine point passing through (a, b).

If g(a) = 0, then in X there is one zero of x̄ − a (of multiplicity 2). In K(C),
x̄ − a has either two or three zeros. Actually, they must be two because the degree
of the covering is 2; this means that there is precisely one place centered at (0,0).
Note that there is no ramification at these points. Here, to get a contradiction we need
two tangents (at affine points) passing through (a, b), other than the vertical tangent
X = a.

It is a classical result from Algebraic Geometry that through a point P /∈ X there
pass six tangents to X , counted with multiplicity. For p > 3, this multiplicity is 2 if
the tangency point is a flex, 1 otherwise. Therefore, if p > 3, there are at least two
tangents (at affine points of X ) passing through (a, b), other than the vertical tangent
X = a. Actually, it is easy to show by straightforward computation that the same
holds for p = 3. This completes the proof. �

Proposition 3 The genus of the double cover defined in Proposition 2 is at most 10.

Proof By the previous proofs, we know that the number of places of K(Y ) that are
either a zero or a pole of x̄′z̄′ is less than or equal to six. Then the assertion follows
from the genus formula for Kummer extensions (see e.g. [22, Proposition 3.7.3]). �

3.2 Case (2): b = 0

Here the equation which relates x̄′ and z̄′ is (x̄′z̄′)2 − x̄′z̄′(2Aa + B + 3a2) − (x̄′ +
z̄′)g(a) = 0. Let C′ be the plane curve with equation

H ′(X,Z) : X2Z2 − XZ
(
2Aa + B + 3a2) − (X + Z)g(a) = 0.

Note that in this case K(x̄′, z̄′) is not the whole K(Y ).
In order to prove that x̄′z̄′ = cT 2, with c a non-zero element in Fq , defines a double

cover of K(Y ), first we show that x̄′z̄′ = cT 2 defines a double cover of K(C′).
Both X∞ and Z∞ are double points of C′. The unique tangent of C′ at X∞ is

the line with equation Z = 0, and the intersection multiplicity I(X∞, X ∩ {Z = 0})
is equal to 3. Similarly, the unique tangent of C′ at Z∞ is X = 0, and I(Z∞, X ∩
{X = 0}) = 3. Then there exists precisely one place of K(x̄′, z̄′), say γ1, centered at
X∞, and one place, say γ2, centered at Z∞. Also, let γO be the only place centered
at (0,0). Both γ1 and γ2 have order 2 and class 1. From Theorem 3 it follows that

vγ1

(
x̄′) = −2, vγ1

(
z̄′) = 1,

vγ2

(
x̄′) = 1, vγ2

(
z̄′) = −2,

vγO

(
x̄′) = 1, vγO

(
z̄′) = 1.
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Therefore,

vγ1

(
x̄′z̄′) = −1, vγ2

(
x̄′z̄′) = −1, vγO

(
x̄′z̄′) = 2. (7)

Then clearly the rational function x̄′z̄′ is not a square in K(x̄′, z̄′), and hence
x̄′z̄′ = cT 2 defines a double cover of K(C′). Let K(x̄′, z̄′)(w̄) be such a double cover,
where cw̄2 = x̄′z̄′.

Our goal is to show that the compositum of the function fields K(x̄′, z̄′)(ȳ) and
K(x̄′, z̄′)(w̄) is defined over Fq . To this end, we investigate the ramification places of
the extensions K(x̄′, z̄′)(ȳ) over K(x̄′, z̄′), and K(x̄′, z̄′)(w̄) over K(x̄′, z̄′). Note first
that since g(a) �= 0 we have

vγ1

(
g
(
x̄′ + a

)) = −6, vγ2

(
g
(
x̄′ + a

)) = 0, vγO

(
g
(
x̄′ + a

)) = 0. (8)

Let γ̄ be any place of K(x̄′, z̄′, ȳ) lying over γ1. Then e(γ̄ |γ1) = 1. On the other
hand, let δ̄ be any place of K(x̄′, z̄′, w̄) lying over γ1; then e(δ̄|γ1) = 2. This follows
for instance from [22, Proposition 3.7.3]. Then Lemma 1 applies, and the following
result is obtained.

Proposition 4 If b = 0, then the rational function (x̄ − a)(z̄ − a) is not a square in
Fq(Y ). For a non-zero element c in Fq , the equation cT 2 = (x̄ − a)(z̄ − a) defines a
double cover of Fq(Y ) whose full constant field is Fq .

Proposition 5 The genus of the double cover defined in Lemma 4 is at most 10.

Proof The proof is similar to that of Proposition 3. �

4 Bicovered points off the elliptic curve

Let X be as in the previous section, and let ⊕ denote the point addition on X such
that the only infinite point of X is the neutral element O of (X ,⊕).

Let m > 2 be a prime divisor of the size of X (Fq), m different from the character-
istic p of Fq . Let K be a subgroup of (X (Fq),⊕) of index m, and let Ke be a coset
of K .

The main result of this section is the following.

Theorem 4 Assume that the j -invariant of X is different from zero, and that m > 2
is a prime dividing both the size of X (Fq) and q − 1, and such that (X (Fq),⊕) has

a unique subgroup K of index m. If m ≤ 4√q

8 , then the bisecants of any coset of K

bicover all the points of AG(2, q) not on X .

We first prove the following key lemma.

Lemma 8 Assume that m > 2 is a prime dividing both the size of X (Fq) and q − 1,
and that (X (Fq),⊕) has a unique subgroup K of index m. Let K1, . . . ,Km be the
cosets of K . Then there exist m coverings of algebraic curves ηi : Xi → X , i =
1, . . . ,m, defined over Fq , satisfying the following properties.
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(A) Fq(Xi ) = Fq(X )(ti) is an unramified Kummer extension of Fq(X ) of degree m;
in particular, Xi is an elliptic curve.

(B) ηi(Xi (Fq)) = Ki .

Let Mi = Fq(x̄, ȳ, z̄, ti ) be the compositum of Fq(Xi ) and Fq(Y ).

(C) The extension Mi/Fq(Y ) is Galois.
(D) The full constant field of Mi is Fq . Also, the extension Mi/Fq(Y ) is unramified.
(E) Let 1 ≤ i, j ≤ m, i �= j . Then

(i) Mi ∩ Mj = Fq(Y );
(ii) the compositum MiMj coincides with FqmM1.

Proof
Let P1 be a point of order m in (X (Fq),⊕), and let α(x̄, ȳ) be a rational function

on X such that div(α) = mP1 − mO . We can assume that α is defined over Fq (see
e.g. Lemma 11.10 in [28]). Note that α(x̄, ȳ) is a polynomial function in x̄, ȳ, since
O is the only pole of α. Write Ki as K ⊕ Qi , with Qi ∈ X (Fq), Qi �= P1, Qi �= O .
Note that:

− α is not an mth power, since otherwise P1 −O would be a principal divisor, and X
would be rational and not elliptic;

− di := α(Qi) is a non-zero element in Fq ;
− the Kummer extension defined by the equation tm = d−1

i α(x̄, ȳ) is unramified;
therefore, the associated curve Xi is elliptic;

− the points of Xi lying over Qi are all Fq -rational; they can be described as
(x0, y0,μ) where Qi = (x0, y0) and μm = 1;

− if we choose the neutral element of (Xi ,⊕) to be (x0, y0,1), then the map

σi : (x̄, ȳ, t) �→ (x̄, ȳ) � Qi

is an isogeny of degree m from Xi to X , defined over Fq , and whose kernel con-
sists of the Fq -rational points (x0, y0,μ) where Qi = (x0, y0) and μm = 1; then
σi(Xi (Fq)) coincides with K , since K is the unique subgroup of (X (Fq),⊕) of
index m.

Note that

ηi : (x̄, ȳ, t) �→ σi(x̄, ȳ, t) ⊕ Qi = (x̄, ȳ)

maps Xi (Fq) to Ki . Then for every coset Ki of K , there exists an element ci ∈ Fq

such that the extension defined by tmi = ciα(x̄, ȳ) is an elliptic function field, and
the natural projection of the associated elliptic curve Xi on X maps the Fq -rational
points of Xi precisely on Ki . This means that both (A) and (B) hold for Xi and ηi .

(C) Note that deg(Mi/Fq(Y )) = m. Also, Mi = Fq(Y )(ti), with tmi = ciα(x̄, ȳ).
Therefore Mi/Fq(Y ) is a Kummer extension.

(D) Every tangent to X passing through (a, b) corresponds to some ramification
place in Fq(Y )/Fq(X ). Then the constant field of Mi is Fq by Lemma 1. The second
assertion follows from [22, Proposition 3.9.6(a)].

To prove (E), we need to show that there is no common Fq -rational place of Mi

and Mj , so that Mi �= Mj . Assume on the contrary that ci/cj is an mth power in F
∗
q ,
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then ci = λmcj for some λ ∈ Fq . The map that fixes Fq(X ) elementwise and maps tj
in λtj is an Fq -isomorphism from Fq(Xj ) to Fq(Xi ): from tmj = cjα(x̄, ȳ) it follows
(λtj )

m = λmcjα(x̄, ȳ) = ciα(x̄, ȳ). This is a contradiction as (x0, y0, t) ∈ Xj (Fq)

and (x0, y0, λt) ∈ Xi (Fq) would imply that (x0, y0) belongs to two distinct cosets
of K . Therefore, Fq(Y ) ⊆ Mi ∩ Mj � Mi . As m = deg(Mi/Fq(Y )) is a prime, (i)
follows. A solution of ci t

m = α(x̄, ȳ) is ti = λt1, with λ ∈ Fqm such that λm = c1/ci .
This shows that Mi ⊂ FqmM1 for each i = 1, . . . ,m, which clearly implies (ii). �

Remark 2 Let E be as in Remark 1. Assume that γ ′ is a rational place of Mi such
that γ ′ ∩ Fq(Y ) is not a place in E. Let x̃ = x̄(γ ′), ỹ = ȳ(γ ′), z̃ = z̄(γ ′), t̃ = ti (γ

′).
Then, on one hand, (x̃, ỹ, t̃) is an Fq -rational point of Xi and hence (x̃, ỹ) ∈ Ki ; on
the other hand, by Remark 1 the line through P0 and (x̃, ỹ) meets X in other two
Fq -rational points, one of which being (z̃, (

ỹ−b
x̃−a

)(z̃ − a) + b).

Without loss of generality, assume that Ke coincides with K1.
Now, consider the field M ′

1 = Fq(Y )(u), where the minimal polynomial of u over
Fq(Y ) is

c1T
m = α

(
φ(x̄),φ(ȳ)

) = α

(
z̄,

(
ȳ − b

x̄ − a

)
(z̄ − a) + b

)

(here φ is as in Lemma 3 and α is as in the proof of Lemma 8). Then it is possible
to define an Fq -isomorphism φ̃ : M1 → M ′

1 such that φ̃(t1) = u and φ̃(v) = φ(v) for
every v ∈ Fq(Y ).

As the extensions M1/Fq(Y ) and M ′
1/Fq(Y ) are Fq -isomorphic, the full constant

field of M ′
1 is Fq . Also, M ′

1/Fq(Y ) is Galois and unramified.

Remark 3 Let γ ′′ be a rational place of M ′
1 such that γ ′′ ∩ Fq(Y ) is not a place of E.

Let x̃ = x̄(γ ′′), ỹ = ȳ(γ ′′), z̃ = z̄(γ ′′), ũ = u(γ ′′). Note that γ ′ := φ̃−1(γ ′′) does not
lie over a place in E. Then Remark 2 applies to γ ′. This means that (z̃, (

ỹ−b
x̃−a

)(z̃ −
a) + b) is a point of K1 collinear with P0 and such that the line through P0 and
(z̃, (

ỹ−b
x̃−a

)(z̃ − a) + b) meets X in three Fq -rational points.

Proposition 6 Let W = Fq(Y )(t1, u) be the compositum of M1 and M ′
1. Under the

hypotheses of Lemma 8, the full constant field of W is Fq , provided that q is large
enough with respect to m.

Proof Assume on the contrary that the constant field of W is not Fq . Then M1 � W ;
also, as m is a prime, the degree of the extension W/Fq(Y ) is m2, and both
deg(W/M1) and deg(W/M ′

1) are equal to m. As the full constant field of M1 is Fq ,
the only possibility for the full constant field of W is clearly Fqm . Therefore,

W = FqmM1 = FqmM ′
1

holds. Also, the extension W/Fq(Y ) is Galois, and the Galois group of W/Fq(Y ) is
isomorphic to Zm × Zm (see e.g. [17, Chap. VI, Theorem 1.14]).
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By (E) of Lemma 8, all function fields M1, . . . ,Mm are contained in W , and any
intersection Mi ∩ Mj coincides with Fq(Y ). Also, Mi ∩ Fqm(Y ) = Fq(Y ) holds as
the constant field of Mi is Fq .

The key point of the present proof is that M ′
1 must coincide with some Mi . This

can be proven as follows. The Galois groups Gal(W/Mi), i = 1, . . . ,m, together with
Gal(W/Fqm(Y )), form a set of m+ 1 cyclic subgroups of order m of Gal(W/Fq(Y ))

with pairwise trivial intersection, and whose union is the whole Gal(W/Fq(Y )) ∼=
Zm × Zm. As m is prime and Gal(W/M ′

1) is non-trivial, Gal(W/M ′
1) must coincide

either with some Gal(W/Mi), or with Gal(W/Fqm(Y )). As W/Fq(Y ) is Galois, the
Galois correspondence is bijective. Clearly Gal(W/M ′

1) = Gal(W/Fqm(Y )) cannot
occur since the full constant field of M ′

1 is Fq . Therefore, M ′
1 = Mj holds for some j .

Now let E be as in Remark 1, and let γ be a rational place of Fq(Y ) not in E.
Let x̃ = x̄(γ ), ỹ = ȳ(γ ), and z̃ = z̄(γ ). Note that on one hand γ splits completely in
M ′

1 if and only if (z̃, (
ỹ−b
x̃−a

)(z̃ − a) + b) is a point in K1; on the other hand, γ splits
completely in Mj if and only if (x̃, ỹ) lies in Kj . As M ′

1 = Mj , the two conditions are
equivalent, and since the latter is independent of z̃, so is the former. Therefore, if γ

splits completely in M ′
1, so does the other rational place of Fq(Y ) lying over (x̃, ỹ),

say γ ′. In this case, (z̄(γ ′), ( ỹ−b
x̃−a

)(z̄(γ ′) − a) + b) lies in K1 as well. If q is large
enough with respect to m, by the Hasse–Weil bound we can ensure the existence of a
rational place γj of Mj lying over a rational place γ of Fq(Y ), γ /∈ E. By the above
discussion, this implies the existence of three distinct Fq -rational points in X (Fq),
collinear with P0 = (a, b), two of which lying in K1. This means that there exists a
rational place of Fq(Y ) splitting completely over M1/Fq(Y ) and M ′

1/Fq(Y ). Then
Lemma 2 provides a contradiction. �

Proposition 7 Let c be a non-zero element in Fq , and let w̄ be an element in the
algebraic closure of Fq(Y ) such that cw̄2 = (x̄ − a)(z̄ − a). Then the full constant
field of the compositum W ′

c = W · Fq(Y )(w̄) is Fq .

Proof Here we are using Propositions 2, 4 and 6. Let � be the degree of the extension
W/Fq(Y ). As � divides m2, we see that � is odd. Therefore, the degree of W ′

c/W is
two, and deg(W ′

c/Fq(Y )(w̄)) = �. As the full constant field of W is Fq , then the con-
stant field of W ′

c is either Fq or Fq2 . In the latter case, we have a quadratic extension
Fq2(Y )(w̄) of Fq(Y )(w̄) contained in W ′

c, which is clearly impossible as the degree
of the extension W ′

c/Fq(Y )(w̄) is odd. �

We are now in a position to prove Theorem 4.

Proof of Theorem 4 We prove that the point P0 = (a, b) is bicovered by the secants
of Ke . The assertion will follow as P0 is an arbitrary point not on X . For a non-zero
element c ∈ Fq , let W ′

c and w̄ be as in Proposition 7. As the full constant field of W ′
c

is Fq , we will use the Hasse–Weil bound in order to obtain at least one rational place
γW of W ′

c such that γW ∩ Fq(Y ) /∈ E.
The degree of the extension W ′

c/Fq(Y ) is at most 2m2. Therefore, the number of
rational places of W ′

c lying over places of E is at most 36m2. By Propositions 3 and 5
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the genus of Fq(Y )(w̄) is at most 10. It is pointed out in [26] that the genus of W is
at most 7m2 + 1. Then by Castelnuovo’s Inequality (see e.g. [22, 3.11.3]) the genus
of W ′

c is at most 14m2 + 2 + 10m2 + m2 − 1 = 25m2 + 1.
Therefore it is enough to assume that

q + 1 − 2
(
25m2 + 1

)√
q > 36m2,

that is,

q >
(
25m2 + 1 +

√(
25m2 + 1

)2 + 36m2
)2

.

This clearly holds for m ≤ 4√q

8 .
Let γW be a rational place of W ′

c such that γW ∩ Fq(Y ) /∈ E. Note that γW is not
a zero nor a pole of w̄. The places γW ∩ M1 and γW ∩ M ′

1 are rational places (of M1
and M ′

1, respectively) lying over γW ∩ Fq(Y ). Let

x̃ = x̄(γW ), ỹ = ȳ(γW ), z̃ = z̄(γW ),

t̃ = t1(γW ), ũ = u(γW ), w̃ = w̄(γW ).

Then by Remarks 2 and 3 we find that P1,c = (x̃, ỹ) and P2,c = (z̃, (
ỹ−b
x̃−a

)(z̃−a)+b)

are two points on Ke collinear with P0. Moreover, (x̃ − a)(z̃ − a) = cw̃2 holds. If c

is chosen to be a square, then P0 is external to P1,cP2,c; if c is not a square, then P0
is internal to P1,cP2,c . �

Remark 4 The idea of associating to a point P0 = (a, b) ∈ AG(2, q) \ X a function
field W whose Fq -rational places correspond to the secants of Ke passing through P0
is taken from [26], where the following result is stated: if the j -invariant j (X ) of X
is different from 0, then the bisecants of a coset Ke of a subgroup of index m cover
all the points of AG(2, q) not on X , provided that q is large enough with respect to m.

However, in [26], the possibility that the constant field of W properly contains Fq

is not considered, and it actually might have been overlooked by the author [27]. The
proof of Proposition 6 shows that actually the full constant field of W is Fq , under
the additional hypotheses that m is an odd prime dividing q − 1 and (X (Fq),⊕) has
a unique subgroup of index m. As a corollary, complete arcs in PG(2, q) of size of
the same order of magnitude as q3/4 can be obtained with the arguments of [23],
provided that q − 1 has a prime divisor m slightly less than 1

8q1/4.

5 Bicovered points on the elliptic curve

We keep the notation of the previous sections, but here we assume that P0 = (a, b)

is an affine point on X , with a, b ∈ Fq . Let K(X ) = K(x̄, ȳ) with ȳ2 = x̄3 + Ax̄2 +
Bx̄ + C. For a point Q in A

2(K(X )), let QX denote the first coordinate of Q.
Note that for a point P = (x, y) ∈ X , the points belonging to X ∩ �P0,P are P0,P

and �(P0 ⊕ P) = (a,−b) ⊕ (x,−y). Let β(x̄, ȳ) be the rational function

β := (x̄ − a) · (((a,−b) ⊕ (x̄,−ȳ)
)
X

− a
)
.
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From the definition of ⊕ it follows that

(
(a,−b) ⊕ (x̄,−ȳ)

)
X

=
(−ȳ + b

x̄ − a

)2

− x̄ − a − A,

whence

β(x̄, ȳ) = 1

x̄ − a
· ((b − ȳ)2 − (x̄ + 2a + A)(x̄ − a)2).

We would like to prove that an equation cT 2 = β(x̄, ȳ) with c a non-zero element
in Fq defines a double cover of K(X ) which ramifies at some point. To this end, it is
enough to show that vR(β) is odd for some point R of K(X ).

By straightforward computation (x̄ − a)β(x̄, ȳ) is equal to

b2 + ȳ2 − 2bȳ − x̄3 − Ax̄2 + 4a2x̄ + 2aAx̄ − a2x̄ − 2a3 − a2A.

Taking into account that ȳ2 − x̄3 − Ax̄2 = Bx̄ + C, we obtain

β(x̄, ȳ) = 1

x̄ − a

(
b2 − 2bȳ + Bx̄ + 3a2x̄ + 2aAx̄ − 2a3 − a2A + C

)
.

Recall that vY∞(x̄) = −2 and vY∞(ȳ) = −3. Then if b �= 0 we have vY∞(β) = −1.
On the other hand, if b = 0 then C = −a3 − Aa2 − Ba. In this case,

β(x̄, ȳ) = 1

x̄ − a

(
x̄
(
B + 3a2 + 2aA

) − 2a3 − a2A + C
)

= 1

x̄ − a

(
x̄
(
B + 3a2 + 2aA

) − 3a3 − 2a2A − Ba
)
,

and hence

β(x̄, ȳ) = 1

x̄ − a

(
B + 3a2 + 2aA

)
(x̄ − a) = (

B + 3a2 + 2aA
)
.

Then the following result is obtained.

Proposition 8 If g(a) �= 0, then the equation cT 2 = β(x̄, ȳ), for c ∈ Fq , c �= 0, de-
fines a double cover of K(X ) which is defined over Fq and ramifies at some point
of X .

The main result of this section is the following.

Proposition 9 Assume that the j -invariant of X is different from zero, and that m > 2
is a prime dividing both the size of X (Fq) and q − 1, and such that (X (Fq),⊕) has a

unique subgroup K of index m. Assume that m <
4√q

8 . Let K1 and K2 be two distinct
cosets of K such that K1 ∪ K2 is an arc. Let P0 = (a, b) be an affine point on X ,
with a, b ∈ Fq and g(a) �= 0. If P0 is collinear with P1 ∈ K1 and P2 ∈ K2, then P0 is
bicovered by K1 ∪ K2.
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Proof As P0,P1 and P2 are collinear, P2 = �P0 � P1 holds. Let P be any point in
K1 and write P = Q ⊕ P1 ∈ K1, with Q ∈ K . The point �P0 � P is collinear with
P0 and P . Also, as

�P0 � P = �Q ⊕ (�P0 � P1) = �Q ⊕ P2

we see that �P0 � P is a point in K ⊕ P2 = K2.
Therefore, to prove the assertion it is enough to find a point P in K1 such that

β(P ) is a non-zero square in Fq , and another point P ′ ∈ K1 with β(P ′) a non-
square in Fq .

For a non-zero element in Fq , let w̄ be an element in the algebraic closure of
Fq(X ) such that cw̄2 = β(x̄, ȳ). By Lemma 8 the extension Fq(X )(w̄)/Fq(X ) has
degree 2, and the full constant field of Fq(X )(w̄) is Fq . Let also X1 and t1 be as in
Lemma 8, and let Wc = Fq(x̄, ȳ, t1, w̄) be the compositum of Fq(X1) and Fq(X )(w̄).
By Lemma 8(A), the extension Fq(X1)/Fq(X ) is unramified. On the other hand,
by Lemma 8 the extension Fq(X )(w̄)/Fq(X ) fully ramifies at some point. Then
Lemma 1 applies, and therefore the full constant field of Wc is Fq .

Arguing as in the proof of Theorem 4, it is not difficult to prove that there exists a
rational place γW of Wc such that it is neither a zero nor a pole of any of the rational
functions x̄, ȳ, t̄1 and w̄. Let

x̃ = x̄(γW ), ỹ = ȳ(γW ), t̃ = t1(γW ), w̃ = w̄(γW ).

Then P = (x̃, ỹ) is a point of K1. Moreover, β(x̃, ỹ) = cw̃2 holds. This completes
the proof of the assertion. �

6 Proof of Theorem 1

Let p = char(Fq). Let Z denote the set of the possible sizes of X (Fq), where X
ranges over the family of the elliptic curves defined over Fq with j (X ) = 0. It can be
deduced from [19, Proposition 5.7] that in Z there at most three elements not greater
than q .

Let r = � q−2
√

q+1
m

�. As m ≥ 5, among the integers {r + j | j = 1, . . . ,31} cer-
tainly there is an element i0 such that m � i0, i0m �≡ 1 (mod p), 2 � i0, and i0m /∈ Z.

Note that q + 1 − i0m is not divisible by p and its absolute value is at most
2
√

q . Then there exists an elliptic curve X ′ defined over Fq with i0m Fq -rational
points, see [29]. As i0m �≡ 1 (mod p), by a result in [25] there exists an ellip-
tic curve X defined over Fq with the same number of Fq -rational points, and
such that (X (Fq),⊕) is cyclic. As i0m /∈ Z, the j -invariant of X is different
from 0. Write X (Fq) = H × K , where H is the subgroup of X (Fq) of order
m. As m < 4

√
q/8, by Theorem 4 any coset of K bicovers every affine point not

on X .
Let X be a maximal 3-independent subset of H of size s. The union S of the cosets

of K corresponding to X is a good maximal 3-independent subset of (X (Fq),⊕),
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that is, for each P ∈ X (Fq) \ S there exist distinct P1,P2 ∈ S with P1 ⊕ P2 ⊕ P = 0
(see [26], Lemma 1, together with Remark 5(5)). Note that as the size of X (Fq) is
odd, no element in (X (Fq),⊕) has order 2, and hence no Fq -rational point (a, b) ∈ X
is such that g(a) = 0. Therefore, by Theorem 4 and Proposition 9, S is a bicovering
arc in AG(2, q) with size si0.

7 Maximal 3-independent subsets in finite groups of prime order

Let m > 7 be a prime number and let Cm
∼= (Fm,+) denote the finite group of or-

der m.
It has been shown in [26] that there exists a maximal 3-independent subset of

Cm of size s ≤ (m + 1)/3. As a result of a computer assisted computation, it turned
out that for primes 37 ≤ m ≤ 1187 there exists a maximal 3-independent subset of
Cm size j , with j as in Table 1. An explicit description of these subsets as inte-
gers modulo m can be found in [16]. A straightforward consequence is the following
result.

Proposition 10 Let m be a prime with 37 ≤ m ≤ 1187. Then there exists a maximal
3-independent subset of Cm with size s ≤ s(m), with s(m) as in the following table

m ∈ [37,79] ∈ [83,149] ∈ [151,271] ∈ [277,359] ∈ [367,521]
s(m) m/4 m/5 m/6 m/7 m/8

m ∈ [523,677] ∈ [683,829] ∈ [839,1087] ∈ [1091,1187]
s(m) m/9 m/10 m/11 m/12

As a corollary to Theorem 2 the following result is then obtained.

Proposition 11 For an odd prime power q , let m be a prime divisor of q − 1, with
37 ≤ m < min{1188, 1

8
4
√

q}. Let s(m) be as in Proposition 10. Then for any positive
integer N ≡ 0 (mod 4), there exists a complete cap in AG(N,q) of size k with

k ≤ s(m) · q N−2
2 ·

(⌊
q − 2

√
q + 1

m

⌋
+ 31

)
.

We remark that by [23, Example 3.21] it is possible to construct a subset X of Cm

of size greater than
√

m and less than 30
√

m, with the following properties:

(a) x1 + x2 + x3 �= 0 for all x1, x2, x3 ∈ X;
(c) for each y ∈ G \ X, X ∪ {y} does not satisfy (a).

However, the subset X is not a maximal 3-independent subset of Cm in general. In
fact, it is possible that there exists some y ∈ Cm \ X with either 2y ∈ −X or 3y = 0,
but y + x1 + x2 �= 0 for all x1, x2 ∈ X.
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Table 1 Small maximal 3-independent subsets

m j m j m j m j m j

13 4 17 6 19 6 23 7 29 8

31 9 37 9 41 10 43 10 47 11

53 12 59 12 61 14 67 15 71 14

73 15 79 16 83 16 89 17 97 16

101 19 103 20 107 20 109 21 113 20

127 21 131 24 137 23 139 24 149 25

151 24 157 26 163 27 167 26 173 27

179 27 181 27 191 30 193 29 197 29

199 31 211 35 223 33 227 34 229 33

233 33 239 33 241 35 251 35 257 34

263 36 269 38 271 39 277 37 281 39

283 38 293 41 307 40 311 42 313 41

317 42 331 43 337 42 347 43 349 44

353 42 359 47 367 45 373 44 379 46

383 46 389 47 397 48 401 48 409 48

419 48 421 52 431 51 433 51 439 53

443 53 449 50 457 52 461 53 463 54

467 54 479 55 487 53 491 56 499 54

503 56 509 57 521 58 523 57 541 54

547 60 557 61 563 61 569 62 571 59

577 61 587 60 593 62 599 65 601 62

607 62 613 65 617 61 619 63 631 62

641 67 643 65 647 70 653 64 659 64

661 64 673 61 677 68 683 68 691 67

701 69 709 69 719 70 727 69 733 71

739 72 743 68 751 69 757 73 761 68

769 64 773 72 787 74 797 76 809 75

811 76 821 72 823 77 827 76 829 78

839 75 853 75 857 77 859 76 863 77

877 79 881 77 883 80 887 80 907 82

911 82 919 78 929 79 937 80 941 83

947 79 953 82 967 81 971 80 977 85

983 84 991 81 997 84 1009 87 1013 85

1019 86 1021 86 1031 84 1033 86 1039 89

1049 87 1051 88 1061 87 1063 84 1069 87

1087 91 1091 88 1093 91 1097 87 1103 90

1109 90 1117 91 1123 92 1129 92 1151 92

1153 93 1163 93 1171 95 1181 95 1187 97
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