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Abstract Let S be a nonabelian finite simple group and let n be an integer such
that the direct product Sn is 2-generated. Let Γ (Sn) be the generating graph of Sn

and let Γn(S) be the graph obtained from Γ (Sn) by removing all isolated vertices.
A recent result of Crestani and Lucchini states that Γn(S) is connected, and in this
note we investigate its diameter. A deep theorem of Breuer, Guralnick and Kantor
implies that diam(Γ1(S)) = 2, and we define Δ(S) to be the maximal n such that
diam(Γn(S)) = 2. We prove that Δ(S) ≥ 2 for all S, which is best possible since
Δ(A5) = 2, and we show that Δ(S) tends to infinity as |S| tends to infinity. Explicit
upper and lower bounds are established for direct powers of alternating groups.

Keywords Finite simple groups · Generating graph · Diameter · Spread

1 Introduction

Let G be a finite group that can be generated by two elements and let Γ (G) be the
generating graph of G; the vertices are the nontrivial elements of G, and two vertices
are joined by an edge if and only if they generate G. This fascinating graph encodes
many familiar generating properties. For example, G is said to be 3

2 -generated if every
nontrivial element of G belongs to a generating pair; this is equivalent to the non-
existence of isolated vertices in Γ (G). More generally, G has spread at least k if for
any k nontrivial elements x1, . . . , xk ∈ G, there exists y ∈ G such that G = 〈xi, y〉 for
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all i (this notion was introduced by Brenner and Wiegold [3] in the 1970s). Visibly,
G has spread at least 2 if and only if Γ (G) is connected with diameter 2. Moreover,
the graph-theoretic viewpoint suggests many new and natural questions. For instance,
one can investigate the connectedness of Γ (G) (and subsequently its diameter), its
(co-)clique and chromatic numbers, the existence of a Hamiltonian cycle in Γ (G),
and so on.

Let S be a nonabelian finite simple group. It is well known that S can be generated
by two elements, and there is a vast literature in this area. Indeed, many stronger
results have been established in recent years. For example, a theorem of Guralnick
and Kantor [17] states that S is 3

2 -generated (confirming a conjecture of Steinberg
[28]), and a more recent result of the same authors (with Breuer) reveals that S has
spread at least 2 (see [5]). In particular, it follows that the generating graph Γ (S) has
diameter 2. The clique number ω(S) of Γ (S) (that is, the size of the largest complete
subgraph) has also been investigated by several authors. In [22], Liebeck and Shalev
prove that there is an absolute constant c > 0 such that ω(S) ≥ c · m(S) for any
S, where m(S) is the minimal index of a proper subgroup of S. In [1], Blackburn
shows that if n is a sufficiently large even integer which is indivisible by 4 then
ω(An) = 2n−2 (and he also proves that this coincides with the chromatic number
of Γ (An)); see [7, 23] for related results. Another recent result reveals that Γ (S)

contains a Hamiltonian cycle if |S| is sufficiently large (see [6]).
Let Sn denote the direct product of n copies of S, and let δ(S) be the largest

positive integer n such that Sn is 2-generated. A formula of Philip Hall [18] states
that

δ(S) = φ2(S)

|Aut(S)|
where φ2(S) denotes the number of ordered pairs (x, y) such that S = 〈x, y〉. In par-
ticular, δ(S) = P(S)|S|/|Out(S)| where P(S) is the probability that two randomly
chosen elements generate S. For example, δ(A5) = 19. By a striking theorem of
Liebeck and Shalev [21] (see also [13, 19]), P(S) tends to 1 as |S| tends to infin-
ity, whence δ(S) also tends to infinity.

Let n ≤ δ(S) be a positive integer and consider the generating graph Γ (Sn). If
n ≥ 2 then this graph contains isolated vertices, so following [11] we define Γn(S) to
be the graph obtained from Γ (Sn) by removing all the isolated vertices. By [11, The-
orem 1.1], Γn(S) is connected, so it is natural to consider its diameter diam(Γn(S)).
Clearly, if n < δ(S) then diam(Γn(S)) ≤ diam(Γn+1(S)), and [11, Theorem 1.2]
states that diam(Γn(S)) ≤ 4n − 2. In addition, we note that there are examples where
the diameter of Γδ(S)(S) can be arbitrarily large. Indeed, [11, Theorem 1.3] states
that if S = SL2(2p), where p is a prime, then diam(Γδ(S)(S)) ≥ 2p−2 − 1 if p is
sufficiently large.

We define

Δ(S) = max
{
n : diam

(
Γn(S)

) = 2
}
. (1)

Note that diam(Γ1(S)) = diam(Γ (S)) = 2 by the aforementioned theorem of Breuer,
Guralnick and Kantor [5, Theorem 1.1], so Δ(S) ≥ 1. Our main result is the follow-
ing:
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Theorem 1 Let S be a nonabelian finite simple group. Then diam(Γ2(S)) = 2, so
Δ(S) ≥ 2. Moreover, Δ(S) tends to infinity as |S| tends to infinity.

In Proposition 3.8, we show that Δ(A5) = 2, so the lower bound Δ(S) ≥ 2 in
Theorem 1 is best possible. The next theorem provides explicit bounds on Δ(S) when
S is an alternating group.

Theorem 2 Let S = An be the alternating group of degree n ≥ 5.

(i) If n is odd then

1

18

(
n2 − 3n + 2

) ≤ Δ(S) ≤ 1

2

(
n2 − 5n + 8

)
.

(ii) If n is even then

n(n − 1)(n − 2)

18(n2/4 − 1)
≤ Δ(S) ≤ 1

2

(
n2 − 5n + 6

)
.

Remark 1 Note that the lower bound in part (ii) of Theorem 2 is linear in n. We
refer the reader to Proposition 3.11 for a quadratic lower bound in the special case
where n = 2p with p an odd prime. It would be interesting to know whether or not a
quadratic lower bound exists for all even n.

As one might expect, it appears to be much more difficult to obtain explicit bounds
when S is a simple group of Lie type. However, the proof of Theorem 1 does provide
the following lower bound on Δ(S). (Here r denotes the untwisted Lie rank of S,
which is the rank of the ambient simple algebraic group.)

Theorem 3 There exists an absolute constant c such that if S is a finite simple group
of Lie type of rank r over Fq , where q = pf with p a prime, then either S = Sp2r (2),
or

Δ(S) ≥ cf −1qr .

Remark 2 Let us make some remarks on the statement of Theorem 3:

(i) The proof of Theorem 1 shows that we can take c = 1/100 for the constant.
(ii) The family of symplectic groups over the field of two elements is an anomaly.

Indeed, it is well known that this family of groups has some unique generation
properties. For example, this is the only infinite family of simple groups with
exact spread two (the only other examples are A5, A6, and Ω+

8 (2))—see [5,
Corollary 1.3]. The proof of Proposition 5.5 shows that

Δ
(
Sp2r (2)

) ≥ 1

2r
φ
(
2r + 1

)
,

where φ is the Euler totient function.
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(iii) It is difficult to determine the accuracy of the lower bound in Theorem 3, but
it is clear that better bounds hold in certain cases. For example, if S = E8(q),
our proof yields Δ(S) ≥ cf −1q50 for some constant c (see Remark 5.3 for com-
ments on the case where S is a classical group). Deriving good upper bounds on
Δ(S) when S is a group of Lie type appears to be a difficult problem.

2 Preliminaries

2.1 Uniform spread

Let G be a finite group and let X be a subset of G. We say that X has the uniform
spread two (UST) property if for any two nontrivial elements a, b ∈ G there exists
an x ∈ X such that G = 〈a, x〉 = 〈b, x〉. The main theorem of [5] states that if S is a
nonabelian finite simple group then there is at least one conjugacy class in S with the
UST property. The basic idea is to choose an element z ∈ S so that the set M(z) of
maximal subgroups of S containing z is small and can be determined. As explained
in [5, Sect. 2], the class C = zS has the UST property if

∑

H∈M(z)

fpr(x, S/H) <
1

2

for all elements x ∈ S of prime order, where

fpr(x, S/H) = |xS ∩ H |
|xS | (2)

denotes the fixed point ratio of x in its natural action on the set of right cosets S/H .
In this way, upper bounds on fixed point ratios play an essential role in the proof of
[5, Theorem 1.1].

For the remainder of this preliminary section, let S be a nonabelian finite simple
group with automorphism group A = Aut(S). Define the integer Δ(S) as in (1).

Proposition 2.1 Let C1, . . . ,Ct be distinct A-classes in S with the UST property.
Then Δ(S) ≥ t .

Proof This is entirely straightforward. Let x = (x1, . . . , xt ) and y = (y1, . . . , yt ) be
distinct vertices in the graph Γt(S). Then each xi, yi is nontrivial, so there exists
zi ∈ Ci such that S = 〈xi, zi〉 = 〈yi, zi〉. Set z = (z1, . . . , zt ) ∈ St and consider L =
〈x, z〉. By construction, πi(L) = S for all i, where πi denotes the ith projection map.
Moreover, L is not contained in a diagonal subgroup of St since zi and zj are not
A-conjugate, for all i �= j . Therefore, L = St . Similarly, 〈y, z〉 = St , and the result
follows. �

Let X be a subset of S and let S# be the set of nontrivial elements in S. For
a, b ∈ S# we define

η(X,a, b) = |{x ∈ X : S = 〈a, x〉 = 〈b, x〉}|
|X|
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and

η(X) = min
{
η(X,a, b) : a, b ∈ S#}. (3)

Then X has the UST property if and only if η(X) > 0. By [5, Theorem 1.1], with
the exception of a short list of known cases, there exists an S-class C = zS with
η(C) ≥ 1/3. Note that if C′ = zA then C′ has the UST property and η(C′) = η(C).

The next result plays a key role in the proof of our main theorems.

Proposition 2.2 Let Ci = zA
i , 1 ≤ i ≤ t , be distinct A-classes in S with the UST

property. For each i, set fi = η(Ci) and let ki be a positive integer such that

fi |Ci | − 2(ki − 1)α(S) > 0 (4)

where α(S) = max{|CA(x)| : x ∈ S#}. Then Δ(S) ≥ ∑
i ki .

Proof We may assume t = 1. Set C = C1, z = z1, f = f1 and k = k1. It suffices to
prove the following claim:

Claim. If k satisfies (4) then any two vertices in Γk(S) are connected to a vertex
of the form (u1, . . . , uk) ∈ Γk(S), with ui ∈ C for all i.

We proceed by induction on k. Since C has the UST property and Γ1(S) = Γ (S),
the claim holds when k = 1. Now assume k > 1, and let (x1, . . . , xk) and (y1, . . . , yk)

be vertices in Γk(S). By induction, the vertices (x1, . . . , xk−1) and (y1, . . . , yk−1) in
Γk−1(S) are connected to a vertex (u1, . . . , uk−1), where ui ∈ C for all i. In particular,
the following conditions hold:

(i) S = 〈xi, ui〉 = 〈yi, ui〉 for all 1 ≤ i ≤ k − 1;
(ii) For all distinct i, j ∈ {1, . . . , k − 1}, the pairs (xi, ui) and (xj , uj ) in S2 are not

A-conjugate, and nor are the pairs (yi, ui) and (yj , uj ).

By definition, there are at least f |C| elements u ∈ C such that S = 〈xk,u〉 =
〈yk,u〉. Fix i < k and suppose (xi, ui) is A-conjugate to (xk, u) for some u ∈ C. Then
xk = xa

i for some a ∈ A and we deduce that there are precisely |CA(xi)| elements
u ∈ C with this property. Similarly, if yi and yk are A-conjugate then there are exactly
|CA(yi)| elements u ∈ C such that (yi, ui) is A-conjugate to (yk, u). It follows that
there are at least

f |C| −
k−1∑

i=1

(∣∣CA(xi)
∣∣ + ∣∣CA(yi)

∣∣) ≥ f |C| − 2(k − 1)α(S)

choices for u ∈ C such that (u1, . . . , uk−1, u) is connected to (x1, . . . , xk) and
(y1, . . . , yk). The result now follows since our choice of k ensures that f |C| −
2(k − 1)α(S) > 0. �

2.2 Computational methods

Let S be a nonabelian finite simple group. In some specific cases (see Proposition 2.3,
for example), we can use MAGMA [2] to find S-classes with the UST property. Here
we briefly outline our methodology.
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First, some notation. Let z be a nontrivial element of S and set C = zS . Our aim is
to determine whether or not C has the UST property. As above, let M(z) denote the
set of maximal subgroups of S containing z. For H ∈ M(z) and x ∈ S let fpr(x, S/H)

be the fixed point ratio of x (see (2)), and let P(x, z) be the probability that x and a
randomly chosen element of C do not generate S. Note that

P(x, z) ≤
∑

H∈M(z)

fpr(x, S/H) =: σ(x, z). (5)

We start with the standard permutation representation of S used by MAGMA (so
for example, if S = PSLn(q) then this representation has degree (qn − 1)/(q − 1)).
Using the commands MaximalSubgroups and ConjugacyClasses, we can determine
the maximal subgroups of S which contain a conjugate of z; if H is such a subgroup
then we can compute the fixed point ratio fpr(z, S/H) = |zS ∩ H |/|zS |, and we note
that z belongs to exactly |S : H | · fpr(z, S/H) distinct S-conjugates of H . In this way,
we can determine the subgroups in M(z), and we can subsequently compute σ(x, z)

for any x ∈ S.
Now, if x1, x2 ∈ S and σ(xi, z) < 1/2 for i = 1,2 then (5) implies that P(xi, z) <

1/2, so there is some element z ∈ C such that S = 〈x1, z〉 = 〈x2, z〉. As previously
remarked, if σ(x, z) < 1/2 for all nontrivial x ∈ S (equivalently, for all x ∈ S of
prime order), then C has the UST property and we are done. So let us assume that
there are some nontrivial S-classes Ci = xS

i , 1 ≤ i ≤ k, with σ(xi, z) ≥ 1/2. For
each xi we compute P(xi, z) as follows (see Breuer’s notes [4, p. 14]). First, we
construct a set of (CS(z),CS(xi))-double coset representatives. If r ∈ S is a repre-
sentative then 〈xi, z

srt 〉 = 〈xi, z
r 〉t for all s ∈ CS(z), t ∈ CS(xi), so we only need to

test (non)generation for representatives. More precisely, if r1, . . . , r� are the repre-
sentatives with S �= 〈xi, z

rj 〉 then

P(xi, z) = |S|−1
�∑

j=1

∣
∣CS(z)rjCS(xi)

∣
∣.

Subsequently, we define m = max{P(xi, z) : 1 ≤ i ≤ k}.
As before, if m < 1/2 then C has the UST property, so let us assume m ≥ 1/2.

Note that P(x, z) ≤ m for all x ∈ S#. Of course, if m = 1 then there exists x ∈ S# such
that S �= 〈x, z〉 for all z ∈ C, so in this situation C does not have the UST property.
Suppose m < 1 and let y1, y2 ∈ S be nontrivial elements such that σ(y1, z) < 1 − m.
Then P(y1, z) < 1 − m and P(y2, z) ≤ m, so there exists an element z ∈ C such
that S = 〈yi, z〉 for i = 1,2. Therefore, it remains to consider the conjugacy classes
Ci = xS

i , 1 ≤ i ≤ v, such that σ(xi, z) ≥ 1 − m. Fix i, j such that 1 ≤ i ≤ j ≤ v, and
let {y1, . . . , yt } be a set of representatives of the CS(xi)-orbits on Cj . For each ys

we have to decide if there exists an element g ∈ S such that S = 〈xi, z
g〉 = 〈ys, z

g〉.
In practice, the existence of g can usually be established by testing a few randomly
chosen elements, but exhaustive searches are required to prove non-existence. If we
can always find such elements g ∈ S, for all possible i, j , then C = zS has the UST
property.

By implementing the above procedure in MAGMA, we obtain the following result
(note that the final statement follows immediately from Proposition 2.1).
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Proposition 2.3 Let S be one of the following simple groups:

PSL2(q) (q < 29, q �= 9), PSLε
3(q) (q < 11), PSLε

4(q) (q < 5), PSLε
5(2), PSLε

6(2),

Sp4(4), Sp6(2), Ω7(3), Ω±
8 (2), 2B2(8), A7.

Then there are at least two distinct A-classes in S with the UST property. In particu-
lar, in each case Δ(S) ≥ 2.

Remark 2.4 Let S be one of the groups in the statement of Proposition 2.3. In Table 1,
we present an explicit list of S-classes with the UST property (we adopt the Atlas
[10] labelling of classes). In all but three cases, the given list is complete. In the third
column, we implicitly exclude the trivial class, and all classes of involutions. Note
that there is a unique class in PSL2(9) ∼= A6 with the UST property.

3 Alternating groups

Let S = An be the alternating group of degree n ≥ 5. Recall that we define

α(S) = max
{∣∣CA(x)

∣∣ : x ∈ S#},

where A is the automorphism group of S. The next lemma is easily checked (in
general, |CA(x)| is maximal when x is a 3-cycle).

Lemma 3.1 We have

α(A5) = 8, α(A6) = 32, α(A8) = 384,

α(An) = 3(n − 3)! (n ≥ 7, n �= 8).

First, we handle the alternating groups of small degree.

Proposition 3.2 If n ∈ {5,6,7,8} then diam(Γ2(An)) = 2.

Proof Set S = An and A = Aut(S). If n = 7 or 8 then Proposition 2.3 applies (note
that A8 ∼= PSL4(2)), so let us assume n = 5 or 6. In both cases, there is a unique
A-class of elements in S with the UST property (comprising the elements of order 5
and 4, respectively). Set G = S × S and let V ⊂ G be the set of vertices in Γ2(S).
First, assume n = 5. Using MAGMA [2], it is easy to check that |V | = 592 and V is
the union of 16 G-classes, with representatives {x1, . . . , x16}. By a random search,
for each xi and v ∈ V we can find an element w ∈ V such that G = 〈xi,w〉 = 〈v,w〉,
hence diam(Γ2(S)) = 2. The same method applies when n = 6 (here |V | = 3592 and
V comprises 36 distinct G-classes). �

Proposition 3.3 If n ≥ 9 is odd then

Δ(S) ≥
⌈

(n − 1)(n − 2)

18

⌉
≥ 2.
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Table 1 Conjugacy classes with the UST property

S Conditions S-classes with the UST property

PSL2(q) 11 < q < 29 All

q = 7,8 All

q = 5,11 All except 3A

q = 9 4A

PSL3(q) q = 3,4 All except 3A

q = 5 All except 4A-B, 5A

q = 7 All except 7A

q = 8 All except 7A-F

q = 9 All except 3A, 4A-B, 8A-D

PSL4(q) q = 2 6B, 15A-B

q = 3 Including 4C, 5A, 6A-B, 9A-B, 10A, 12A-C, 13A-D, 20A-B

q = 4 Including 4B, 5E, 7A-B, 9A-B, 10A-D, 15E-H, 17A-D, 21A-D, 30A-D,
63A-L, 85A-P

PSL5(2) 5A, 6B, 8A, 12A, 14A-B, 15A-B, 21A-B, 31A-F

PSL6(2) Including 7E, 9A, 12A, 14A-B, 15C-E, 21A-B, 31A-F, 63A-F

PSU3(q) q = 3 6A, 7A-B, 8A-B, 12A-B

q = 4 All except 5A-D

q = 5 All except 3A, 5A

q = 7 All except 4A-B, 7A, 8A-D

q = 8 All except 3A-B

q = 9 All except 3A, 5A-D, 10A-D

PSU4(q) q = 2 9A-B, 12A-B

q = 3 5A, 6B-C, 7A-B, 8A, 9A-D, 12A

q = 4 4B, 5M, 6A-B, 10I-P, 13A-D, 15E-P, 17A-D, 20A-D, 30A-D, 51A-H, 65A-P

PSU5(2) 5A, 6N, 8A, 9C-D, 11A-B, 12E-I, 15A-B, 18A-B

PSU6(2) 7A, 8B-D, 9C, 10A, 11A-B, 12F-H, 15A, 18A-B

Sp4(4) 5E, 15A-D, 17A-D

Sp6(2) 7A, 9A, 12C, 15A

Ω7(3) 7A, 8B, 9C-D, 12F-G, 13A-B, 14A, 15A, 20A

Ω+
8 (2) 9A-C, 10A-C, 12A-C, 12E-G, 15A-C

Ω−
8 (2) All except 3A-C, 4A-C, 5A, 6A-C

2B2(8) All

A7 6A, 7A-B

Proof Let z ∈ S be an n-cycle and set C = zA. By [5, Proposition 6.7], C has the
UST property with corresponding constant η(C) ≥ 1/3 (see (3)). Now |C| = (n− 1)!
and α(S) = 3(n − 3)! (see Lemma 3.1), so the result follows from Proposition 2.2
(setting t = 1, C1 = C and f1 = 1/3). �



J Algebr Comb (2013) 38:329–350 337

Proposition 3.4 Suppose n ≥ 10 is even and set ε = (2, n/2 − 1). Then

Δ(S) ≥
⌈

n(n − 1)(n − 2)

18(n2/4 − ε2)

⌉
≥ 2.

Proof Let z ∈ S be an element with exactly two cycles, of lengths n/2 ± ε, where
ε = (2, n/2 − 1). By [5, Proposition 6.3], C = zA has the UST property and η(C) ≥
1/3. Now |C| = n!/(n2/4 − ε2), α(S) = 3(n − 3)! and once again the result follows
from Proposition 2.2. �

Corollary 3.5 The conclusion to Theorem 1 holds if S is an alternating group.

Remark 3.6 The lower bounds obtained in Propositions 3.3 and 3.4 are respectively
quadratic and linear in n. It is natural to ask whether or not a better lower bound can
be obtained via Proposition 2.1. Let z ∈ S be an element such that C = zA has the
UST property. Clearly, if z has four or more cycles then 〈z, (1,2,3)〉 is intransitive,
so z has at most three cycles. In particular, if n is odd then z is either an n-cycle
(which is the class used in the proof of Proposition 3.3), or z has exactly three cycles,
so there are fewer than n2 possibilities for C. This shows that by simply counting
classes we cannot do better than a quadratic function in n. Similarly, if n is even then
z has exactly two cycles, and so in this situation we cannot improve on a linear bound
in n.

Remark 3.7 It would be interesting to determine all the A-classes in S with the UST
property, but this appears to be a difficult problem. Now, if n ≥ 15 is odd and z ∈ S

has cycle-shape (n1, n2, n3), with ni ≥ 3 for all i, and (ni, nj ) = 1 for i �= j , then
one can show that zA has the UST property. Indeed, in this situation the analysis is
simplified by the fact that z belongs to exactly three maximal subgroups of S, each of
which is intransitive (see the proof of [17, Proposition 7.1]), so S = 〈x, z〉 if and only
if 〈x, z〉 is transitive. Similarly, if n ≥ 10 is even and z ∈ S has cycle-shape (n1, n2),
where n1 and n2 are coprime, then zA has the UST property.

Next we show that the lower bound Δ(S) ≥ 2 in Theorem 1 is best possible. We
note that S = A5 is the only finite simple group for which the exact value of Δ(S) is
currently known.

Proposition 3.8 We have diam(Γ3(A5)) = 3, so Δ(A5) = 2.

Proof Let S = A5, A = S5 and set x = (x1, x2, x3) ∈ S3 and y = (y1, y2, y3) ∈ S3,
where xi = (1,2,3) and yi = (1,3)(4,5) for all i. It is easy to check that x and y

are non-isolated vertices in Γ (S3). There are exactly 16 elements s ∈ S such that
S = 〈x1, s〉 = 〈y1, s〉, each of which is a 5-cycle, namely

{
(1,2,4,3,5)i , (1,2,4,5,3)i, (1,2,5,3,4)i , (1,2,5,4,3)i : 1 ≤ i ≤ 4

}
.

It is straightforward to check that if z1, z2 and z3 are distinct 5-cycles with this prop-
erty then two of the zi are either CA(x1)-conjugate or CA(y1)-conjugate. We con-
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clude that there is no z ∈ S3 such that S3 = 〈x, z〉 = 〈y, z〉, whence diam(Γ3(S)) ≥ 3
and thus Δ(S) = 2, as claimed.

To see that diam(Γ3(S)) = 3, we have to work harder. Let z1 = (1,2,3,4,5),
z2 = (1,2,3), and z3 = (1,2)(3,4). Set Ci = zA

i and note that S# = C1 ∪ C2 ∪ C3.
Let di be the degree of zi in Γ (S) (that is, di = |{x ∈ S : S = 〈x, zi〉}|) and set
δi = di/|CA(zi)|. In addition, let αi (respectively, βi, γi ) be the number of elements
z in C1 (respectively, C2, C3) such that S = 〈z, zi〉. It is straightforward to check that
these parameters take the following values:

i |Ci | δi αi βi γi

1 24 10 20 20 10
2 20 6 24 6 6
3 15 3 16 8 0

Note that (x1, . . . , xn) ∈ Γ (Sn) is non-isolated if and only if |{xr : xr ∈ Ci}| ≤ δi

for i = 1,2,3. In particular, every vertex in (S#)3 is non-isolated. We also note the
following:

(�) Every pair of elements in C1 × C2 generates S, while (u, v) ∈ C1 × C1 is a pair
of generators if and only if 〈u〉 �= 〈v〉.

Let x = (x1, x2, x3) and y = (y1, y2, y3) be any two vertices of Γ3(S). To complete
the proof of the proposition, it suffices to establish the following:

(i) x is connected to two vertices u = (u1, u2, u3) and v = (u1, u2, u
′
3) in C1 ×

C2 × C1 with 〈u3〉 �= 〈u′
3〉;

(ii) y is connected to a vertex in C2 × C1 × C1;
(iii) Every vertex in C2 × C1 × C1 is connected to u or v.

First, consider (i). A vertex t = (t1, t2, t3) in C1 × C2 × C1 is connected to x if
and only if S = 〈xi, ti〉 for all i and (x1, t1) is not A-conjugate to (x3, t3) (since t is
in C1 × C2 × C1, (x2, t2) cannot be A-conjugate to (x1, t1) or (x3, t3)). As recorded
in the above table, any nontrivial element in S generates with at least 16 elements in
C1 and with at least 6 elements in C2. Hence, there are at least 16 · 6 = 96 choices
for (t1, t2) ∈ C1 × C2 such that S = 〈x1, t1〉 = 〈x2, t2〉.

Let (u1, u2) ∈ C1 × C2 be one of these choices and set

Tu1,u2 = {
u ∈ C1 : S3 = 〈

x, (u1, u2, u)
〉}

,

so u ∈ Tu1,u2 if and only if u ∈ C1, S = 〈x3, u〉 and the pairs (x1, u1), (x3, u) are not
A-conjugate. If x1 and x3 are not A-conjugate then |Tu1,u2 | ≥ 16 (in this situation, u ∈
Tu1,u2 if and only if u ∈ C1 and S = 〈x3, u〉). On the other hand, if x3 = xα

1 for some
α ∈ A then there are |CA(x1)| choices for y ∈ C1 such that (x1, u1) is A-conjugate
to (x3, y). Since x3 generates with at least 16 elements in C1, and |CA(x1)| ≤ 8, it
follows that |Tu1,u2 | ≥ 8. Therefore, in every case we have |Tu1,u2 | ≥ 8, so we can
find u3, u

′
3 ∈ Tu1,u2 such that 〈u3〉 �= 〈u′

3〉. This establishes (i), with u = (u1, u2, u3)

and v = (u1, u2, u
′
3). By symmetry, (ii) also holds.
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Finally, let us turn to (iii). Let t = (t1, t2, t3) be a vertex in C2 × C1 × C1. Then u

is connected to t if and only if S = 〈ti , ui〉 for all i, so (�) implies that u is connected
to every vertex in the set {(t1, t2, t3) ∈ C2 × C1 × C1 : t3 /∈ 〈u3〉}. Similarly, v is con-
nected to every vertex in the set {(t1, t2, t3) ∈ C2 × C1 × C1 : t3 /∈ 〈u′

3〉}. Therefore,
(iii) holds and the proof of the proposition is complete. �

We now consider upper bounds on Δ(An), with the aim of establishing Theorem 2.

Proposition 3.9 Let S = An with n ≥ 6. Set ξ = 6 if n is even, otherwise ξ = 8. Then

Δ(S) ≤ 1

2

(
n2 − 5n + ξ

)
.

Proof Let s = (1,2,3) ∈ S and suppose σ ∈ S is a permutation such that S = 〈s, σ 〉.
Let fix(σ ) be the set of fixed points of σ . Since 〈s, σ 〉 is transitive, |fix(σ )| ≤ 2 and
σ has at most 3 − |fix(σ )| cycles.

First, assume n is even. The following three cases arise:

(i) If |fix(σ )| = 0 then σ has exactly two cycles (since n is even).
(ii) If |fix(σ )| = 1 then σ is an (n − 1)-cycle, and the fixed point is 1,2 or 3.

(iii) If |fix(σ )| = 2 then σ has to be an (n − 2)-cycle, but there are no such permuta-
tions in S (since n is even).

Let k be the number of pairwise non-A-conjugate pairs (s, σ ) such that S = 〈s, σ 〉
and |fix(σ )| = 0. Then k = |F |/|CA(s)|, where F is the set of fixed-point-free per-
mutations σ ∈ S with S = 〈s, σ 〉. Note that F ⊆ T , where

T = {
σ ∈ S : ∣∣fix(σ )

∣∣ = 0, 〈s, σ 〉 is transitive
}
.

As observed above, if 〈s, σ 〉 is transitive and |fix(σ )| = 0 then σ has exactly two
cycles. Let 1 < a ≤ n/2 be an integer and let Ta be the set of permutations σ ∈ S of
shape (a,n − a) such that 〈s, σ 〉 is transitive. Note that T = ⋃n/2

a=2 Ta . It is easy to
check that if a < n/2 then

|Ta| = 3

(
n − 3

a − 1

)
(a − 1)!(n − a − 1)! + 3

(
n − 3

a − 2

)
(a − 1)!(n − a − 1)! = 3(n − 2)!

and similarly

|Tn/2| =
((

n − 3

n/2 − 1

)
+ 2

(
n − 3

n/2 − 2

))
(n/2 − 1)!(n/2 − 1)! = 3

2
(n − 2)!.

We conclude that

|T | =
n/2∑

a=2

|Ta| =
n/2−1∑

a=2

3(n − 2)! + 3

2
(n − 2)! = 3

2
(n − 2)!(n − 3).

In particular, since |CA(s)| = 3(n − 3)!, it follows that

k ≤ 3

2
(n − 2)!(n − 3)/3(n − 3)! = 1

2

(
n2 − 5n + 6

)
.
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Let x = (x1, . . . , xk, xk+1) ∈ Γk+1(S) and y = (y1, . . . , yk, yk+1) ∈ Γk+1(S),
where xi = (1,2,3) and yi = (4,5,6) for all i. (Note that x (and also y) is
a non-isolated vertex in Γ (Sk+1); indeed, by definition of k there exists z =
(z1, . . . , zk+1) ∈ Sk+1 with Sk+1 = 〈x, z〉, where each zi with i ≤ k is a fixed-point-
free permutation, and zk+1 has a single fixed point.) Since xi and yi have disjoint
support, there is no element σ ∈ S with fixed points such that S = 〈xi, σ 〉 = 〈yi, σ 〉.
In particular, if z = (z1, . . . , zk+1) ∈ Sk+1 and Sk+1 = 〈x, z〉 = 〈y, z〉 then each zi

must be fixed-point-free, but the definition of k implies that 〈x, z〉 is a proper sub-
group of Sk+1, a contradiction. We conclude that

Δ(S) ≤ k ≤ 1

2
(n − 2)(n − 3).

A similar argument applies when n is odd. Here the following three cases arise:

(i) If |fix(σ )| = 0 then σ has at most three cycles, so either σ is an n-cycle, or σ

has exactly three cycles.
(ii) If |fix(σ )| = 1 then σ has exactly two cycles, and the fixed point is 1,2 or 3.

(iii) If |fix(σ )| = 2 then σ is an (n − 2)-cycle and fix(σ ) = {1,2}, {1,3} or {2,3}.
Define k, F and T as before, and set

P = {
σ ∈ S : ∣∣fix(σ )

∣∣ = 0, 〈s, σ 〉 is primitive
} ⊆ T .

Note that if n = 3m and σ is a permutation with precisely three cycles of length m

then 〈s, σ 〉 is contained in a maximal imprimitive subgroup of S of type S3 � Sm.
In order to define certain subsets of P and T , set

I = {
a ∈ Z : 0 ≤ a ≤ (n − 3)/2, a �= 1, a �= n/3

}

and

J = {
(a, b) ∈ Z

2 : 2 ≤ a ≤ ⌊
(n − 3)/3

⌋
, a + 1 ≤ b ≤ ⌊

(n − a − 1)/2
⌋}

.

For a ∈ I , let Pa,a (respectively, Ta,a) be the set of permutations σ ∈ S of shape
(a, a,n − 2a) such that 〈s, σ 〉 is primitive (respectively, transitive). Similarly, for
(a, b) ∈ J let Pa,b (respectively, Ta,b) be the set of permutations σ ∈ S of shape
(a, b,n − a − b) such that 〈s, σ 〉 is primitive (respectively, transitive). Note that

P =
⋃

a∈I

Pa,a ∪
⋃

(a,b)∈J

Pa,b ⊆
⋃

a∈I

Ta,a ∪
⋃

(a,b)∈J

Ta,b.

It is straightforward to check that |T0,0| = (n − 1)! and

|Ta,a | = 3

(
n − 3

a − 1

)
(a − 1)!

(
n − a − 2

a − 1

)
(a − 1)!(n − 2a − 1)! = 3(n − 3)!

if a ∈ I is non-zero. Similarly, if (a, b) ∈ J then

|Ta,b| = 6

(
n − 3

a − 1

)
(a − 1)!

(
n − a − 2

b − 1

)
(b − 1)!(n − (a + b) − 1

)! = 6(n − 3)!,
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and we calculate that

|I | =
{

1
2 (n − 3) − 1 if 3 divides n,
1
2 (n − 3) otherwise

and

|J | =
�(n−3)/3�∑

a=2

(⌊
(n − a − 1)/2

⌋ − a
) =

{
1
12 (n2 − 12n + 39) if 3 divides n,
1
12 (n2 − 12n + 35) otherwise.

Therefore,

|P | ≤
∑

a∈I

|Ta,a | +
∑

(a,b)∈J

|Ta,b| = (n − 1)! + 3(n − 3)!(|I | − 1
) + 6(n − 3)!|J |

and thus

k = |F |/3(n − 3)! ≤ |P |/3(n − 3)! ≤
{

1
6 (3n2 − 15n + 22) if 3 divides n,
1
6 (3n2 − 15n + 24) otherwise

since |CA(s)| = 3(n − 3)!. We now complete the argument as in the n even case to
get

Δ(S) ≤ k ≤ 1

2

(
n2 − 5n + 8

)
,

as required. �

By combining Propositions 3.3 and 3.9, we obtain the following quadratic bounds
on Δ(S) when S is an alternating group of odd degree.

Corollary 3.10 If n ≥ 9 is odd then

1

18

(
n2 − 3n + 2

) ≤ Δ(An) ≤ 1

2

(
n2 − 5n + 8

)
.

This completes the proof of Theorem 2. Note that when n is even, Proposition 3.4
provides a linear lower bound on Δ(An). As the next result demonstrates, a quadratic
lower bound can be established in some special cases.

Proposition 3.11 Suppose S = An, where n = 2p with p > 3 a prime. Then

Δ(S) ≥ 1

48
(n − 2)(n − 6).

Proof Let Ch be the Sn-class of permutations in S of shape (a,2p − a), where a =
2h + 1 is odd and 1 ≤ h ≤ (p − 3)/2. Let σ1, σ2 ∈ S be nontrivial permutations and
set

ζ(Ch,σ1, σ2) := {
z ∈ Ch : S = 〈z, σ1〉 = 〈z, σ2〉

}
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and

ζ(Ch) = min
{∣∣ζ(Ch,σ1, σ2)

∣∣ : σ1, σ2 ∈ S#}.

Note that ζ(Ch) = |Ch|η(Ch) (see (3)). Since a is odd and a ≤ p − 2, it follows that
the integers a and 2p − a are coprime, whence S = 〈z, σi〉 if and only if 〈z, σi〉 is
transitive. We claim that

ζ(Ch) ≥ 3

(
n − 4

a − 2

)
(a − 1)!(n − a − 1)!. (6)

Clearly, in order to establish this lower bound, we may assume that each σi has
prime order. Write σ1 = σ1,1 · · ·σ1,r and σ2 = σ2,1 · · ·σ2,s as disjoint cycles, where
each σi,j has prime length. There are two cases to consider.

First, suppose σ1,i = σ2,j for some i, j . In this case,

∣∣ζ(Ch,σ1, σ2)| ≥ 2

(
n − 2

a − 1

)
(a − 1)!(n − a − 1)! = 2(n − 2)!,

and the desired bound follows.
Now assume σ1,i �= σ2,j for all i, j . Given π ∈ Sn, let supp(π) denote the sup-

port of π . Then there exists {x1, x2} ∈ supp(σ1,1) and {y1, y2} ∈ supp(σ2,1) such that
either {x1, x2} ∩ {y1, y2} = ∅ or {x1, x2} ∩ {y1, y2} = {x1} = {y1}. In the former situ-
ation, we have

∣∣ζ(Ch,σ1, σ2)
∣∣ ≥ 4

(
n − 4

a − 2

)
(a − 1)!(n − a − 1)!,

while in the latter case we calculate that
∣∣ζ(Ch,σ1, σ2)

∣∣ ≥
((

n − 3

a − 1

)
+

(
n − 3

a − 2

))
(a − 1)!(n − a + 1)!

≥ 3

(
n − 4

a − 2

)
(a − 1)!(n − a − 1)!.

This establishes the lower bound in (6).
Now Lemma 3.1 states that α(S) = 3(n − 3)!, so Proposition 2.2 yields

Δ(S) ≥
1
2 (p−3)∑

h=1

ζ(Ch)

6(n − 3)! .

Finally, by using the lower bound on ζ(Ch) in (6), we calculate that

Δ(S) ≥
1
2 (p−3)∑

h=1

3
(2p−4

2h−1

)
(2h)!(2p − 2h − 2)!
6(2p − 3)! = (p − 1)(p − 3)(2p − 1)

12(2p − 3)

≥ 1

48
(n − 2)(n − 6),

as required. �
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4 Sporadic groups

Proposition 4.1 The conclusion to Theorem 1 holds if S is a sporadic group.

Proof Let S be a sporadic simple group and let z ∈ S be an element in the S-class
recorded in the second column of [5, Table 7]. Then [5, Lemma 6.1] states that C =
zA has the UST property with corresponding constant η(C) ≥ 1/3 (see (3)) and the
desired bound Δ(S) ≥ 2 quickly follows from Proposition 2.2. (Note that α(S) can
be easily calculated from the character table of S – see [10].) For example, if S = M11
and we take C = zS to be the class 11A then |C| = 720, η(C) = 1/3, α(S) = 48 and
we deduce that Δ(S) ≥ 3. The remaining cases are entirely similar. �

5 Classical groups

In this section, we establish Theorems 1 and 3 for classical groups.

Proposition 5.1 Let S be a finite simple classical group over Fq with automorphism
group A. Write q = pf where p is a prime. Then α(S) ≤ Λ, where Λ is given in
Table 2.

Proof Let G = Inndiag(S) be the group of inner-diagonal automorphisms of S. De-
fine d and Q as in Table 2. Let x ∈ S be an element of prime order and define the
integer ν(x) as in [8, Definition 3.16] (so ν(x) is the codimension of the largest
eigenspace of a lift x̂ ∈ GL(V ) of x on V ⊗ F̄q , where V is the natural S-module).
Note that CA(x) ≤ CA(xi) for all i ≥ 1, so we only need to consider elements of
prime order.

First, assume S = PSLn(q). If n = 2 then it is easy to check that |CG(x)| ≤
d(q + 1) and thus |CA(x)| ≤ df (q + 1) since |A : G| = f . If n ≥ 3 then [8, Corol-
lary 3.38] implies that |xG| > 1

2q2n−2, so |CG(x)| < 2qn2−2n+1 (since |G| < qn2−1),

Table 2 Upper bounds α(S) ≤ Λ, S classical

S Conditions Λ

PSLn(q) n ≥ 3 4f qn2−2n+1

PSL2(q) df (q + 1)

PSUn(q) n ≥ 3 4f Qqn2−2n+1

PSpn(q) n ≥ 6 f q
1
2 n(n−1)

PSp4(q)′ 2f q2(q2 − 1)2

PΩε
n(q) n ≥ 8, n even, (n, ε) �= (8,+) 8f Qq

1
2 n2− 5

2 n+6

PΩ+
8 (q) 6f q18

Ωn(q) nq odd, n ≥ 7 4f q
1
2 n2− 3

2 n+1

d = (2, q − 1), f = logp q , Q = (q + 1)/q
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and we deduce that |CA(x)| < 4f qn2−2n+1 since |A : G| = 2f . An entirely similar
argument applies when S is a unitary group.

Next suppose S = PSpn(q)′. First, observe that if x is a transvection then

∣∣xG
∣∣ = |Spn(q)|

|Spn−2(q)|q2n−1
= qn − 1.

Now, if n = 4 and q is even then it is easy to check that |CG(x)| is maximal when
x is a transvection, so |CG(x)| ≤ q4(q2 − 1) and thus |CA(x)| ≤ f q4(q2 − 1) (note
that a transvection is not centralized by a graph automorphism of S). On the other
hand, if n = 4 and q is odd then |CG(x)| ≤ 2|Sp2(q)|2 = 2q2(q2 − 1)2, so |CA(x)| ≤
2f q2(q2 − 1)2. Now assume n ≥ 6. If x is not a transvection then ν(x) ≥ 2 and thus
[8, Corollary 3.38] yields |xG| > 1

4Q−1q2n−4. We deduce that transvections have the
largest centralizers, so |CG(x)| < qn(n−1)/2 and thus |CA(x)| < f qn(n−1)/2.

Finally, let us assume S is an orthogonal group. If n is even and (n, ε) �= (8,+)

then we apply [8, Corollary 3.38] as before, noting that ν(x) ≥ 2 since x ∈ S. Simi-
larly, if (n, ε) = (8,+) then |xG| is minimal when x is a long root element, in which
case |CG(x)| = q12(q2 − 1)3 and thus |CA(x)| < 6f q18 since |A : G| = 6f . Fi-
nally, suppose n is odd. We claim that |CG(x)| < 2qn2/2−3n/2+1. If ν(x) ≥ 2 then [8,
Corollary 3.38] gives |xG| > 1

4Q−1q2n−6 and the claim follows. On the other hand, if

ν(x) = 1 then x is an involution and |CG(x)| ≤ 2|SO−
n−1(q)| < 2qn2/2−3n/2+1. This

justifies the claim, and we conclude that |CA(x)| < 4f qn2/2−3n/2+1. �

Proposition 5.2 The conclusions to Theorems 1 and 3 hold when S = PSLn(q).

Proof First, assume n = 2. If q < 29 (and q �= 9) then Proposition 2.3 applies, so
we may assume q ≥ 29 (note that PSL2(9) ∼= A6, so Proposition 3.2 applies in this
case). Then Proposition 5.1 states that α(S) ≤ df (q + 1), and [5, Proposition 5.24]
provides an A-class C with η(C) ≥ 1/3 (see (3)) and |C| ≥ q(q − 1). Therefore, by
applying Proposition 2.2, we deduce that

Δ(S) ≥
⌈

q(q − 1)

6df (q + 1)

⌉
≥ 2.

Now consider the general case n ≥ 3. Here α(S) ≤ 4f qn2−2n+1 and, by inspecting
[5, Table 5 and Sect. 5.12], we see that there exists an A-class C of regular semisim-
ple elements with η(C) ≥ 1/3. Therefore, |C| > 1

2qn(n−1), and thus Proposition 2.2
implies that

Δ(S) ≥
⌈

qn−1

48f

⌉
.

This bound is sufficient unless n = 3 (with q < 11), n = 4 (with q < 5) or (n, q) =
(5,2), (6,2). In each of these exceptional cases, Proposition 2.3 applies. �

Remark 5.3 The lower bounds obtained in the proof of Proposition 5.2 are good
enough to establish Theorems 1 and 3 when S = PSLn(q), but they can be improved.
For example, suppose S = PSLn(q) with n ≥ 12. Let z ∈ S be a regular semisimple
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element which lifts to an element ẑ ∈ SLn(q) of order lcm(qe −1, qn−e −1)/(q −1),
where

e =

⎧
⎪⎨

⎪⎩

(n + 1)/2 if n is odd,

n/2 + 2 if n ≡ 2 (mod 4),

n/2 + 1 if n ≡ 0 (mod 4).

(Here ẑ preserves a decomposition V = U ⊕ W of the natural SLn(q)-module V ,
acting irreducibly on both U and W , with dimU = e. Also note that (e, n − e) = 1.)
By [5, Proposition 5.23], the S-class C = zS has the UST property, with η(C) ≥ 1/2.
Indeed, ẑ is contained in exactly two maximal subgroups of SLn(q); namely, the
stabilizers of the subspaces U and W . Let N be the number of distinct A-classes in
S containing regular semisimple elements of this form. By considering the possible
eigenvalues of ẑ (in F̄q ), it is easy to see that

N ≥ φ((qe − 1)/(q − 1))

e
· φ((qn−e − 1)/(q − 1))

n − e
· 1

|Out(S)| =: N ′

where φ is the Euler totient function. Therefore, by arguing as in the proof of Propo-
sition 5.2, using Proposition 2.2, we obtain a better lower bound

Δ(S) ≥
⌈

qn−1N ′

48f

⌉
.

By carefully inspecting [5, Sect. 5], similar lower bounds on the number of A-classes
with the UST property can be derived for any classical group S. However, we do not
have a good upper bound on Δ(S) when S is a group of Lie type, so the accuracy of
the improved lower bounds is difficult to determine.

Proposition 5.4 The conclusions to Theorems 1 and 3 hold when S = PSUn(q).

Proof If n = 3 (and q < 11), n = 4 (and q < 5) or (n, q) = (5,2), (6,2) then Propo-
sition 2.3 applies, so let us assume otherwise. By inspecting [5, Propositions 5.21,
5.22], it follows that there exists an A-class C with η(C) ≥ 1/3 and

|C| ≥ |GUn(q)|
(qn−1 + 1)(q + 1)

>
1

2

(
qn−1

qn−1 + 1

)
qn(n−1).

As before, by applying Proposition 2.2 and the upper bound on α(S) recorded in
Table 2, we deduce that

Δ(S) ≥
⌈

1

48f

(
q

q + 1

)(
qn−1

qn−1 + 1

)
qn−1

⌉
.

This bound is sufficient unless (n, q) = (7,2). Here

α(S) = 212
∣∣GU5(2)

∣∣, |C| ≥ |GU7(2)|
27 + 1
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(see [5, Proposition 5.21]), and, by applying Proposition 2.2, we deduce that
Δ(S) ≥ 6. �

Proposition 5.5 The conclusions to Theorems 1 and 3 hold when S = PSpn(q)′.

Proof First, assume n = 4. If 2 < q < 5 then Proposition 2.3 applies (see Proposi-
tion 3.2 for the case q = 2, since PSp4(2)′ ∼= A6). Suppose q ≥ 5. By [5, Propositions
5.8, 5.12], there exists an A-class C with |C| ≥ q4(q2 − 1)2 and η(C) ≥ 1/3. In the
usual way, via Propositions 2.2 and 5.1, we deduce that Δ(S) ≥ �q2/12f � and the
result follows.

Now assume n ≥ 6. The case q = 2 requires special attention; indeed, this is one of
the exceptional cases recorded in [5, Theorem 1.1]. By [5, Proposition 5.8], if z ∈ S is
an irreducible element of order 2n/2 +1 then C = zS has the UST property. Now there
are precisely φ(2n/2 + 1)/n distinct A-classes of such elements, so Proposition 2.1
implies that

Δ(S) ≥ 1

n
φ
(
2n/2 + 1

)
.

It is easy to check that this bound implies that Δ(S) ≥ 2 when 8 ≤ n ≤ 14. In general,
if we write 2n/2 + 1 = ∏

i p
ai

i , where the pi are distinct primes, then

φ
(
2n/2 + 1

) =
∏

i

φ
(
p

ai

i

) =
∏

i

p
ai−1
i (pi − 1) ≥

∏

i

p
ai/2
i = (

2n/2 + 1
) 1

2 .

The subsequent bound

Δ(S) ≥
⌈

1

n

(
2n/2 + 1

) 1
2

⌉

is sufficient for all n ≥ 16. The case (n, q) = (6,2) is covered by Proposition 2.3.
Finally, let us assume n ≥ 6 and q ≥ 3. By inspecting [5, Propositions 5.8, 5.10,

5.12], we see that there exists an A-class C with η(C) ≥ 1/3 and

|C| ≥ |Spn(q)|
(qn/2−1 + 1)(q + 1)

>
1

2

(
qn/2−1

qn/2−1 + 1

)
q

1
2 n2

.

The desired result now follows in the usual way via Proposition 2.2, using the upper
bound on α(S) given in Table 2. �

Proposition 5.6 The conclusions to Theorems 1 and 3 hold when S = PΩε
n(q).

Proof We may assume n ≥ 7. First, suppose (n, ε) = (8,+). If q = 2 then Propo-
sition 2.3 applies. Now if q = 3 then [5, Table 3] indicates that there is an A-class
C = zA in S with the UST property, where |z| = 20 and η(C) ≥ 2(1 − 195/455) =
67/455 (here z preserves an orthogonal decomposition 8+ = 4− ⊥ 4− of the natural
S-module into nondegenerate 4-spaces of minus type). We calculate that

|C| = 3
|SO+

8 (3)|
34 − 1

, α(S) = 6
∣∣Sp2(3)

∣∣∣∣SO+
4 (3)

∣∣39,
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and thus Proposition 2.2 implies that Δ(S) ≥ 34. Similarly, if q = 4 then [5, Table 3]
provides an A-class C = zA in S with |z| = 65 (preserving a decomposition 8+ =
2− ⊥ 6−), η(C) ≥ 1/3 and

|C| = 3
|SO+

8 (4)|
(43 + 1)(4 + 1)

, α(S) = 3
∣∣Sp2(4)

∣∣∣∣SO+
4 (4)

∣∣49.

Once again, the desired result follows by applying Proposition 2.2.
Next assume (n, ε) = (8,+) and q ≥ 5. By [5, Lemma 5.15], there is an A-class

C with

|C| ≥ |SO+
8 (q)|

(2, q)(q2 + 1)2
>

1

2

(
q2

q2 + 1

)2

q24

and η(C) ≥ 1/3. According to Proposition 5.1, we have α(S) ≤ 6f q18, so Proposi-
tion 2.2 implies that

Δ(S) ≥
⌈

1

72f

(
q2

q2 + 1

)2

q6
⌉
.

It is easy to check that this bound is always sufficient.
For the remainder we may assume that (n, ε) �= (8,+). We first deal with the case

where n is odd and q = 3. Note that if n ≡ 1 (mod 4) then S is one of the exceptional
cases recorded in [5, Theorem 1.1]. In view of Proposition 2.3, we may assume that
n ≥ 9. By [5, Propositions 5.7, 5.19], there is an A-class C in S such that

|C| ≥ |SOn(3)|
3(3(n−3)/2 + 1)

>
1

2

(
3(n−3)/2

3(n−3)/2 + 1

)
3

1
2 n2−n+ 1

2

and η(C) ≥ 1/3. By combining this lower bound with the upper bound on α(S) given
in Proposition 5.1, we quickly deduce that Proposition 2.2 yields

Δ(S) ≥
⌈

1

48f

(
3(n−3)/2

3(n−3)/2 + 1

)
3

1
2 (n−1)

⌉

and this bound is sufficient unless n = 9. Here α(S) = 2|SO+
8 (3)| and there is an

A-class C such that η(C) ≥ 1/3 and |C| = |SO9(3)|/82 (see [5, Proposition 5.7]). In
the usual way, via Proposition 2.2, we deduce that Δ(S) ≥ 7.

The remaining cases are very similar. By inspecting [5, Sections 5.6, 5.8, 5.9], it
follows that there is an A-class C = zA in S of regular semisimple elements such that
η(C) ≥ 1/3 and

|C| ≥ |SOε
n(q)|

(2, q)(q + 1)3qr−3
>

1

2

(
q

q + 1

)3

q
1
2 n2−n+ι,

where r denotes the rank of S, and ι = 1/2 if n is odd, otherwise ι = 0. The result
now follows in the usual way, via Propositions 5.1 and 2.2. For example, if n is even
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Table 3 Upper bounds α(S) ≤ Λ, S exceptional

S E8(q) E7(q) E6(q) F4(q) G2(q)′
Λ f q57|E7(q)| f q33|SO+

12(q)| 2f q21|SL6(q)| f q15|Sp6(q)| 2f |SU3(q)|
2E6(q) 2F4(q)′ 2G2(q)′ 2B2(q), q > 2 3D4(q)

2f q21|SU6(q)| f q10|2B2(q)| f q3 f q2 3f q9|SL2(q3)|

f = logp q

then we deduce that

Δ(S) ≥
⌈

1

96f

(
q

q + 1

)4

q
3
2 n−6

⌉
,

and this bound is sufficient unless (n, q) = (8,2), which is one of the cases handled
in Proposition 2.3. �

6 Exceptional groups

Here we complete the proof of Theorems 1 and 3 by dealing with the exceptional
groups of Lie type.

Proposition 6.1 Let S be a finite simple exceptional group of Lie type over Fq , where
q = pf with p a prime. Then α(S) ≤ Λ, where Λ is given in Table 3.

Proof Detailed information on the conjugacy classes in S can be found in the liter-
ature, and the result follows by inspecting the relevant lists of conjugacy class sizes.
For example, let S = E8(q) and let x ∈ S be an element of prime order. The sizes of
the unipotent classes in S are conveniently listed in [20, Table 22.2.1], and it is easy
to see that |CS(x)| ≤ q57|E7(q)|, with equality if and only if x is a long root element.
For semisimple x, the possibilities for |CS(x)| are listed in [16] and it is easy to check
that |CS(x)| ≤ |E7(q)||SL2(q)|. Since |A : S| = f (where A = Aut(S)) we conclude
that α(S) ≤ f q57|E7(q)| as claimed. The other cases are very similar and we leave
the reader to check the details. (See [15, 20] for the sizes of conjugacy classes in
E7(q) and Eε

6(q); [24, 26] for F4(q), [9, 14] for G2(q), [25] for 2F4(q), [30] for
2G2(q), [29] for 2B2(q) and [12, 27] for 3D4(q).) �

Proposition 6.2 The conclusion to Theorem 1 holds when S is a finite simple excep-
tional group of Lie type.

Proof By [5, Lemma 6.2], there exists an A-class C = zA of regular semisimple
elements in S with η(C) ≥ 1/3 (see [17, Propositions 6.1, 6.2]). The desired result
now follows via Proposition 2.2, using the upper bound on α(S) in Proposition 6.1
and a suitable lower bound on |C|. For example, suppose S = G2(q)′. If q = 2 then
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S ∼= PSU3(3) and thus Proposition 5.4 applies. For q > 2 we have |C| > 1
2Q−2q12

(where Q = (q + 1)/q as before) and α(S) < 2f q8, so Proposition 2.2 yields

Δ(S) ≥
⌈

1

24f

(
q

q + 1

)2

q4
⌉
.

It is easy to check that this bound gives the desired result. Similarly, if S = 2G2(q)′
(so that q = 32m+1 for some positive integer m) then

|C| ≥ |2G2(q)|
(q1/2 + 1)2

>
1

2

(
q1/2

q1/2 + 1

)2

q6,

and we deduce that

Δ(S) ≥
⌈

1

12f

(
q1/2

q1/2 + 1

)2

q2
⌉
.

This bound is sufficient if q > 3, while Proposition 5.2 applies if q = 3 (since S ∼=
PSL2(8)). The remaining cases are entirely similar. �

This completes the proof of Theorems 1 and 3.
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