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Abstract An important property of strongly regular graphs is that the second subcon-
stituent of any primitive strongly regular graph is always connected. Brouwer asked
to what extent this statement can be generalized to distance-regular graphs. In this
paper, we show that if γ is any vertex of a distance-regular graph Γ and t is the index
where the standard sequence corresponding to the second largest eigenvalue of Γ

changes sign, then the subgraph induced by the vertices at distance at least t from γ ,
is connected.
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1 Introduction

Let Γ be a distance-regular graph of diameter d . (For notation and definitions related
to distance-regular graphs, see [4].) For primitive strongly regular graphs (the case
d = 2) it is known that Γ2(γ ), the subgraph of Γ induced by the vertices at distance
2 from a given vertex γ (also called the second subconstituent of γ ), is connected.
See [4, p. 86] or [3, Proposition 9.3.1] for an eigenvalue proof due to Haemers or [6]
for a combinatorial proof of this fact. The properties of the second subconstituents
of strongly regular graphs have been studied by many authors [3–6, 8] and their con-
nectedness is a very important property of strongly regular graphs (cf. [3, Sect. 12.6]).

S.M. Cioabă (�)
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During the GAC5 conference [2] (see also [1]), Andries Brouwer asked whether
this could be generalized to a statement that for general Γ and suitable t , the subgraph
Γ≥t (γ ) is connected, where Γ≥t (γ ) is the subgraph of Γ induced by the vertices of
distance at least t to γ . In this paper, we show that one can take for t the position
where the standard sequence corresponding to the second largest eigenvalue changes
sign.

2 Results

Let the distance-regular graph Γ have intersection array {b0, . . . , bd−1; c1, . . . , cd}
and put k = b0, ai = k − bi − ci as usual. Define the tridiagonal matrices

Li =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 b0
c1 a1 b1

c2 a2 b2
· · ·

· · ·
ci−1 ai−1 bi−1

ci ai

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

and

Mi =

⎡
⎢⎢⎢⎢⎢⎢⎣

ai bi

ci+1 ai+1 bi+1
· · ·

· · ·
cd−1 ad−1 bd−1

cd ad

⎤
⎥⎥⎥⎥⎥⎥⎦

.

Let ρi be the largest eigenvalue of Li , and let σi be the largest eigenvalue of Mi . For
γ ∈ V (Γ ), Γ≤i (γ ) denotes the subgraph of Γ induced by the vertices of distance
at most i from γ and Γ≥i (γ ) denotes the subgraph of Γ induced by the vertices at
distance at least i from γ . Then ρi is the largest eigenvalue of the subgraphs Γ≤i (γ )

of Γ , and σi is the largest eigenvalue of the subgraphs Γ≥i (γ ) of Γ .

Proposition 1 (i) The ρi are increasing: ρi < ρj when 0 ≤ i < j ≤ d .
(ii) The σi are decreasing: σi > σj when 0 ≤ i < j ≤ d .
(iii) ρi ≤ σd−i for 0 ≤ i ≤ d .

Proof The Perron–Frobenius Theorem (see [4, Sect. 3.1], [7, Sect. 2.6] or [8,
Sect. 8.8]) tells us that the largest eigenvalue of a graph is at least as large as the
largest eigenvalue of a subgraph, and this gives (iii) because Γ≤i (δ) is a subgraph of
Γ≥d−i (γ ) when d(γ, δ) = d . That theorem moreover says that the inequality is strict
for a proper subgraph of a connected graph, and this gives (i) because all Γ≤i (δ) are
connected, and also (ii) because each connected component of Γ≥j (γ ) is a proper
subgraph of some connected component of Γ≥i (γ ). �

Let L = Ld = M0. Let Γ have the d + 1 distinct eigenvalues k = θ0 > θ1 >

· · · > θd . Then the θi are the eigenvalues of the matrix L. The standard sequence
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u = (u0, . . . , ud)� of an eigenvalue θ of Γ is the corresponding right eigenvector
of L, so that Lu = θu, normalized such that u0 = 1. From now on, let u denote the
standard sequence of the second largest eigenvalue θ1 of Γ . It is known that it has
precisely one sign change (see [4, Chap. 4]). In particular, ud < 0.

Proposition 2 Let 1 ≤ t ≤ d − 1.

(i) If ut = 0, then ρt−1 = θ1 = σt+1.
(ii) If ut > 0, then ρt−1 < θ1 < σt+1.

(iii) If ut < 0, then ρt−1 > θ1 > σt+1.’

Proof Since the ρi are increasing, and the σi are decreasing, when proving (ii) we
may assume that t is the largest index for which ut > 0, and when proving (iii) we
may assume that t is the smallest index for which ut < 0.

Let x = (u0, . . . , ut−1)
� and y = (ut+1, . . . , ud)�. Now v := Lt−1x − θ1x =

(0, . . . ,0,−bt−1ut )
�, and the last component of v is zero, negative, resp. positive

in the three cases of the proposition. Let z� be a positive left eigenvector of Lt−1
for its largest eigenvalue ρt−1. We see that (ρt−1 − θ1)z

�x = z�v is zero, negative,
positive in the three cases, while z�x > 0. This proves the left-hand inequalities.

Similarly, w := Mt+1y − θ1y = (−ct+1ut ,0, . . . ,0)�, and the first component
of w is zero, negative, resp. positive in the three cases of the proposition. Let z�
be a positive left eigenvector of Mt+1 for its largest eigenvalue σt+1. We see that
(σt+1 − θ1)z

�y = z�w is zero, negative, positive in the three cases, while z�y < 0.
This proves the right-hand inequalities. �

Since ρi ≤ σj when i +j ≤ d , and ρi < σj when i +j < d , it follows that t > d/2
when ut < 0, and t ≥ d/2 when ut ≤ 0. See also [10] for some related results.

Theorem 3 Let Γ be a distance-regular graph of diameter d > 0. Let u =
(u0, . . . , ud)� be the standard sequence corresponding to the second largest eigen-
value of Γ . If ut−1 > 0, then Γ≥t (γ ) is connected for each vertex γ of Γ .

Proof Let H := Γ≥t (γ ), and let AH be its adjacency matrix. Let C be a connected
component of H . Let z be a positive eigenvector of Mt (indexed by {t, . . . , d}) for
its largest eigenvalue σt . The vector y defined by yδ = zd(γ,δ) for δ ∈ C, and yδ = 0
for δ ∈ V (H) \ C is an eigenvector of H with eigenvalue σt > θ1. By eigenvalue
interlacing (see [4, Sect. 3.3], [3, Sect. 2.5], [7, Chap. 5] or [8, Chap. 9]), H can have
at most a single eigenvalue larger than θ1, so H has only one connected component. �

3 Final remarks and open problems

The result stated in the introduction that the second subconstituent of a primitive
strongly regular graph is connected, can be deduced from our work. The standard
sequence u = (u0, u1, u2) corresponding to the second largest eigenvalue θ1 of con-
nected strongly regular graph has a sign change at u1 (as u0 = 1, u1 = θ1/k and u2
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is negative) unless θ1 ≤ 0. This happens if and only if the connected strongly regular
graph is a complete multipartite graph.

We remark that there are many distance-regular graphs Γ of diameter d ≥ 3 with
the property that the subgraph induced by Γd(γ ) is not connected for any γ ∈ V (Γ ).
If Γ is a distance-regular graph with kd > 1 and ad = 0, then Γd(γ ) will be dis-
connected for any γ ∈ V (Γ ). Distance-regular graphs having this property include
antipodal r-covers with r ≥ 3 and bipartite distance-regular graphs with kd �= 1, but
there are also primitive examples. The Patterson graph [4, p. 410] (for d = 4), the
Livingstone graph [4, p. 406] (for d = 4) and the Biggs–Smith graph [4, p. 403] (for
d = 7) all have kd > 1 and ad = 0. The Coxeter graph [4, p. 382] has d = 4, kd = 6
and ad = 1 (and thus Γ4(γ ) is isomorphic to 3K2). The Sylvester graph [4, p. 394]
has d = 3, kd = 10 and ad = 1 (and thus Γ3(γ ) is isomorphic to 5K2). The Odd graph
Γ = Od+1 [4, p. 259] is the graph whose vertex set is formed by all d-subsets of a set
with 2d + 1 elements, where two d-subsets are adjacent if and only if they are dis-
joint. This graph is distance-regular with degree d + 1, diameter d and ad = � d+1

2 �.
For d ≥ 3, one can check easily that the subgraph induced by Γd(γ ) is disconnected
for any γ ∈ V (Γ ).

If d ∈ {3,4}, then our results imply that the induced subgraph on Γd−1(γ )∪Γd(γ )

is connected for any γ ∈ V (Γ ), unless d = 4 and Γ is an antipodal r-cover for
r ≥ 3. All the known primitive distance-regular graphs that we have checked have
Γd−1(γ ) ∪ Γd(γ ) connected. Is this statement true for all primitive distance-regular
graphs? We showed it for diameter up to 4. If d = 2s + 1, then it is not clear when
Γ≥s+1(γ ) is disconnected.

The Johnson graph J (n, d) has as vertices the subsets of order d of a set with n

elements with two such subsets being adjacent if their intersection has size d −1. It is
well known that J (n, d) is a distance-regular graph of diameter d and degree d(n−d)

having bj = (d−j)(n−d−j) and cj = j2 for each 0 ≤ j ≤ d (see [4, Sect. 9.1]). For
every γ ∈ V (J (n, d)), the induced subgraph Γd(γ ) is connected as is isomorphic to
J (n−d, d). When n > d2, we can deduce that Γd(γ ) is connected using our previous
results. The standard sequence corresponding to θ1 = (d −1)(n−d −1)−1 = b1 −1
is ui = 1 − in

d(n−d)
for 0 ≤ i ≤ d (see [4, Proposition 4.4.9]). It follows easily that if

n divides d(n − d), then the standard sequence has a zero ut , where t = d(n−d)
n

. If

n does not divide d(n − d), then ut−1 > 0 and ut < 0, when t = � d(n−d)
n

�. Thus,
when n > d2, then ud−1 > 0 and ud < 0 which implies Γd(γ ) is connected for every
γ ∈ V (J (n, d)). However, when n = 4t − 3, d = 2t − 2, we obtain ut−1 > 0 and
ut < 0. Also, when n = 4t − 1, d = 2t − 1, we obtain ut−1 > 0 and ut < 0.

The Hamming graph H(d,q) has as vertex set the Cartesian product Qd , where
Q is a set of q elements. Two vertices of H(d,q) are adjacent if they differ in exactly
one position. It is well known that H(d,q) is a distance-regular graph of diameter d

and degree d(q − 1) having bj = (d − j)(q − 1), cj = j for each 0 ≤ j ≤ d (see [4,
Sect. 9.2]). For every γ ∈ V (H(d, q)), the induced subgraph Γd(γ ) is connected as
is isomorphic to H(d,q −1). When q > d , we can use our previous results to deduce
that Γd(γ ) is connected. The standard sequence corresponding to θ1 = dq − d − q =
b1 − 1 is ui = 1 − iq

d(q−1)
for 0 ≤ i ≤ d (see [4, Proposition 4.4.9]). It follows that

if q divides d , then the standard sequence has a zero ut , where t = d(q−1)
q

. If q does
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not divide d , then ut−1 > 0 and ut < 0, when t = � d(q−1)
q

�. Thus, when q > d , then
ud−1 > 0 and ud < 0 which implies Γd(γ ) is connected for every γ ∈ V (H(d, q)).
However, when q = 2, d = 2t − 1, then ut−1 > 0 and ut < 0.

Motivated by the previous results, we call a distance-regular graph Γ of diame-
ter d a generalized Shilla graph if the standard sequence corresponding to the sec-
ond largest eigenvalue of Γ contains a zero. When d = 3, this notion is the same
as the notion of Shilla graph introduced by Koolen and Park in [9]. The previous
examples show that many distance-regular graphs such as Hamming graphs or John-
son graphs are generalized Shilla graphs. It would be interesting to determine what
other distance-regular graphs are generalized Shilla graphs. A related problem would
be to classify all the distance-regular graphs of diameter d = 3 such that Γd(γ ) is
disconnected for some γ ∈ V (Γ ). Such graphs would have to satisfy the condi-
tion u2 ≤ 0. The case u2 = 0 is particularly interesting and these graphs will have

θ1 = a3 = a1+
√

a2
1+4k

2 (see Koolen and Park [9] for more details on such graphs).
Another problem worth investigating is the relation between the index t , where the
standard sequence corresponding to θ1 changes its sign, and the index s such that
ks = max0≤i≤d ki . If θ1 < k/2, then one can show that ut−1 ≥ 0 and ut < 0 imply
that bt−2 ≥ k − θ1 > k/2 and ct+1 > k − θ1 > k/2. This shows that bt−3 > ct−2 and
ct+2 > bt+1 and hence kt−3 < kt−2 and kt+1 > kt+2. Thus, when θ1 < k/2, the pa-
rameter s satisfies t − 2 ≤ s ≤ t + 1. It would be interesting to determine how far
apart can these parameters be in general.
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