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Abstract We produce skew Pieri rules for Hall–Littlewood functions in the spirit of
Assaf and McNamara (J. Comb. Theory Ser. A 118(1):277–290, 2011). The first two
were conjectured by the first author (Konvalinka in J. Algebraic Comb. 35(4):519–
545, 2012). The key ingredients in the proofs are a q-binomial identity for skew
partitions and a Hopf algebraic identity that expands products of skew elements in
terms of the coproduct and the antipode.

Keywords Pieri rules · Hall–Littlewood functions

Let Λ[t] denote the ring of symmetric functions over Q(t), and let {sλ} and {Pλ(t)}
denote its bases of Schur functions and Hall–Littlewood functions, respectively, in-
dexed by partitions λ. The Schur functions (which are actually defined over Z) lead a
rich life, making appearances in combinatorics, representation theory, and Schubert
calculus, among other places. See [5, 9] for details. The Hall–Littlewood functions
are nearly as ubiquitous (having as a salient feature that Pλ(t) → sλ under the spe-
cialization t → 0). See [8] and the references therein for their place in the literature.
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A classical problem is to determine cancellation-free formulas for multiplication
in these bases,

sλ sμ =
∑

ν

c ν
λ,μ sν and Pλ Pμ =

∑

ν

f ν
λ,μ(t)Pν.

The first problem was only given a complete solution in the latter half of the 20th
century, while the second problem remains open. Special cases of the problem, known
as Pieri rules, have been understood for quite a bit longer.

The Pieri rules for Schur functions [9, Chap. I, (5.16) and (5.17)] take the form

sλ s1r = sλ er =
∑

λ+
sλ+ , (1)

with the sum over partitions λ+ for which λ+/λ is a vertical strip of size r , and

sλ sr =
∑

λ+
sλ+ , (2)

with the sum over partitions λ+ for which λ+/λ is a horizontal strip of size r . (See
Sect. 1 for the definitions of vertical and horizontal strips.)

The Pieri rules for Hall–Littlewood functions [9, Chap. III, (3.2) and (5.7)] state
that

Pλ P1r = Pλ er =
∑

|λ+/λ|=r

vsλ+/λ(t)Pλ+ (3)

and

Pλ qr =
∑

|λ+/λ|=r

hsλ+/λ(t)Pλ+ , (4)

with the sums again running over vertical strips and horizontal strips, respectively.
Here qr denotes (1 − t)Pr for r > 0 with q0 = P0 = 1, and vsλ/μ(t), hsλ/μ(t) are
certain polynomials in t . (See Sect. 1 for their definitions, as well as those of skλ/μ(t)

and brλ/μ(t) appearing below.)
In many respects (beyond the obvious similarity of (2) and (4)), the qr play the

same role for Hall–Littlewood functions that the sr play for Schur functions. Still, one
might ask for a link between the two theories. The following generalization of (2),
which seems to be missing in the literature, is our first result (Sect. 1).

Theorem 1 For a partition λ and r ≥ 0, we have

Pλ sr =
∑

λ+
skλ+/λ(t)Pλ+ , (5)

with the sum over partitions λ+ ⊇ λ for which |λ+/λ| = r .

The main focus of this article is on the generalizations of Hall–Littlewood func-
tions to skew shapes λ/μ. Our specific question about skew Hall–Littlewood func-
tions is best introduced via the recent answer for skew Schur functions sλ/μ. In [3],
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Assaf and McNamara give a skew Pieri rule for Schur functions. They prove (bijec-
tively) the following generalization of (2):

sλ/μ sr =
∑

λ+,μ−
(−1)|μ/μ−|sλ+/μ− , (6)

with the sum over pairs (λ+,μ−) of partitions such that λ+/λ is a horizontal strip,
μ/μ− is a vertical strip, and |λ+/λ| + |μ/μ−| = r . This elegant gluing-together of
an sr -type Pieri rule for the outer rim of λ/μ with an er -type Pieri rule for the inner
rim of λ/μ demanded further exploration.

Before we survey the literature that followed the Assaf–McNamara result, we call
attention to some work that preceded it. The skew Schur functions do not form a basis;
so, from a strictly ring-theoretic perspective (or representation-theoretic, or geomet-
ric), it is more natural to ask how the product in (6) expands in terms of Schur func-
tions. This answer, and vast generalizations of it, was provided by Zelevinsky [12].
In fact, (6) provides such an answer as well, since

sλ+/μ− =
∑

ν

cλ+
μ−,ν

sν

and the coefficients cλ+
μ−,ν

are well understood, but the resulting formula has an enor-
mous amount of cancellation, while Zelevinsky’s one is cancellation-free. It is an
open problem to find a representation-theoretic (or geometric) explanation of (6).

Remark As an example of the type of explanation we mean, recall Zelevinsky’s real-
ization [13] of the classical Jacobi–Trudi formula for sλ (λ � n) from the resolution
of a well-chosen polynomial representation of GLn. See also [1, 4].

Returning to the literature that followed [3], Lam, Sottile, and the second au-
thor [7] found a Hopf algebraic explanation for (6) that readily extended to many
other settings. A skew Pieri rule for k-Schur functions was given, for instance, as
well as one for (noncommutative) ribbon Schur functions. Within the setting of Schur
functions, it provided an easy extension of (6) to products of arbitrary skew Schur
functions—a formula first conjectured by Assaf and McNamara in [3]. (The results
of this paper use the same Hopf machinery. For the nonexperts, we reprise most of
the details and background in Sect. 2.)

Around the same time, the first author [6] was motivated to give a skew
Murnaghan–Nakayama rule in the spirit of Assaf and McNamara. Along the way,
he gives a bijective proof of the conjugate form of (6) (only proven in [3] using the
automorphism ω) and a quantum skew Murnaghan–Nakayama rule that takes the
following form:

sλ/μ qr =
∑

λ+,μ−
(−1)|μ/μ−| brλ+/λ(t)br(μ/μ−)c (t)sλ+/μ−, (7)

with the sum over pairs (λ+,μ−) of partitions such that λ+/λ and μ/μ− are broken
ribbons and |λ+/λ| + |μ/μ−| = r . Note that since Pr(0) = sr , we recover the skew
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Pieri rule for t = 0. Also, since Pr(1) = pr (the r th power sum symmetric function),
we recover the skew Murnaghan–Nakayama rule [2] if we divide the formula by 1− t

and let t → 1. This formula, like that in Theorem 1, may be viewed as a link between
the two theories of Schur and Hall–Littlewood functions. One is tempted to ask for
other examples of mixing, e.g., swapping the roles of Schur and Hall–Littlewood
functions in (7). Two such examples were found (conjecturally) in [6]. Their proofs,
and a generalization of (6) to the Hall–Littlewood setting, are the main results of this
paper.

Theorem 2 For partitions λ,μ, μ ⊆ λ, and r ≥ 0, we have

Pλ/μ s1r = Pλ/μ er = Pλ/μ P1r =
∑

λ+,μ−
(−1)|μ/μ−| vsλ+/λ(t) skμ/μ−(t)Pλ+/μ−,

where the sum on the right is over all λ+ ⊇ λ, μ− ⊆ μ such that |λ+/λ| +
|μ/μ−| = r .

Theorem 3 For partitions λ,μ, μ ⊆ λ, and r ≥ 0, we have

Pλ/μ sr =
∑

λ+,μ−
(−1)|μ/μ−| skλ+/λ(t)vsμ/μ−(t)Pλ+/μ−,

where the sum on the right is over all λ+ ⊇ λ, μ− ⊆ μ such that |λ+/λ| +
|μ/μ−| = r .

Note that putting μ = ∅ above recovers Theorem 1. (We offer two proofs of The-
orem 3; one that rests on Theorem 1 and one that does not.)

Theorem 4 For partitions λ,μ, μ ⊆ λ, and r ≥ 0, we have

Pλ/μ qr =
∑

λ+,μ−,ν

(−1)|μ/μ−|(−t)|ν/μ−| hsλ+/λ(t)vsμ/ν(t) skν/μ−(t)Pλ+/μ−,

where the sum on the right is over all λ+ ⊇ λ, μ− ⊆ ν ⊆ μ such that |λ+/λ| +
|μ/μ−| = r .

Remark We reiterate that the skew elements do not form a basis for Λ[t], so the
expansions announced in Theorems 2–4 are by no means unique. However, if we
demand that the expansions be over partitions λ+ ⊇ λ and μ− ⊆ μ, and that the
coefficients factor nicely as products of polynomials aλ+/λ(t) (independent of μ) and
bμ/μ−(t) (independent of λ), then they are in fact unique (up to a scalar). We make
this remark precise in Theorem 12 in Sect. 3.

This paper is organized as follows. In Sect. 1, we prove some polynomial identities
involving hs, vs, and sk, prove Theorem 1, and find ω(qr). In Sect. 2, we introduce
our main tool, Hopf algebras. We conclude in Sect. 3 with the proofs of our main
theorems.
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1 Combinatorial preliminaries

1.1 Notation and a key lemma

The conjugate partition of λ is denoted by λc . We write mi(λ) for the number of parts
of λ equal to i. The q-binomial coefficient is defined by

[
a

b

]

q

= (1 − qa)(1 − qa−1) · · · (1 − qa−b+1)

(1 − qb)(1 − qb−1) · · · (1 − q)

and is a polynomial in q that gives
(
a
b

)
when q = 1. For a partition λ, we define

n(λ) = ∑
i (i − 1)λi = ∑

i

(λc
i

2

)
.

Given two partitions λ and μ, we say that μ ⊆ λ if λi ≥ μi for all i ≥ 1, in which
case we may consider the pair as a skew shape λ/μ. We write [λ/μ] for the cells
{(i, j) : 1 ≤ i ≤ �(λ), μi < j ≤ λi}. We say that λ/μ is a horizontal strip (respec-
tively vertical strip) if [λ/μ] contains no 2 × 1 (respectively 1 × 2) block, equiva-
lently, if λc

i ≤ μc
i + 1 (respectively λi ≤ μi + 1) for all i. We say that λ/μ is a ribbon

if [λ/μ] is connected and if it contains no 2×2 block and that λ/μ is a broken ribbon
if [λ/μ] contains no 2 × 2 block, equivalently, if λi ≤ μi−1 + 1 for i ≥ 2. The Young
diagram of a broken ribbon is a disjoint union of rib(λ/μ) number of ribbons. The
height ht(λ/μ) (respectively width wt(λ/μ)) of a ribbon is the number of nonempty
rows (respectively columns) of [λ/μ] minus 1. The height (respectively width) of a
broken ribbon is the sum of heights (respectively widths) of the components.

Let us define some polynomials. For a horizontal strip λ/μ, we define

hsλ/μ(t) =
∏

λc
j =μc

j +1

λc
j+1=μc

j+1

(
1 − tmj (λ)

)
.

If λ/μ is not a horizontal strip, we define hsλ/μ(t) = 0. For a vertical strip λ/μ, we
define

vsλ/μ(t) =
∏

j≥1

[
λc

j − λc
j+1

λc
j − μc

j

]

t

.

If λ/μ is not a vertical strip, we define vsλ/μ(t) = 0. For a broken ribbon λ/μ, we
define

brλ/μ(t) = (−t)ht(λ/μ)(1 − t)rib(λ/μ).

If λ/μ is not a broken ribbon, we define brλ/μ(t) = 0. For any skew shape λ/μ, we
define

skλ/μ(t) = t
∑

j (
λc
j
−μc

j
2

)
∏

j≥1

[
λc

j − μc
j+1

mj(μ)

]

t

.
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Fig. 1 A partition ν

(μ ⊆ ν ⊆ λ) for which λ/ν is a
vertical strip within λ/μ is built
from λ by removing some
number of the shaded cells
of [λ]

Next, recall the q-binomial theorem. For all n, k ≥ 0, we have

n−1∏

i=0

(
t + qi

) =
n∑

k=0

q(n−k
2 )

[
n

k

]

q

tk. (8)

This may be proven by induction from the standard identity
[
n
k

]
q

= qk
[
n−1
k

]
q

+
[
n−1
k−1

]
q
.

Lemma 5 For fixed partitions λ,μ satisfying μ ⊆ λ, we have
∑

ν

(−t)|λ/ν| vsλ/ν(t) skν/μ(t) = hsλ/μ(t),

with the sum over all ν, μ ⊆ ν ⊆ λ, for which λ/ν is a vertical strip.

Proof Let aj = λc
j − max(μc

j , λ
c
j+1) ≥ 0. A partition ν, μ ⊆ ν ⊆ λ, for which λ/ν

is a vertical strip is obtained by choosing kj , 0 ≤ kj ≤ aj , and removing kj bottom
cells of column j in λ. See Fig. 1 for the example for λ = 98886666444 and μ =
77666633331, where a4 = 3, a6 = 2, a8 = 3, a9 = 1, and ai = 0 for all other i.

We have |λ/ν| = ∑
j kj , νc

j = λc
j − kj . The choices of the kj are independent,

which means that
∑

ν

(−t)|λ/ν| skν/μ(t)vsλ/ν(t)

=
∑

k1,k2,...

(−t)
∑

j kj t
∑

j (
νc
j
−μc

j
2

)
∏

j

[
νc
j − μc

j+1

mj(μ)

]

t

∏

j

[
λc

j − λc
j+1

λc
j − νc

j

]

t

=
∏

j

aj∑

kj =0

(−t)kj t
(
λc
j
−μc

j
−kj

2
)
[
λc

j − kj − μc
j+1

mj(μ)

]

t

[
mj(λ)

kj

]

t

. (9)

We analyze (9) case-by-case, showing that it reduces to hsλ/μ(t) when λ/μ is a hor-
izontal strip and zero otherwise. Assume first that λ/μ is a horizontal strip. This
means that aj ≤ λc

j − μc
j ≤ 1 for all j .

Case 1: aj = 0. We have max(μc
j , λ

c
j+1) = λc

j , so the inner sum in (9) is equal to

[
λc

j − μc
j+1

mj(μ)

]

t

=
[
λc

j − μc
j+1

μc
j − μc

j+1

]

t

.
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If μc
j = λc

j , this is 1, and if μc
j = λc

j − 1 and λc
j+1 = λc

j , then μc
j+1 = μc

j , and so the
expression is also 1.

Case 2: aj = 1. This holds if and only if λc
j = μc

j + 1, λc
j+1 ≤ λc

j − 1, in which
case the sum in (9) is

(−t)0t(
1
2)

[
1 + mj(μ)

mj (μ)

]

t

[
mj(λ)

0

]

t

+ (−t)1t(
0
2)

[
mj(μ)

mj (μ)

]

t

[
mj(λ)

1

]

t

= 1 + t + · · · + tmj (μ) − t
(
1 + t + · · · + tmj (λ)−1)

=
{

1 − tmj (λ): λc
j = μc

j + 1, λc
j+1 = μc

j+1

1: otherwise
.

Indeed, λc
j = μc

j +1 and λc
j+1 = μc

j+1 +1 imply mj(μ) = mj(λ), while λc
j = μc

j +1
and λc

j+1 = μc
j+1 imply λc

j+1 ≤ μc
j = λc

j − 1 and mj(μ) = mj(λ) − 1. Thus, (9)
equals hsλ/μ(t) whenever λ/μ is a horizontal strip.

Now assume that λ/μ is not a horizontal strip. Let j be the largest index for which
λc

j − μc
j ≥ 2. Let us investigate two cases, where λc

j+1 > μc
j and where λc

j+1 ≤ μc
j .

Case 1: λc
j+1 > μc

j . We must have λc
j+1 = μc

j + 1 and μc
j+1 = μc

j , for otherwise
λc

j+1 − μc
j+1 = (λc

j+1 − μc
j ) + (μc

j − μc
j+1) ≥ 2, which contradicts the maximality

of j . So aj = mj(λ), λc
j − μc

j = λc
j − μc

j+1 = mj(λ) + 1, mj(μ) = 0, mj(λ) ≥ 1,
and

aj∑

kj =0

(−t)kj t
(
λc
j
−μc

j
−kj

2
)
[
λc

j − kj − μc
j+1

mj(μ)

]

t

[
mj(λ)

kj

]

t

=
mj (λ)∑

kj =0

(−t)kj t(
mj (λ)+1−kj

2 )
[
mj(λ)

kj

]

t

=
mj (λ)∑

kj =0

(−t)kj t(
mj (λ)−kj

2 )+mj (λ)−kj

[
mj(λ)

kj

]

t

= tmj (λ)

mj (λ)∑

kj =0

(−1)kj t(
mj (λ)−kj

2 )
[
mj(λ)

kj

]

t

.

Using (8) with n = mj(λ), t = −1 and q = t , the above simplifies to

tmj (λ)

mj (λ)−1∏

i=0

(−1 + t i
) = 0.
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Case 2: λc
j+1 ≤ μc

j . We consider two further options. If μc
j+1 = λc

j+1, then aj =
λc

j − μc
j = mj(λ) − mj(μ) ≥ 2 and

aj∑

kj =0

(−t)kj t
(
λc
j
−μc

j
−kj

2
)
[
λc

j − kj − μc
j+1

mj(μ)

]

t

[
mj(λ)

kj

]

t

=
mj (λ)−mj (μ)∑

kj =0

(−t)kj t(
mj (λ)−mj (μ)−kj

2 )
[
mj(λ) − kj

mj (μ)

]

t

[
mj(λ)

kj

]

t

=
mj (λ)−mj (μ)∑

kj =0

(−t)kj t(
mj (λ)−mj (μ)−kj

2 )
[
mj(λ) − mj(μ)

kj

]

t

[
mj(λ)

mj (μ)

]

t

.

If we use (8) with n = mj(λ) − mj(μ), t = −t , and q = t , we get

[
mj(λ)

mj (μ)

]

t

mj (λ)−mj (μ)−1∏

i=0

(−t + t i
) = 0.

On the other hand, if μc
j+1 = λc

j+1 −1, then aj = λc
j −μc

j = mj(λ)−mj(μ)+1 ≥ 2
and

aj∑

kj =0

(−t)kj t
(
λc
j
−μc

j
−kj

2
)
[
λc

j − kj − μc
j+1

mj(μ)

]

t

[
mj(λ)

kj

]

t

=
mj (λ)−mj (μ)+1∑

kj =0

(−t)kj t(
mj (λ)−mj (μ)+1−kj

2 )
[
mj(λ) + 1 − kj

mj (μ)

]

t

[
mj(λ)

kj

]

t

=
mj (λ)−mj (μ)+1∑

kj =0

(−t)kj t(
mj (λ)−mj (μ)+1−kj

2 ) 1 − tmj (λ)+1−kj

1 − tmj (λ)−mj (μ)+1

×
[
mj(λ) − mj(μ) + 1

kj

]

t

[
mj(λ)

mj (μ)

]

t

= 1

1 − tmj (λ)−mj (μ)+1

[
mj(λ)

mj (μ)

]

t

×
(mj (λ)−mj (μ)+1∑

kj =0

(−t)kj t(
mj (λ)−mj (μ)+1−kj

2 )
[
mj(λ) − mj(μ) + 1

kj

]

t

−
mj (λ)−mj (μ)+1∑

kj =0

(−1)kj t(
mj (λ)−mj (μ)+1−kj

2 )tmj (λ)+1
[
mj(λ) − mj(μ) + 1

kj

]

t

)
.
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We prove that the first (respectively, second) sum is 0 by substituting n = mj(λ) −
mj(μ) + 1, t = −t (respectively, t = −1), and q = t in (8). This finishes the proof of
the lemma. �

1.2 Elementary Hall–Littlewood identities

We give two applications of Lemma 5 and then prove some elementary properties
of Hall–Littlewood functions that will be useful in Sect. 3. The first application is a
formula for the product of a Hall–Littlewood polynomial with the Schur function sr .

Proof of Theorem 1 The proof is by induction on r .1 For r = 0, there is nothing to
prove. For r > 0, we use the formula

qr =
r∑

k=0

(−t)ksr−kek, (10)

which is proven as follows. It is well known and easy to prove (see, e.g., [11, Exer-
cise 7.11]) that

Pr =
∑

τ �n

(1 − t)�(τ)−1mτ =
r−1∑

k=0

(−t)ksr−k,1k .

The conjugate Pieri rule then gives (10), since

r∑

k=0

(−t)ksr−kek = sr +
r−1∑

k=1

(−t)k(sr−k,1k + sr−k+1,1k−1) + (−t)r s1r = qr .

For |λ+/λ| = r , the coefficient of Pλ+ in

Pλ sr = Pλ

(
qr −

r∑

k=1

(−t)ksr−kek

)

reduces, by induction, (3), and (4) to

hsλ+/λ(t) −
∑

(−t)|λ+/ν| skν/λ(t)vsλ+/ν(t),

with the sum over all ν, λ ⊆ ν ⊆ λ+, for which λ+/ν is a vertical strip of size at
least 1. By Lemma 5, this is equal to skλ+/λ(t). �

Recall that f λ
μ,τ (t) is the (polynomial) coefficient of Pλ in PμPτ .

1Upon seeing our results, Ole Warnaar has shown us another proof that avoids the technical Lemma 5.
His proof rests on the q-binomial theorem for Macdonald polynomials and uses the fact that skλ/μ(t) =
Q′

λ/μ(1; t). Here Q′ denotes the modified Hall–Littlewood functions found in [9, III.7].
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Corollary 6 The structure constants f λ
μ,τ (t) satisfy

∑
τ tn(τ)f λ

μ,τ (t) = skλ/μ(t).

Proof This follows from sr = ∑
τ�r tn(τ)Pτ , which is (2) in [9, p. 219] and also

Theorem 1 for λ = ∅. �

The second application of Lemma 5 is the following generalization of Example 1
of [9, § III.3, Example 1].

Theorem 7 For all λ,μ, we have

∑

ν

vsλ/ν(t) skν/μ(t)y|λ/ν| =
∑

σ

tn(σ )−(�(σ)
2 )f λ

σμ(t)

�(σ )∏

j=1

(
y + tj−1). (11)

Equivalently, for all m,

∑

ν : |λ/ν|=m

vsλ/ν(t) skν/μ(t) =
∑

σ

tn(σ )−(m
2)f λ

σμ(t)

[
�(σ )

m

]

t−1
. (12)

Proof Let us evaluate Pμ sr(
∑

m em ym) in two different ways. On the one hand,

Pμ sr

(∑

m

em ym

)
=

(∑

ν

skν/μ(t)Pν

)(∑

m

em ym

)

=
∑

ν,λ

skν/μ(t)vsλ/ν(t)Pλ y|λ/ν|.

On the other hand, using Example 1 on p. 218 of [9], we have

Pμ sr

(∑

m

emym

)
= Pμ

∑

σ

tn(σ )Pσ

�(σ )∏

j=1

(
1 + t1−j y

)

=
∑

σ,λ

tn(σ )−(�(σ)
2 )f λ

σμ(t)Pλ

�(σ )∏

j=1

(
y + tj−1).

Now (11) follows by taking the coefficient of Pλ in both expressions. For (12), we
use the q-binomial theorem (8) and the identity

[
n

k

]

t−1
= t(

k
2)+(n−k

2 )−(n
2)

[
n

k

]

t

. �

Remark The theorem is indeed a generalization of [9, § III.3, Example 1]. For μ = ∅,
skν/μ(t) = tn(ν), and the right-hand side of (12) is nonzero only for σ = λ, so the last
equation on p. 218 (loc. cit.) follows. It also generalizes Lemma 5: for y = −t , the
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right-hand side of (11) is nonzero if and only if �(σ ) = 1, and is therefore equal to
hsλ/μ(t).

We finish the section with two more lemmas.

Lemma 8 Given r > k ≥ 0, we have

sr−k,1k =
∑

λ : �(λ)≥k+1

t(
�(λ)−k

2 )+∑λ1
i=2 (

λc
i

2 )
[
�(λ) − 1

k

]

t

Pλ.

Proof The lemma follows from a formula due to Lascoux and Schützenberger. See [9,
Chap. III, (6.5)]. In that terminology, we have to evaluate K(r−k,1k),λ(t). We choose
a semistandard Young tableau T of shape (r − k,1k) and type λ = (λ1, . . . , λ�).
Clearly, such tableaux are in one-to-one correspondence with k-subsets of the set
{2, . . . , �}. For such a subset S, write s for the word with the elements of S in
increasing order, and write s for the word with the elements of {2, . . . , �} \ S in
decreasing order. The reverse reading word of the tableau corresponding to S is
�λ�−1 · · ·3λ3−12λ2−11λ1s. The subwords w2,w3, . . . are all strictly decreasing, and
w1 = s1s. The charges of w2,w3, . . . are

(λc
2

2

)
,
(λc

3
2

)
, . . . , while the charge of w1 is∑

i /∈S(� − i + 1) (the sum over i /∈ S, 2 ≤ i ≤ �). We have

∑

S⊆{2,...,�+1},|S|=k

t
∑

i /∈S(�+1−i+1) =
∑

S⊆{2,...,�},|S|=k−1

t
∑

i /∈S(�+1−i+1)

+
∑

S⊆{2,...,�},|S|=k

t1+∑
i /∈S(�+1−i+1),

and the formula

∑

S⊆{2,...,�},|S|=k

t
∑

i /∈S(�−i+1) = t(
�−k

2 )
[
� − 1

k

]

t

follows by induction on �. This finishes the proof. �

Lemma 9 Let ω be the fundamental involution on Λ[t] defined by ω(sλ) = sλc . We
have

ω(qr) = (−1)r
∑

λ�r

cλ(t)Pλ,

where

cλ(t) = t
∑λ1

i=2 (
λc
i
+1
2 )

�(λ)∏

i=1

(−1 + t i
)
.
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Proof We have

ω(Pr) = ω

(
r−1∑

k=0

(−t)r−k−1sk+1,1r−k−1

)
=

r−1∑

k=0

(−t)r−k−1sr−k,1k

=
r−1∑

k=0

(−t)r−k−1
( ∑

�(λ)≥k+1

t(
�(λ)−k

2 )+∑λ1
i=2 (

λc
i
2 )

[
�(λ) − 1

k

]

t

Pλ

)

=
∑

λ�r

(
�(λ)−1∑

k=0

(−t)r−k−1t(
�(λ)−k

2 )+∑λ1
i=2 (

λc
i
2 )

[
�(λ) − 1

k

]

t

)
Pλ.

Now by the q-binomial theorem,

�(λ)∏

i=2

(−1 + t i
) = t2(�(λ)−1)

�(λ)−2∏

i=0

(−1/t2 + t i
)

= t2(�(λ)−1)

�(λ)−1∑

k=0

t(
�(λ)−1−k

2 )
[
�(λ) − 1

k

]

t

(
− 1

t2

)k

.

Simple calculations now show that the coefficient of Pλ in ω(qr) = (1 − t)ω(Pr) is
indeed (−1)rcλ(t). �

2 Hopf perspective on skew elements

Recall that Λ[t] has another important basis {Qλ}, defined by Qλ = bλ(t)Pλ, where
bλ(t) = ∏

i≥1(1 − t)(1 − t2) · · · (1 − tmi(λ)). The (extended) Hall scalar product on
Λ[t] is uniquely defined by either of the (equivalent) conditions

〈Pλ,Qμ〉 = δλμ or 〈pλ,pμ〉 = zμ(t) δλμ,

where, taking μ = (μ1,μ2, . . . ,μr) = 〈1a1 ,2a2, . . . , kak 〉,

zμ(t) = zμ ·
r∏

j=1

(
1 − tμj

)−1 =
k∏

i=1

(
iai ai !

) r∏

j=1

(
1 − tμj

)−1
.

See [9, § III.4]. The skew Hall–Littlewood function Pλ/μ is defined in [9, Chap. III,
(5.1′)] as the unique function satisfying

〈Pλ/μ,Qν〉 = 〈Pλ,Qν Qμ〉 (13)

for all Qν ∈ Λ[t]. (Likewise for Qλ/μ.) If we choose to read Pλ/μ as “Qμ skews
Pλ,” then we allow ourselves access to the machinery of Hopf algebra actions on their
duals. We introduce the basics in Sect. 2.1 and return to Λ[t] and Hall–Littlewood
functions in Sect. 2.2.
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2.1 Hopf preliminaries

Let H = ⊕
n Hn be a graded algebra over a field k. Recall that H is a Hopf algebra

if there are algebra maps Δ : H → H ⊗ H , ε : H → k, and an algebra antimorphism
S : H → H , called the coproduct, counit, and antipode, respectively, satisfying some
additional compatibility conditions. See [10].

Let H ∗ = ⊕
n H ∗

n denote the graded dual of H . If each Hn is finite dimensional,
then the pairing 〈 ·, · 〉 : H ⊗ H ∗ → k defined by 〈h,a〉 = a(h) is nondegenerate.
This pairing naturally endows H ∗ with a Hopf algebra structure, with product and
coproduct uniquely determined by the formulas

〈h,a · b〉 := 〈
Δ(h), a ⊗ b

〉
and

〈
g ⊗ h,Δ(a)

〉 := 〈g · h,a〉

for all homogeneous g,h ∈ H and a, b ∈ H ∗. (Extend to all of H ∗ by linearity, in-
sisting that 〈Hn,H

∗
m〉 = 0 for n �= m.)

Remark The finite dimensionality of Hn ensures that the coproduct in H ∗ is a finite
sum of functionals, Δ(a) = ∑

(a) a
′ ⊗a′′. Here and below we use Sweedler’s notation

for coproducts.

We now recall some standard actions (“⇀”) of H and H ∗ on each other. Given
h ∈ H and a ∈ H ∗, put

a ⇀ h :=
∑

(h)

〈
h′′, a

〉
h′ and h ⇀ a :=

∑

(a)

〈
h,a′′〉a′. (14)

Equivalently, 〈g,h ⇀ a〉 = 〈g · h,a〉 and 〈a ⇀ h,b〉 = 〈h,b · a〉. We call these skew
elements (in H and H ∗, respectively) to keep the nomenclature consistent with that
in symmetric function theory.

Our skew Pieri rules (Theorems 2, 3, and 4) come from an elementary formula
relating products of elements h and skew elements a ⇀ g in a Hopf algebra H :

(a ⇀ g) · h =
∑(

S
(
h′′) ⇀ a

)
⇀

(
g · h′). (15)

See (∗) in the proof of [10, Lemma 2.1.4] or [7, Lemma 1]. Before turning to the
proofs of these theorems, we first recall the Hopf structure of Λ[t].

2.2 The Hall–Littlewood setting

The ring Λ[t] is generated by the one-part power sum symmetric functions pr

(r > 0), so the definitions

Δ(pr) := 1 ⊗ pr + pr ⊗ 1, ε(pr) := 0, and S(pr) := −pr (16)

completely determine the Hopf structure of Λ[t].
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Proposition 10 For r > 0,

Δ(er) =
r∑

k=0

ek ⊗ er−k, Δ(sr ) =
r∑

k=0

sk ⊗ sr−k, Δ(qr) =
r∑

k=0

qk ⊗ qr−k,

S(er ) = (−1)r sr , S(sr ) = (−1)rer , S(qr) =
∑

λ�r

cλ(t)Pλ,

where cλ are given by Lemma 9.

Proof The equalities for er and sr are elementary consequences of (16) and may be
found in [9, § I.5, Example 25]. The coproduct formula for qr is (2) in [9, § III.5,
Example 8]. The antipode formula for qr is identical to Lemma 9, as the fundamental
morphism ω and the antipode S are related by S(h) = (−1)rω(h) on homogeneous
elements h of degree r . �

It happens that Λ[t] is self-dual as a Hopf algebra. This may be deduced from
Example 8 in [9, §III.5], but we illustrate it here in the power sum basis for the reader
not versed in Hopf formalism.

Lemma 11 The Hopf algebra Λ[t] is self-dual with the extended Hall scalar product.

Proof Write p∗
λ for zλ(t)

−1pλ. It is sufficient to check that

〈
pλ,p

∗
μ · p∗

ν

〉 = 〈
Δ(pλ),p

∗
μ ⊗ p∗

ν

〉
and

〈
pμ ⊗ pν,Δ

(
p∗

λ

)〉 = 〈
pμ · pν,p

∗
λ

〉

for all partitions λ,μ, and ν.
Products and coproducts in the power sum basis. Given partitions λ = 〈1m1,2m2,

. . .〉 and μ = 〈1n1 ,2n2, . . .〉, we write λ ∪ μ for the partition 〈1m1+n1,2m2+n2, . . .〉.
Also, we write μ ≤ λ if ni ≤ mi for all i ≥ 1. In this case, we define

(
λ

μ

)
=

∏

i≥1

(
mi

ni

)

and otherwise define
(
λ
μ

) = 0. Since the power sum basis is multiplicative (pλ =∏
i≥1 pλi

), we have pμ · pν = pμ∪ν . Since Δ is an algebra map, the first formula
in (16) gives

Δ(pλ) =
∑

μ≤λ
μ∪ν=λ

(
λ

μ

)
pμ ⊗ pν.

Products and coproducts in dual basis. It is easy to see that

zλ(t)
−1 ·

(
λ

μ

)
= zμ(t)−1 · zν(t)

−1 (17)
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whenever ν ∪ μ = λ. Using (17) and the formulas for product and coproduct in the
power sum basis, we deduce that

p∗
μ · p∗

ν =
(

μ ∪ ν

μ

)
p∗

μ∪ν and Δ
(
p∗

λ

) =
∑

μ≤λ
μ∪ν=λ

p∗
μ ⊗ p∗

ν .

Checking the desired identities. Using the preceding formulas, we get

〈
Δ(pλ),p

∗
μ ⊗ p∗

ν

〉 =
(

λ

μ

)
· δλ,μ∪ν = 〈

pλ,p
∗
μ · p∗

ν

〉

and
〈
pμ · pν,p

∗
λ

〉 = δλ,μ∪ν = 〈
pμ ⊗ pν,Δ

(
p∗

λ

)〉
.

This completes the proof of the lemma. �

After (13), (14), and Lemma 11, we see that Pλ/μ = Qμ ⇀ Pλ and Qλ/μ =
Pμ ⇀ Qλ.

3 Proofs of the main theorems

We specialize (15) to Hall–Littlewood polynomials, putting a ⇀ g = Pλ/μ.

Proof of Theorem 2 Taking h = er in (15), we get

Pλ/μ · er = (Qμ ⇀ Pλ) · er =
∑

(er )

(
S
(
er

′′) ⇀ Qμ

)
⇀

(
Pλ · er

′) (18)

=
r∑

k=0

(
S(ek) ⇀ Qμ

)
⇀ (Pλ · er−k) (19)

=
r∑

k=0

(−1)k(sk ⇀ Qμ) ⇀ (Pλ · er−k) (20)

=
r∑

k=0

(−1)k
(∑

τ

tn(τ)Qμ/τ

)
⇀ (Pλ · er−k) (21)

=
r∑

k=0

(−1)k
( ∑

|μ/μ−|=k

(∑

τ

tn(τ)f
μ

μ−,τ
(t)

)
Qμ−

)

⇀

( ∑

|λ+/λ|=r−k

vsλ+/λ(t)Pλ+
)

(22)

=
∑

λ+,μ−
(−1)|μ/μ−| skμ/μ−(t)vsλ+/λ(t)Pλ+/μ− . (23)
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For (19) and (20), we used Proposition 10. For (21), we expanded sk in the P basis
(cf. the proof of Corollary 6) and used the Hopf characterization of skew elements.
Explicitly,

sk ⇀ Qμ =
(∑

τ�k

tn(τ)Pτ

)
⇀ Qμ =

∑

τ�k

tn(τ)Qμ/τ .

We use (3) and (13) to pass from (21) to (22): the coefficient of Qμ− in the expan-
sion of Qμ/τ is equal to the coefficient of Pμ in Pμ−Pτ . Finally, (23) follows from
Corollary 6. �

Proof of Theorem 3 Taking h = sr in (15), we get

Pλ/μ · sr = (Qμ ⇀ Pλ) · sr =
∑

(sr )

(
S
(
sr

′′) ⇀ Qμ

)
⇀

(
Pλ · sr ′) (24)

=
r∑

k=0

(
S(sk) ⇀ Qμ

)
⇀ (Pλ · sr−k) (25)

=
r∑

k=0

(−1)k(ek ⇀ Qμ) ⇀ (Pλ · sr−k) (26)

=
r∑

k=0

(−1)kQμ/1k ⇀ (Pλ · sr−k) (27)

=
r∑

k=0

(−1)k
( ∑

|μ/μ−|=k

vsμ/μ−(t)Qμ−
)

⇀

( ∑

|λ+/λ|=r−k

skλ+/λ(t)Pλ+
)

(28)

=
∑

λ+,μ−
(−1)|μ/μ−| vsμ/μ−(t) skλ+/λ(t)Pλ+/μ− . (29)

For (25) and (26), the proof is the same as above. For (27), we used ek = P1k ,
while for (28), we used (3) and (5). Equation (29) is obvious. �

Proof of Theorem 4 We present two proofs. The first is along the lines of the preced-
ing proofs of Theorems 2 and 3. Taking h = qr in (15), we get

Pλ/μ · qr = (Qμ ⇀ Pλ) · qr =
∑

(qr )

(
S
(
qr

′′) ⇀ Qμ

)
⇀

(
Pλ · qr

′) (30)

=
r∑

k=0

(
S(qk) ⇀ Qμ

)
⇀ (Pλ · qr−k) (31)

=
r∑

k=0

(∑

τ�k

cτ (t)Pτ ⇀ Qμ

)
⇀ (Pλ · qr−k) (32)
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=
r∑

k=0

(∑

τ�k

cτ (t)Qμ/τ

)
⇀ (Pλ · qr−k) (33)

=
r∑

k=0

( ∑

|μ/μ−|=k

(∑

τ

cτ (t)f
μ

μ−,τ
(t)

)
Qμ−

)
⇀

( ∑

|λ+/λ|=r−k

hsλ+/λ(t)Pλ+
)

(34)

=
∑

λ+,μ−
(−1)|μ/μ−|(−t)|τ/μ−| vsμ/τ (t) skτ/μ− hsλ+/λ(t)Pλ+/μ− . (35)

The only line that needs a comment is (35).
Substitute y = −1/t , λ = μ, μ = μ−, and ν = τ into Theorem 7. We get

∑

τ

vsμ/τ (t) skτ/μ−(t)(−1/t)|μ/τ | =
∑

σ

tn(σ )−(�(σ)
2 )f

μ

σ,μ−(t)

�(σ )∏

j=1

(−1/t + tj−1)

and, after multiplying by t |μ/μ−|,
∑

τ

(−1)|μ/τ |t |τ/μ−| vsμ/τ (t) skτ/μ−(t)

=
∑

σ

tn(σ )−(�(σ)
2 )+|μ/μ−|−�(σ )f

μ

σ,μ−(t)

�(σ )∏

j=1

(−1 + tj
)
.

Now |μ/μ−| = |σ | and n(σ ) − (
�(σ )

2

) + |σ | − �(σ ) = ∑
i (

(σc
i
2

) + σ c
i ) − (σc

1 +1
2

) =
∑σ1

i=2

(σc
i +1
2

)
, which shows that

∑

σ

cσ f
μ

σ,μ−(t) =
∑

τ

(−1)|μ/τ |t |τ/μ−| vsμ/τ (t) skτ/μ−(t),

with the sum over all τ satisfying μ− ⊆ τ ⊆ μ. This completes the first proof.
The second proof uses Theorems 1, 2, and 3. Recall from (10) that qr =∑r
k=0(−t)ksr−kek . We have

Pλ/μ · qr = Pλ/μ ·
(

r∑

k=0

(−t)ksr−kek

)
=

r∑

k=0

(−t)k(Pλ/μsr−k)ek

=
r∑

k=0

(−t)k
∑

σ,τ

(−1)|μ/τ | vsμ/τ (t) skσ/λ(t)Pσ/τ ek

=
∑

σ,τ,μ−,λ+
(−t)|τ/μ−|+|λ+/σ |(−1)|μ/τ |+|τ/μ−| vsμ/τ (t) skσ/λ(t)

× skτ/μ−(t)vsλ+/σ (t)Pλ+/μ−
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=
∑

τ,μ−,λ+
(−1)|μ/μ−|(−t)|τ/μ−| vsμ/τ (t) skτ/μ−(t)

×
(∑

σ

(−t)|λ+/σ | vsλ+/σ (t) skσ/λ(t)

)
Pλ+/μ−

=
∑

τ,μ−,λ+
(−1)|μ/μ−|(−t)|τ/μ−| vsμ/τ (t) skτ/μ−(t)hsλ+/λ(t)Pλ+/μ−,

where we used Lemma 5 in the final step. �

Our final result is on the uniqueness of the expansions.

Theorem 12 Let aλ/μ(t) and bλ/μ(t) be polynomials defined for λ ⊇ μ, with
b∅/∅(t) = 1. For fixed λ ⊇ μ and r ≥ 0, consider the expression

Eλ,μ,r =
∑

λ+⊇λ,μ−⊆μ

|λ+/λ|+|μ/μ−|=r

(−1)|μ/μ−|aλ+/λ(t)bμ/μ−(t)Pλ+/μ− .

(1) If Eλ,μ,r = Pλ/μ s1r ∀λ,μ, r , then aλ+/λ = vsλ+/λ and bμ/μ− = skμ/μ− .
(2) If Eλ,μ,r = Pλ/μ sr ∀λ,μ, r , then aλ+/λ = skλ+/λ and bμ/μ− = vsμ/μ− .

(3) If Eλ,μ,r = Pλ/μ qr ∀λ,μ, r , then aλ+/λ = hsλ+/λ and bμ/μ− = ∑
ν(−t)|ν/μ−| ×

vsμ/ν skν/μ− .

Proof We prove only the first statement, the others being similar. Suppose that we
have

Pλ/μ s1r =
∑

λ+,μ−
(−1)|μ/μ−|aλ+/λ(t)bμ/μ−(t)Pλ+/μ− .

If we set μ = ∅, we get the expansion of Pλs1r over (nonskew) Hall–Littlewood poly-
nomials, which is, of course, unique. Therefore, aλ/μ(t) b∅/∅(t) = aλ/μ(t) = vsλ/μ(t)

for all λ ⊇ μ. We will prove by induction on |λ/μ| that bλ/μ(t) = skλ/μ(t). For
λ = μ and r = 0, we get Pλ/λ = bλ/λ(t)Pλ/λ, so bλ/λ(t) = 1 = skλ/λ(t). Suppose
that bλ/μ(t) = skλ/μ(t) for |λ/μ| < r and that |λ/μ| = r . Take

σ = (λ1 + μ1, . . . , λ1 + μ1︸ ︷︷ ︸
�(λ)

, λ1 + μ1, λ1 + μ2, . . . , λ1 + μ�(μ)),

τ = (λ1 + μ1, . . . , λ1 + μ1︸ ︷︷ ︸
�(λ)

, λ1, . . . , λ1︸ ︷︷ ︸
�(μ)

).

Note that λ ⊆ σ . Also, the diagram of σ/τ is a translation of the diagram of μ.
That means there is only one LR-sequence S (see [9, p. 185]) of shape σ/τ , and it
has type μ. This implies that f σ

τ,μ = fS(t), f σ
τ,μ′ = 0 for μ �= μ′ (see [9, pp. 194 and

218]). Therefore, Pσ/τ is a nonzero polynomial multiple of Pμ. Now

Pσ/λ s1r =
∑

σ+,λ−
(−1)|λ/λ−|aσ+/σ (t)bλ/λ−(t)Pσ+/λ−
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=
∑

σ+,λ−
(−1)|λ/λ−| vsσ+/σ (t)bλ/λ−(t)Pσ+/λ−

=
∑

σ+,λ−
(−1)|λ/λ−| vsσ+/σ (t) skλ/λ−(t)Pσ+/λ− ,

where we used Theorem 2. By the induction hypothesis, bλ/λ−(t) = skλ/λ−(t) if
|λ/λ−| < r . After cancellations, we get

∑

λ−
(−1)|λ/λ−|(bλ/λ−(t) − skλ/λ−(t)

)
Pσ/λ− = 0,

where the sum on the left is over all λ− ⊆ λ such that |λ/λ−| = r . Now take the
scalar product with Qτ . Since 〈Pσ/λ− ,Qτ 〉 = 〈Pσ ,Qλ−Qτ 〉 = 〈Pσ/τ ,Qλ−〉 is the
coefficient of Pλ− in Pσ/τ , we see that (−1)|λ/μ|(bλ/μ(t) − skλ/μ(t)) = 0. That is,
bλ/μ(t) = skλ/μ(t). �

Remark Similar proofs show that the expansions of sλ/μs1r , sλ/μsr , and sλ/μPr in
terms of skew Schur functions are also unique in the sense of Theorem 12, a fact that
was not noted in either [3] or [6].

Remark It would be preferable to have a simpler expression for the polynomial

bλ/μ(t) =
∑

ν

(−t)|ν/μ| vsλ/ν(t) skν/μ(t) (36)

from Theorems 4 and 12(3), i.e., one involving only the boxes of λ/μ in the spirit of
hsλ/μ(t), so that we could write

Pλ/μ · qr =
∑

λ+,μ−
(−1)|μ/μ−| hsλ+/λ(t)bμ/μ−(t)Pλ+/μ−,

where the sum is over all λ+ ⊇ λ, μ− ⊆ μ such that |λ+/λ| + |μ/μ−| = r .
Toward this goal, we point out a hidden symmetry in the polynomials bλ/μ(t).

Writing qr as
∑r

k=0(−t)keksr−k before running through the second proof of Theo-
rem 4 (i.e., applying Theorems 2 and 3 in the reverse order) reveals

bλ/μ(t) =
∑

ν

(−t)|λ/ν| skλ/ν(t) vsν/μ(t). (37)

Further toward this goal, note how similar (36) is to the sum in Lemma 5, which
reduces to the tidy product of polynomials hsλ/μ(t).

Basic computations suggest some hint of a polynomial-product description for
bλ/μ(t),

: −(t − 1)2(t + 1)
(
t3 + t2 + t − 1

)
,
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: (t − 1)2(t + 1)
(
t3 + t2 + t − 1

)2
,

: t (t − 1)2(t + 1)
(
t3 + t2 + t − 1

)2
,

: t (t − 1)2(t + 1)
(
t2 + t − 1

)(
t3 + t2 + t − 1

)2
,

but others suggest that such a description will not be tidy,

: −t2(t − 1)2(t + 1)2(t3 + t2 + t − 1
)(

t7 + t6 + 2t5 − t3 − 2t2 − t + 1
)
.

We leave a concise description of the bλ/μ(t) as an open problem.

Acknowledgements Matjaž Konvalinka was partially supported by Research Programs P1-0294 and
P1-0297 of the Slovenian Research Agency.

Aaron Lauve was supported in part by NSA grant #H98230-10-1-0362.

References

1. Akin, K.: On complexes relating the Jacobi–Trudi identity with the Bernstein–Gelfand–Gelfand res-
olution. J. Algebra 117(2), 494–503 (1988)

2. Assaf, S.H., McNamara, P.R.W.: A Pieri rule for skew shapes. Slides for a talk at FPSAC (2010).
Available at http://linux.bucknell.edu/~pm040/Slides/McNamara.pdf

3. Assaf, S.H., McNamara, P.R.W.: A Pieri rule for skew shapes. J. Comb. Theory, Ser. A 118(1), 277–
290 (2011). With an appendix by Thomas Lam

4. Doty, S.R.: Resolutions of B modules. Indag. Math. (N.S.) 5(3), 267–283 (1994)
5. Fulton, W.: Young Tableaux. London Mathematical Society Student Texts, vol. 35. Cambridge Uni-

versity Press, Cambridge (1997)
6. Konvalinka, M.: Skew quantum Murnaghan–Nakayama rule. J. Algebr. Comb. 35(4), 519–545 (2012)
7. Lam, T., Lauve, A., Sottile, F.: Skew Littlewood–Richardson rules from Hopf algebras. Int. Math.

Res. Notices 2011, 1205–1219 (2011). http://imrn.oxfordjournals.org/content/2011/6/1205
8. Lascoux, A., Leclerc, B., Thibon, J.-Y.: Ribbon tableaux, Hall–Littlewood functions, quantum affine

algebras, and unipotent varieties. J. Math. Phys. 38(2), 1041–1068 (1997)
9. Macdonald, I.G.: Symmetric Functions and Hall Polynomials, 2nd edn. Oxford Mathematical Mono-

graphs. The Clarendon Press/Oxford University Press, New York (1995)
10. Montgomery, S.: Hopf Algebras and Their Actions on Rings. CBMS Regional Conference Series

in Mathematics, vol. 82 (1993). Published for the Conference Board of the Mathematical Sciences,
Washington, D.C.

11. Stanley, R.P.: Enumerative Combinatorics. Vol. 2. Cambridge Studies in Advanced Mathematics,
vol. 62. Cambridge University Press, Cambridge (1999)

12. Zelevinsky, A.V.: A generalization of the Littlewood–Richardson rule and the Robinson–Schensted–
Knuth correspondence. J. Algebra 69(1), 82–94 (1981)

13. Zelevinsky, A.V.: Resolutions, dual pairs and character formulas. Funct. Anal. Appl. 21(2), 152–154
(1987)

http://linux.bucknell.edu/~pm040/Slides/McNamara.pdf
http://imrn.oxfordjournals.org/content/2011/6/1205

	Skew Pieri rules for Hall-Littlewood functions
	Abstract
	Combinatorial preliminaries
	Notation and a key lemma
	Elementary Hall-Littlewood identities

	Hopf perspective on skew elements
	Hopf preliminaries
	The Hall-Littlewood setting

	Proofs of the main theorems
	Acknowledgements
	References


