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Abstract The classical characteristic map associates symmetric functions to charac-
ters of the symmetric groups. There are two natural analogues of this map involving
the Brauer algebra. The first of them relies on the action of the orthogonal or sym-
plectic group on a space of tensors, while the second is provided by the action of this
group on the symmetric algebra of the corresponding Lie algebra. We consider the
second characteristic map both in the orthogonal and symplectic case, and calculate
the images of central idempotents of the Brauer algebra in terms of the Schur polyno-
mials. The calculation is based on the Okounkov–Olshanski binomial formula for the
classical Lie groups. We also reproduce the hook dimension formulas for represen-
tations of the classical groups by deriving them from the properties of the primitive
idempotents of the symmetric group and the Brauer algebra.
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1 Introduction

By the classical Schur–Weyl duality, the natural actions of the symmetric group Sm

and the general linear group GLN = GLN(C) on the space of tensors

C
N ⊗ · · · ⊗ C

N

︸ ︷︷ ︸

m

(1.1)
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centralize each other. This leads to the multiplicity free decomposition of the space
(1.1) as a representation of the group Sm × GLN ,

(

C
N

)⊗m ∼=
⊕

λ�m,�(λ)≤N

Vλ ⊗ L(λ), (1.2)

where Vλ and L(λ) are the respective irreducible representations of Sm and GLN

associated with a Young diagram λ which contains |λ| = m boxes, and the number of
nonzero rows �(λ) does not exceed N .

For any element X ∈ End C
N and a = 1, . . . ,m we denote by Xa the correspond-

ing element of the tensor product

Xa = 1⊗(a−1) ⊗ X ⊗ 1⊗(m−a) ∈ End
(

C
N

)⊗m
.

An arbitrary element C of the group algebra C[Sm] will be regarded as an operator
in the space (1.1). We will identify the symmetric algebra S(glN) with the algebra
of polynomial functions on the Lie algebra glN . If we let X range over glN then the
polynomial function X �→ trCX1 . . .Xm with the trace taken over all m copies of
End C

N is a GLN -invariant element of the algebra S(glN). This follows easily by
noting that for any matrix Z ∈ GLN we have

trCZ1X1Z
−1
1 · · ·ZmXmZ−1

m

= trCZ1 · · ·ZmX1 · · ·XmZ−1
1 · · ·Z−1

m

= trZ−1
1 · · ·Z−1

m CZ1 · · ·ZmX1 · · ·Xm = trCX1 · · ·Xm,

where we used the cyclic property of trace and the fact that the action of the element C

commutes with the action of GLN . The algebra of invariants S(glN)GLN is isomorphic
to the algebra of symmetric polynomials in N variables. An isomorphism is provided
by the restriction of polynomial functions to the subspace of diagonal matrices in glN .
Hence, the function which takes a diagonal matrix X with eigenvalues x1, . . . , xN to
the trace trCX1 · · ·Xm is a symmetric polynomial in x1, . . . , xN . Thus we define a
linear map

ch : C[Sm] → C[x1, . . . , xN ]SN , C �→ 1

m! trCX1 · · ·Xm. (1.3)

Given any standard tableau T of shape λ consider the corresponding primitive
idempotent ET ∈ C[Sm] and calculate its image under the map (1.3). To this end, we
may assume without loss of generality that the matrix X is invertible so that X can
be viewed as an element of the group GLN . The space ET (CN)⊗m is an irreducible
representation of GLN isomorphic to L(λ). Therefore, the trace trET X1 · · ·Xm co-
incides with the character of the representation L(λ) evaluated at the element X.
This value is given by the Weyl character formula so that the trace equals the Schur
polynomial sλ evaluated at the eigenvalues x1, . . . , xN of the matrix X,

trET X1 · · ·Xm = sλ(x1, . . . , xN). (1.4)

The trace does not depend on the choice of the standard tableau T of shape λ so that
this relation allows us to calculate the image of the irreducible character χλ under the
map (1.3). Indeed,

χλ =
∑

s∈Sm

χλ(s) · s−1 = m!
dimλ

∑

T

ET , (1.5)
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where dimλ = dimVλ and the second sum is taken over the standard tableaux T of
shape λ. Hence

ch : χλ �→ sλ(x1, . . . , xN). (1.6)

This argument essentially recovers the characteristic map providing an isomorphism
between the algebra generated by the irreducible characters of the symmetric groups
and the algebra of symmetric functions; cf. [7, Sect. I.7].

Our goal in this paper is to extend the correspondence (1.6) to a map analogous to
(1.3) involving the Brauer algebra and the respective orthogonal or symplectic group.
Now we suppose that the orthogonal group ON or symplectic group SpN acts on the
space (1.1). The centralizer of this action in the endomorphism algebra of the tensor
product space coincides with the homomorphic image of the Brauer algebra Bm(ω)

with the parameter ω specialized to N and −N , respectively, in the orthogonal and
symplectic case. This implies the tensor product decomposition analogous to (1.2),

(

C
N

)⊗m ∼=
	m/2

⊕

f =0

⊕

λ�m−2f

λ′
1+λ′

2≤N

Vλ ⊗ L(λ), (1.7)

where Vλ and L(λ) are the respective irreducible representations of Bm(N) and ON

associated with the diagram λ, and we denote by λ′ the conjugate diagram so that
λ′

j is the number of boxes in the column j of λ; see [16]. Given a diagram λ with
λ′

1 + λ′
2 ≤ N denote by λ∗ the diagram obtained from λ by replacing the first column

with the column containing N − λ′
1 boxes. The corresponding representations L(λ)

and L(λ∗) of the Lie algebra associated with ON are isomorphic. In what follows we
will only be concerned with the representations L(λ) corresponding to diagrams λ

with at most n rows, i.e. λ′
1 ≤ n, where N = 2n or N = 2n + 1.

Similarly, in the symplectic case with N = 2n,

(

C
N

)⊗m ∼=
	m/2

⊕

f =0

⊕

λ�m−2f
λ1≤n

Vλ ⊗ L
(

λ′), (1.8)

where λi denotes the number of boxes in row i of λ, Vλ and L(λ′) are the respective
irreducible representations of Bm(−N) and SpN associated with λ and λ′; see loc.
cit.

We let gN ⊂ glN denote the orthogonal Lie algebra oN or symplectic Lie algebra
spN which is associated with the corresponding Lie group GN = ON or GN = SpN .
We will regard any element C of the respective Brauer algebra Bm(N) or Bm(−N) as
an operator in the space (1.1). As with the Lie algebra glN , we regard the polynomial
function taking Y ∈ gN to the trace trCY1 · · ·Ym as an element of the symmetric
algebra S(gN). This element is GN -invariant which is verified by the same calculation
as with the corresponding element of S(glN) above.

We will work with a particular presentation of the Lie algebra gN so that its Cartan
subalgebra consists of diagonal matrices. Suppose that y1, . . . , yn,−y1, . . . ,−yn are
the eigenvalues of a diagonal matrix Y for N = 2n and y1, . . . , yn,−y1, . . . ,−yn,0
are the eigenvalues of Y for N = 2n+1. Then the function which takes Y to the trace
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trCY1 · · ·Ym is a symmetric polynomial in the variables y2
1 , . . . , y2

n . Thus we get a
linear map

ch : Bm(±N) → C
[

y2
1 , . . . , y2

n

]Sn , C �→ 1

m! trCY1 · · ·Ym. (1.9)

The main result of this paper is the calculation of the image ch(φλ) of the nor-
malized central idempotent φλ of the Brauer algebra associated with each partition
λ of m satisfying the respective conditions λ′

1 ≤ n and λ1 ≤ n in the orthogonal and
symplectic case. We show that ch(φλ) = 0 if m is odd and give an explicit formula for
the symmetric polynomial ch(φλ) as a linear combination of the Schur polynomials
sν(y

2
1 , . . . , y2

n) where ν runs over partitions of l if m = 2l.
The starting point of our arguments is the analogue of relation (1.4) for the clas-

sical group GN . Namely, suppose that T is a standard tableau of shape λ and let
Z ∈ GN be a diagonal matrix such that detZ = 1. We let ET denote the primitive
idempotent of the respective Brauer algebra Bm(N) or Bm(−N), which we regard as
an operator in the space (1.1). Due to the decompositions (1.7) and (1.8), the subspace
ET (CN)⊗m is an irreducible representation of GN isomorphic to L(λ) in the orthog-
onal case and to L(λ′) in the symplectic case. Therefore, the trace trET Z1 · · ·Zm

equals the character of the respective representation L(λ) or L(λ′) so that

trET Z1 · · ·Zm = χ
oN

λ (z1, . . . , zn) (1.10)

in the orthogonal case, and

trET Z1 · · ·Zm = χ
spN

λ′ (z1, . . . , zn) (1.11)

in the symplectic case, where we denote by z1, . . . , zn, z
−1
1 , . . . , z−1

n the eigenvalues
of Z for N = 2n and by z1, . . . , zn, z

−1
1 , . . . , z−1

n ,1 the eigenvalues of Z for N =
2n + 1. Explicit expressions for the characters are well known; they are implied by
the Weyl character formula and can be found e.g. in [14]. Although relations (1.10)
and (1.11) are analogous to (1.4), note a principal difference with the case of GLN . In
that case, the matrix X in (1.4) could be treated both as an element of the group GLN

and as an element of the Lie algebra glN . In contrast, the passage from the group GN

to the Lie algebra gN requires an additional step. To derive explicit formulas for the
images of central idempotents of the Brauer algebra under the map (1.9) we use the
Okounkov–Olshanski binomial formula [14, Theorem 1.2]. This allows us to express
the characters occurring in (1.10) and (1.11) in terms of the Schur polynomials in
y2

1 , . . . , y2
n .

More precisely, by analogy with (1.5) set

φλ = 1

D(λ)

∑

T

ET (1.12)

in the orthogonal case, and

φλ = 1

D(λ′)
∑

T

ET (1.13)
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in the symplectic case, where D(λ) = dimL(λ) and the sums are taken over standard
tableaux T of shape λ. Our main result (see Theorem 4.1 below) states that ch(φλ) =
0 unless m is even, m = 2l. In this case,

ch(φλ) =
∑

ν�l

sν(y
2
1 , . . . , y2

n)

C(ν)

∑

μ⊆λ

(−1)|μ| sν(aρ |a)

H(μ)H(λ/μ)
, (1.14)

where ρ = μ and ρ = μ′ in the orthogonal and symplectic case, respectively, and we
use the following notation. For any skew diagram θ we denote by dim θ the number
of standard θ -tableaux with entries in {1,2, . . . , |θ |} and set

H(θ) = |θ |!
dim θ

. (1.15)

If θ is normal (nonskew), then H(θ) coincides with the product of the hooks of
θ due to the hook formula. Furthermore, the constant C(ν) = CgN

(ν) equals the
inner square of the Schur polynomial sν(y

2
1 , . . . , y2

n) with respect to an invariant inner
product on S(gN) (see [14, Proposition 5.3]) and it is given by

C(ν) =
∏

(i,j)∈ν

2(n + j − i)
(

N − 1 + 2(j − i + ε)
)

, (1.16)

where

ε =
⎧

⎨

⎩

0 for gN = o2n,

1/2 for gN = o2n+1,

1 for gN = sp2n.

Finally, by sν(x|a) we denote the double (or factorial) Schur polynomial in the vari-
ables x = (x1, . . . , xn) associated with the particular parameter sequence a = (ai |
i ∈ Z) with ai = (ε + i − 1)2. The polynomial sν(x|a) is symmetric in x1, . . . , xn and
it can be given by several equivalent formulas; see e.g. [7, Sect. I.3] (note that the
sequence a there corresponds to our sequence −a). In particular,

sν(x|a) =
∑

T

∏

α∈ν

(xT (α) − aT (α)+c(α)), (1.17)

summed over semistandard ν-tableaux T with entries in {1, . . . , n}, where c(α) =
j − i denotes the content of the box α = (i, j). For any partition μ with at most n

parts we denote by aμ the n-tuple

aμ = (aμ1+n, aμ2+n−1, . . . , aμn+1). (1.18)

We demonstrate below (Sect. 4.2) that the second sum in (1.14) simplifies if λ is
a row or column diagram. However, we do not know whether shorter expressions for
this sum exist for arbitrary λ.

The relation (1.14) is remarkably similar to the main result of Nazarov’s paper
[12, Theorem 3.4] involving a different kind of characteristic maps.

As a consequence of our approach, we also demonstrate that the well-known hook
dimension formulas for representations of the classical groups can be obtained di-
rectly from the properties of the primitive idempotents of the symmetric group and
the Brauer algebra via relations (1.4), (1.10) and (1.11) implied by the Schur–Weyl
duality.
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We believe it is possible to extend the main results of the paper to the case where
λ is a partition of m − 2f with f ≥ 1 and to calculate the images ch(φλ) of the as-
sociated central idempotents φλ under the map (1.9). This should involve more com-
plicated combinatorics of paths in the Bratteli diagram corresponding to the Brauer
algebras.

2 Idempotents in the Brauer algebra

Let m be a positive integer and ω an indeterminate. An m-diagram d is a collection of
2m dots arranged into two rows with m dots in each row connected by m edges such
that any dot belongs to only one edge. The product of two m-diagrams d1 and d2 is
determined by placing d1 above d2 and identifying the vertices of the bottom row of
d1 with the corresponding vertices in the top row of d2. Let s be the number of closed
loops obtained in this placement. The product d1d2 is given by ωs times the resulting
diagram without loops. The Brauer algebra Bm(ω) [1] is defined as the C(ω)-linear
span of the m-diagrams with the multiplication defined above. The dimension of the
algebra is 1 · 3 · · · (2m − 1).

For 1 ≤ a < b ≤ m denote by sab and εab the respective diagrams of the form

and set sa = saa+1 and εa = εaa+1 for a = 1, . . . ,m − 1. The subalgebra of Bm(ω)

generated over C by the elements sab is isomorphic to the group algebra of the sym-
metric group C[Sm] so that sab will be identified with the transposition (ab). The
Brauer algebra Bm−1(ω) will be regarded as a natural subalgebra of Bm(ω).

The Jucys–Murphy elements x1, . . . , xm for the Brauer algebra Bm(ω) are given
by the formulas

xb = ω − 1

2
+

b−1
∑

a=1

(sab − εab), b = 1, . . . ,m; (2.1)

see [6] and [11], where, in particular, the eigenvalues of the xb in irreducible repre-
sentations were calculated. We have followed [11] to include the shift by (ω − 1)/2
in the definition to simplify the formulas below. The element xm commutes with
the subalgebra Bm−1(ω). This implies that the elements x1, . . . , xm of Bm(ω) pair-
wise commute. A complete set of pairwise orthogonal primitive idempotents for the
Brauer algebra can be constructed with the use of these elements. Suppose that λ is
a partition of m. We will identify partitions with their diagrams so that if the parts
of λ are λ1, λ2, . . . then the corresponding diagram is a left-justified array of rows
of unit boxes containing λ1 boxes in the top row, λ2 boxes in the second row, etc.
The box in row i and column j of a diagram will be denoted as the pair (i, j).
A standard λ-tableau is a sequence T = (Λ1, . . . ,Λm) of diagrams such that for
each r = 1, . . . ,m the diagram Λr is obtained from Λr−1 by adding one box, where
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we set Λ0 = ∅ (the empty diagram) and Λm = λ. Equivalently, T will be viewed as
the array obtained by writing r ∈ {1, . . . ,m} into the box of the diagram λ which is
added to the diagram Λr−1 to get Λr . To each standard tableau T we associate the
corresponding sequence of contents (c1, . . . , cm), ca = ca(T ), where

ca = ω − 1

2
+ j − i (2.2)

if Λa is obtained by adding the box (i, j) to Λa−1. The primitive idempotents
ET = Eλ

T can now be defined by the following recurrence formula (we omit the
superscripts indicating the diagrams since they are determined by the standard
tableaux). Set μ = Λm−1 and consider the standard μ-tableau U = (Λ1, . . . ,Λm−1)

so that U can be viewed as the tableau obtained from T by removing the box con-
taining m. Then

ET = EU

u − cm

u − xm

∣

∣

∣

∣

u=cm

. (2.3)

Since the Brauer algebra is finite-dimensional, the fraction involving xm on the right
hand side reduces to a polynomial in xm whose coefficients are rational functions
in u. They turn out to be well-defined at u = cm and relation (2.3) states that the
evaluation of the right hand side yields ET . This relation is essentially a version of
the well-known Jucys–Murphy formula; see [5] and [8] for more details.

3 Hook dimension formulas for classical groups

Consider the vector space C
N with its canonical basis e1, . . . , eN . We will be using

the involution on the set of indices {1, . . . ,N} defined by i �→ i′ = N − i + 1 and
equip the space C

N with the following nondegenerate symmetric or skew-symmetric
bilinear form:

〈ei, ej 〉 = gij , (3.1)

where N = 2n is even in the skew-symmetric case, and

gij =
{

δij ′ in the symmetric case,

εiδij ′ in the skew-symmetric case,
(3.2)

with εi = 1 for i = 1, . . . , n and εi = −1 for i = n + 1, . . . ,2n.
The classical group GN = ON or GN = SpN is defined as the group of complex

matrices preserving the respective symmetric or skew-symmetric form (3.1),

GN = {

Z ∈ MatN(C)
∣

∣ ZtGZ = G
}

, G = [gij ].
Observe that if Z = 1 is the identity matrix, then the values provided by the expres-

sions (1.10) and (1.11) coincide with the dimensions dimL(λ) and dimL(λ′) of the
respective representations of the groups ON and SpN . It is well known by El Samra
and King [4] that these dimensions are given by the hook formulas. We will consider
the images of the idempotents ET under the action of the Brauer algebra in the tensor
space (1.1) and calculate their partial traces with respect to the mth copy of the vector
space C

N . In particular, this will provide another proof of the hook dimension formu-
las of [4]; see also [15]. To make our arguments clearer, we first go over a technically
simpler case of GLN to reproduce Robinson’s formula; see e.g. [4] and [7, Sect. I.3,
Example 4] for other proofs.
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3.1 Dimension formulas for GLN

The symmetric group version of the recurrence relation (2.3) takes exactly the same
form [8] with the respective definitions of the objects associated with Sm. Here, as
above, T is a standard tableau of shape λ � m and U is obtained from T by removing
the box occupied by m. The content ca = ca(T ) of the box (i, j) of T occupied by
a is now found by ca = j − i and the Jucys–Murphy elements xa are now given by
xa = s1a + · · ·+ sa−1a ; cf. (2.1). In the group algebra we have the relation sm−1xm =
xm−1sm−1 + 1 which implies

sm−1 + 1

u − xm

= (u − xm−1)sm−1
1

u − xm

. (3.3)

Hence,

1

u − xm

= sm−1
1

u − xm−1

(

sm−1 + 1

u − xm

)

= sm−1
1

u − xm−1
sm−1 + sm−1

1

(u − xm−1)(u − xm)
.

Therefore, applying (3.3) once again we come to the identity

1

u − xm

= sm−1
1

u − xm−1
sm−1 + 1

u − xm−1

(

sm−1 + 1

u − xm

)

1

u − xm−1
. (3.4)

Consider the action of the symmetric group Sm in the space (1.1) so that the image
of the element sab ∈ Sm with a < b is found by sab �→ Pab ,

Pab =
N

∑

i,j=1

1⊗(a−1) ⊗ eij ⊗ 1⊗(b−a−1) ⊗ eji ⊗ 1⊗(m−b), (3.5)

where the eij ∈ End CN denote the standard matrix units. From now on we use this
action to regard elements of the group algebra C[Sm] as elements of the algebra
End((CN)⊗m) which is naturally identified with the tensor product of the endomor-
phism algebras,

End
((

C
N

)⊗m) ∼= End C
N ⊗ · · · ⊗ End C

N

︸ ︷︷ ︸

m

. (3.6)

The trace map tr : End C
N → C is defined in a usual way as a linear map taking

the matrix unit eij to δij . For each a = 1, . . . ,m we will consider the partial trace
tra as a linear map (End C

N)⊗m → (End C
N)⊗(m−1) applied to the ath copy of the

endomorphism algebra. Note that tra(Pab) = 1. Furthermore, since

trm

(

sm−1
1

u − xm−1
sm−1

)

= trm−1

(

1

u − xm−1

)

,

we get a recurrence relation for the rational functions

Am(u) = trm

(

1

u − xm

)

(3.7)

in the form
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Am(u) = Am−1(u) + 1

(u − xm−1)2

(

1 + Am(u)
)

,

that is,

Am(u) = (u − xm−1)
2

(u − xm−1)2 − 1
Am−1(u) + 1

(u − xm−1)2 − 1
.

Since for m = 1 we have A1(u) = N/u, solving the recurrence relation we find that

Am(u) = u + N

u

m−1
∏

a=1

(u − xa)
2

(u − xa)2 − 1
− 1.

This calculation and the recurrence formula (2.3) allow us to find the partial trace
trm ET of the idempotent ET regarded as an element of the algebra (3.6). By the
properties of the Jucys–Murphy elements,

xaEU = EUxa = caEU, a = 1, . . . ,m − 1. (3.8)

Therefore,

trm ET = EU

[

(u − cm)Am(u)
]

u=cm

= (N + cm)EU

[

u − cm

u

m−1
∏

a=1

(u − ca)
2

(u − ca)2 − 1

]

u=cm

.

The evaluation of the rational function in u is well-defined and it depends only on
the shape μ of the standard tableau U but does not depend on U . The result of the
evaluation is easily calculated (cf. [8]); it gives

trm ET = (N + cm)
H(μ)

H(λ)
EU, (3.9)

where H(μ) and H(λ) are the products of hooks of the diagrams μ and λ. By (1.4),
the dimension of the irreducible representation L(λ) of GLN is found as the trace
of ET taken over all m copies of the endomorphism space End C

N . Hence, applying
(3.9) we arrive at the well-known Robinson formula for this dimension. If λ is a
partition with at most N parts, the dimension of the irreducible representation L(λ)

of GLN is given by

dimL(λ) = 1

H(λ)

∏

(i,j)∈λ

(N + j − i).

3.2 Dimension formulas for ON and SpN

To prove analogues of the hook dimension formula for the orthogonal and symplectic
groups, consider the recurrence relation (2.3) in the Brauer algebra Bm(ω). The start-
ing point will be an analogue of the identity (3.4) for Bm(ω) given in the next lemma.
This identity goes back to [11, Sect. 4.1] where it is proved for the degenerate affine
Wenzl algebra and used in the description of the center of that algebra; see also [2]
for generalizations to the affine BMW algebras. Recall that now the Jucys–Murphy
elements xa and the contents ca are defined by (2.1) and (2.2).
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Lemma 3.1 We have the identity of rational functions in u,

1

u − xm

= sm−1
1

u − xm−1
sm−1 + 1

u − xm−1
sm−1

1

u − xm−1

+ 1

(u − xm−1)2

1

u − xm

− 1

u − xm−1
εm−1

1

(u + xm−1)(u − xm−1)

− 1

u + xm−1
εm−1

1

u + xm−1
+ 1

(u + xm−1)(u − xm−1)
εm−1

1

u + xm−1

− 1

u + xm−1
εm−1

1

u − xm−1
εm−1

1

u + xm−1
.

Proof Note the following relations in Bm(ω) satisfied by the Jucys–Murphy ele-
ments:

εm−1 xm = −εm−1xm−1, (3.10)

sm−1xm = xm−1sm−1 + 1 − εm−1. (3.11)

By (3.11) we have sm−1(u − xm) = (u − xm−1)sm−1 − (1 − εm−1). Multiply both
sides of this relation by (u − xm−1)

−1 from the left and by (u − xm)−1 from the right
and rearrange to get

sm−1
1

u − xm

= 1

u − xm−1
sm−1 + 1

u − xm−1
(1 − εm−1)

1

u − xm

(3.12)

which implies

1

u − xm

= sm−1
1

u − xm−1
sm−1 + sm−1

1

(u − xm−1)(u − xm)

− sm−1
1

u − xm−1
εm−1

1

u − xm

.

The desired identity will follow after rewriting the second and third terms on the right
hand side with the use of (3.10), (3.12) and the property that the elements xm−1 and
xm commute. The second term takes the form

sm−1
1

(u − xm)(u − xm−1)
= 1

u − xm−1
sm−1

1

u − xm−1
+ 1

(u − xm−1)2(u − xm)

− 1

u − xm−1
εm−1

1

(u + xm−1)(u − xm−1)
,

while for the third term we have

sm−1
1

u − xm−1
εm−1

1

u − xm

=
(

1

u − xm

sm−1 − 1

(u − xm)(u − xm−1)
+ 1

u − xm

εm−1
1

u − xm−1

)

εm−1
1

u − xm

= 1

u + xm−1
εm−1

1

u + xm−1
− 1

(u − xm−1)(u + xm−1)
εm−1

1

u + xm−1

+ 1

u + xm−1
εm−1

1

u − xm−1
εm−1

1

u + xm−1
,

completing the proof. �
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Now consider the natural action of the orthogonal group ON in the space of tensors
(1.1) and the commuting action of the Brauer algebra Bm(N) so that the parameter
ω is specialized to N . The action of Bm(N) in the space (1.1) is defined by the
assignments

sab �→ Pab, εab �→ Qab, a < b, (3.13)

where Pab is defined in (3.5), and

Qab =
N

∑

i,j=1

1⊗(a−1) ⊗ eij ⊗ 1⊗(b−a−1) ⊗ ei′j ′ ⊗ 1⊗(m−b). (3.14)

Note that tra(Qab) = 1 for 1 ≤ a < b ≤ m, and for any element X ∈ End C
N we have

the property QabXaQab = tr(X)Qab . Now we use Lemma 3.1 and regard elements
of the algebra Bm(N) as elements of the algebra (3.6). Define the functions Am(u) by
the same formula (3.7) as for the symmetric group, but with the new definition (2.1)
of the Jucys–Murphy elements. Calculating the partial trace trm on both sides of the
identity of Lemma 3.1 we get the recurrence relation

Am(u) = Am−1(u) + 1

(u − xm−1)2
+ 1

(u − xm−1)2
Am(u)

− 1

(u − xm−1)2(u + xm−1)
− 1

(u + xm−1)2

+ 1

(u + xm−1)2(u − xm−1)
− 1

(u + xm−1)2
Am−1(u)

which simplifies to
(

1 − 1

(u − xm−1)2

)

Am(u)

=
(

1 − 1

(u + xm−1)2

)

Am−1(u) + 2(2u − 1)xm−1

(u − xm−1)2(u + xm−1)2
.

For m = 1 we have A1(u) = N/(u − c1), where c1 = (N − 1)/2 and the relation is
easily solved by using the substitution

Am(u) = ˜Am(u) − 2u − 1

2u
.

The solution reads (cf. closely related calculations in [3])

Am(u) =
m−1
∏

a=1

(u − xa)
2

(u − xa)2 − 1

m−1
∏

a=1

(u + xa)
2 − 1

(u + xa)2

(

2N

2u − N + 1
+ 2u − 1

2u

)

− 2u − 1

2u
.

For any diagram λ with λ′
1 ≤ n set

D(λ) = 1

H(λ)

∏

(i,j)∈λ

(

N − 1 + d(i, j)
)

, (3.15)
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where H(λ) is the product of hooks of λ (see (1.15)) and

d(i, j) =
{

λi + λj − i − j + 1 if i ≤ j,

−λ′
i − λ′

j + i + j − 1 if i > j.

Let T be a standard tableau of shape λ. Denote by U the standard tableau obtained
from T by deleting the box occupied by m and let μ be the shape of U . As with the
group algebra C[Sm] in Sect. 3.1, the recurrence formula (2.3) allows us to find the
partial trace trm ET of the idempotent ET regarded as an element of the algebra (3.6).
The following proposition also recovers the hook dimension formula [4, (3.28)]. Note
that it is given there in an equivalent form which amounts to a change in the definition
of d(i, j): the inequalities i ≤ j and i > j are, respectively, replaced by i ≥ j and
i < j .

Proposition 3.2 We have the relation

trm ET = EU

D(λ)

D(μ)
. (3.16)

Moreover, the dimension of the irreducible representation L(λ) of ON equals D(λ).

Proof We have

trm ET = EU

[

(u − cm)Am(u)
]

u=cm

and using the above formula for Am(u) we get

trm ET = EU

[

u − cm

u − c1

m−1
∏

a=1

(u − ca)
2

(u − ca)2 − 1

]

u=cm

×
m−1
∏

a=1

(cm + ca)
2 − 1

(cm + ca)2

(

N + (2cm − 1)(cm − c1)

2cm

)

.

As we found in Sect. 3.1 (see (3.9)),
[

u − cm

u − c1

m−1
∏

a=1

(u − ca)
2

(u − ca)2 − 1

]

u=cm

= H(μ)

H(λ)
.

Furthermore, observe that

N + (2cm − 1)(cm − c1)

2cm

= (cm + c1)(2cm + 1)

2cm

.

Hence, to complete the proof of (3.16) we need to verify the identity

(cm + c1)(2cm + 1)

2cm

m−1
∏

a=1

(cm + ca)
2 − 1

(cm + ca)2

=
∏

(i,j)∈λ

(

N − 1 + dλ(i, j)
)

/

∏

(i,j)∈μ

(

N − 1 + dμ(i, j)
)

, (3.17)
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where dλ(i, j) and dμ(i, j) denote the parameters d(i, j) associated with the dia-
grams λ and μ, respectively. The diagram λ is obtained from μ by adding one box.
Let (k, l) be this box so that l = λk and cm = λk − k + c1. First consider the case
k ≤ l. The product on the left hand side does not depend on the standard tableau U

and only depends on its shape μ. Therefore, the product can be written as

m−1
∏

a=1

(cm + ca)
2 − 1

(cm + ca)2
=

∏

(i,j)∈μ

(cm + c(i, j))2 − 1

(cm + c(i, j))2
,

where c(i, j) = j − i + (N −1)/2 is the content of the box (i, j). We split the product
into two parts by multiplying all terms corresponding to the subset of boxes (i, j) with
i < l and those corresponding to the subset of boxes (i, j) with i ≥ l. After canceling
common factors, the first part of the product will take the form

cm + c(l − 1,1) − 1

cm + c(1,1)

l−1
∏

i=1

cm + c(i,μi) + 1

cm + c(i,μi)

= cm + c(l − 1,1) − 1

cm + c(1,1)

(2cm)2

(2cm)2 − 1

l−1
∏

i=1

cm + c(i, λi) + 1

cm + c(i, λi)
,

while the second part of the product can be written as

cm + c(l, λl) + 1

cm + c(l,1)

μl
∏

j=1

cm + c(λ′
j , j) − 1

cm + c(λ′
j , j)

.

Therefore, the left hand side of (3.17) equals

2cm(cm + c(l, λl) + 1)

2cm − 1

l−1
∏

i=1

cm + c(i, λi) + 1

cm + c(i, λi)

μl
∏

j=1

cm + c(λ′
j , j) − 1

cm + c(λ′
j , j)

. (3.18)

To see that this coincides with the right hand side of (3.17), note that for most of
the pairs (i, j) the corresponding factors in the numerator and denominator of the
fraction on the right hand side of (3.17) cancel. The remaining pairs are divided into
five types: (i, k) with 1 ≤ i < k; (k, k); (k, j) with k < j < l; (k, l); and (l, j) with
1 ≤ j ≤ μl . Examining the factors for each of the five types we conclude that their
product coincides with (3.18). Indeed, taking the first type of pairs as an illustration,
we obtain the product

k−1
∏

i=1

N − 1 + dλ(i, k)

N − 1 + dμ(i, k)
=

k−1
∏

i=1

N − 1 + λi + λk − i − k + 1

N − 1 + λi + λk − i − k
=

k−1
∏

i=1

cm + c(i, λi) + 1

cm + c(i, λi)

which agrees with the corresponding factors in (3.18). The calculations for the other
types and the argument in the case k > l are quite similar and will be omitted. This
concludes the proof of the first part of the proposition. By (1.10), the dimension
dimL(λ) equals the trace tr1,...,m ET so that the second part follows from the first by
an obvious induction. �
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Now we turn to the symplectic group SpN , N = 2n, acting in the space of ten-
sors (1.1) and the commuting action of the Brauer algebra Bm(−N). The action of
Bm(−N) in the space (1.1) is now defined by

sab �→ −Pab, εab �→ −Qab, a < b, (3.19)

where Pab is defined in (3.5), and

Qab =
N

∑

i,j=1

εiεj 1⊗(a−1) ⊗ eij ⊗ 1⊗(b−a−1) ⊗ ei′j ′ ⊗ 1⊗(m−b). (3.20)

We use Lemma 3.1 in the same way as for the orthogonal group and write down
a recurrence relation for the respective functions Am(u) defined by (3.7) with the
definition (2.1) of the Jucys–Murphy elements. It takes the form

(

1 − 1

(u − xm−1)2

)

Am(u)

=
(

1 − 1

(u + xm−1)2

)

Am−1(u) − 2(2u − 1)xm−1

(u − xm−1)2(u + xm−1)2
.

Noting that A1(u) = N/(u − c1) with c1 = (−N − 1)/2 and using the substitution

Am(u) = ˜Am(u) + 2u − 1

2u

we come to the solution

Am(u) =
m−1
∏

a=1

(u − xa)
2

(u − xa)2 − 1

m−1
∏

a=1

(u + xa)
2 − 1

(u + xa)2

(

2N

2u + N + 1
− 2u − 1

2u

)

+ 2u − 1

2u
.

For any diagram ρ with at most n rows set

D(ρ) = 1

H(ρ)

∏

(i,j)∈ρ

(

N + 1 + d(i, j)
)

, (3.21)

where the parameters d(i, j) are now defined by

d(i, j) =
{

ρi + ρj − i − j + 1 if i > j,

−ρ′
i − ρ′

j + i + j − 1 if i ≤ j.

The following proposition recovers the symplectic version of the hook dimension
formula [4, (3.29)]. We suppose that T is a standard tableau of shape λ � m such
that the first row of λ does not exceed n, and U is the tableau obtained from T by
removing the box occupied by m. The diagram μ is the shape of U .

Proposition 3.3 We have the relation

trm ET = EU

D(λ′)
D(μ′)

. (3.22)

Moreover, the dimension of the irreducible representation L(ρ) of SpN equals D(ρ).
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Proof Applying again (2.3), we get

trm ET = EU

[

(u − cm)Am(u)
]

u=cm

so that by the above formula for Am(u) we have

trm ET = (2cm + 1)(−cm − c1)

2cm

EU

[

u − cm

u − c1

m−1
∏

a=1

(u − ca)
2

(u − ca)2 − 1

]

u=cm

×
m−1
∏

a=1

(cm + ca)
2 − 1

(cm + ca)2
.

As with the orthogonal case (Proposition 3.2), the proof is reduced to verifying the
identity

(−cm − c1)(2cm + 1)

2cm

m−1
∏

a=1

(cm + ca)
2 − 1

(cm + ca)2

=
∏

(i,j)∈λ

(

N + 1 + dλ′(i, j)
)

/

∏

(i,j)∈μ

(

N + 1 + dμ′(i, j)
)

,

where dλ′(i, j) and dμ′(i, j) denote the respective parameters d(i, j) associated with
the diagrams ρ = λ′ and ρ = μ′. This identity holds because after the replacement
of N by −N it turns into (3.17), while the latter can be regarded as an identity of
rational functions in a variable N . Finally, the dimension of L(λ′) equals tr1,...,m ET

by (1.11), so that an obvious induction yields dimL(λ′) = D(λ′). �

4 Images of central idempotents

We consider the cases of orthogonal group ON and symplectic group SpN (the latter
with N = 2n), simultaneously, unless stated otherwise. Suppose that λ is a diagram
with m boxes such that λ′

1 ≤ n in the orthogonal case and λ1 ≤ n in the symplectic
case. Define the respective normalized central idempotents φλ by (1.12) and (1.13)
and regard them as elements of the algebra (3.6) under the action of the Brauer algebra
defined by (3.13) and (3.19). We aim to calculate the images ch(φλ) of φλ under the
characteristic maps (1.9).

4.1 Main theorem

We let Y run over the Cartan subalgebra of the Lie algebra gN so that Y is a diagonal
matrix

Y = diag(y1, . . . , yn,−yn, . . . ,−y1) or Y = diag(y1, . . . , yn,0,−yn, . . . ,−y1)

for N = 2n or N = 2n + 1, respectively.
Consider the map F : gN → GN [14, Theorem 5.2], defined in a neighborhood

of 0 by the formula
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F(Y ) = 1 + Y 2/2 + Y
(

1 + Y 2/4
)1/2

.

We let t be a complex variable and let Z = Z(t) be the image of the matrix tY under
this map,

Z = diag
(

z1, . . . , zn, z
−1
n , . . . , z−1

1

)

or Z = diag
(

z1, . . . , zn,1, z−1
n , . . . , z−1

1

)

,

respectively. In particular, writing Z = F(tY ) as a power series in t we have the
following first few terms

Z = 1 + tY + 1

2
t2Y 2 + · · · .

Therefore, ch(φλ) will be found from the coefficient of tm in the power series expan-
sion

trφλ(Z1 − 1) · · · (Zm − 1) = m!tm ch(φλ) + · · · , (4.1)

where the trace is taken over all m copies of EndC
N in (3.6). We have

trφλ(Z1 − 1) · · · (Zm − 1) =
m

∑

k=0

(−1)m−k
∑

a1<···<ak

trφλZa1 · · ·Zak
.

Each product Za1 · · ·Zak
can be written as PZ1 · · ·ZkP

−1, where P is the image
in (3.6) of a permutation p ∈ Sm such that p(r) = ar for r = 1, . . . , k. Since φλ is
proportional to a central idempotent, it commutes with P , and by the cyclic property
of trace we bring the above expression to the form

trφλ(Z1 − 1) · · · (Zm − 1) =
m

∑

k=0

(−1)m−k

(

m

k

)

trφλZ1 · · ·Zk.

Propositions 3.2 and 3.3 imply the formula for the partial trace,

trm φλ =
∑

μ

φμ,

summed over the diagrams μ obtained from λ by removing one box. Hence for any
value of the parameter k = 0, . . . ,m we have the formula for multiple partial traces
taken over the copies k + 1, . . . ,m of End C

N ,

trk+1,...,m φλ =
∑

μ�k,μ⊆λ

dimλ/μφμ,

where, as before, dimλ/μ is the number of standard tableaux with entries in {k +
1, . . . ,m} of the skew shape λ/μ. Therefore,

trφλ(Z1 − 1) · · · (Zm − 1)

=
m

∑

k=0

∑

μ�k,μ⊆λ

(−1)|λ|−|μ| dimλ/μ

(|λ|
|μ|

)

tr1,...,k φμZ1 · · ·Zk. (4.2)

On the other hand, by (1.10) and (1.11),

tr1,...,k φμZ1 · · ·Zk = dimμ

D(μ)
χoN

μ (z1, . . . , zn)
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in the orthogonal case, and

tr1,...,k φμZ1 · · ·Zk = dimμ

D(μ′)
χ

spN

μ′ (z1, . . . , zn)

in the symplectic case. Now, using the notation (1.16), (1.17) and (1.18), we apply
the binomial formula of [14, Theorem 1.2] which gives

χρ(z1, . . . , zn)

D(ρ)
=

∑

ν

sν(aρ |a)sν(t
2y2

1 , . . . , t2y2
n)

C(ν)
, (4.3)

summed over partitions ν of length not exceeding n, where χρ(z1, . . . , zn) denotes
any one of the characters χ

oN
ρ (z1, . . . , zn) or χ

spN
ρ (z1, . . . , zn).

This formula implies that if m odd, then the coefficient of tm on the right hand
side of (4.2) is zero. Now we assume that m is even, m = 2l. Then the coefficient of
t2l in the right hand side of (4.3) can only come from the terms with the partition ν

having exactly l boxes. Hence, using (4.1) and (4.2) we find that ch(φλ) is the linear
combination of the Schur polynomials sν(y

2
1 , . . . , y2

n) with ν � l occurring with the
respective coefficients

1

C(ν)

∑

μ⊆λ

(−1)|μ| dimμ

|μ|!
dimλ/μ

(|λ| − |μ|)! sν(aρ |a),

where ρ = μ and ρ = μ′ in the orthogonal and symplectic case, respectively. Thus,
recalling the notation H(θ) in (1.15) we arrive at the main result.

Theorem 4.1 Suppose that λ is a diagram with m boxes such that λ′
1 ≤ n in the

orthogonal case and λ1 ≤ n in the symplectic case. Then the image ch(φλ) of the
normalized central idempotent φλ under the respective characteristic map (1.9) is
zero if m is odd. If m = 2l is even, then the image is found by

ch(φλ) =
∑

ν�l

sν(y
2
1 , . . . , y2

n)

C(ν)

∑

μ⊆λ

(−1)|μ| sν(aμ|a)

H(μ)H(λ/μ)
(4.4)

in the orthogonal case, and

ch(φλ) =
∑

ν�l

sν(y
2
1 , . . . , y2

n)

C(ν)

∑

μ⊆λ

(−1)|μ| sν(aμ′ |a)

H(μ)H(λ/μ)
(4.5)

in the symplectic case.

Note that by the vanishing theorem [13] we have sν(aρ |a) = 0 unless ν ⊆ ρ.
Therefore, the first sum in (4.4) is restricted to the partitions ν contained in λ, while
the second sum is restricted to the partitions μ containing ν. Similarly, the first sum in
(4.5) is restricted to the partitions ν contained in λ′, while the second sum is restricted
to the partitions μ containing ν′.

Example 4.2 Consider the orthogonal case with λ = (22). By (4.4), the image
ch(φ(22)) is a linear combination for the Schur polynomials sν(y

2
1 , . . . , y2

n) with
ν = (2) and ν = (12). Using [10, Proposition 3.2], we find
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s(2)(a(2)|a) = (an+2 − an)(an+2 − an+1),

s(2)(a(21)|a) = (an+2 − an−1)(an+2 − an+1),

s(2)(a(22)|a) = (an+2 − an−1)(an+2 − an)

and

s(12)(a(12)|a) = (an+1 − an−1)(an − an−1),

s(12)(a(21)|a) = (an+2 − an−1)(an − an−1),

s(12)(a(22)|a) = (an+2 − an−1)(an+1 − an−1).

For the sequence ai = (ε + i − 1)2 we have an+i − an+j = (i − j)(N + i + j − 2).
Hence the sums in (4.4) are found by

s(2)(a(2)|a)

4
− s(2)(a(21)|a)

3
+ s(2)(a(22)|a)

12
= 1

and

s(12)(a(12)|a)

4
− s(12)(a(21)|a)

3
+ s(12)(a(22)|a)

12
= 1.

Thus,

ch(φ(22)) = 1

(N − 1)N(N + 1)(N + 2)
s(2)

(

y2
1 , . . . , y2

n

)

+ 1

(N − 3)(N − 2)(N − 1)N
s(12)

(

y2
1 , . . . , y2

n

)

.

4.2 Symmetrizers and antisymmetrizers

Now we consider the particular cases, where λ is a row or column diagram with 2l

boxes. In each of these cases there is a unique standard tableau T of shape λ so that
by (1.12) and (1.13), φλ is proportional to the primitive idempotent ET . For λ = (2l)

the primitive idempotent coincides with the symmetrizer S(2l), while for λ = (12l )

it coincides with the antisymmetrizer A(2l) in the Brauer algebra. We will produce
the images ch(S(2l)) and ch(A(2l)) in an explicit form. Suppose first that λ = (2l) in
the orthogonal case. Then the first sum in (4.4) contains only one term with ν = (l),
while the second sum is taken over row-diagrams μ = (k) with l ≤ k ≤ 2l. By (1.17)
we have

s(l)(x|a) =
∑

i1≤···≤il

(xi1 − ai1) · · · (xil − ail+l−1)

=
∑

i1≤···≤il

(xn−i1+1 − ai1) · · · (xn−il+1 − ail+l−1),

where the second relation holds since s(l)(x|a) is a symmetric polynomial. Recalling
the definition (1.18), we find a(k) = (ak+n, an−1, . . . , a1). Hence, taking x = a(k) we
find that the only nonzero summand corresponds to i1 = · · · = il = n,

s(l)(a(k)|a) = (ak+n − an) · · · (ak+n − an+l−1). (4.6)
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Furthermore, recalling that ai = (ε + i − 1)2 we find

s(l)(a(k)|a) = (

(k + n + ε − 1)2 − (n + ε − 1)2) × · · ·
× (

(k + n + ε − 1)2 − (n + l + ε − 2)2)

= k!(N + k + l − 3)!
(k − l)!(N + k − 3)! .

The sum in (4.4) then equals

2l
∑

k=l

(−1)k
(N + k + l − 3)!

(k − l)!(N + k − 3)!(2l − k)!

=
l

∑

r=0

(−1)l−r

(

N + 2l − 3

l − r

)(

N + 2l − 3 + r

r

)

= 1.

Thus, taking into account the constants D(λ) for λ = (2l) and C(ν) for ν = (l) we
come to the following corollary (for a different proof see [9, Proposition 3.4]).

Corollary 4.3 The image of the symmetrizer S(2l) ∈ B2l (N) under the characteristic
map is found by

ch
(

S(2l)
) = N + 4l − 2

(2l)!(N + 2l − 2)

∑

1≤i1≤···≤il≤n

y2
i1

· · ·y2
il
.

Now let λ = (12l ) with 2l ≤ n. The second sum in (4.4) is now taken over column-
diagrams μ = (1k) with l ≤ k ≤ 2l and ν = (1l). Using [10, Proposition 3.2], we find
that

s(1l )(a(1k)|a) = (an−l+2 − an−k+1) · · · (an+1 − an−k+1). (4.7)

Under the specialization ai = (ε + i − 1)2 this simplifies to

s(1l )(a(1k)|a) = k!(N − k)!
(k − l)!(N − k − l)!

so that the sum in (4.4) equals

2l
∑

k=l

(−1)k
(N − k)!

(k − l)!(2l − k)!(N − k − l)! = (−1)l,

thus leading to the image of the antisymmetrizer.

Corollary 4.4 The image of the antisymmetrizer A(2l) ∈ B2l(N) under the charac-
teristic map is found by

ch
(

A(2l)
) = (−1)l

(2l)!
∑

1≤i1<···<il≤n

y2
i1

· · ·y2
il
.
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Note that this result also follows easily from the observation that A(2l) coincides
with the antisymmetrizer in the group algebra C[S2l]. Indeed, it suffices to apply
(1.4) with λ = (12l ) and replace X by the diagonal matrix Y .

The calculation in the symplectic case is quite similar. Suppose first that λ = (2l)

with 2l ≤ n. Then ν = (1l) in (4.5) and μ runs over diagrams (k) with l ≤ k ≤ 2l.
Using (4.7) with the sequence ai = i2 and performing the same calculations as in the
orthogonal case we find the image of S(2l); see also [9, Proposition 3.5].

Corollary 4.5 The image of the symmetrizer S(2l) ∈ B2l (−2n) under the character-
istic map is found by

ch
(

S(2l)
) = (−1)l(n − 2l + 1)

(2l)!(n − l + 1)

∑

1≤i1<···<il≤n

y2
i1

· · ·y2
il
.

Finally, if λ = (12l ) then ν = (l) in (4.5) and μ runs over diagrams (1k) with
l ≤ k ≤ 2l. Applying now (4.6), we calculate the image of A(2l).

Corollary 4.6 The image of the antisymmetrizer A(2l) ∈ B2l(−2n) under the char-
acteristic map is found by

ch
(

A(2l)
) = 1

(2l)!
∑

1≤i1≤···≤il≤n

y2
i1

· · ·y2
il
.

This result also follows from the observation that A(2l) coincides with the sym-
metrizer in the group algebra C[S2l]. It suffices to apply (1.4) with λ = (2l) and
replace X by the diagonal matrix Y .
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