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Abstract The Desarguesian and Unitary ovoids of Q+(7, q) are contained in a sub-
variety of the Grassmannian. We generalize this result, obtaining two families of
complete partial ovoids of polar spaces: the first, with stabilizer PGL (2, qt ) and in-
cluding the family constructed by A. Cossidente and O.H. King for even q, and the
second, with stabilizers contained in PGU (r, q).

Keywords Polar space · Quadric · Complete partial ovoid · Twisted tensor
embedding · Grassmannian

1 Introduction

Ovoids are among the most widely investigated structures of polar spaces. In the
case of Q+(7, q), three infinite families are known: the Desarguesian [16], with q

even and stabilizer PGL (2, q3), the Unitary [16, 31], with q ≡ 0,2 mod 3 and sta-
bilizer PGU(3, q), and the Ree–Tits [36] with q = 32h+1 and stabilizer 2G2(q). We
are focused on two of the aforementioned families: the Desarguesian and the Uni-
tary one. We want to recall a way to construct them that is alternative with respect
to the original constructions. In [20], it has been pointed out for the first time that
the Desarguesian ovoid of Q +(7, q), q even, consists of the set of the points of the
Grassmannian that are image of the Desarguesian plane spread of PG (5, q); then,
in [5], with a different terminology and a more group-theoretic approach, this result
has been extended, getting complete partial ovoids of Q +(2t − 1, q), t ≥ 4. In [21],
it has been proven that a suitable hyperplane section of the Hermitian Veronesean,
the image under the Grassmann map of the Desarguesian line spread of PG (5, q), is
the Unitary ovoid of Q +(7, q), q ≡ 2 mod 3, and the projection of such a set onto a
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suitable space of codimension two is the Unitary ovoid of Q (6, q) (and hence also of
Q +(7, q)), when q = 3h.

This paper is structured as follows. In Sect. 2, we recall some basic notions about
polar spaces and review known results about their ovoids and partial ovoids. Then we
describe the variety Vr,t , which plays a fundamental role in our arguments: Vr,t is the
image under the Grassmann map of the elements of a Desarguesian (t − 1)-spread of
PG (rt − 1, q) and it is the geometric realization of the twisted tensor product group
embedding. Section 3 is dedicated to the construction of Desarguesian complete par-
tial ovoids of polar spaces of PG (2t − 1, q), generalizing the constructions of [5] for
q even and the construction of [4] for q odd and t = 3. In Sect. 4, Unitary complete
partial ovoids of quadrics are considered. Under the twisted tensor product repre-
sentation, it is possible to embed points pairwise not collinear in H (r − 1, q2) into
partial ovoids of a suitable quadric of PG (r2 − 1, q) contained in Vr,2, also called
the Hermitian Veronesean. When r = 3 and q ≡ 0,2 mod 3, this leads to the Unitary
ovoid of Q +(7, q). Our aim is to construct large complete partial ovoids of quadrics
that are images under the twisted tensor embedding of ovoids of H (4, q2).

2 Preliminary results

2.1 Polar spaces

Let PG (V ,F) be the projective space defined by the lattice of subspaces of the vec-
tor space V over the field F; we assume that F is the finite field Fq , dimFq

V = n

and write PG (n − 1, q) := PG (V ,Fq), V (n, q) := V . Let β be a non-degenerate
reflexive σ -sesquilinear form, σ ∈ Aut(F), defined on V (n,F) × V (n,F), then
⊥: u ∈ V (n,F) �→ {v ∈ V |β(u, v) = 0} ⊂ V defines a polarity of PG (n − 1,F).
A subspace W of V is said to be totally isotropic if β(u, v) = 0 for all u and
v ∈ W and the lattice of totally isotropic subspaces is called a polar space (in-
duced by β or ⊥); the subspaces of maximum dimension are called generators of
the polar space. The form β is said to be alternating, symmetric or hermitian, ac-
cording to β(u,u) = 0 for all u ∈ V and σ = id , β(u, v) = β(v,u) for all v,u ∈ V

and σ = id , β(u, v) = β(v,u)σ for all v,u ∈ V and σ 2 = id, σ 	= id (and hence
F = Fq2 ), respectively. When β is alternating, the associated polar space is said to be
symplectic, n must be even and the subgroup of PGL (n, q) preserving it is denoted
by PSp(n, q); the dimension of a generator is (n − 2)/2. When β is symmetric, then
the polar space we obtain is said to be orthogonal, but we can regard this kind of
polar space as also arising from a non-degenerate quadratic form Q defined on V :
β(u, v) := Q(u + v) − Q(u) − Q(v) is a non-degenerate symmetric bilinear form
and the orthogonal polar space associated to it is given by the lattice of subspaces
contained in the quadric Q defined by the equation Q(v) = 0. We have to distin-
guish two cases: if n is odd, then the dimension of a generator is (n − 1)/2 − 1, the
quadric, denoted by Q (2m,q), 2m = n − 1, is said to be parabolic and the subgroup
of PGL (n, q) fixing it is denoted by PGO(n, q); if n is even, then there are, up to
projective equivalence, two types of quadric, elliptic, denoted by Q −(2m + 1, q),
and hyperbolic, denoted by Q +(2m + 1, q), 2m + 1 = n − 1, according to whether
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they have complete subspaces of dimension n/2 − 1 or n/2 − 2, respectively, and the
subgroups of PGL (n, q) fixing them are, respectively, denoted by PGO−(n, q) and
PGO+(n, q). Finally, when β is hermitian, the associated polar space is said to be
hermitian as well and a hermitian polar spaces can be seen as the lattice of subspaces
contained in a non-singular Hermitian variety, denoted by H (n − 1, q2) and defined
by the equation β(v, v) = 0; in this case, the dimension of a generator is 
n−2

2 � and
the subgroup of PGL (n, q2) preserving it is denoted by PGU(n, q).

We want to recall two important results about polar spaces. If q is even and n is
odd, say n = 2m + 1, then the orthogonal polar space of Q (2m,q) is isomorphic
to the symplectic polar space of PG (2m − 1, q); moreover, for a fixed symplectic
polarity ⊥, there exists an elliptic quadric Q −(2m − 1, q), and a hyperbolic quadric
Q +(2m − 1, q) inducing ⊥ as well. In order to determine whether a certain quadric
Q is elliptic or hyperbolic, we often use the following result. If V = V1 ⊕ V2 ⊕
· · · ⊕ Vn

2
, Vi

∼= V (2, q), and β(vi, vj ) = 0 for all vi ∈ Vi , vj ∈ Vj , i 	= j , then the
associated polar space is said to be the orthogonal sum of the lines PG (Vi, q); the
line is hyperbolic if it intersects Q in two points, the line is said to be non-isotropic
if it is skew to Q . Let n′ be the number of non-isotropic lines occurring in the sum,
then Q is hyperbolic if and only if n′ is even. We refer to [9, 15, 29] for more about
polar spaces.

An ovoid O of a polar space P is a set of points of P such that every generator
meets O in exactly one point. If every generator meets O in at most one point, then
O is called a partial ovoid. In both cases, for all P1 and P2 ∈ O , P1 	= P2, we have
P2 	∈ P ⊥

1 , that is, the line 〈P1,P2〉 is not totally singular and P1 and P2 are said to be
non-collinear in the polar space. The existence of ovoids is still an open problem for
many polar spaces, while for several others, it is proven that they do not exist; in these
latter cases, the existence and the size of complete partial ovoids is the most natural
open problem: a partial ovoid is said to be complete if it is not properly contained
in a larger one. For the size of an ovoid in a given polar space, we refer to [15,
Appendix VI]. We present an overview of the results about ovoids of polar spaces.
A symplectic polar space of PG (2n + 1, q) has ovoids if and only if n = 1 and q

is even (see [30, 32]). A Hermitian variety H (n − 1, q2) does not have ovoids if n

is odd [32], whereas if n is even, there are constructions of ovoids only for n = 4
and it is not known whether for n > 4 and even the variety admits ovoids. Regarding
Q−(2n + 1, q), it is well known (see [32]) that it does not have ovoids for n > 1.
The quadric Q (4, q), has ovoids [24], but Q (2n,q), n ≥ 3 and q even, does not
have ovoids (see [32]) and Q (2n,q), n ≥ 4 and q odd, does not have ovoids by [11].
Finally, Q (6, q) admits two families of ovoids in characteristic three [16, 31], but it is
still an open problem whether they exist or not in other odd characteristics. Regarding
the hyperbolic quadric Q +(2n + 1, q), the existence for ovoids is proven in all the
characteristics only for n ≤ 2; for n ≥ 4, by [1], they do not exist if q = ph, p is a
prime and pn >

(2n+p
2n+1

)
, but it is not known whether they exist or not in the remaining

cases. We are especially interested in Q +(7, q). There are sporadic constructions for
q ≥ 5 a prime in [2, 22] and for q = 8 in [10]. The infinite known families are: the
Desarguesian [16], with q even and stabilizer PGL (2, q3), the Unitary [16, 31], with
q ≡ 0,2 mod 3 and stabilizer PGU(3, q) and the Ree–Tits [36] with q = 32h+1 and
stabilizer 2G2(q). For q not a prime and q ≡ 1 mod 6 is not known whether they exist
or not.
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2.2 The twisted tensor embedding

A subset of PG (n − 1, q) isomorphic to PG (n − 1, q ′), q ′|q , is a subgeometry of
PG (n − 1, q) and when q = q ′2, then it is a Baer subgeometry. A subgeometry
PG (n − 1, q ′) can also be regarded as the set of fixed points with respect to a Fq ′ -
linear collineation ρ of PG (n − 1, q) of order h = logq ′ q . In general, any subspace

Π of PG (n − 1, q) intersects PG (n − 1, q ′) in the subspace Π ∩ Πρ ∩ · · · ∩ Πρh−1
,

hence when Π is set-wise fixed by ρ, then it meets PG (n − 1, q ′) in a space with the
same dimension as Π .

Take PG (r1 − 1, q), PG (r2 − 1, q), . . . ,PG (rt − 1, q) to be t distinct projective
spaces; the Segre embedding

σ : PG (r1 − 1, q) × PG (r2 − 1, q) × · · · × PG (rt − 1, q)

−→ PG (r1r2 · · · rt − 1, q)

is the map such that σ(x1, . . . ,xt ) is the vector of all the possible products
x

(1)
j1

x
(2)
j2

· · ·x(t)
jt

, as xi = (x
(i)
0 , x

(i)
1 , . . . , x

(i)
ri−1) varies in PG (ri − 1, q). The image

of σ is the Segre variety Σr1;r2;...;rt : it can be regarded, in some way, as a product of
projective spaces; see [15, Chap. 25], [13, Chap. 9] and [12, Chap. 2]. In the language
of tensor products, σ is the natural morphism between the varieties

PG (V1, q) × PG (V2, q) × · · · × PG (Vt , q) −→ PG (V1 ⊗ V2 ⊗ · · · ⊗ Vt , q).

In this paper, we are interested in the case r1 = r2 = . . . = rt = r ; for brevity we shall
write Σrt instead of Σr1;r2;...;rt . Clearly, Σrt ⊆ PG (rt − 1, q).

Take now the projective space PG (r − 1, qt ) and let v �−→ vq be the Fq -linear
collineation of order t induced by the Frobenius automorphism of the extension [Fqt :
Fq ]. For any P ∈ PG (r − 1, qt ), write

P α = σ
([

P,P q, . . . ,P qt−1])
.

The image of this correspondence is the variety Vr,t . It is immediate to see that the
Fq -linear collineation of order t given by

(p1 ⊗ p2 ⊗ · · · ⊗ pt) �−→ (
p

q
t ⊗ p

q

1 ⊗ · · · ⊗ p
q

t−1

)

fixes Vr,t point-wise; hence, Vr,t is contained in a subgeometry Ω = PG (rt −1, q) of
PG (rt − 1, qt ). It turns out that Vr,t is, in fact, the complete intersection of the Segre
product Σrt with Ω .

As an algebraic variety Vr,t first appeared in [26]; it has then been described in
[21] and therein extensively studied. Recently, in [25], an explicit parametrization
for Vr,t has been determined, leading to the discovery of some new properties. It
is convenient to recall here this parametrization. Let F be the set of all functions
f : {0, . . . , t − 1} → {0, . . . , r − 1} and write P = (x0, . . . , xr−1) ∈ PG (r − 1, qt ).
Then, there is an injective map α : PG (r − 1, qt ) → Vr,t ⊆ PG (rt − 1, qt ) sending
any P ∈ PG (r − 1, qt ) to the point P α ∈ PG (rt − 1, qt ) whose coordinates consist
of all products of the form

t−1∏

i=0

x
qi

f (i) (1)

as f varies in F.
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We shall also make use of the alternative description of Vr,t from [21, 26]. A De-
sarguesian (also called normal) spread of PG (rt − 1, q) is projectively equivalent
to a linear representation of PG (r − 1, qt ) in PG (rt − 1, q); see [26]. As such, it
consists of a collection S of (t − 1)-dimensional subspaces of PG (rt − 1, q), each of
them the linear representation of a point of PG (r − 1, qt ), partitioning the point set
of PG (rt − 1, q). When regarded on the Grassmannian of all the (t − 1)-dimensional
subspaces of PG (rt − 1, q), the elements of S determine the algebraic variety Vr,t .
The best known example is for r = t = 2: indeed, the Grassmannian of the lines of
a Desarguesian spread of PG (3, q) is an elliptic quadric V2,2 = Q−(3, q); see, for
instance, [14, Sect. 15.4].

More generally, if ΠP ∈ S is the linear representation of a point P ∈ PG (r −
1, qt ), then the image under the Grassmann map of ΠP is P α . Using this corre-
spondence, it has been possible to investigate several properties of Vr,t ; see [19, 21,
25]. Here we will recall just some of them. The group P	L (r, qt ) preserves a De-
sarguesian (t − 1)-spread S of PG (rt − 1, q), thus its lifting preserves Vr,t and its
action on the points of Vr,t is isomorphic to the 2-transitive action of P	L (r, qt ) on
the elements of S ; see [21]. We remark that the aforementioned action is actually
3-transitive for r = 2.

The group G := PGL (r, qt ) acts in a natural way on M = PG (r − 1, qt ), which
is both a G-module and an Fqt -vector space. The twisted tensor product has been
introduced in [28] to realize a new G-module, say M ′, defined over the subfield Fq

from M ; this induces a straightforward embedding of PGL (r, qt ) in PGL (rt , q). We
briefly recall the construction. Write the action of G on M as g · P → gP , where
g ∈ G and P ∈ M . For any automorphism φ of Fqt , we can define a new G-module,

Mφ with group action g · P → gφP ; when φ is the automorphism g → gqi
, we shall

write Mφ = Mqi
. Using this notation, the twisted tensor product of M over Fq is

M ′ = M ⊗ Mq ⊗ · · · ⊗ Mqt−1
.

If we restrict our attention to the points of Vr,t , we see that for any g ∈ G and P ∈
PG (r − 1, qt )

(gP )α = σ
([

gP,gqP q, . . . , gqt−1
P qt−1]) = gσ

([
P,P q, . . . ,P qt−1]) = gP α.

This is to say that PGL (r, qt ), as embedded in PGL (rt , q), it stabilizes Vr,t and its
action on the points of the variety is the same way as that on those of PG (r − 1, qt ).
For this reason, we can consider Vr,t as a geometric realization of the twisted tensor
product group embedding; in brief we shall call it the twisted tensor embedding over
Fq of PG (r − 1, qt ).

In this paper, we will consider the varieties Vr,t for (r, t) 	= (2,2) and show how
they behave with respect to suitable polarities.

3 Desarguesian complete partial ovoids

In this section, the constructions of [4, 5] are generalized to any q and for t ≥ 4. Our
main result is Theorem 1.
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The algebraic variety V2,t ⊂ PG (2t − 1, q) is the image under the Grassmann
map of the elements of a Desarguesian (t − 1)-spread S of PG (2t − 1, q) and it
has as automorphism group a lifting of PGL (2, qt ), hence a group isomorphic to
PGL (2, qt ) and with the same 3-transitive action. The sublines PG (1, q) embedded
in PG (1, qt ) correspond to the reguli of S and their image under α are normal rational
curves of degree t , intersection of V2,t with suitable t-dimensional spaces; conversely,
for t < q , every normal rational curve of degree t is image of a subline, or a regulus;
see [19]. Hence, via this correspondence, the points of V2,t and the normal curves of
degree t contained in V2,t form a 3-(qt + 1, q + 1,1) design. Also, in [25] it has been
proved that any t + 1 points of V2,t are in generic position, i.e. any t + 1 of them span
a t-dimensional space.

Throughout this section we assume t ≥ 3. In [5], Cossidente and King prove with
a different approach that if q = 2h, then the points of V2,t form a partial ovoid of
the hyperbolic quadric Q+(2t − 1, q) and it is complete since its size attains the
Blokhuis–Moorhouse bound of [1]. In [4], Cossidente proves that, for q odd and
t = 3, the points of V2,t form a partial ovoid with respect to a suitable symplectic
polarity of PG (7, q). The aim of this section is to prove that for t ≥ 3 the points of
V2,t form a partial ovoid with respect to a suitable polarity of PG (2t − 1, q), for both
even and odd q .

By the parametrization given in [25], V2,t is the image of the injective map α : P =
(x0, x1) ∈ PG (1, qt ) �−→ P α ∈ PG (2t − 1, qt ), where the coordinates of P α consist
of all products of the form

t−1∏

i=0

x
qi

f (i)

as f varies in F, F = {f : {0,1, . . . , t −1} → {0,1}}. Let S be the set {0,1, . . . , t −1}
and P (S) be the power set of S, hence we have V2,t = {P∞} ∪ {Px, x ∈ Fqt }, where

P∞ is the point (0,0, . . . ,0,1) and Px is the point whose coordinates are
∏

i∈T xqi
,

with T ∈ P (S), and the convention that when T = ∅ the corresponding coordinate is
1, ∀x ∈ Fqt . We choose an ordering in P (S) such that the first element is the empty set
and the complement of the ith element of P (S) is the (2t − i +1)th element and from
now on we denote by Ti the ith element of P (S) with respect to this ordering. We
label the components of the coordinates vector of the points of V2,t \ {P∞} according

to this, i.e. the ith component of the coordinates vector of Px is
∏

j∈Ti
xqj

. Let σ be
the permutation (0 1 · · · t − 1) of S and let Lσ be the Fq -linear collineation:

(v1, v2, . . . , v2t ) ∈ PG
(
2t − 1, qt

)

→ (
v

q

σ−1(1)
, v

q

σ−1(2)
, . . . , v

q

σ−1(2t )

) ∈ PG
(
2t − 1, qt

)
,

where, by abuse of notation, we have denoted by σ−1(i) the map i → j ⇐⇒ T σ−1

i =
Tj , Ti and Tj ∈ P (S). As the largest orbit under the action of σ on P (S) has order
t , Lσ is an Fq -linear collineation of order t of PG (2t − 1, qt ), hence the set of its
fixed points is a subgeometry PG (2t − 1, q). Let R be a set of representatives for the
orbits of P (S) under the action of σ and let Ti ∈ R. If the orbit of Ti under the action
of σ has order s, s|t , and {Ti, T

σ
i , . . . , T σ s−1

i } = {Ti, Ti1, . . . , Tis−1} in the chosen
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ordering, then the components vi, vi1, . . . , vis−1 of the point P = (v1, v2, . . . , v2t ) of

the subgeometry PG (2t −1, q) ⊂ PG (2t −1, qt ) are such that vi ∈ Fqs and vij = v
qj

i ,

∀j = 1, . . . , s − 1. By the relation: (
∏

i∈T xqi
)q = ∏

i∈T σ xqi
, we find that V2,t is

fixed point-wise by Lσ and so the subgeometry PG (2t − 1, q) where V2,t in fact lies
is the one defined by Lσ .

In PG (2t − 1, qt ) we consider the following non-degenerate bilinear form:
β(u, v) = ∑2t

i=1 εiuiv2t−i+1, where u = (u1, u2, . . . , u2t ), v = (v1, v2, . . . , v2t ) ∈
PG (2t − 1, qt ), εi = (−1)|Ti | and Ti ∈ P (S). When t is even, the parity of |Ti |
and |S \ Ti | are the same, so the form β is symmetric and the induced polarity is
orthogonal; conversely, when t is odd, then β is alternating and the induced po-
larity is symplectic. We want to describe the polarity induced by β on the subge-
ometry PG (2t − 1, q). We observe that if the σ -orbit of Ti has size s, then also
the σ -orbit of T c

i := S \ Ti does, since it easy to see that T σc
i = T cσ

i . As a conse-
quence, vi ∈ Fqs if and only if v2t−i+1 ∈ Fqs , ∀v = (v1, v2, . . . , v2t ) ∈ PG (2t − 1, q).

Let Tr(s) : x ∈ Fqs �→ x + xq + · · · + xqs−1 ∈ Fq be the trace function ∀s|t . Now,
by abuse of notation we denote by β also the bilinear form induced on the sub-
geometry under consideration and so we have β(u, v) = ∑

i|Ti∈R εiTrsi (uiv2t−i+1),
with ui ∈ Fqsi , si |t , and u = (u1, u2, . . . , u2t ), v = (v1, v2, . . . , v2t ) ∈ PG (2t − 1, q).
Again, it is easy to see that β is non-degenerate and symmetric if t is even, alternating
if t is odd.

When t is odd we have a symplectic polarity in PG (2t − 1, q) and for even q we
wish to determine a suitable quadratic form inducing it. As in this case Ti and T c

i have
different size, they give rise to two different orbits under the action of σ , ∀Ti ∈ P (S);
thus the number of σ -orbits is even and we denote by R′ the subset of R consisting
of the elements of size at most t−1

2 ; by the previous observation, we have |R′| =
|R|/2. Then, when q is even, the quadric Q of equation

∑
i|Ti∈R′ Trsi (uiu2t−i+1) = 0

polarizes β and so induces the symplectic polarity. The bilinear function (a, b) ∈
Fqs × Fqs �→ Trs(ab) ∈ Fq is obviously a scalar product, so by its equation, we can
easily see that Q = Q+(2t − 1, q). The point P∞ ∈ V2,t clearly belongs to Q; the

point Px = (u1, u2, . . . , u2t ) ∈ V2,t is such that ui = ∏
j∈Ti

xqj
, so if we denote by

N the norm function: x ∈ Fqt �→ N(x) = x1+q+···+qt−1 ∈ Fq , then uiu2t−i+1 = N(x),
∀i = 1,2, . . . ,2t . If we plug in the coordinates of a point Px in the equation of Q, we

obtain
∑2t−1

i=1 N(x) = N(x)2t−1 = 0, ∀x ∈ Fqt , because the characteristic is even. So
for t odd and q even, we have determined a hyperbolic quadric Q = Q+(2t − 1, q)

polarizing the alternating form β (and hence inducing the symplectic polarity) and
containing the points of V2,t .

Suppose now t to be even. The form β is orthogonal, hence it is induced by a
quadric Q. We want to prove that such a quadric is hyperbolic. Let R∗ be the subset
of R such that Ti and T c

i are not in the same orbit under the action of σ . We observe
that |R∗| is even, as the σ -orbits of Ti and T c

i are distinct, ∀ Ti ∈ R∗. Let R∗′ be
the subset of R∗ such that |Ti | ≤ t/2 and, once more, we note that |R∗′| = |R∗|/2.
Consider the subspace Π1 of PG (2t − 1, q) defined by the equations ui = 0, for all
i such that Ti and T c

i are in the same σ -orbit, then Π1 has odd dimension and is met
by Q in a quadric Q1 of equation

∑
i|Ti∈R∗′ εiTrsi (uiu2t−i+1) = 0, that, as before,

is hyperbolic. Let now R∗∗ be the subset of R such that Ti and T c
i are in the same
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orbit under the action of σ , i.e., T c
i = T σsi

i , so the σ -orbit of Ti has size 2si , 2si |t
and ui ∈ Fq2si . The subspace Π2 of PG (2t − 1, q) defined by the equations ui = 0
for all i such that Ti and T c

i are not in the same σ -orbit is skew with Π1 and so it
also has odd dimension; furthermore, the intersection of Q with Π2 is a quadric Q2

of equation
∑

i|Ti∈R∗∗ εiTrsi (u1+qsi

i ) = 0. The quadratic equation Trs(u1+qs
) = 0,

u ∈ Fq2s , is non-degenerate, hence the quadric is either elliptic or hyperbolic in a
(2s −1)-projective space. Since the number of (projective) solutions of such an equa-
tion is (qs − 1)(qs + 1)/(q − 1), it is immediate to see that this corresponds to an
elliptic quadric (for the size of a quadric in a projective space, see e.g. [15, Theo-
rem 22.5.1(b)]). The quadric Q2 is hence the orthogonal sum of elliptic quadrics, so
to determine its nature, it is necessary to look at the parity of the number of the ellip-
tic quadrics occurring in such a sum. Following the terminology of [5], an element
T ∈ P (S) of size t/2 such that the σ -orbit of T has size r and such that T and T c

are in the same orbit is an invertible pattern of irreducible length r and the number
of these elements is denoted by a(r). By [5, Lemma 3.2(4)],

∑
r|t a(r)/r is even,

implying, going back to our terminology, that |R∗∗| is even. We can conclude that
Q2 is the orthogonal sum of an even number of elliptic quadrics, hence it is hyper-
bolic. Finally, since Q is the orthogonal sum of the two hyperbolic quadrics Q1 and
Q2, Q is hyperbolic as well, i.e. Q = Q+(2t − 1, q). As before, the point P∞ ∈ V2,t

clearly belongs to Q and Px = (u1, u2, . . . , u2t ) ∈ V2,t is such that uiu2t−i+1 = N(x),
∀i = 1,2, . . . ,2t , so if we plug in the coordinates of the point Px in the equation of

Q we obtain
∑2t−1

i=1 εiN(x) = N(x)
∑2t−1

i=1 εi = N(x)(n − m), where 2n is the number
of subsets of S of even size and 2m is the number of subsets of S of odd size. In
the vector space V (t,2), we can identify each element of P (S) with its characteristic
vector, and the elements of even size are those whose characteristic vector satisfies
the equation v1 + v2 + · · · + vt = 0, hence there are 2t−1 such, so 2n = 2m = 2t−1.
We can conclude that N(x)(n−m) = 0 ∀ x ∈ Fqt . Hence, also in this case, the variety
V2,t is completely contained in the quadric Q = Q+(2t − 1, q).

For all t ≥ 3 and q , let ⊥ be the polarity induced by β on PG (2t − 1, q). The
hyperplane P ⊥∞ has equation u1 = 0, hence Px /∈ P ⊥∞ ∀ x ∈ Fqt . It is easy to see that
Px ∈ P ⊥

y if and only if N(x − y) = 0 and this is possible if and only if x = y. So
we have Px /∈ P ⊥

y ∀ x 	= y and so the points of V2,t form a partial ovoid with respect
to ⊥.

Finally, the last result we want to prove is that V2,t is complete, i.e. for any R /∈ V2,t

in the polar space we have R⊥ ∩ V2,t 	= ∅. A hyperplane section of V2,t is represented

by an Fq -linear homogeneous equation in
∏

i∈T ,j∈T c xqi
yqj

, as T varies in P (S),
with x, y ∈ Fqt . Working out this equation in Fq , we get a homogeneous equation
of degree t with 2t variables, which by the Chevalley–Warning Theorem has pλ

solutions, where p is the characteristic of the field; in particular this equation has
always at least a projective solution, and so every hyperplane intersects V2,t in at
least one point. It follows that the partial ovoid is complete.

We summarize the results proven in this section in the following theorem.

Theorem 1 Let P be the polar space induced by a Q+(2t − 1, q) if t is even or t

is odd and q is even and let P be the symplectic polar space of PG (2t − 1, q) if
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both t and q are odd. The points of V2,t form a complete partial ovoid of P with the
following properties:

• the size is qt + 1;
• the stabilizer is isomorphic to PGL (2, qt ) with a 3-transitive action on the points;
• any t + 1 points are in general position;
• for t < q , the points and the normal rational curves of degree t contained in it form

a 3-(qt + 1, q + 1,1) design.

Remark 1 For t = 3, we obtain the so called Desarguesian ovoid of Q+(7, q), q even
(see [16]).

4 Unitary complete partial ovoids of quadrics

In this section we consider the variety Vr,2 of PG (r2 − 1, q), r ≥ 3, q > 2: it is the
twisted tensor embedding of PG (r − 1, q2) over Fq or, in another terminology, it is
the intersection of the Segre product of two PG (r − 1, q2) with a Baer subgeometry
PG (r2 − 1, q). As we are considering in this case a 2-dimensional tensor, there is
a natural representation of this space by means of matrices. More precisely, as r2-
dimensional vector space over Fq2 , we consider the set M of square matrices of
order r over Fq2 . In the projective space PG (r2 − 1, q2) defined by M consider
the Fq -linear collineation of order two σ : M ∈ M �→ MT q ∈ M, where MT is the
transpose of M and Mq is the matrix obtained from M by raising every component of
M to the qth power. The set of points fixed by σ is a subgeometry PG (r2 − 1, q) and
it consists of the so called Hermitian matrices of order r , i.e. the matrices M ∈ M
such MT q = M . Then, the variety Vr,2 is the image of the map

α : (x1, x2, . . . , xr ) ∈ PG
(
r − 1, q2) �→ M ∈ PG

(
r2 − 1, q

)∣∣mij = xix
q
j .

This variety has already been studied in detail in [7] for r = 3 and in [3] for general
r , and in the literature it is usually called the Hermitian Veronesean. An important
property of the Hermitian Veronesean Vr,2 we will use in this section is that every
hyperplane section of Vr,2 is the image under α of a (possibly singular) Hermitian
variety of PG (r − 1, q2).

Define on M the following quadratic form: Q(M) = ∑
i<j miimjj−∑

i<j mijmji , that is, the sum of the principal minors of order two of M . On

PG (r2 − 1, q), Q induces the following quadratic form, denoted, by abuse of no-
tation, with Q as well: Q(M) = ∑

i<j miimjj − ∑
i<j m

q+1
ij . If M ∈ Vr,2, then,

clearly, Q(M) = 0. Let Tr(M) = ∑r
i=1 mii be the trace of the matrix M ; as

Tr(M) = 0 defines a hyperplane of M that it is fixed by σ , it also determines
a hyperplane H of PG (r2 − 1, q). The points of H ∩ Vr,2 are the images un-
der α of the points of the non-singular Hermitian variety H(r − 1, q2) of equa-
tion

∑r
i=1 x

q+1
i = 0. On the hyperplane H , the quadratic form Q induces the

form Q′(M) = ∑r−1
i=1 m2

ii + ∑
i<j<r miimjj + ∑

i<j m
q+1
ij and hence the sym-

metric bilinear form β(M,N) = Tr(MN), where by MN we have denoted the
usual matrix product. Let x · y := ∑r

i=1 xiyi for all x = (x1, x2, . . . , xr ) and y =
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(y1, y2, . . . , yr ) ∈ PG (r − 1, q2), and let xq be (x
q

1 , x
q

2 , . . . , x
q
r ), then the polar hy-

perplane of P = (u1, u2, . . . , ur ) ∈ PG (r − 1, q2) with respect the Hermitian polar-
ity induced by H(r − 1, q2) has equation uq · x = 0. Write M(x) := xα , then two
points M(x) and M(y) of Vr,2 ∩ H are collinear with respect to β if and only if
Tr(M(x)M(y)) = 0, but by straightforward computation, we have Tr(M(x)M(y)) =
(
∑r

j=1 xjy
q
j )(

∑r
i=1 x

q
i y

q
i ) = (x · yq)(xq · y), hence M(x) and M(y) are collinear

with respect to β if and only if the points x and y of PG (r − 1, q2) are collinear in
H(r −1, q2). Our aim is to construct large (complete) partial ovoids of PG (r2 −2, q)

with respect the orthogonal polarity defined by Q′ and contained in the algebraic va-
riety Vr,2 that are image of ovoids of H(r − 1, q2). We first prove the following
result.

Theorem 2 In the PG (r2 − 2, q) defined by the Hermitian matrices of order r and
trace 0, the bilinear form β(M,N) = Tr(MN) is degenerate if and only if p | r ,
where p is the characteristic of Fq . As a consequence, for p � r , we see that the
twisted tensor product of PGU (r, q) over Fq is embedded in the orthogonal group
PGO(r2 − 1, q) for r even, and in the orthogonal group PGOε(r2 − 1, q) for r odd,
where ε has to be chosen in the following way:

• if q is even and
r ≡ 1 mod 8, then ε = +;
r ≡ −1 mod 8, then ε = −;
r ≡ 3 mod 8, then ε = + when log2 q is odd and ε = − when log2 q is even;
r ≡ −3 mod 8, then ε = + when log2 q is even and ε = − when log2 q is odd;

• if q is odd and
r ≡ 1 mod 4, then ε = + when r is a square in Fq and ε = − when r is a non-
square in Fq ;
r ≡ −1 mod 4, then ε = − when −r is a square in Fq and ε = + when −r is
a non-square in Fq .

Finally, under the twisted tensor embedding over Fq , pairwise non-collinear points
of H (r − 1, q2) are mapped on pairwise non-collinear points of PG (r2 − 2, q) with
respect to the bilinear form β .

Proof The last part of the statement follows from the considerations preceding it.
The radical of β is {M ∈ PG (r2 − 2, q)|Tr(MN) = 0 ∀ N ∈ PG (r2 − 2, q)}. Let Aij

be the matrix with aij = aji = 1 and all the other components 0, and Bij the matrix
with bij = ξ, bji = ξq and all the other components 0, ξ ∈ Fq2 \ Fq , i < j . Then,
Tr(MAij ) = mij + m

q
ij = 0 and Tr(MBij ) = mij ξ + m

q
ij ξ

q = 0, hence mij =0 for all
i 	= j . Let Ci be the diagonal matrix with c11 = 1, cii = −1 and cjj = 0 for j 	= i,1,
i = 2, . . . , r , then Tr(MCi) = m11 − mii = 0 for all i > 1. So M = hI , with h ∈ Fq

and I is the identity matrix. The matrix I has trace 0 if and only if p | r , hence, in
this case, I belongs to the radical of β .

By the arguments in the previous paragraph and since α is the geometric re-
alization of the twisted tensor product embedding of the groups, we find that the
twisted tensor product of PGU (r, q) is embedded in the orthogonal group related to
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the quadric Q of PG (r2 − 2, q) defined by Q′, when Q is non-degenerate. It re-
mains to determine, when r is odd, whether Q is hyperbolic or elliptic. For every
fixed pair (i, j), i < j , the line defined by the equations mhk = 0 ∀(h, k) 	= (i, j) is
non-isotropic with respect to Q. The intersection of Q with the (r − 2)-subspace
of PG (r2 − 2, q) defined by the diagonal matrices with trace 0 is the quadric Q ∗
of equation

∑r−1
i=1 m2

ii + ∑
i<j<r miimjj = 0. We will determine its type using

the invariant of [15, Theorem 22.2.1]. Suppose that the equation of a quadric of
PG (n − 1, q) is

∑n
i=1 aix

2
i + ∑

1≤i<j≤n aij xixj = 0 with n even and let A = (aij )

be such that aij = aji , i < j and aii = 2ai ∀i = 1, . . . , n and B be the matrix
with bij = −bji = aij , i < j , and bii = 0 ∀i = 1, . . . , n. In our case, n = r − 1,
A = I + J , where I is the identity matrix and J is the all 1’s matrix, and B is
the skew-symmetric matrix with bij = 1 for all 1 ≤ i < j ≤ n. In order to com-
pute the invariant, we have to compute the determinant of A and B . The eigenval-
ues of J are 0, with multiplicity n − 1, and n, with multiplicity 1, hence the eigen-
values of A = I + J are 1, with multiplicity n − 1, and n + 1, with multiplicity
1, so detA = n + 1 = r . In order to compute detB , we use the theorem of [23,
p. 397], which states that the determinant of a skew-symmetric matrix of even or-
der is not altered by adding the same number to each component, so if we add 1
to all the components of B , we get a upper triangular matrix with all 1’s on the di-

agonal, hence detB = 1. Let δ := detB−(−1)
r−1

2 detA
4 detB = 1−(−1)

r−1
2 r

4 if q is even, and

δ := (−1)
r−1

2 detA = (−1)
r−1

2 r , if q is odd. By [15, Theorem 22.2.1], if q is even,
then the quadric is hyperbolic or elliptic according to whether t2 + t + δ = 0 has two
or no solutions; in our case δ = 0 if r ≡ ±1 mod 8 and δ = 1 if r ≡ ±3 mod 8, so the
quadric Q ∗ is hyperbolic if r ≡ ±1 mod 8 or r ≡ ±3 mod 8 and q = 22h, whereas
Q ∗ is elliptic if r ≡ ±3 mod 8 and q = 22h+1. If q is odd, then the quadric is hyper-
bolic or elliptic according to whether δ is a non-zero square or a non-square, hence

Q ∗ is hyperbolic or elliptic according to whether (−1)
r−1

2 r is a non-zero square or a
non-square in Fq . The polar space induced by the quadric Q is the orthogonal sum

of r2−r
2 non-isotropic lines and the polar space induced by Q ∗. The orthogonal sum

of r2−r
2 non-isotropic lines is a polar space of hyperbolic type if r ≡ 1 mod 4 and it is

of elliptic type if r ≡ 3 mod 4. Hence Q is hyperbolic or elliptic as described in the
statement. �

4.1 (Complete partial) ovoids contained in V3,2

If r = 3, then the points of H(2, q2) are pairwise non-collinear, since the Hermitian
curve does not contain lines. The image under α of the points of H(2, q2) is a set of
non-collinear points of the quadric Q of PG (7, q) defined by Q′(M) = ∑2

i=1 m2
ii +

∑
i<j miimjj +∑

i<j m
q+1
ij = 0. By Theorem 2, the quadric Q is a cone with vertex

the identity matrix for q = 3h; Q is hyperbolic if q = 22h+1 or q is odd and −3 is a
non-zero square of Fq , that is, q ≡ 2 mod 3, and, finally, Q is elliptic if q = 22h or q

is odd and −3 is a non-zero square of Fq , which is equivalent to say that q ≡ 1 mod
3. We remark that this construction is the same as the one presented in [17, Sect. 6].
Hence, if q ≡ 2 mod 3, then H (2, q2)α is the so called Unitary ovoid of Q +(7, q)
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(see [16, 17, 35]), whereas if q = 3h, then we can project H (2, q2)α from the vertex
I on the base of Q , getting the ovoid of Q (6, q) appearing in [16, 17].

If q ≡ 1 mod 3, then the quadric obtained is a Q−(7, q) and it is well known
that elliptic quadrics of PG (2n + 1, q), n > 1, do not admit ovoids (see [32]). In-
deed, we get q3 + 1 pairwise non-collinear points, whereas the ovoid number of
Q−(7, q) is q4 + 1, hence we obtain a partial ovoid. Suppose that H (2, q2)α is
not complete, then there exists a point P ∈ Q−(7, q) such that the polar hyper-
plane of P has empty intersection with H (2, q2)α . So there exists a hyperplane
H ′ of the PG (8, q) where V3,2 lies such that H ′ ∩ H ∩ V3,2 = ∅, where H is the
hyperplane such that H (2, q2)α = H ∩ V3,2. As well as for H , H ′ ∩ V3,2 is the
image under α of a (possibly singular) Hermitian curve of PG (2, q2), say H ′. If
H ′ ∩H ∩ V3,2 = H (2, q2)α ∩ H ′α = ∅, then we would find that two Hermitian curves,
one of them non-singular, have empty intersection, but this is impossible (see [18] for
the possible intersections of two Hermitian curves, with at least one of the two non-
singular). Hence H (2, q2)α is a complete partial ovoid of Q−(7, q), q ≡ 1 mod 3,
with stabilizer PGU(3, q). The best upper bound in the literature for complete partial

ovoids of Q−(7, q) is the one of [8], namely 2+ 1
2

(q3−1)(q2+q+2)
q+1 , which is obviously

not sharp since it is not an integer. So far, up to our knowledge, H (2, q2)α provides
the largest example of complete partial ovoid of Q−(7, q).

4.2 Complete partial ovoids contained in V4,2

If r > 3 and odd, then it has been proven in [32] that H(r − 1, q2) does not have
ovoids, whereas if r > 4 and even, the existence of ovoids of H(r − 1, q2) is still an
open problem.

In the rest of the section, we shall focus on the case r = 4: in H(3, q2) there are
plenty of examples of ovoids. The algebraic variety V4,2 lies in a PG (15, q) defined
by the Hermitian matrices of order 4. The intersection of V4,2 with the hyperplane
of equation T r(M) = 0 is the image under α of the non-singular Hermitian surface
H(3, q2) of equation x

q+1
1 + x

q+1
2 + x

q+1
3 + x

q+1
4 = 0. In the PG (14, q) defined by

T r(M) = 0, we have the quadratic form Q′(M) = m2
11 + m2

22 + m2
33 + m11m22 +

m11m33 +m22m33 +m
q+1
12 +m

q+1
13 +m

q+1
14 +m

q+1
23 +m

q+1
24 +m

q+1
34 . By Theorem 2,

the quadric Q defined by Q′(M) = 0 is a Q (14, q) for q odd, and it is a cone with
vertex the identity matrix I for q even. Suppose q to be even, then the hyperplane
of equation m11 = 0 does not contain I . By abuse of notation, denote by Q the
base of the cone contained in that hyperplane. Hence Q has equation m2

22 + m2
33 +

m22m33 + m
q+1
12 + m

q+1
13 + m

q+1
14 + m

q+1
23 + m

q+1
24 + m

q+1
34 = 0. The six lines defined

by the equations m22 = m33 = mhk = 0 ∀(h, k) 	= (i, j), for any fixed (i, j), i < j ,
are all non-isotropic lines. The line of equations mij = 0 ∀i < j is non-isotropic if
and only if the polynomial m2

22 + m2
33 + m22m33 is irreducible, hence if q = 22h+1.

The quadric Q is the orthogonal sum of these seven lines, hence Q is a Q−(13, q) if
q = 22h+1 and it is a Q+(13, q) if q = 22h.

Let O be an ovoid of H(3, q2); we recall that |O| = q3 + 1. If q is odd, then Oα is
a partial ovoid of Q(14, q); if q = 22h, then Oα can be projected onto a partial ovoid
of Q+(13, q) and finally if q = 22h+1, then Oα can be projected onto a partial ovoid
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of Q−(13, q). A (partial) ovoid of a quadric Q is a partial ovoid for every quadric
containing Q , hence, for a given partial ovoid Oα , it is interesting to find the smallest
quadric containing it, as Oα may not span the whole of PG (14, q).

Let O be the intersection of H(3, q2) with a non-singular plane, then O =
H(2, q2) is clearly an ovoid, called the classical ovoid of H(3, q2). In this case, it
is easy to see Oα is just the construction contained in the V3,2.

The two families of ovoids we wish to investigate now are those obtained by
derivation from the classical one and the translation ovoids.

Let O be an ovoid of H (3, q2), � be a line intersecting O in q +1 points and �′ be
the polar line of � with respect the polarity induced by H (3, q2). Then � is a (q + 1)-
secant to H(3, q2), �′ is a secant as well and O ′ = (O \ �) ∪ (�′ ∩ H (3, q2)) is again
an ovoid of H (3, q2). The ovoid O ′ is said to be obtained by derivation from O and
this technique has been introduced in [33]. It is possible to iterate this procedure by
replacing more than one (q + 1)-secant to O by the points of its polar line contained
in H (3, q2), as long as the lines pairwise meet in a point not in O and this is called
multiple derivation. In literature, there are ovoids obtained by (multiple) derivation
from the classical and from non-classical ones. We are interested in the derivation of
the classical one; thus let O = H (2, q2) and � be a line intersecting it in the q + 1
points of a subline �0. We know that the dimension of 〈O α〉 is 7 and by [25, Theorem
2], the image of a subline �0 is a conic contained in a plane. If we consider the image
of O \ �0, then it is still 7-dimensional, because every point P of �0 is contained in
another subline, hence P α is contained in conic that has q points in (O \ �0)

α , so it is
in the span of (O \�0)

α . The subgroup of PGU (4, q) fixing H (2, q2) acts transitively
on the sublines of H (2, q2), hence, we can assume without loss of generality that the
H (2, q2) under consideration is the one in the plane of equation x4 = 0 and that the
subline �0 is {(x0, x1,0,0), x

q+1
0 + x

q+1
1 = 0}. The image of H (2, q2) is contained

in the space
⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

⎛

⎜⎜⎜
⎝

m11 m12 m13 0

m
q

12 m22 m23 0

m
q

13 m
q

23 −m11 − m22 0

0 0 0 0

⎞

⎟⎟⎟
⎠

, mii ∈ Fq ∀i,mij ∈ Fq2 ∀i 	= j

⎫
⎪⎪⎪⎬

⎪⎪⎪⎭

,

whereas the image of �′ ∩ H (3, q2), say �′
0, is contained in the space

⎧
⎪⎨

⎪⎩

⎛

⎜
⎝

0 0 0 0
0 0 0 0
0 0 m33 m34
0 0 m

q

34 −m33

⎞

⎟
⎠ , m33 ∈ Fq, m34 ∈ Fq2

⎫
⎪⎬

⎪⎭
,

hence their union spans the PG (10, q) defined by m14 = m24 = 0. The intersection
of Q with this PG (10, q) is the quadric with equation m2

11 +m2
22 +m2

33 +m11m22 +
m11m33 + m22m33 + m

q+1
12 + m

q+1
13 + m

q+1
23 + m

q+1
34 = 0, which is obviously of

the same type as Q and of lower rank. So if q is odd, then O′α is a partial ovoid
of Q(10, q), if q = 22h+1, then the projection of O′α from I is partial ovoid of a
Q−(9, q) and, finally, if q = 22h, then the projection of O′α from I is partial ovoid of
a Q+(9, q). The stabilizer of O ′, and hence of O ′α is the subgroup of PGU (4, q) fix-
ing H (2, q2) and the line �, so it is Cq+1 × Cq+1 × PGL (2, q), where Cq+1 denotes
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the cyclic group of order q + 1. We want to determine whether O′α (or its projection)
is a complete partial ovoid of the quadric in which it is embedded. Let q be odd, ⊥ be
the polarity induced by Q (10, q) and suppose that there exists a point P of Q(10, q),
say

⎛

⎜⎜
⎝

m11 m12 m13 0

m
q

12 m22 m23 0

m
q

13 m
q

23 m33 m34

0 0 m
q

34 −∑3
i=1 mii

⎞

⎟⎟
⎠ ,

such that P ⊥ does not contain any point of O′α . Then, we have

Tr

⎛

⎜⎜
⎝

m11 m12 m13 0

m
q

12 m22 m23 0

m
q

13 m
q

23 m33 m34

0 0 m
q

34 −∑3
i=1 mii

⎞

⎟⎟
⎠

⎛

⎜⎜⎜
⎝

x
q+1
1 x1x

q

2 x1 0

x
q

1 x2 x
q+1
2 x2 0

x
q

1 x
q

2 1 0

0 0 0 0

⎞

⎟⎟⎟
⎠

	= 0

for all x1 and x2 ∈ Fq2 such that x
q+1
1 + x

q+1
2 + 1 = 0. This is equivalent to say that

the two Hermitian curves, H (2, q2), with equation x
q+1
1 +x

q+1
2 +x

q+1
3 = 0, and H ′,

with equation m11x
q+1
1 + m12x

q

1 x2 + m
q

12x1x
q

2 + m13x
q

1 x3 + m
q

13x1x
q

3 + m22x
q+1
2 +

m23x
q

2 x3 + m
q

23x2x
q

3 + m33x
q+1
3 = 0, intersect in a set of points contained in the line

x3 = 0. By [18], there are only two possibilities: H ′ is either in the pencil determined
by the intersection of H (2, q2) and the line x3 = 0, or H ′ is in the pencil determined
by H (2, q2) and the line x1 + ax2 = 0, for every aq+1 = −1. In the first case the
equation of H ′ is of the form k(x

q+1
1 + x

q+1
2 + x

q+1
3 ) + x

q+1
3 = 0 for some k ∈ Fq ,

in the latter k(x
q+1
1 + x

q+1
2 + x

q+1
3 ) + (x1 + ax2)

q+1 = 0, with k ∈ Fq . Then a point
that may extend the partial ovoid must belong to one of the following two sets:

T1 =
⎛

⎜
⎝

k 0 0 0
0 k 0 0
0 0 k + 1 m34
0 0 m

q

34 −3k − 1

⎞

⎟
⎠ , k ∈ Fq, m34 ∈ Fq2 ,

and

T2 =
⎛

⎜
⎝

k + 1 aq 0 0
a k − 1 0 0
0 0 k m34
0 0 m

q

34 −3k

⎞

⎟
⎠ , k ∈ Fq, m34 ∈ Fq2 , a

q+1 = −1.

The points of the set T1 are contained in the solid defined by the equations:
m14 = m24 = m12 = m13 = m23 = 0, m11 = m22. This solid intersects Q (10, q) in
the quadric Q∗ with equation 3m2

22 + 2m22m33 + m2
33 + m

q+1
34 = 0. The polynomial

3m2
22 + 2m22m33 +m2

33 has roots if and only if −2 is a square in Fq ; by the quadratic
reciprocity law, it is not difficult to see that −2 is a non-square in Fp , p an odd prime,
if and only if p ≡ −1,−3 mod 8. Since Q ∗ is the orthogonal sum of the two lines



J Algebr Comb (2013) 37:503–522 517

defined by m34 = 0 and by m22 = m33 = 0, then Q ∗ is hyperbolic if and only if
q = p2h+1 and p ≡ −1,−3 mod 8, while it is elliptic for all other odd q . In order to
extend O ′α , a point P of T1 has to be non-collinear also with the points of

�′α
0 =

⎛

⎜
⎝

0 0 0 0
0 0 0 0
0 0 1 b

0 0 bq −1

⎞

⎟
⎠ , bq+1 = −1,

which actually lie on a conic contained in Q ∗. If Q ∗ is elliptic, we can extend the
partial ovoid with the points of T1 ∩ Q ∗ not in that conic; if Q ∗ is hyperbolic, then
we cannot take any point of T1.

The points of T2 that can extend the partial ovoid have to be points of the quadric,
hence 6k2 + m

q+1
34 = 0, and they have to be non-collinear with the points of �′α

0 ,
so 4k + m34b

q + m
q

34b 	= 0, for all b such that bq+1 = −1. If q = 3h, then a point
of T2 with m34 = 0 and k 	= 0 can extend the partial ovoid. If the characteristic of
q is not 3, then we have to determine the common solutions of 6k2 + m

q+1
34 = 0

and 4k + m34b
q + m

q

34b = 0. Let ξ := m34b
q , then ξ + ξq = −4k and ξq+1 = 6k2,

implying that ξ is a root of x2 +4kx +6k2 = 0. If −2 is a square in Fq , then the roots
of the equation are in Fq and we would get 2ξ = −4k, ξ2 = 6k2, hence a point of T2

with 6k2 + m
q+1
34 = 0 and k 	= 0 can extend the partial ovoid. If −2 is not a square in

Fq , then there exists ξ ∈ Fq2 \ Fq root of x2 + 4kx + 6k2 = 0, and so no point of T2
can extend the partial ovoid.

Suppose now q to be even. If the projection of O ′α onto a hyperplane not through
I is not a complete partial ovoid, then there exists a hyperplane of PG (10, q) through
I such that its intersection with O ′α is empty. The equation of the generic hyperplane
is of type Tr(AM) = 0, where A = (aij ), M = (mij ), with Tr(M) = 0, a14 = a24 =
m14 = m24 = 0 and, since the hyperplane contains I , Tr(A) = 0. The condition that
the hyperplane does not contain any point of O ′α implies, as before, a13 = a23 = 0
and A has to be either of the form

⎛

⎜
⎝

k 0 0 0
0 k 0 0
0 0 k + 1 a34
0 0 a

q

34 k + 1

⎞

⎟
⎠ or of the form

⎛

⎜
⎝

k + 1 a 0 0
aq k + 1 0 0
0 0 k a34
0 0 a

q

34 k

⎞

⎟
⎠ , aq+1 = 1.

In both cases, the property of not including the points of �′α
0 implies that a34b

q +
a

q

34b 	= 0 for all b such that bq+1 = 1. But for all a34 ∈ Fq2 \ {0}, take b = λa34,

with λ = ( 1
a

q+1
34

)
1
2 ∈ Fq , with the obvious meaning for x

1
2 for x in a finite field of

even characteristic. So bq+1 = 1 and a34b
q = λa

q+1
34 ∈ Fq has trace 0. Hence O ′α is

projected onto a complete partial ovoid of Q +(9, q) if q = 22h and onto a complete
partial ovoid of Q −(9, q) if q = 22h+1.

We summarize in the following the obtained results.
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Theorem 3 By the twisted tensor embedding of the ovoid O ′ of H (3, q2) obtained
by derivation from the classical one, we get a partial ovoid Θ of the quadric Q with
stabilizer Cq+1 × Cq+1 × PGL (2, q), where Cq+1 denotes the cyclic group of order
q +1. When q = 22h+1, Q = Q −(9, q), while when q = 22h, Q = Q +(9, q); in both
cases Θ is complete. When q is odd, Q = Q (10, q) and Θ is complete if and only if
f q = p2h+1 and p ≡ −1,−3 mod 8, p prime.

We now want to consider the embedding of an ovoid of H (3, q2) that has the
property to be a translation ovoid. A translation ovoid O of a polar space with re-
spect to one of its points P is such that there exists a collineation preserving the
polar space fixing P , leaving invariant the generators through P and acting regu-
larly on the points of O \ {P }. The classical ovoid is a translation ovoid with respect
to any of its points; the first non-classical translation ovoid appearing in literature
is the one constructed in [6]. This latter ovoid can be obtained by means of an or-
thogonal polarity commuting with the unitary polarity induced by H (3, q2). The
notion of commuting polarity has been originally introduced by Tits in [34], how-
ever [27] is the most exhaustive source for the unitary case. Let τ be an Fq -linear
collineation of order two fixing H (3, q2) and let B the Baer subgeometry consist-
ing of the points fixed by τ . Let Q be the quadric H (3, q2) ∩ B, then we say that
the polarity induced by H (3, q2) and the polarity induced by Q are commuting. Let
B be such that Q is an elliptic quadric Q −(3, q) and let P ∈ Q . The lines join-
ing P with the other points of Q are (q + 1)-secant to H (3, q2). Let O be the
set of the points of H (3, q2) contained in these q2 lines. If q is odd, then O is a
translation ovoid of H (3, q2) (see [6]). We want to embed this ovoid. From now on,
assume q to be odd. Let τ be the map (x1, x2, x3, x4) �→ (x

q

2 , x
q

1 , x
q

3 , ξ1−qx
q

4 ), with
−1 = ξq+1. Hence B = {(x1, x

q

1 , x3, ξx4), x1 ∈ Fq2 , x3 and x4 ∈ Fq} and Q is the el-

liptic quadric of B defined by the equation 2x
q+1
1 +x2

3 −x2
4 = 0. Let P = (0,0,1, ξ),

then Q \ {P } = {(x, xq, 1−2xq+1

2 ,−ξ 1+2xq+1

2 ), x ∈ Fq2}. By straightforward calcu-

lations, we get O = {P } ∪ {(x, xq, 1−2xq+1

2 + λ,−ξ 1+2xq+1

2 + λξ), x ∈ Fq2 , λ ∈
Fq2 |λ + λq = 0}. Let y1 := 1−2xq+1

2 and y2 := − 1+2xq+1

2 . Then

P α =
⎛

⎜
⎝

0 0 0 0
0 0 0 0
0 0 1 ξq

0 0 ξ −1

⎞

⎟
⎠ ,

(
O \ {P })α

=

⎧
⎪⎨

⎪⎩

⎛

⎜
⎝

xq+1 x2 x(y1 + λq) xξq(y2 + λq)

x2q xq+1 xq(y1 + λq) xqξq(y2 + λq)

xq(y1 + λ) x(y1 + λ) y2
1 + λq+1 (y1 + λ)ξq(y2 + λq)

xqξ(y2 + λ) xξ(y2 + λ) (y1 + λq)ξ(y2 + λ) −y2
2 − λq+1

⎞

⎟
⎠ ,

x ∈ Fq2 , λ ∈ Fq2

∣∣λ + λq = 0

⎫
⎪⎬

⎪⎭
.
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It follows that O α is contained in the subspace of PG (14, q) defined by the equa-
tions m11 = m22, m13 +ξm14 = (m23 +ξm24)

q , hence it is contained in a PG (11, q).
This space is the polar of the plane

π :=

⎧
⎪⎪⎨

⎪⎪⎩

⎛

⎜⎜
⎝

m11 0 m13 ξqm13
0 −m11 −m

q

13 −ξqm
q

13
m

q

13 −m13 0 0

ξm
q

13 −ξm13 0 0

⎞

⎟⎟
⎠ , m11 ∈ Fq, m13 ∈ Fq2

⎫
⎪⎪⎬

⎪⎪⎭

that is a plane that intersects Q (14, q) in the line

� :=

⎧
⎪⎪⎨

⎪⎪⎩

⎛

⎜⎜
⎝

0 0 m13 ξqm13
0 0 −m

q

13 −ξqm
q

13
m

q

13 −m13 0 0

ξm
q

13 −ξm13 0 0

⎞

⎟⎟
⎠ , m13 ∈ Fq2

⎫
⎪⎪⎬

⎪⎪⎭
.

Hence π⊥∩ Q (14, q) is a cone with vertex � and base either a Q +(9, q) or Q −(9, q).
The space �⊥ has equation m13 + ξm14 = (m23 + ξm24)

q and it is a cone with vertex
� and base a Q (10, q) contained in the space

⎧
⎪⎪⎨

⎪⎪⎩

⎛

⎜⎜
⎝

m11 m12 −ξm14 + ξqm
q

24 m14
m

q

12 m22 0 m24

−ξqm
q

14 + ξm24 0 m33 m34

m
q

14 m
q

24 m
q

34 −m11 − m22 − m33

⎞

⎟⎟
⎠ ,

mii ∈ Fq ∀i,mij ∈ Fq2 , ∀i 	= j

⎫
⎪⎪⎬

⎪⎪⎭
.

Let

R =
⎛

⎜
⎝

1 0 0 0
0 −1 0 0
0 0 0 0
0 0 0 0

⎞

⎟
⎠ ,

then π = 〈R,�〉. The space R⊥ has equation m11 = m22 and it intersects Q (10, q) in
the space

⎧
⎪⎨

⎪⎩

⎛

⎜
⎝

m11 m12 −ξm14 + ξqm
q

24 m14
m

q

12 m11 0 m24
−ξqm

q

14 + ξm24 0 m33 m34
m

q

14 m
q

24 m
q

34 −2m11 − m33

⎞

⎟
⎠ ,

mii ∈ Fq ∀i,mij ∈ Fq2 ∀i 	= j

⎫
⎪⎪⎬

⎪⎪⎭
.
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Hence we see that Q (10, q) ∩ R⊥ is the quadric with equation 3m2
11 + m2

33 +
2m11m33 + m

q+1
12 + m

q+1
34 − Tr(ξ2m14m24) = 0.

The polynomial 3m2
22 + m2

33 + 2m22m33 is irreducible if and only if −2 is a non-
square in Fp and q = p2h+1. As observed before, −2 is a non-square in Fp if and
only if p ≡ −1,−3 mod 8. Hence the line defined by the equations mij = 0, ∀i 	= j ,
is non-isotropic if and only if p ≡ −1,−3 mod 8 and q = p2h+1, and it is secant for
all other odd prime powers q . The subspace defined by mii = 0, i = 1,3, intersects
Q (10, q) ∩ R⊥ in a Q +(7, q), since we get the orthogonal sum of two non-isotropic
lines and a Q +(3, q). Hence, the quadric P ⊥∩ Q (10, q) is a Q −(9, q) if p ≡ −1,−3
mod 8 and q = p2h+1, and a Q +(9, q) for all other odd prime powers q .

Thus, projecting O α from �, we obtain a partial ovoid of size q3 + 1 of Q −(9, q)

for p ≡ −1,−3 mod 8 and q = p2h+1 or of Q +(9, q) for all the other odd prime
powers q . Suppose that this partial ovoid is not complete, hence there should be
a point R such that R⊥ ∩ O α = ∅. This implies that there is a Hermitian sur-
face having empty intersection with O . It is more convenient for our calculations
to consider the ovoid as it appears in [6], namely O ′ := {(1, t, tq , tq+1 + λ), t ∈
Fq2 , λ ∈ Fq2 |λ + λq = 0} ∪ {(0,0,0,1)}. For odd q , O ′ is a translation ovoid of

the Hermitian surface with equation x1x
q

4 + x
q

1 x4 − x
q+1
2 − x

q+1
3 = 0 and it is pro-

jectively equivalent to O . Let Tr be the trace map from Fq2 to Fq and observe
that O ′ = {(1, t, tq , u), t ∈ Fq2 , u ∈ Fq2 |Tr(u) = Tr(tq+1)} ∪ {(0,0,0,1)}. Let H be
a (possibly singular) Hermitian surface of PG (3, q2) such that H ∩ O ′ = ∅. Let
A = (aij ) be the Hermitian matrix defining H , then H ∩ (O ′ \ {(0,0,0,1)}) is given
by the solutions of the system:

⎧
⎨

⎩

a11 + Tr(a12t
q + a13t + a14u

q) + a22t
q+1 + Tr(a23t

2 + a24tu
q) + a33t

q+1

+ Tr(a34t
quq) + a44u

q+1 = 0,

Tr(u) = Tr(tq+1).

On Fq , this is a system in four variables with two quadratic non-homogeneous equa-
tions. If we consider the homogenized equations, we get two quadratic equations in
five variables, hence, by the Chevalley–Warning Theorem, that system has always at
least one solution in PG (4, q). In order to get no solutions in AG (4, q), we should
get at least one solution in the hyperplane at infinity, hence we must find at least one
(projective) solution for:

{
a22t

q+1 + Tr(a23t
2 + a24tu

q) + a33t
q+1 + Tr(a34t

quq) + a44u
q+1 = 0,

0 = Tr(tq+1) ⇐⇒ t = 0

hence a44 = 0. This implies that H contains the point (0,0,0,1) and so a Hermi-
tian surface with empty intersection with O ′ does not exist. It follows that the partial
ovoid obtained by the projection of O α is complete. The group fixing O is isomor-
phic to the one fixing the complete partial ovoid and it contains an elementary abelian
group of order q3 fixing P and acting transitively on the other points (see [6]).

So, we have proved the following.

Theorem 4 Let O be the translation ovoid of H (3, q2), q odd, obtained by a com-
muting orthogonal polarity of PG (3, q). By the twisted tensor embedding of O ,
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we get a complete partial ovoid Θ of the quadric Q , where Q = Q −(9, q) for
q = p2h+1, p a prime and p ≡ −1,−3 mod 8, while Q = Q +(9, q) for all the
other odd prime powers q . The stabilizer of Θ contains an elementary abelian group
of order q3 fixing a point of Θ and acting transitively on the other points.
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