
J Algebr Comb (2013) 37:455–502
DOI 10.1007/s10801-012-0371-3

Deformations of permutation representations
of Coxeter groups

Eric M. Rains · Monica J. Vazirani

Received: 26 January 2011 / Accepted: 6 April 2012 / Published online: 28 April 2012
© Springer Science+Business Media, LLC 2012

Abstract The permutation representation afforded by a Coxeter group W acting on
the cosets of a standard parabolic subgroup inherits many nice properties from W

such as a shellable Bruhat order and a flat deformation over Z[q] to a representation
of the corresponding Hecke algebra. In this paper we define a larger class of “quasi-
parabolic” subgroups (more generally, quasiparabolic W -sets), and show that they
also inherit these properties. Our motivating example is the action of the symmetric
group on fixed-point-free involutions by conjugation.

Keywords Coxeter group · Permutation representation · Hecke algebra · Bruhat
order

1 Introduction

The motivation for the machinery developed in this paper arose when the first author
was investigating certain conjectures involving Macdonald polynomials generalizing
classical identities of Schur functions related to the representation theory of sym-
metric spaces [12]. These Schur function identities are closely related to Littlewood
identities and thus via invariant theory [1, §8] to the action of S2n by conjugation on
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fixed-point-free involutions. Given the close connection between Macdonald polyno-
mials and Hecke algebras, this suggested that to prove those conjectures, one should
first deform that permutation representation.

There is a straightforward way of deforming any given representation of a finite
Coxeter group to its corresponding Hecke algebra. Indeed, when the ground field is
algebraically closed of characteristic 0 and the parameter q is specialized to some-
thing other than a nontrivial root of unity, the Hecke algebra is isomorphic to the
group algebra, and thus every irreducible representation deforms. So to deform any
representation, one needs simply express it as a direct sum of irreducibles and de-
form each irreducible. However, the resulting deformation is quite complicated: this
process does not give rise to any particularly nice basis. In addition, this construc-
tion can fail in the case of infinite Coxeter groups, as even their finite-dimensional
representations can fail to be completely reducible. One would thus like a version of
this construction that works for arbitrary Coxeter groups and in particular yields a
basis for which the structure constants are polynomials in q rather than having poles
at roots of unity.

There is one special case of a permutation representation, apart of course from
the regular representation, which has a particularly nice deformation. If WI ⊂ W is
a parabolic subgroup,1 then there is a classical construction of a module deforming
W/WI . To be precise, if we define �I (w) to be the length of the shortest element
of the coset wWI , then we can define an action of the corresponding Hecke algebra
HW(q) on

⊕
w∈WI Z[q]wWI (where WI denotes the set of minimal length left coset

representatives) as follows:

T (s)wWI =

⎧
⎪⎨

⎪⎩

swWI , �I (sw) > �I (w),

qwWI , �I (sw) = �I (w),

(q − 1)wWI + qswWI , �I (sw) < �I (w).

(1.1)

This representation can also be obtained by inducing the trivial representation from
the corresponding parabolic subalgebra. For our other deformations of permutation
representations, no such subalgebra exists. We do not consider the natural problem of
deforming other induced representations.

If one conjugates a fixed-point-free involution by a simple transposition, then the
length either stays the same or changes by 2. This suggests constructing a Hecke
algebra representation along the same lines as in the parabolic case, replacing the
length function of a coset by half the length of the fixed-point-free involution ι, which
we refer to as its height. If one does this, it turns out that the result indeed satisfies the
relations of the Hecke algebra. Similarly, if one instead uses the negated height − �(ι)

2 ,
one again obtains a well-defined module, albeit with a rather different looking action.
(In fact, the two modules are indeed isomorphic over Z[q, q−1].) In either case the
module is generated by the unique minimal (maximal) length element and thus is
determined by the ideal annihilating that element.

1Unless specifically noted otherwise, parabolic means standard parabolic throughout the paper, whereas a
conjugate of a standard parabolic subgroup will be called conjugate parabolic.
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It then turned out [13] that one could use the most natural extensions of these anni-
hilator ideals to the affine Hecke algebra to settle the original Macdonald polynomial
conjectures of the first author. It turns out that the existence of a deformation of the
above form is actually a fairly stringent condition on a subgroup of a Coxeter group.
It remains conjectural that these extended ideals are annihilators of minimal elements
in modules of the affine Hecke algebra coming from the present construction.

The present work came about in an attempt to systematically understand which
properties of the set of fixed-point-free involutions permit such a nice deformation.

One other property of the quotient by a parabolic subgroup is particularly notable.
Namely, the existence of a very well-behaved partial order induced by the Bruhat
order on W . It was thus natural to look for a corresponding partial order in the case
of fixed-point-free involutions as well as other permutation representations which
admit natural deformations.

With only two exceptions, all of the representations we had found indeed admitted
an analogue of Bruhat order. This led us to formulate Definition 2.3 below. Since
parabolic subgroups were our prototypical example of such subgroups, we called our
larger class of subgroups quasiparabolic.2 Note that just as conjugates of standard
parabolic subgroups do not give rise to nice Hecke algebra modules, we similarly
find that conjugates of quasiparabolic subgroups are rarely quasiparabolic.

Although our main examples of permutation representations take the form W/H

for various subgroups H , we take a slightly more general approach and formulate at
least the definition for arbitrary sets with Coxeter group actions.

In Sect. 2 after giving the definitions, we show that quasiparabolic W -sets satisfy
an analogue of the Strong Exchange Condition (in a slightly odd form because there
is no notion of reduced word in a general quasiparabolic set) and consider other
elementary consequences of our definition.

Section 3 gives a number of constructions of quasiparabolic sets, both from Cox-
eter groups themselves and from other quasiparabolic sets. In particular, we show that
any parabolic subgroup is quasiparabolic (as a very special case of Corollary 3.10 be-
low), as is the regular representation of W ×W on W . More generally there are com-
binatorial analogues of the module-theoretic operations of restriction to parabolics,
induction from parabolics, and tensor product.

One of these constructions is: given a quasiparabolic set with odd length stabiliz-
ers, there is a natural quasiparabolic double cover with only even length stabilizers.
This enables us to reduce many of our arguments to the even case. In particular one
finds that the even subgroups of quasiparabolic subgroups share many of the same
properties.

Our final construction (in Sect. 4) generalizes the case of fixed-point-free invo-
lutions by giving fairly general conditions under which a conjugacy class of involu-
tions becomes quasiparabolic with the obvious height function. (Unfortunately the
resulting notion does not appear adequate to address involutions in infinite Coxeter
groups.) We also refer the reader to [9–11] for their results on Weyl groups acting on
involutions.

2After having developed much of the theory presented here, we discovered that there was an unrelated
notion of “quasi-parabolic” subgroup for classical Weyl groups already in the literature (J. Du, L. Scott,
Trans. AMS 352(9), 4325–4353), but by then we had grown far too attached to the name to change it!
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Section 5 introduces the analogue of Bruhat order and again deals with basic prop-
erties. In Proposition 5.5 we show that quasiparabolicity is equivalent to the existence
of a partial order that behaves like Bruhat order. Some readers may find this a more
natural definition and wish to skip to Sect. 5. The main result of that section is Theo-
rem 5.12 which shows that the Bruhat order is essentially unchanged under restriction
to a parabolic subgroup. We also characterize how the double cover construction af-
fects Bruhat order. Apart from these two results (and the straightforward fact that
our Bruhat order on the actions of W × W on W and of W on W/WI agree with
the usual Bruhat order), we have not attempted to understand how our constructions
affect Bruhat order in general.

Even without a full understanding of Bruhat order, we are still able to show that
two of the more important topological properties of Bruhat order apply to a gen-
eral quasiparabolic subgroup. The two main results of Sect. 6 are Theorem 6.1 and
its Corollary 6.2 which give a formula for the Möbius function of the Bruhat order,
generalizing results of Verma and Deodhar [6, 15]. Note that our proof is somewhat
simplified by the ability to reduce to the even stabilizer case when the poset is Eu-
lerian. Our other topological result generalizes a theorem of Björner and Wachs by
showing that for any interval in a (bounded) quasiparabolic set, the corresponding or-
der complex is shellable and in fact homeomorphic to a sphere or to a cell (depending
on the Euler characteristic).

In Sect. 7 we show that the construction suggested above indeed gives well-defined
modules over the Hecke algebra. We also show that these modules admit a natural
bilinear form induced by the height function. We also give an algorithm for finding
small sets of generators of the annihilators of minimal elements of these modules and
in particular show that the ideal associated to a finite quasiparabolic set is finitely
generated even when the Coxeter group that is acting has infinite order.

In Sect. 8 we study Poincaré series, i.e., the generating function of height, of quasi-
parabolic sets over finite Coxeter groups and show these generating functions can be
controlled by Hecke algebra modules. We find both that such Poincaré series are al-
ways palindromes (despite the fact that Bruhat order rarely admits an order-reversing
automorphism) and that the Poincaré series of a quasiparabolic W -set always divides
the Poincaré series of W , despite the absence of any combinatorial interpretation of
the quotient. The palindrome property suggests the existence of order-reversing auto-
morphisms of the Hecke algebra modules; we give an explicit conjecture along these
lines. Note that automorphisms of the form prescribed by the conjecture would give
rise to analogues of the R-polynomials of Kazhdan–Lusztig theory.

Finally, in Sect. 9, we discuss a number of examples of finite quasiparabolic sets,
including several quasiparabolic subgroups of finite groups which do not come from
any of our general constructions. We have fairly extensively explored the set of quasi-
parabolic subgroups of finite Coxeter groups (in rank ≤ 8), but space does not permit
an exhaustive discussion. We thus focus primarily on the analogue of fixed-point-free
involutions and cases that exhibit suggestive phenomena.

There are a number of open problems scattered throughout the paper. In the inter-
est of timeliness we focused our efforts on developing enough of a theory to show
that the class of quasiparabolic subgroups is a natural one. There are also some im-
plicit open problems such as classifying all quasiparabolic subgroups of all finite
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Coxeter groups. Though significant progress could most likely be made on this last
problem without substantially new ideas, other problems such as the existence of
R-polynomials appear to require new insight.

For basic results and notation on Coxeter groups, we refer the reader to [8]. As
there, we will only consider Coxeter groups of finite rank. We denote by R(W) the
set of reflections (i.e., conjugates of the simple reflections s ∈ S) of a Coxeter system
(W,S). We denote by W 0 = {w ∈ W | �(w) ≡ 0 (mod 2)} the even subgroup of W ,
and more generally, for any H ⊂ W , let H 0 = H ∩ W 0. For instance, in the case of
the symmetric group Sn its even subgroup is the alternating group, denoted here Altn,
to avoid confusion with An.

2 Definitions

Definition 2.1 Let (W,S) be a Coxeter system. A scaled W -set is a pair (X,ht) with
X a W -set and ht : X → Z a function such that |ht(sx) − ht(x)| ≤ 1 for all s ∈ S.
An element x ∈ X is W -minimal if ht(sx) ≥ ht(x) for all s ∈ S, and similarly for
W -maximal.

This is invariant under shifting and negation of heights; more precisely:

Proposition 2.2 Let (X,ht) be a scaled W -set. Then for any k ∈ Z, the new height
functions (k + ht)(x) := k + ht(x) and (k − ht)(x) := k − ht(x) make (X, k + ht) and
(X, k − ht) scaled W -sets.

Definition 2.3 A quasiparabolic W -set is a scaled W -set X satisfying the following
two properties:

(QP1) For all r ∈ R(W), x ∈ X, if ht(rx) = ht(x), then rx = x.
(QP2) For all r ∈ R(W), x ∈ X, s ∈ S, if ht(rx) > ht(x) and ht(srx) < ht(sx), then
rx = sx.

In Proposition 5.5 below, we show that quasiparabolicity is equivalent to the exis-
tence of a partial order that behaves like Bruhat order under the action of reflections.

The main motivating example of a quasiparabolic W -set is the homogeneous space
W/WI for a (standard) parabolic subgroup WI , where the height of a coset is the
length of its minimal representative; see Corollary 3.10 below. In general, as we will
see, many of the well-known properties of these parabolic homogeneous spaces ex-
tend to general quasiparabolic W -sets. (This explains our choice of terminology.)

The case I = ∅ gives the regular representation of W , i.e., the action of W on
itself by left multiplication, with height given by length. This extends to the action of
W × W on W by left and right multiplication, see Theorem 3.1 below.

The situation of property QP2 is fairly rigid, as seen in the following lemma.

Lemma 2.4 Let (X,ht) be a scaled W -set, and suppose r ∈ R(W), s ∈ S, x ∈ X are
such that ht(rx) > ht(x) and ht(srx) < ht(sx). Then ht(rx) = ht(sx) = ht(x) + 1 =
ht(srx) + 1.
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Proof Since (X,ht) is a scaled W -set, it follows that |ht(sx) − ht(x)| ≤ 1 and
|ht(rx) − ht(srx)| ≤ 1. Since ht(rx) − ht(x) ≥ 1 (by integrality) and similarly
ht(sx) − ht(srx) ≥ 1, the triangle inequality forces all differences to be 1 as
claimed. �

Proposition 2.5 If (X,ht) is quasiparabolic, then so are (X, k + ht) and (X, k − ht)
for any k ∈ Z.

We omit several of the easier technical proofs of propositions and corollaries in
this section and the next. The reader can refer to the longer arXiv article for full
details.

Proposition 2.6 If (X,ht) is a quasiparabolic W -set, then for any parabolic sub-
group WI ⊂ W , (X,ht) is a quasiparabolic WI -set.

Proof Follows immediately from the fact that R(WI ) ⊂ R(W). �

Note that in the case of the regular representation of W , with x = 1, the following
“strong exchange condition” becomes the usual strong exchange condition.

Theorem 2.7 (Strong Exchange) Let (X,ht) be a quasiparabolic W -set, and let
x ∈ X. Let w = s1 · · · sk ∈ W be an arbitrary word. If ht(rx) > ht(x) and ht(wrx) <

ht(wx), then there exists 1 ≤ i ≤ k such that wrx = s1 · · · si−1si+1 · · · skx.

Proof Let xi = si+1 · · · skx and yi = si+1 · · · skrx = rixi , where ri is the reflection

ri = si+1 · · · skrsk · · · si+1, (2.1)

and observe that ht(y0) < ht(x0) and ht(yk) > ht(xk), so there exists 1 ≤ i ≤ k such
that ht(yi−1) < ht(xi−1) but ht(yi) ≥ ht(xi). If equality holds, then yi = rixi = xi ,
so yi−1 = si−1yi = si−1xi = xi−1, a contradiction. But then we may apply property
QP2 to deduce that

yi = rixi = sixi . (2.2)

The theorem follows. �

Theorem 2.8 Let x be a W -minimal element of the quasiparabolic W -set (X,ht).
Then for all w ∈ W ,

(i) ht(wx) ≥ ht(x), with equality iff wx = x;
(ii) ∃u ≤ w in Bruhat order with �(u) = ht(wx) − ht(x) such that wx = ux.

Proof Suppose otherwise, and let w = s1s2 · · · sk be a counterexample of minimum
length. In particular, ht(skx) = ht(x)+1, since otherwise skx = x, and wsk is a coun-
terexample of length k − 1. Let 1 ≤ j < k thus be the largest index such that

ht(sj sj+1 · · · skx) ≤ ht(sj+1 · · · skx). (2.3)
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If equality holds here, then again we can remove sj from w to obtain a shorter coun-
terexample, so

ht(sj sj+1 · · · skx) = ht(sj+1 · · · skx) − 1. (2.4)

Let r be the reflection

r = sk · · · sj+1sj sj+1 · · · sk. (2.5)

Then by assumption

ht(sj+1 · · · skrx) = ht(sj sj+1 · · · skx) = ht(sj+1 · · · skx) − 1, (2.6)

while

ht(rx) ≥ ht(sj sj+1 · · · skx) − (k − j) = ht(x) + 1 > ht(x), (2.7)

where the second equality follows from maximality of j . We may thus apply strong
exchange to conclude that

sj sj+1 · · · skx = sj+1 · · · skrx = sj+1 · · · sl−1sl+1 · · · skx (2.8)

for some l. But then sj and sl can be removed from w without affecting wx, contra-
dicting minimality of w.

To prove (2), note that ht(wx) − ht(x) ≤ �(w). If ht(wx) − ht(x) < �(w), then
there exists a j such that (2.3) holds, and we can repeat the argument above, replacing
w with u such that u = s1 · · · ŝj · · · sk or u = s1 · · · ŝj · · · ŝl · · · sk and ux = wx. �

Remark 2.9 Of course, the analogous argument applies in the case of a W -maximal
element, by symmetry.

Corollary 2.10 Each orbit of a quasiparabolic W -set contains at most one W -
minimal and at most one W -maximal element.

Proof If x and wx are W -minimal elements, then ht(wx) ≥ ht(x), and so ht(x) =
ht(w−1(wx)) ≥ ht(wx), so ht(wx) = ht(x), and thus wx = x. �

Definition 2.11 Let (X,ht) be a quasiparabolic W -set with W -minimal element x0.
Suppose x ∈ Wx0 ⊆ X is in the W -orbit of x0 and has height ht(x) = k+ht(x0). Then
we call s1s2 · · · skx0 a reduced expression for x if x = s1s2 · · · skx0, si ∈ S. By abuse
of notation, we also call wx0 reduced where w = s1s2 · · · sk is the corresponding
reduced word.

In the case that X has a W -minimal element, the strong exchange condition can
be restated in the following way, which is more traditional in the parabolic case.
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Corollary 2.12 If x0 is W -minimal in the quasiparabolic W -set (X,ht), and r ∈
R(W), w = s1 · · · sk ∈ W are such that ht(wx0) > ht(rwx0), then there exists 1 ≤ i ≤
k such that

rwx0 = s1 · · · si−1si+1 · · · skx0. (2.9)

If wx0 is a reduced expression, then i is unique.

Proof Apply strong exchange to the reflection w−1rw; by minimality, we have that
ht(x0) ≤ ht(w−1rwx0), and equality would imply wx0 = rwx0. If i is not unique, so
that

s1 · · · si−1si+1 · · · skx0 = s1 · · · sj−1sj+1 · · · skx0 (2.10)

for some j , then

s1 · · · si−1si+1 · · · sj−1sj+1 · · · skx0 = wx0, (2.11)

and wx0 is not reduced. �

In the case that X is transitive, or equivalently is a homogeneous space, with a min-
imal element, the height function is essentially just given by the length of a minimal
coset representative (as in the parabolic case). More precisely, we have the following.

Corollary 2.13 Let x0 be a W -minimal element of the transitive quasiparabolic W -
set (X,ht). Then for all y ∈ X,

ht(y) = ht(x0) + min
wx0=y

{
�(w)

}
. (2.12)

Remark 2.14 Note that the proof depended on quasiparabolicity only via the fact that
x0 is the unique W -minimal element of X.

In particular, a transitive quasiparabolic W -set with a minimal element is uniquely
determined (up to an overall shift in height) by the stabilizer of that minimal element.
More precisely, we have the following.

Proposition 2.15 Let (X,ht) and (X′,ht′) be transitive quasiparabolic W -sets with
minimal elements x0 and x′

0, respectively. If StabW(x0) = StabW(x′
0) and ht(x0) =

ht′(x′
0), then X and X′ are isomorphic scaled W -sets.

Proof We construct the isomorphism φ : X → X′ as follows. Let y ∈ X, and let g ∈
W be such that y = gx0; then we take φ(gx0) = gx′

0. To see that this is well defined,
observe that for fixed y, g is determined up to right multiplication by an element of
the stabilizer of x0, and this does not change gx′

0, as x′
0 has the same stabilizer. It thus

remains only to show that this W -set isomorphism (since the analogous map X′ → X

is clearly inverse to φ) preserves height, which follows by the observation
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ht(y) = ht(x0) + min
wx0=y

{
�(w)

} = ht′
(
x′

0

) + min
wx′

0=φ(y)

{
�(w)

} = ht′
(
φ(y)

)
. (2.13)

�

Given a subgroup H ⊂ W , we can construct a scaled W -set W/H by defining

ht(wH) = min
v∈wH

{
�(v)

}
. (2.14)

Note that W/H has a W -minimal element, namely the trivial coset H of height 0.

Definition 2.16 A subgroup H ⊂ W is quasiparabolic if the scaled W -set W/H is
quasiparabolic.

We remark that our motivating examples can be restated as saying that both stan-
dard parabolic subgroups and the diagonal subgroup of W × W are quasiparabolic.

It follows from the previous corollary that if X is a transitive quasiparabolic W -set
with minimal element x0 of height 0, then X ∼= W/StabW(x0), and thus StabW(x0)

is a quasiparabolic subgroup of W . Thus the quasiparabolic subgroups are pre-
cisely the stabilizers of W -minimal elements of quasiparabolic W -sets. (Note that
via negation, every statement about W -minimal elements applies mutatis mutandum
to W -maximal elements; e.g., the stabilizer of a W -maximal element is also quasi-
parabolic.)

It is important to note that the property of being a quasiparabolic subgroup is not
invariant under conjugation. Indeed, the conjugate of a standard parabolic subgroup
need not be quasiparabolic.

Example 2.17 For instance, the scaled W -set associated to the conjugate parabolic
subgroup 〈s1s2s1〉 of S3 cannot be quasiparabolic, since it has two distinct W -
maximal elements.

If the height function of a quasiparabolic W -set is bounded from below, then each
orbit has an element of minimum height, which is necessarily W -minimal, so unique
in the orbit. In particular, the transitive quasiparabolic W -sets with height bounded
from below (e.g., if |X| < ∞) are (up to isomorphism and shift of height) in one-
to-one correspondence with the quasiparabolic subgroups of W . Many of our proofs
require an assumption of boundedness (either from above or below), making this case
particularly important. However, there are also interesting examples of unbounded
quasiparabolic W -sets, so we have attempted to avoid as much as possible the as-
sumption of existence of a W -minimal element. Note also that if X (transitive and
quasiparabolic) is infinite, then it cannot have both a W -minimal and a W -maximal
element. Indeed, if X (without loss of generality) has a W -minimal element (i.e.,
X = W/H up to shifting), then its height function is unbounded from above, as there
are only finitely many potential minimal coset representatives of any fixed length.

Proposition 2.18 Suppose that the transitive scaled W -set (X,ht) has a unique W -
minimal element and the stabilizer of that element is a quasiparabolic subgroup. Then
X is quasiparabolic.
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Lemma 2.19 Suppose that the quasiparabolic subgroup H ⊂ W contains an element
of odd length. Then it contains a simple reflection.

Proof Let w = s1 · · · sk ∈ H have odd length, and consider the sequence

ht(H), ht(skH), ht(sk−1skH), . . . , ht(wH) = ht(H). (2.15)

Since k is odd, we find that there exists some j such that

ht(sj · · · skH) = ht(sj+1 · · · skH), (2.16)

and thus

sj · · · skH = sj+1 · · · skH, (2.17)

and so W/H contains an element fixed by a simple reflection. Let gH ∈ W/H be an
element of minimum height among all those fixed by a simple reflection s. If g = 1,
we are done; otherwise, there exists s′ ∈ S such that ht(s′gH) < ht(gH). Consider the
orbit of gH under the action of the standard parabolic subgroup 〈s, s′〉. The heights
in this orbit are bounded both above and below, so the orbit is finite, and the action of
ss′ on the orbit has finite order, say k. Now, consider the sequence

gH, s′gH, ss′gH, s′ss′gH, . . . , s′(ss′)k−1
gH,

(
ss′)k

gH. (2.18)

By assumption, the last term in the sequence is gH , so the penultimate term is
sgH = gH . Since the sequence has even length and the initial and final terms have
the same height, it follows that there must be an even number of steps where the
height stays the same, so at least one such step which is not the last. Each such step
provides an element fixed by either s or s′; if fixed by s′, the element is certainly not
gH , while if fixed by s, it has the form (ss′)lgH for l < k and so by minimality of k

is again not gH . In other words, the 〈s, s′〉-orbit contains an element different from
gH which is also fixed by a simple reflection; since gH is 〈s, s′〉-maximal, this other
element has strictly smaller height, a contradiction. �

3 Constructions

Two trivial, but useful, examples of quasiparabolic subgroups of W are W itself
and its even subgroup W 0. Less trivially, of our two motivating examples above,
the parabolic case WI has a natural generalization, so to avoid duplication of effort,
we prove it as a corollary of that generalization. For the second example, we have the
following proof.

Theorem 3.1 Let (W,S) be a Coxeter system. The set W , together with the height
function ht(w) := �(w) and the W × W -action

(
w′,w′′)w = w′w

(
w′′)−1

, (3.1)

is a quasiparabolic W × W -set.
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Proof Since |�(sw)−�(w)| = |�(ws)−�(w)| = 1, (W,�) is indeed a scaled W ×W -
set, and furthermore

ht
((

w′,w′′)w
) − ht(w) ≡ �

((
w′,w′′)) (mod 2). (3.2)

In particular, property QP1 is vacuous. For property QP2, there would normally be
four cases (depending on which factor of W ×W s and r belong to), but these reduce
to two by symmetry and then to one via the observation that

rw = w
(
w−1rw

)
. (3.3)

We thus reduce to showing that if r ∈ R(W), s ∈ S, w ∈ W are such that

�(wr) > �(w) and �(swr) < �(sw), (3.4)

then sw = wr . Since �(swr) < �(sw), the classical strong exchange condition tells
us that, taking w = s1s2 · · · sk , either swr = w (and we are done), or

swr = s1 · · · sl−1sl+1 · · · sk. (3.5)

But then

wr = ss1 · · · sl−1sl+1 · · · sk, (3.6)

so �(wr) = k − 1, a contradiction. �

Corollary 3.2 The diagonal subgroup Δ(W) ⊂ W × W is quasiparabolic.

One important, if mostly trivial, construction for quasiparabolic W -sets is direct
product.

Proposition 3.3 Let (W,S) and (W ′, S′) be Coxeter systems, let (X,ht) be a quasi-
parabolic W -set, and let (X′,ht′) be a quasiparabolic W ′-set. The height func-
tion (ht×ht′)(x, x′) := ht(x) + ht′(x′) on X × X′ makes X × X′ a quasiparabolic
W × W ′-set.

Proof We observe that any reflection in W × W ′ is either a reflection in W or a
reflection in W ′, and the restriction of X × X′ to W is the disjoint union of |X′|
copies of X (with appropriately shifted heights). Thus property QP1 is automatic,
while property QP2 reduces immediately to the case r ∈ R(W), s ∈ S′. But we find

(
ht×ht′

)(
(r,1)(1, s)

(
x, x′)) − (

ht×ht′
)(

(1, s)
(
x, x′))

= ht(rx) − ht(x) = (
ht×ht′

)(
(r,1)

(
x, x′)) − (

ht×ht′
)((

x, x′)), (3.7)

and thus property QP2 is vacuous in this case. �
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If the scaled W -set (X,ht) satisfies ht(sx) �= ht(x) for all s ∈ S, x ∈ X, then the
verification that X is quasiparabolic is noticeably simplified, as property QP1 is vac-
uous. Indeed, under this assumption,

ht(wx) ≡ ht(x) + �(w) (mod 2) (3.8)

for all w ∈ W , x ∈ X. This motivates the following definition.

Definition 3.4 The scaled W -set (X,ht) is even if for any pair w ∈ W , x ∈ X s.t.
wx = x, one has �(w) even. Otherwise, we say that (X,ht) is odd.

It turns out that associated to any scaled W -set X is a canonically defined even
scaled W × A1-set X̃ (the even double cover of X) such that X is quasiparabolic iff
X̃ is quasiparabolic; thus in many proofs below, we can reduce our consideration to
the even case.

The scaled W × A1-set X̃ is defined as the set X̃ = X × F2 with W -action

w(x, k) = (
wx,k + �(w)

)
(3.9)

and A1 = 〈s0〉-action

s0(x, k) = (x, k + 1). (3.10)

The height function on X̃ is defined by

h̃t(x, k) =
{

ht(x), ht(x) ≡ k (mod 2),

ht(x) + 1, ht(x) ≡ k + 1 (mod 2).
(3.11)

We also let x̃ denote the preimage (x,ht(x)) ∈ X̃. Note that x̃ is A1-minimal whereas
s0x̃ is A1-maximal.

Theorem 3.5 The pair (X̃, h̃t) is an even scaled W × A1-set and is quasiparabolic
iff (X,ht) is quasiparabolic.

Proof To see that (X̃, h̃t) is even and scaled, we need simply observe that if ht(sx) =
ht(x) ± 1, then h̃t(s(x, k)) = h̃t(x, k) ± 1, while if ht(sx) = ht(x), then h̃t(s(x, k)) −
h̃t(x, k) is 1 or −1 depending on whether or not ht(x) ≡ k modulo 2, and similarly
for s0(x, k).

Now, suppose that (X,ht) is quasiparabolic. We must show that for all r ∈
R(W × A1), s ∈ S � {s0}, (x, k) ∈ X̃, if h̃t(r(x, k)) > h̃t((x, k)) and h̃t(sr(x, k)) <

h̃t(s(x, k)), then r(x, k) = s(x, k). By parity considerations, r(x, k) = (rx, k+1) and
s(x, k) = (sx, k + 1), so it remains only to show that rx = sx. There are four cases,
depending on whether r or s are in W or A1. If both are in W , then we certainly have

ht(rx) ≥ ht(x) and ht(srx) ≤ ht(sx), (3.12)
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since |h̃t((x, k)) − ht(x)| ≤ 1. But then by the quasiparabolicity of X, we either have
rx = x or rx = sx. In the latter case, we are done; in the former, we have

h̃t
(
(x, k + 1)

)
> h̃t

(
(x, k)

)
and h̃t

(
(sx, k)

)
< h̃t

(
(sx, k + 1)

)
, (3.13)

so that k ≡ ht(x) (mod 2) and k ≡ ht(sx) (mod 2), implying ht(sx) = ht(x) and
sx = x = rx as required. Similarly, if both are in A1, the verification is trivial. If
r = s0 (the unique reflection in A1) and s ∈ S, then r commutes with S and is a
simple reflection, so this is a special case of r ∈ R(W), s = s0.

In that remaining case, we have

h̃t
(
(rx, k + 1)

)
> h̃t

(
(x, k)

)
and h̃t

(
(rx, k)

)
< h̃t

(
(x, k + 1)

)
. (3.14)

The left- and right-hand sides of the two inequalities both differ by at most 1, so the
only way to have opposite inequalities is to have

h̃t
(
(x, k + 1)

) = h̃t
(
(rx, k + 1)

) = h̃t
(
(x, k)

) + 1 = h̃t
(
(rx, k)

) + 1, (3.15)

implying ht(rx) = ht(x), so rx = x and r(x, k) = (x, k + 1) = s0(x, k) as required.
Conversely, suppose that (X̃, h̃t) is quasiparabolic; we need to show that (X,ht)

satisfies properties QP1 and QP2.
For QP1, suppose that r ∈ R(W), x ∈ X are such that ht(rx) = ht(x), and observe

that

h̃t(rx̃) > h̃t(̃x) and h̃t(s0rx̃) < h̃t(s0x̃) (3.16)

so rx̃ = s0x̃ and thus rx = x as required.
For QP2, suppose that r ∈ R(W), x ∈ X, s ∈ S are such that ht(rx) > ht(x)

and ht(srx) < ht(sx). If ht(rx) − ht(x) is odd, then rx̃ = r̃x, so h̃t(rx̃) > h̃t(̃x).
If ht(rx) − ht(x) is even, then rx̃ = s0r̃x, but ht(rx) − ht(x) ≥ 2, so again h̃t(rx̃) >

h̃t(̃x). Similarly, h̃t(srx̃) < h̃t(sx̃). It follows that rx̃ = sx̃, so rx = sx as required. �

Remark 3.6 Note that if X is already even, then X̃ ∼= X ×A1, where A1 is the regular
representation of A1.

Corollary 3.7 If H ⊂ W is quasiparabolic, then so is its even subgroup H ∩ W 0.

Proof If x0 ∈ W/H is the unique minimal element, then the minimal element x̃0 =
(x0,ht(x0)) of the even double cover has stabilizer H ∩ W 0. �

The following construction is extremely powerful.

Theorem 3.8 Let (X,ht) be a quasiparabolic W × W ′-set, and let H ⊂ W ′ be a
quasiparabolic subgroup such that every H -orbit in X has height bounded from be-
low. Let X/H be the W -set of H -orbits in X, and define ht′(Hx) = miny∈Hx{ht(y)}.
Then (X/H,ht′) is a quasiparabolic W -set.
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Proof Note that the Δ(W ′)-orbit of (x,w′H) ∈ X × (W ′/H) contains the represen-
tative ((1, h)(1, (w′)−1)x,H), so that the H -orbits X/H are in bijection with the
Δ(W ′)-orbits (X × (W ′/H))/Δ(W ′). Since W commutes with W ′ and Δ(W ′) in
W × W ′ and W × W ′ × W ′, respectively, this bijection induces an isomorphism of
scaled W -sets. Hence to check the quasiparabolicity of X/H , it suffices to check the
quasiparabolicity of (X × (W ′/H))/Δ(W ′). In other words, we may reduce to the
case that H is a diagonal subgroup. That is, (X,ht) is a quasiparabolic W ×W ′ ×W ′-
set, and we wish to show that X/Δ(W ′), with the induced height function, is quasi-
parabolic. This construction also commutes with taking the even double-cover, so we
may assume that X is even.

We first need to verify that ht′ is a height function. To see this, let x be a minimal
representative of a Δ(W ′) orbit, and observe that

ht′
(
Δ

(
W ′)sx

) ≤ ht(sx) ≤ ht(x) + 1 = ht
(
Δ

(
W ′)x

) + 1. (3.17)

By symmetry, one also has

ht′
(
Δ

(
W ′)x

) ≤ ht′
(
Δ

(
W ′)sx

) + 1, (3.18)

and thus (X/Δ(W ′),ht′) is indeed a scaled W -set. Note furthermore that as we have
assumed X even, and every element of Δ(W ′) has even length, (X/Δ(W ′),ht′) is
even. As a result, property QP1 is immediate, and it remains only to verify prop-
erty QP2.

Consider the set of quadruples (x, s, r,w), x ∈ X, s ∈ S, r ∈ R(W × W ′ × W ′),
w ∈ W ′ such that

1. ht′(Δ(W ′)x) = ht(x), i.e., x is minimal in its orbit;
2. ht′(Δ(W ′)srx) = ht((w,w)srx);
3. ht′(Δ(W ′)sx) = ht′(Δ(W ′)rx) = ht′(Δ(W ′)srx) + 1 = ht′(Δ(W ′)x) + 1;
4. and the orbits Δ(W ′)sx, Δ(W ′)rx are distinct.

Note that by Lemma 2.4, to verify property QP2, it will suffice to show that no con-
figuration of orbits as in the third and fourth conditions exists, with r ∈ R(W). Since
any such configuration extends to a quadruple as above (simply choose a minimal
representative x and an appropriate minimizing w), if we can show that the full set
quadruples is empty, this will imply property QP2.

Consider a quadruple which is minimal with respect to �(w). We have the follow-
ing two inequalities:

ht(rx) ≥ ht′
(
Δ

(
W ′)rx

) = ht′
(
Δ

(
W ′)x

) + 1 = ht(x) + 1, (3.19)

ht
(
(w,w)sx

) ≥ ht′
(
Δ

(
W ′)sx

) = ht′
(
Δ

(
W ′)srx

) + 1 = ht
(
(w,w)srx

) + 1. (3.20)

We may thus apply the strong exchange condition for (X,ht) to conclude that
(w,w)srx can be obtained from (w,w)sx by omitting a simple reflection from some
reduced word. Since by assumption, (w,w)srx �= (w,w)x (since the two orbits are
distinct), we conclude that there exists w′ obtained from w by omitting a simple
reflection such that

(w,w)srx ∈ {(
w,w′)sx,

(
w′,w

)
sx

}
. (3.21)
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Without loss of generality, (w,w)srx = (w,w′)sx. Now, consider the new quadruple
(x′, s, r ′,w′), where

x′ = (w,w)srx, r ′ = (
w′w−1,1

) ∈ R
(
W ′ × W ′). (3.22)

This new quadruple satisfies conditions 1 through 4, since one readily verifies that
the four Δ(W ′) orbits have simply been pairwise swapped. Since �(w′) < �(w), this
is a contradiction. �

Remark 3.9 Note that any minimal element of X maps to a minimal element of X/H .
Also, observe that if X is a quasiparabolic W × W ′-set, and Y is a quasiparabolic
W ′ × W ′′-set, then we obtain a quasiparabolic W × W ′′-set

X ×W ′ Y := (X × Y)/Δ
(
W ′); (3.23)

we then have

X/H = X ×W ′
(
W ′/H

)
. (3.24)

Corollary 3.10 Let (W,S) be a Coxeter group, and let WI be a parabolic subgroup
of W . If H ⊂ WI is a quasiparabolic subgroup of WI , then it is also quasiparabolic
as a subgroup of W . In particular, WI and its even subgroup are quasiparabolic
in W .

Proof The transitive quasiparabolic W × W -set (W,�) restricts to a quasiparabolic
W ×WI -set and thus induces by the theorem a transitive quasiparabolic W -set W/H .
The stabilizer of the minimal element of this new set is precisely H , as required.

The remaining claim follows from the fact that for any Coxeter group W , both W

and its even subgroup are quasiparabolic subgroups. �

Remark 3.11 It follows from this construction that any coset wH ∈ W/H has a
unique decomposition of the form wH = uvH with u ∈ WI (i.e., u ∈ W is (right)
WI -minimal) and ht(wH) = �(u) + ht(vH). Existence follows by taking w to be
a minimal H -coset representative and utilizing the standard decomposition w = uv

with u ∈ WI , v ∈ WI ; one then has

�(u) + �(v) = �(w) = ht(wH) ≤ �(u) + ht(vH) ≤ �(u) + �(v), (3.25)

so ht(wH) = �(u) + ht(vH) as required. To see uniqueness, observe that the above
construction represents W/H as W ×WI

WI/H , or in other words as the quotient of
the set of pairs (u, vH) by the action w · (u, vH) = (uw−1,wvH) of WI . In each
such orbit, there is a unique choice of w such that uw−1 ∈ WI , and thus a unique
orbit representative of the desired form. It follows that the Poincaré series (see Sect. 7
below) of W/H can be written as

PSW/H (q) = PSW/WI
(q)PSWI /H (q) = PSW(q)PSWI /H (q)

PSWI
(q)

. (3.26)
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Equivalently, we have (compare Theorem 8.1 below)

PSW(q)

PSW/H (q)
= PSWI

(q)

PSWI /H (q)
. (3.27)

Remark 3.12 Experimentally (i.e., in every finite case which we have checked),
there appears to be a partial converse to this statement, to wit that if quasiparabolic
H ⊆ W is contained in a conjugate parabolic subgroup gWIg

−1, then it is a quasi-
parabolic subgroup of some standard parabolic subgroup. More precisely, we con-
jecture that the intersection of all conjugate parabolic subgroups containing H is
standard parabolic, and H is a quasiparabolic subgroup of the intersection.

Definition 3.13 A Coxeter homomorphism φ : W → W ′ is a group homomorphism
such that φ(S) ⊂ S′ ∪ {1}.

Remark 3.14 Note that if φ : W → W ′ is a Coxeter homomorphism, then

φ
(
R(W)

) ⊂ R
(
W ′) ∪ {1}. (3.28)

Corollary 3.15 Let φ : W → W ′ be a Coxeter homomorphism. If H ⊂ W is quasi-
parabolic, then so is φ(H); if H ′ ⊂ W ′ is quasiparabolic, then so is φ−1(H ′).

Proof If H ′ ⊂ W ′ is quasiparabolic, then we have an inclusion W/φ−1(H ′) ↪→
W ′/H ′ which is height-preserving, and Definition 2.3 is immediate.

For the other direction, we may assume that φ is surjective by Corollary 3.10,
since φ(W) ⊆ W ′ is standard parabolic. We observe that

(1, φ) : W ′ × W → W ′ × W ′ (3.29)

is also a Coxeter homomorphism, and thus the subgroup

Δφ

(
W ′) := (1, φ)−1(Δ

(
W ′)) ⊂ W ′ × W (3.30)

is quasiparabolic. But then the set

((
W ′ × W

)
/Δφ

(
W ′)) ×W W/H (3.31)

is quasiparabolic and readily verified to be transitive such that φ(H) is the stabilizer
of the minimal element. �

We have shown above that if H is an odd quasiparabolic subgroup of W , then it
contains a simple reflection, and its even subgroup H 0 is quasiparabolic. To show
the converse, namely that any subgroup of W containing a simple reflection and
with quasiparabolic even subgroup is itself quasiparabolic, it suffices to construct
a suitable action of A1 on W/H 0 giving an isomorphism W/H 0 ∼= W̃/H of scaled
W × A1-sets and making W/H 0 quasiparabolic as a W × A1-set.

In fact, we have the following generalization of this fact.
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Theorem 3.16 Let H ⊂ W be an even quasiparabolic subgroup, and let I be the set
of all simple reflections normalizing H . Then the extension of W/H to a W ×WI -set
by

(
w,w′) · gH := wg

(
w′)−1

H (3.32)

preserves quasiparabolicity. In particular, HWI is also a quasiparabolic subgroup
of W .

Proof To see that W/H is a scaled W × WI set, we need to show that |ht(gsH) −
ht(gH)| ≤ 1 for s ∈ I . If g has minimum length in its coset, then we find that

ht(gsH) ≤ �(gs) ≤ �(g) + 1 ≤ ht(gH) + 1, (3.33)

and thus the action of (1, s) can never increase the height by more than 1; thus its
inverse can never decrease the height by more than 1, and since s2 = 1, we are done.
Moreover, since H is even, we in fact find that W/H is an even scaled W × WI set.

It thus remains to show that property QP2 holds. There are, as before, four cases
to consider:

ht(rgH) = ht(sgH) = ht(gH) + 1 = ht(srgH) + 1, r ∈ R(W), s ∈ S; (3.34)

ht(grH) = ht(sgH) = ht(gH) + 1 = ht(sgrH) + 1, r ∈ R(WI ), s ∈ S; (3.35)

ht(rgH) = ht(gsH) = ht(gH) + 1 = ht(rgsH) + 1, r ∈ R(W), s ∈ I ; (3.36)

ht(grH) = ht(gsH) = ht(gH) + 1 = ht(grsH) + 1, r ∈ R(WI ), s ∈ I. (3.37)

The second case is a special case of the first (replacing r by grg−1), and similarly the
fourth is a special case of the third. Moreover, the first case is just property QP2 as a
W -set, so is immediate.

We are thus left with the case r ∈ W , s ∈ I . Now, suppose g is a shortest element
of gH , and choose a reduced word g = s1s2 · · · sk . Then

ht(rs1s2 · · · sksH) < ht(s1s2 · · · sksH), (3.38)

so by Corollary 2.12, either

rs1s2 · · · sksH = s1s2 · · · skH (3.39)

(and we are done), or there exists 1 ≤ l ≤ k such that

rs1s2 · · · sksH = s1s2sl−1sl+1 · · · sksH. (3.40)

But then

rs1s2 · · · skH = s1s2sl−1sl+1 · · · skH, (3.41)

since s normalizes H , so that

ht(rs1s2 · · · skH) ≤ k − 1 = ht(gH) − 1, (3.42)

a contradiction.
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The final claim is a special case of the following corollary. �

Corollary 3.17 If H , I are as above, and K is any quasiparabolic subgroup of WI ,
then HK is a quasiparabolic subgroup of W .

Proof Consider the quasiparabolic W -set W/H ×WI
WI/K . �

Corollary 3.18 If the subgroup H ⊂ W contains a simple reflection, then H is quasi-
parabolic iff H ∩ W 0 is quasiparabolic.

A given odd quasiparabolic subgroup G ⊂ W can in general be obtained in more
than one way via the construction of Theorem 3.16. The smaller the normal subgroup
H of G being used in the construction, the more other odd subgroups it explains.
We would thus in particular like to understand the minimal such subgroup (if it ex-
ists). There is, in fact, a natural candidate for this minimal normal subgroup, namely
the subgroup generated by all elements that are forced to be in the stabilizer of the
minimal element by property QP2 alone. Although we cannot as yet prove that this
subgroup is quasiparabolic, we can at least prove the following.

Theorem 3.19 Let H be a quasiparabolic subgroup of W , and let N be the subgroup
of H generated by all elements of the form w−1srw for w ∈ W , s ∈ S, r ∈ R(W) such
that ht(rwH) ≥ ht(wH), ht(srwH) ≤ ht(swH). Then N is normal in H , and H/N

is generated by simple reflections.

Proof Since H is quasiparabolic, the conditions on w, s, r force rwH = swH , and
thus w−1srw ∈ H as required. Moreover, for any h ∈ H , (wh, s, r) also satisfies the
conditions; it follows that N is indeed a normal subgroup of H .

Now, let s1s2 . . . sk = h be an arbitrary reduced word of W multiplying to an ele-
ment of H , and consider the sequence

0 = ht(H), ht(skH), ht(sk−1skH), . . . , ht(s1s2 · · · skH) = 0 (3.43)

of heights. For each j such that

ht(sj sj+1 · · · skH) = ht(sj+1 · · · skH), (3.44)

choose a reduced expression

tj1tj2 · · · tjnj
H = sj sj+1 · · · skH = sj+1 · · · skH, (3.45)

and extend the given word by inserting

tj1tj2 · · · tjnj
tjnj

· · · tj2tj1 (3.46)

before and after sj . If we then break the word between each pair tjnj
tjnj

, we obtain a
factorization of h as a product h = h1 · · ·hk . Each hj = tj1tj2 · · · tjnj

sj tjnj
· · · tj2tj1

is a product of 2nj + 1 simple reflections, and the sequence of heights given by the
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suffixes of hj changes at all 2nj + 1 steps but possibly one. In other words, there is
at most one step in which the height does not change.

Let s1s2 · · · sk thus be such a word, and suppose first that at no step does the height
remain unchanged. We claim that, in that case, s1s2 · · · sk ∈ N . Suppose otherwise,
and choose a counterexample of minimum length. Since the height must increase at
the first step, and eventually decreases back to 0, there exists j such that

ht(sj sj+1 · · · skH) = ht(sj+1 · · · skH) − 1. (3.47)

Choose the largest such j . By Corollary 2.12, we find

sj sj+1 · · · skH = sj+1 · · · sl−1sl+1 · · · skH (3.48)

for some l > j , and by the definition of N it follows that

(sl+1 · · · sk)−1sl · · · sj · · · sl−1(sl+1 · · · sk) ∈ N. (3.49)

But then

s1s2 · · · sj−1sj+1 · · · sl−1sl+1 · · · sk ∈ hN (3.50)

would be a shorter counterexample.
Similarly, let s1s2 · · · sk = h ∈ H be a word such that at precisely one step the

height remains the same (necessarily of odd length, by parity considerations); we
claim that

h ∈ sN (3.51)

for some simple reflection s. Decompose the word for h as h = vtw, v,w ∈ W ,
t ∈ S, such that twH = wH . If ht(wH) = 0, then t ∈ H and w ∈ H yields an
expression such that at each step the height changes. So by the previous case
w ∈ N and hence v ∈ N , so we are done. Otherwise, there exists a simple reflec-
tion u ∈ S such that ht(uwH) = ht(wH) − 1. Consider the 〈t, u〉-orbit generated by
wH . By quasiparabolicity, this orbit has a unique minimal element w′H such that
t ′w′H = w′H , ht(u′w′H) > ht(w′H), with {t ′, u′} = {t, u} (which depends on the
parity of ht(wH) − ht(w′H)). We can freely replace v−1 and w by any words in the
same coset such that the height changes at each step and may therefore assume that

v−1 = w =
{

(t ′u′)(ht(wH)−ht(H))/2w′, ht(wH) ≡ ht(H) (mod 2),

u′(t ′u′)(ht(wH)−ht(H)−1)/2w′, ht(wH) ≡ ht(H) + 1 (mod 2).

(3.52)

But then

vtw = (
w′)−1

u′(t ′u′)ht(wH)−ht(H)−1
w′. (3.53)

Since

ht
(
u′w′H

) = ht
(
u′(t ′u′)ht(wH)−ht(H)

w′H
) = ht

(
w′H

) + 1

= ht
((

t ′u′)ht(wH)−ht(H)
w′H

) + 1,
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we find
(
w′)−1(

t ′u′)ht(wH)−ht(H)
w′ ∈ N, (3.54)

so that

vtw ∈ (
w′)−1

t ′w′N, (3.55)

giving us the desired result by induction (since ht(w′H) < ht(wH)). �

Conjecture 3.20 For any quasiparabolic subgroup H ⊂ W , the normal subgroup of
Theorem 3.19 is also quasiparabolic.

4 Perfect involutions

One of our original motivating examples of a quasiparabolic W -set is the set of fixed-
point free involutions in S2n, with height function (�(ι)−n)/2. This generalizes con-
siderably, to Theorem 4.6 below. We also refer the reader to results of Lusztig–Vogan
on involutions in Weyl groups [9].

We first need to introduce some notation.
Let W be a Coxeter group, and let W+ be the semidirect product of W by the

group of permutations of S that induce Coxeter automorphisms of W ; this inherits
a length function from W by taking the length of such a Coxeter automorphism to
be 0; equivalently, W+ acts on the set of roots of W , and the length function counts
(as usual) the number of positive roots taken to negative roots by the given element
of W+.

Lemma 4.1 For any Coxeter group W , (W+, �) is a quasi-parabolic W × W -set.

Proof Indeed, each W × W -orbit in W+ has a unique minimal element, namely the
associated Coxeter automorphism φ : W → W ; the stabilizer of that minimal element
is the quasiparabolic subgroup Δφ(W). See (3.30). �

Definition 4.2 An involution ι ∈ W+ is perfect if for all r ∈ R(W), r commutes with
ιrι. We will denote by I the set of all perfect involutions.

Remark 4.3 Note that r commutes with ιrι iff (rι)4 = 1. In the case W = Sn, any
fixed-point-free involution is perfect, as follows easily from the fact that reflections
are just 2-cycles. Similarly, any element conjugate to the diagram automorphism of
S2n is perfect for precisely the same reason. These two classes of perfect involutions
will give rise to (quasiparabolic) scaled W -sets with negated heights.

Remark 4.4 This appears to be a too stringent condition when W is infinite; for in-
stance, the obvious analogue in Ã2n−1 of the case of fixed-point-free involutions in
A2n−1 (i.e., one of the two conjugacy classes of preimages in Ã2n−1) do not give
perfect involutions, but are sufficiently well behaved that they very likely form a
quasiparabolic set.
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Lemma 4.5 If ι ∈ W+ is perfect, then for all r ∈ R(W), if

�(ι), �(rιr) < �(rι) = �(ιr) (4.1)

or

�(ι), �(rιr) > �(rι) = �(ιr), (4.2)

then ι = rιr .

Proof Note that since ι is an involution, rι = (ιr)−1, and thus the two elements have
the same length as stated. Note also that the contrapositive of the lemma reads that
if rι has order 4, then �(rι) is between �(ι) and �(rιr), and this inclusion is strict by
parity considerations.

Thus suppose that rι has order 4. We can write r = sα for some positive root α;
the fact that rι has order 4 implies that ι(α) is orthogonal to α. But then

�(ι) < �(ιr) ⇐⇒ ι(α) > 0 (4.3)

⇐⇒ rι(α) > 0 (4.4)

⇐⇒ �(rι) < �(rιr), (4.5)

as required, and similarly for the opposite inequalities. �

The set of perfect involutions is certainly acted on by W by conjugation; it very
nearly becomes a scaled W -set by setting ht(ι) = �(ι)/2; this fails only in that on
some orbits the heights might lie in 1/2 + Z rather than Z, but this has no effect on
the theory. (Indeed, for the above theory of quasiparabolic sets to work, we need only
that on each orbit, the height function lies in a fixed coset of Z.)

Theorem 4.6 The set I of perfect involutions in W+, together with the above height
function, is a quasiparabolic W -set.

Proof To show property QP1, let ι be a perfect involution, and let r ∈ R(W) be such
that ht(r · ι) = ht(ι); equivalently, �(rιr) = �(ι). But then Lemma 4.5 implies that
rιr = ι as required.

It remains to show property QP2; let, therefore, ι be a perfect involution, and
r ∈ R(W), s ∈ S such that (recalling Lemma 2.4)

ht(r · ι) = ht(s · ι) = ht(ι) + 1 = ht(sr · ι) + 1, (4.6)

or equivalently

�(rιr) = �(sιs) = �(ι) + 2 = �(srιrs) + 2. (4.7)

We need to show that rιr = sιs.
We first observe that

�(rι) = �(ι) + 1. (4.8)
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Indeed, by Lemma 4.5, �(rι) is between �(ι) and �(rιr), and thus (since the latter
differ by 2), must be �(ι) + 1 as required. Similarly,

�(sι) = �(ι) + 1. (4.9)

Moreover, since srιrs is also a perfect involution, and srs is a reflection, we find that

�(srιrss) = �
(
srιrs(srs)

) = �(srιrs) + 1 = �(ι) + 1, (4.10)

or in other words,

�(srιr) = �(srιs) = �(ι) + 1. (4.11)

Now, consider the element srι. Since �(rι) = �(ι) + 1 and s is a simple reflection,
we find that �(srι) − �(ι) ∈ {0,2}. We consider the two cases separately.

If �(srι) = �(ι), then by the fact that W+ is quasiparabolic as a W × W -set and
the fact that �(sι) = �(rι) = �(ι) + 1, we conclude that sι = rι. But W+ is a group,
so we can cancel ι to find s = r , and thus in particular sιs = rιr as required.

If �(srι) = �(ι) + 2, then on the one hand

�(srι) = �(rιr) = �(rι) + 1 = �(srιr) + 1, (4.12)

so srι = rιr , while on the other hand

�
(
(srs)sι

) = �(sιs) = �(sι) + 1 = �
(
(srs)sιs

) + 1, (4.13)

so srι = (srs)sι = sιs. Therefore rιr = sιs as required. �

Remark 4.7 In addition to the special case of fixed-point-free involutions in S2n,
there are two general instances of perfect involutions: the identity element is always
perfect, as is the diagram automorphism of W × W that swaps the two factors. The
latter quasiparabolic W × W set turns out to be naturally isomorphic to W .

Suppose ι is a W -minimal perfect involution, so that by the above result, the cen-
tralizer ZW(ι) is quasiparabolic. Let zW (ι) denote the normal subgroup attached to
this group by Theorem 3.19. This has a particularly nice description directly in terms
of ι. First a useful lemma.

Lemma 4.8 Let ι be a perfect involution, and let r , r ′ be reflections such that rιr =
r ′ιr ′ �= ι. Then r ′ ∈ {r, ιrι}.

Proof Rewrite the hypothesis as (rι)2 = (r ′ι)2 �= 1 and work in the reflection rep-
resentation of W+. Let r = rα for some root α normalized so that α · α = 2. Since
(rι)2 �= 1, it follows that ι(α) · α = 0, and thus

(rι)2 = rαrι(α) = rα+rα− , (4.14)
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where α± := (1± ι)(α/2). Now, the vectors α± are uniquely determined up to sign as
unit vectors which are simultaneous eigenvectors of ι and (rι)2, and thus if r ′ = rα′ ,
we find

α′+ = ±α+ α′− = ±α−. (4.15)

Solving for α′, we find

α′ ∈ {±α,±ι(α)
}
. (4.16)

The claim follows. �

Theorem 4.9 Let ι ∈ I . The group zW (ι) is the subgroup of W generated by ele-
ments of the form (rι)2 for r ∈ R(W).

Proof We first observe that if w ∈ W , s ∈ S, r ∈ R(W) are such that

ht(sw · ι) = ht(rw · ι) = ht(w · ι) + 1 = ht(srw · ι) + 1, (4.17)

so that w−1srw ∈ zW (ι), then

w−1sw · ι = w−1rw · ι �= ι, (4.18)

and thus (assuming r �= s) w−1rw = ιw−1swι, so that

w−1srw = (
w−1swι

)2
, (4.19)

and thus by the lemma zW (ι) is generated by elements of the desired form.
It remains to show that for any reflection, (rι)2 ∈ zW (ι). Write r = w−1sw and

define r ′ := wιrιw−1, so that sw · ι = r ′w · ι. If ht(sw · ι) > ht(w · ι), then

ht(sw · ι) = ht
(
r ′w · ι) = ht(w · ι) + 1 = ht

(
sr ′w · ι) + 1, (4.20)

so that (rι)2 = w−1r ′sw ∈ zW (ι). If ht(sw · ι) < ht(w · ι), then

ht
(
s
(
r ′w

) · ι) = ht
(
r ′(r ′w

) · ι) = ht
(
r ′w · ι) + 1 = ht

(
sr ′(r ′w

) · ι) + 1, (4.21)

so that (rι)2 = (ιr)2 = w−1r ′sr ′(r ′w) ∈ zW (ι). Finally, if ht(sw · ι) = ht(w · ι), then

r · ι = ι, (4.22)

so that (rι)2 = 1 ∈ zW (ι). �

Naturally, Conjecture 3.20 would imply that the groups zW (ι) are quasiparabolic.
It is fairly straightforward to classify the pairs (W, ι) with W finite and ι perfect.
These include a number of sporadic cases (for which we have verified quasiparabol-
icity via computer), as well as infinite families coming from fixed-point-free involu-
tions in A2n−1 and a corresponding case in D2n. For the former, zW (ι) is simply the
even subgroup of ZW(ι), and therefore its quasiparabolicity is automatic. Thus only
the D2n case (which we have verified through D12) remains open among finite cases.
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5 Bruhat order

Definition 5.1 Let (X,ht) be a quasiparabolic W -set. The Bruhat order on X is the
weakest partial order such that for x ∈ X, r ∈ R(W), x ≤ rx iff ht(x) ≤ ht(rx).

Remark 5.2 Note that as with the usual Bruhat order, x and rx are always compara-
ble, and x ≤ y implies ht(x) ≤ ht(y).

Property QP2 can be rephrased in terms of the Bruhat order:

Proposition 5.3 If x < y and sy < sx, then sy = x.

Proof Since x < y implies ht(x) < ht(y), we conclude that ht(y) = ht(x) + 1. But
then y must cover x in the Bruhat order, so that y = rx for some reflection r . The
proposition is then precisely QP2. �

Remark 5.4 We had originally developed a theory in which instead of QP1 and QP2,
we insisted only that every orbit of a parabolic subgroup should have at most one min-
imal and at most one maximal element. One can show that this condition need only
be checked in rank 2, where it is equivalent to quasiparabolicity. When we eventually
began considering how to extend Bruhat order to such sets, we discovered that there
were essentially only two instances (see Example 9.1 below) of “quasiparabolic” sets
in which such an extension failed to exist, so we decided that a change in definition
was in order. In looking at the proofs in [8] concerning Bruhat order, we found that
most of the arguments relied only on the claim of this proposition. Rewriting in terms
of reflections gave QP1 and QP2.

There is a related reformulation of quasiparabolicity.

Proposition 5.5 Let (X,ht) be a scaled W -set. Then X is quasiparabolic iff there
exists a partial ordering ≤ on X such that

(1) ht is strictly increasing: if x < y, then ht(x) < ht(y).
(2) For any x ∈ X, r ∈ R(W), x and rx are comparable.
(3) For any s ∈ S, if x < y, sy < sx, then x = sy.

Proof If X is quasiparabolic, we have shown that Bruhat order satisfies these three
properties. Conversely, QP1 follows by observing that if ht(rx) = ht(x), then the only
way x and rx can be comparable is if they are equal, while QP2 follows by observing
that the hypothesis of QP2 implies via comparability that x < rx, sx > srx, and thus
x = srx as required. �

Remark 5.6 Recall as in Remark 4.4 above that there are apparently quasiparabolic
conjugacy classes of involutions in W+ for W infinite, so that Theorem 4.6 does
not apply. For such conjugacy classes, Proposition 5.5 gives an alternate strategy,
namely showing that the restriction of the usual Bruhat order to the conjugacy class
gives an order satisfying the hypotheses of Proposition 5.5. The first condition of
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the proposition always holds, since length is strictly increasing in ordinary Bruhat
order. The third condition follows by observing that since |�(sιs) − �(ι)| ≤ 2 and
is 0 if and only if sι = ιs, then the only way the ordering of ι and ι′ can be reversed
is if their lengths differ by 2 and conjugation by s swaps their lengths. But then
ι < sι, so by Lemma 5.7 (or, rather, the statement for ordinary Bruhat order that this
lemma generalizes), ι ≤ sι′, and ι < ιs, so ι ≤ sι′s. Since the lengths agree, ι = sι′s
as required. Thus only the second condition of the proposition (comparability of ι

and rιr) need be shown. Note that it follows from Lemma 4.5 that ι and rιr are
comparable whenever rι has order 4. Checking this for the classes of interest in Ã2n−1

or C̃2n (where nice combinatorial characterizations of Bruhat order are known [2,
Sect. 2.6]) appears tractable, but quite technical, in the absence of further ideas.

We will also need a slight variant of Proposition 5.3.

Lemma 5.7 If x ≤ y for x, y ∈ X and s ∈ S, then

(1) Either sx ≤ y or sx ≤ sy;
(2) Either x ≤ sy or sx ≤ sy.

In particular, if sy ≤ y, then sx ≤ y; if x ≤ sx, then x ≤ sy.

Proof By symmetry, we need only prove (1); the corresponding special case is im-
mediate. Following Humphreys [8, Proposition 5.9], we reduce to the case y = rx for
some r ∈ R(W). If r = s or sx ≤ x, then the lemma is immediate. So we may assume
that x < sx. Then sx and sy = (srs)sx are comparable, and the previous proposition
gives the desired dichotomy. �

Note as a special case, one has min{x, sx} ≤ min{y, sy} whenever x ≤ y. This in
turn is a special case of the following proposition. If I ⊂ S, x ∈ X are such that the
orbit WIx is bounded from below, let

πI (x) := min
w∈WI

wx (5.1)

denote the (unique) minimal element of that orbit.

Proposition 5.8 Let (X,ht) be a quasiparabolic W -set. Suppose I ⊂ S is such that
every WI -orbit is bounded from below. Then the map πI : X → X is order-preserving.

Proof We have already seen that this holds when |I | = 1. Thus if s1, . . . , sk are the
simple reflections in I in some order, the composition

π〈s1〉 ◦ · · · ◦ π〈sk〉 (5.2)

is order-preserving and height-decreasing. If we iterate this operation starting at
x ∈ X, we will eventually arrive at a fixed point clearly equal to πI (x); the propo-
sition follows. �
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In particular, for any set of parabolic subgroups WI1, . . . ,WIk
, one has the impli-

cation

x ≤ y =⇒ πIi
(y) ≤ πIi

(y), 1 ≤ i ≤ k. (5.3)

In the case of W viewed as a quasiparabolic W -set, it is a well-known result of De-
odhar that the converse holds whenever ∩iIi = ∅. This does not hold for general
quasiparabolic W -sets, however. For instance, if one views W as a W × W -set, then
every maximal parabolic of W × W is transitive, so the projected orderings provide
no information. (An even worse example is W acting on W/W 0, since then every
nontrivial parabolic subgroup is transitive.) One must thus at the very least add the
necessary condition that it should be possible to reconstruct x from the projections
πIi

(x). We do not know of any examples in which this necessary condition fails to be
sufficient.

Let [x,∞) denote the subset of X consisting of elements y ≥ x, and similarly for
(−∞, y].

Corollary 5.9 Let x, y ∈ X, s ∈ S be such that x ≤ sx and sy ≤ y. Then the intervals
[x,∞) and (−∞, y] are preserved by s. If we further have x ≤ y, then [x, y] is also
preserved by s.

Proof If x ≤ z, then since x ≤ sx, the lemma gives x ≤ sz; similarly, if z ≤ y, then
since sy ≤ y, the lemma gives sz ≤ y. �

It will be useful to be able to restrict our attention to even quasiparabolic W -sets,
so we will need to know how the Bruhat orders on X and X̃ are related.

Lemma 5.10 If x ≤ y, then x̃ ≤ ỹ, s0x̃ ≤ s0ỹ. Conversely, if (x, k) ≤ (y, l) for some
k, l ∈ F2, then x ≤ y.

Proof By transitivity, we reduce to the case y = rx, ht(y) > ht(x). But then rx̃ ∈
{ỹ, s0ỹ}, so that

h̃t(rx̃) ≥ h̃t(ỹ) = ht(y) > ht(x) = h̃t(̃x). (5.4)

This implies that either x̃ ≤ ỹ or x̃ ≤ s0ỹ. Since x̃ < s0x̃, it follows by Lemma 5.7
that x̃ ≤ ỹ, and since ỹ < s0ỹ, that s0x̃ ≤ s0ỹ.

For the converse, we may again reduce to the case (y, l) = r(x, k) = (rx, k + 1)

with r ∈ R(W × A1) and ht(y, l) > ht(x, k). If r = s0, then y = x, and we are done,
so we may assume that r ∈ R(W). Since x and y = rx are comparable, it remains
only to rule out the possibility that y < x. But then ỹ < x̃ by the previous case,
and thus (since the ordering of the heights changes) we must have (x, k) = s0x̃ and
(y, l) = s0ỹ. In other words, we have both ỹ < x̃ and s0x̃ < s0ỹ. By Proposition 5.3,
it follows that s0x̃ = ỹ, but this is impossible. �

Determining if s0x̃ ≤ ỹ is somewhat more subtle.
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Lemma 5.11 If x < y, then either s0x̃ and ỹ are incomparable or s0x̃ < ỹ, with the
latter occurring iff there exists a chain

x = x0 < x1 = r1x0 < x2 = r2x1 < · · · < xk = y, (5.5)

ri ∈ R(W), which at some point increases the height by an even amount.

Proof We first note that if x < rx = y with ht(rx) − ht(x) even, then rx̃ = s0ỹ, so
that s0x̃ = rỹ, and thus s0x̃ and ỹ are comparable, and comparing heights shows that
s0x̃ < ỹ as desired. But then given any chain as hypothesized, with say the kth step
even, we may apply the previous lemma to conclude

s0x̃ < s0x̃1 < s0x̃2 < · · · < s0x̃k−1 < x̃k < x̃k+1 < · · · < ỹ. (5.6)

Conversely, suppose s0x̃ < ỹ and consider a chain

s0x̃ < r1s0x̃ < · · · < ỹ. (5.7)

Each element in this chain is either A1-minimal or A1-maximal; since the chain be-
gins with a maximal element and ends with a minimal element, there is at least one
step going from maximal to minimal. Now, the image of the chain in X̃ is a chain
in X, except that some consecutive elements may agree. If we remove these ele-
ments, however, we obtain a valid chain. It therefore suffices to show that any step
going from maximal to minimal maps to a step increasing the height by an even
amount. Note that such a step goes from s0ũ to ṽ for elements u and v which are
related by a reflection in W since s0 decreases the height of s0ũ. Since the heights in
X̃ differ by an odd amount, the heights in X differ by an even amount, and u �= v,
since again the height must increase. �

Since the restriction X|WI
of a quasiparabolic W -set X to a parabolic subgroup

WI is quasiparabolic, it is natural to ask how the Bruhat orders compare. Clearly
if two elements are in distinct WI -orbits, then they are incomparable with respect
to the Bruhat order on X|WI

. Otherwise, we conjecture in general that the Bruhat
order of the restriction agrees with the restriction of the Bruhat order to any given
orbit. Unfortunately, to date we can only prove this with an additional boundedness
assumption.

Theorem 5.12 Let (X,ht) be a quasiparabolic W -set, and let WI ⊂ W be a
parabolic subgroup. If x, y ∈ X are in the same bounded WI -orbit, then x ≤ y in
X iff x ≤ y in X|WI

.

Proof Since R(WI ) ⊂ R(W), one direction is obvious (even without assuming
boundedness). Thus assume that x ≤ y in X. By symmetry, we may assume that
WIx = WIy has a minimal element x0. Moreover, by transitivity, we may assume
that y = rx for some r ∈ R(W), and it will suffice to show that y = r ′x for some
r ′ ∈ R(WI ). Let y = wx0 be a reduced expression for y inside X|WI

. Then we have

ht
(
w−1rwx0

) = ht
(
w−1x

) ≥ ht(x0), (5.8)
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while

ht
(
w

(
w−1rw

)
x0

) = ht(x) < ht(y) = ht(wx0). (5.9)

It follows by the strong exchange condition that rwx0 = w′x0 where w′ is obtained
from a reduced word representing w by removing a single simple reflection (which
must be in WI since w ∈ WI ). It follows that

y = ww′−1x, (5.10)

and the result follows by observing that ww′−1 ∈ R(WI ). �

Remark 5.13 In particular, if X is transitive as a WI -set, then restricting to WI does
not change the Bruhat order. As a further special case, the Bruhat order of W viewed
as a W × W -set agrees with the usual Bruhat order.

Remark 5.14 Restriction is a special case of the operation ×W described above; it
would be desirable to understand how to construct the Bruhat order on such a product
from the two original Bruhat orders.

The proofs of our remaining results on Bruhat order require a global assumption of
boundedness, though we conjecture in each case that this assumption is unnecessary.
In addition to enabling us to perform induction on heights, boundedness also gives
us an alternate characterization of the Bruhat order, analogous to the interpretation of
the usual Bruhat order in terms of subwords. As a result, many of the proofs in the
literature carry over with only minor changes required.

Below, we will fix a quasiparabolic W -set (X,ht) and a W -minimal element
x0 ∈ X; to simplify notations, we will assume that X is transitive and x0 has height 0.
(Since elements in different orbits are incomparable, there is no loss in assuming
transitivity.)

Theorem 5.15 Let y = s1 · · · skx0 be a reduced expression. Then x ≤ y iff one can
write

x = si1 · · · sij x0 (5.11)

for some 1 ≤ i1 < i2 < · · · < ij ≤ k.

Proof The proof of [8, Theorem 5.10] carries over mutatis mutandum, except that
one must multiply by reflections on the left and substitute Lemma 5.7 for [8, Propo-
sition 5.9] �

Similarly, Proposition 5.10 of Humphreys carries over immediately.

Proposition 5.16 If x < y and there is no z such that x < z < y, then ht(y) =
ht(x) + 1. In particular, any saturated chain

x = x0 < x1 < x2 < · · · < xk = y (5.12)

has length k = ht(y) − ht(x), and the poset (X,≤) is graded.
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In principle, there are two natural partial orderings on the set of perfect involutions
in W+, namely the Bruhat order ≤I viewed as a quasiparabolic set and the restriction
≤W+ of Bruhat order from W+. It follows easily from the subword characterization
of Bruhat order that

x ≤I y =⇒ x ≤W+ y; (5.13)

indeed, any reduced word for y in I can be extended to a reduced word for y in
W+ by choosing a reduced word for the minimal perfect involution in its orbit. The
converse appears to be true by experiment, but we have only been able to prove the
following special case.

Proposition 5.17 Suppose the perfect involution ι0 ∈ W+ is a diagram automor-
phism. Then for x, y in the conjugacy class of ι0,

x ≤I y ⇐⇒ x ≤W+ y. (5.14)

Proof Suppose x ≤W+ y. If y = ι0 (note that �(ι0) = 0, so ι0 is minimal), the claim
is immediate. Otherwise, there exists a simple reflection s such that s · y <I y, and
in particular sys <W+ sy, ys <W+ y. If x <W+ sx, xs, then by Lemma 5.7 (applied
to W+ as a W × W -set), x <W+ y implies x <W+ sy implies x <W+ sys. Thus by
induction on ht(x) + ht(y), x <I sys <I y. If x >W+ sx, xs >W+ sxs, then we
similarly have sxs <W+ sys, so that by the same induction, s · x <I s · y, and again
Lemma 5.7 applied to I gives x <I y.

It remains to consider the case x = sxs >W+ sx, xs. But this implies that the
simple root αs is taken to its negative by x. Conjugating x to ι0 would then give a
root α negated by ι0. However, ι0 preserves the set of positive roots, so no such α can
exist. �

Remark 5.18 Clearly, the first part of the proof holds in general, and thus one reduces
to showing that if x = sxs >W+ sx, xs, then the subset [x,∞)W+ ∩ I is preserved
by the action of s by conjugation. (Note that the analogous statement for [x,∞)I
follows by Corollary 5.9.) Using this criterion, one may verify the equivalence of
these partial orders for various finite Coxeter groups, including all sporadic groups,
Bn, and Dn for n ≤ 8. It also follows for A2n−1, as there are in that case two nontriv-
ial conjugacy classes of perfect involutions: in one, the minimal element is a diagram
automorphism ι0 such that ι0xι0 = w0xw0 where w0 is the longest element. Multi-
plying by the central element ι0w0 swaps the two conjugacy classes and reverses both
Bruhat orders.

6 The topology of Bruhat order

One of the more important invariants of a poset is its Möbius function, or equiva-
lently the Euler characteristics of the order complexes associated to intervals in the
poset. In the case of the regular representation of W (or equivalently, W viewed as a
quasiparabolic W ×W -set, since the orders are the same), there is a classical formula
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for the Möbius function ([6, 15]), which extends to a formula for the Möbius function
of W/WI . The latter is somewhat more complicated, which as we will see is a con-
sequence of the fact W/WI is not even. Indeed, for any bounded even quasiparabolic
W -set, we have a very simple formula for the Möbius function.

Theorem 6.1 Let (X,ht) be an even bounded quasiparabolic W -set. Then μ the
Möbius function of (X,≤) is given by

μ(x, y) =
{

(−1)ht(y)−ht(x), x ≤ y,

0 otherwise.
(6.1)

Equivalently, any interval [x, y] with x < y is balanced in the sense that it has equal
numbers of elements with odd and even heights.

Proof The equivalence of the two statements follows immediately from the definition
of the Möbius function: an interval is balanced iff

∑

x≤z≤y

(−1)ht(y)−ht(z) = 0, (6.2)

so if every nontrivial interval is balanced, the claimed formula for μ indeed gives an
inverse in the incidence algebra of (X,≤) to the “zeta function” of (X,≤) (i.e., the
function which is 1 precisely when x ≤ y and 0 otherwise).

We now follow the proof in [6], with some simplification arising from the fact that
X is even. Note first that by Corollary 5.9, it follows that any interval [x, y] for which
there exists a simple reflection s with x < sx and sy < y is preserved by s and thus
balanced. We will use such intervals as a base case for an induction on ht(x) + ht(y).

Since y > x, y is not minimal, and thus there exists some simple reflection s such
that sy < y. If we had sx > x, the interval [x, y] would be balanced per the previous
paragraph, so we may as well assume that sx < x. We then claim that one has the
following identity of sets:

[sx, y] \ [x, y] = [sx, sy] \ [x, sy]. (6.3)

Note that each interval other than [x, y] that appears in this expression is balanced
by induction; since clearly [x, y] ⊂ [sx, y] and [sx, sy] ⊂ [x, sy], it will follow that
[x, y] is balanced.

In other words, we wish to show that

{z : z ∈ X|sx ≤ z ≤ y;x �≤ z} = {z : z ∈ X|sx ≤ z ≤ sy;x �≤ z}. (6.4)

The set on the right is clearly contained (since sy < y) in the set on the left, so it
suffices to prove the opposite inclusion.

Thus suppose that sx ≤ z ≤ y but x �≤ z; we need to show z ≤ sy. Since sx ≤
z but x �≤ z, Lemma 5.7 shows that x ≤ sz and thus sz > z (since z > sz would
lead to a contradiction). Since z ≤ y and z < sz, the same lemma shows z ≤ sy as
required. �
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We can then compute the Möbius function in general by using the Möbius function
on X̃.

Corollary 6.2 Let (X,ht) be a bounded quasiparabolic W -set with odd stabiliz-
ers. Then the Möbius function of (X,≤) can be described as follows. If x �≤ y, then
μ(x, y) = 0. Otherwise, μ(x, y) = (−1)ht(y)−ht(x), unless there exists a chain

x < r1x < r2r1x < · · · < y, (6.5)

ri ∈ R(W), in which the height increases by an even amount at some step; in that
case, μ(x, y) = 0.

Proof The map x �→ min{x, s0x} is a (dual) closure operation on X̃, with quotient
poset X; we may thus apply [5, Theorem 1] (stated only for lattices in the reference,
but the proof works for any locally finite poset) to compute the Möbius function of X

from the Möbius function of X̃. To be precise,

μ(x, y) = μ(̃x, ỹ) + μ(s0x̃, ỹ), (6.6)

since the preimage of x in X̃ is {̃x, s0x̃}. Since x̃ ≤ ỹ, the first term is given by

μ(̃x, ỹ) = (−1)h̃t(ỹ)−h̃t(̃x) = (−1)ht(y)−ht(x). (6.7)

The second term is either 0 or the negative of this and is nonzero precisely when
s0x̃ ≤ ỹ. The corollary then follows by Lemma 5.11. �

Remark 6.3 More generally, if one chooses I ⊂ S such that each WI -orbit is bounded
below, then by Proposition 5.8 the operation πI is again a dual closure operation with
quotient the subposet XI of WI -minimal elements, and one has

μXI
(πI x,πI y) =

∑

z∈WI x

μX(z,πI y). (6.8)

It is unclear whether there is a simpler expression for the right-hand side.

We also have a generalization of the results of Björner and Wachs [3] regarding
the shellability (and thus Cohen–Macaulay-ness) of Bruhat order on Coxeter groups.

Theorem 6.4 Let (X,ht) be a bounded quasiparabolic transitive W -set. Then for
any pair x ≤ y in X, the interval [x, y] is lexicographically shellable. In particular,
if ht(y)− ht(x) = d + 2 ≥ 2, then the corresponding order complex is homeomorphic
to either a d-sphere or a d-cell, depending on whether the Euler characteristic (i.e.,
μ(x, y)) is ±1 or 0.

Proof As in [3], we fix a reduced word

y = s1s2 · · · skx0, (6.9)
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where x0 is the minimal element of X, and label a saturated chain

x = x0 < x1 < x2 < · · · < xl = y (6.10)

by the sequence (il, il−1, . . . , i1), where for each 1 ≤ m ≤ l, im records the location
in the reduced expression for y of the simple reflection being removed when passing
from xm to xm−1. We then need only show that the chain with lexicographically
minimal label is the unique chain with increasing label. The reduction in [3] to the
existence of increasing chains of length 2 carries over mutatis mutandum, but the
proof there for said existence involves cancellation and thus applies only to Bruhat
order in groups.

We thus need to prove the following. Suppose x < y with ht(y) = ht(x) + 2, and
let y = s1 · · · skx0 as above. Then there exists (uniqueness follows as in [3]) a pair
i < j such that

x = s1 · · · ŝi · · · ŝj · · · skx0 < s1 · · · ŝi · · · skx0 < y. (6.11)

Let i be the minimum index such that

x < s1 · · · ŝi · · · skx0 < y. (6.12)

Then x is obtained by removing some other simple reflection sj from this word. We
claim that j > i and prove this by induction on ht(y).

We first observe that j cannot be 1 (note that this addresses the base case
ht(y) = 2). Indeed, we then see that

x = s2 · · · ŝi · · · skx0 < s2 · · · skx0 < s1 · · · skx0 = y (6.13)

since the fact that the chosen expression for y was reduced implies that

ht(s2 · · · skx0) = ht(y) − 1. (6.14)

In other words, i was not minimal, as we could have take i = 1.
Now, apply s1 to the chain

x = s1 · · · ŝj · · · ŝi · · · skx0 < s1 · · · ŝi · · · skx0 < s1 · · · skx0 = y. (6.15)

Each of these expressions is reduced, so removing the s1’s preserves the ordering,
and in particular s1x < s1y with ht(s1y) = ht(s1x) + 2. Thus by induction, if i′ is
the corresponding minimal choice for passing from s1y to s1x (retaining the labels
from y, since only the relative ordering matters), then there is a unique j ′ > i′ such
that we have the chain

s1x = s2 · · · ŝi′ · · · ŝj ′ · · · skx0 < s2 · · · ŝi′ · · · skx0 < s2 · · · skx0 = s1y. (6.16)

Since j ′ is unique, we cannot have i′ = i, since that would force j ′ = j < i = i′. On
the other hand, i would be a legitimate choice for i′, and thus minimality implies
i′ < i. Thus by the original minimality of i, multiplying this chain by s1 cannot
preserve the ordering. Again the fact that our original expression for y was reduced
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implies that ht(y) > ht(s1y), so the only way to break this chain is to change the
ordering of the first two elements. But this implies by Lemma 5.7 that s1 must swap
the first two elements. In other words, the middle element in the chain (6.16) gives an
expression for x, and we may thus construct the alternate chain

x = s2 · · · ŝi′ · · · skx0 < s2 · · · skx0 < s1 · · · skx0 = y. (6.17)

But then we could again have chosen i = 1 in the first place.
The remaining topological statements follow from the above together with the fact

that by our previous calculation of the Möbius function (i.e., Euler characteristic), any
interval of length 2 has either one or two intermediate elements. In other words, the
complex is thin. �

7 Hecke algebra modules

Recall that for a Coxeter system (W,S), the Hecke algebra HW(q) is the Z[q]-algebra
with generators T (s) for s ∈ S with relations

(
T (s)T (t)

)m(s,t)/2 = (
T (t)T (s)

)m(s,t)/2 (7.1)

if m(s, t) is even,

(
T (s)T (t)

)(m(s,t)−1)/2
T (s) = (

T (t)T (s)
)(m(s,t)−1)/2

T (t) (7.2)

if m(s, t) is odd, and

(
T (s) − q

)(
T (s) + 1

) = 0. (7.3)

More generally, one can choose parameters q(s) for each s with the proviso that
q(s) = q(t) whenever s and t are conjugate. However, we will only consider the case
of equal parameters in the sequel. The Hecke algebra has a natural basis T (w) for
w ∈ W given by taking a reduced expression w = s1s2 · · · sk , k = �(w), and defining

T (w) = T (s1)T (s2) · · ·T (sk); (7.4)

since the Hecke algebra satisfies the braid relations, this is well defined. Moreover,
one finds that in this basis, the generators have a particularly simple action:

T (s)T (w) =
{

T (sw), �(sw) > �(w),

(q − 1)T (w) + qT (sw), �(sw) < �(w),
(7.5)

and similarly

T (w)T (s) =
{

T (ws), �(ws) > �(w),

(q − 1)T (w) + qT (ws), �(ws) < �(w).
(7.6)
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For convenience, we either extend scalars to C(q) ⊗Z[q] HW(q) and consider rep-
resentations over the field C(q), or we specialize q to some q ∈ C

× (generically q

is not a root of unity) and consider representations over C as specified below. The
Hecke algebra HW(q) has two one-dimensional representations: the trivial 1+ and
sign (or alternating) 1− on which each generator T (s) acts as ε+ := q , respectively
as ε− := −1. We will also refer to the restriction to any subalgebra as its trivial,
respectively sign, representation.

When we specialize to q = 1, HW(1) ∼= Z[W ], and thus this is indeed a deforma-
tion of the group algebra of W . More generally, if W is finite, then HW(q)⊗Z[q] C ∼=
C[W ] for generic q ∈ C, as in that case both algebras are semisimple (since any de-
formation of a semisimple algebra is generically semisimple); however, unlike the
isomorphism for q = 1, this isomorphism does not respect the natural basis.

Any Coxeter homomorphism φ : W → W ′ induces two natural homomorphisms
φ± of the corresponding Hecke algebras, by taking

φ±
(
T (s)

) =
{

T (φ(s)), φ(s) ∈ S′,
ε±, φ(s) = 1.

(7.7)

Of course if φ(S) ⊆ S′, then φ+ = φ−, and we may omit the subscript. It suffices to
check that the braid relation of length m′ = m′(φ(s),φ(t)) is satisfied, as this implies
the braid relation of length m(s, t). Indeed, if one splits the left-hand side of the braid
relation of length m(s, t) into subwords of length m′ and applies the braid relation of
length m′ to each such subword, one obtains the right-hand side of the desired braid
relation.

As mentioned in the introduction, our original motivation for introducing quasi-
parabolic subgroups was to construct modules for the Hecke algebra of W naturally
deforming permutation representations.

From one perspective, the deformation problem is trivial (at least for finite W ), as
for generic q ∈ C, HW(q) ⊗Z[q] C is semisimple, and thus each irreducible represen-
tation of C[W ] deforms to an irreducible representation of HW(q)⊗Z[q] C. It follows
that any representation deforms: simply decompose it as a sum of irreducibles and
deform the irreducibles independently. This deformation suffers from two significant
drawbacks, however. Not only are the formulas for the action of the generators on
such a representation quite complicated, but also the coefficients of the action tend to
have denominators, in sharp contrast to the Hecke algebra itself.

Given a standard parabolic subgroup WI of W , there is a natural parabolic sub-
algebra HI (q) of HW(q) generated by those T (s), s ∈ I . In that case, it also makes
sense to induce representations of HI (q) to HW(q), via the functor IndHW (q)

HI (q)
– :=

HW(q) ⊗HI (q) –. The analogue of the permutation representation of W on W/WI

is the representation induced from the trivial representation 1+ of HI (q). (Theo-
rem 7.11 below gives a quasiparabolic interpretation of slightly more general induced
modules.) This representation has a basis naturally indexed by cosets W/WI , and the
action of the generators on this basis has a combinatorial description analogous to
that given by (7.5), except that there is an additional case in which the height does
not change.
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In general, not all subgroups of W deform to a subalgebra of HW(q), so this induc-
tion construction cannot be used to deform the corresponding permutation represen-
tation. The parabolic case suggests a natural combinatorial action of the generators
T (s) in the case of a scaled W -set, but there are consistency conditions that must be
satisfied in order for this to give a homomorphism. When the scaled W -set is quasi-
parabolic, these conditions are indeed satisfied, and we have the following.

Theorem 7.1 Let (X,ht) be a quasiparabolic W -set, and let T (X) be the free Z[q]-
module generated by elements T (x) for x ∈ X. For s ∈ S, define endomorphisms
T±(s) of T (X) by

T±(s)T (x) =

⎧
⎪⎨

⎪⎩

T (sx), ht(sx) > ht(x),

ε±T (x), ht(sx) = ht(x) ( =⇒ sx = x),

(q − 1)T (x) + qT (sx), ht(sx) < ht(x).

(7.8)

Then the map T (s) �→ T+(s) (respectively T (s) �→ T−(s)) afford T (X) the structure
of a HW(q)-module, denoted by H±

X (q).

Remark 7.2 If X has even stabilizers, then H+
X (q) and H−

X (q) are naturally isomor-
phic, so in this case we may omit the sign.

Proof We need simply prove that T±(s) satisfy the relations of the Hecke algebra.
The quadratic relation is straightforward (simply check the three cases), so it remains
to check the braid relations. Since a braid relation only involves two simple reflections
(say s and t), we may restrict X to the corresponding rank 2 parabolic subgroup
of W , or equivalently, may assume that W has rank 2. We may also assume that X is
transitive, as H±

X (q) is clearly a direct sum over orbits.
If |W | = ∞, there is nothing to check (as there is no braid relation in that case).

Otherwise X has a minimal element, and by Lemma 2.19, the stabilizer of that ele-
ment has the form

〈
(st)m

′ 〉
,

〈
(st)m

′
, s

〉
,

〈
(st)m

′
, t

〉
(7.9)

for some m′ dividing m(s, t). We may thus (replacing W by a quotient as necessary
and using the fact that Coxeter homomorphisms extend to Hecke algebras) reduce to
the case that the stabilizer of the minimal element is trivial or generated by a simple
reflection.

If the stabilizer is trivial, this is simply the regular representation of HW(q), so
the result is immediate. Otherwise, say the stabilizer is 〈s〉. Then there is a natural
isomorphism

T (X) ∼= HW(q)
(
T (s) − ε∓

) ∼= IndHW (q)

H〈s〉(q) 1±, (7.10)

taking

T (wx) �→ T (w)
(
T (s) − ε∓

)
(7.11)

whenever ht(wx) = �(w) + ht(x), and this respects the action of T±(s). �
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Remark 7.3 Note that even if s and t are not conjugate, there can be orbits with m′
odd, forcing the corresponding parameters q(s), q(t) to agree; this is the reason for
our simplifying assumption q(s) ≡ q .

Remark 7.4 In fact, in order for this to extend to a homomorphism, it suffices that the
restriction of X to any rank 2 subgroup of W be quasiparabolic. Experimentally, this
weaker condition is very nearly the same as quasiparabolicity (see Example 9.1 be-
low) but fails to be preserved by many of the constructions above, especially Theorem
3.8 and its corollaries.

Taking q = 0 gives the following combinatorial fact. Define the Hecke monoid
of a Coxeter group W to be the quotient M(W) of the free monoid on idempotent
generators M(s), s ∈ S by the braid relations.

Corollary 7.5 There is a natural action of the Hecke monoid M(W) on X in which
the generators act by

M(s)x = max{x, sx}. (7.12)

Proof We observe that apart from some sign changes, this is precisely the action of
the generators of HW(0) on H−

X (0). �

Remark 7.6 This action is compatible with Bruhat order in the sense of Richardson
and Springer [14].

The construction in the case of a dihedral group with odd stabilizers generalizes
as follows.

Proposition 7.7 Let X̃ be the even double cover of X. Then

H±
X (q) ∼= HX̃(q)

(
T (s0) − ε∓

)
, (7.13)

where s0 generates the factor A1 acting on X̃. Over Z[q,1/(q +1)], there is a natural
isomorphism of Hq(W)-modules

HX̃(q) ∼= H+
X (q) ⊕ H−

X (q). (7.14)

Specializing to q = 1, we find that H+
X (1) is simply the permutation representation

associated to X, while H−
X (1) is the tensor product of this with the sign representation

of W .
Recall the following notation. If M is an HW(q)-module and N is an HW ′(q)-

module with both M and N free over Z[q], then their tensor product, which carries
the obvious HW(q)⊗HW ′(q)-module structure, is denoted M �N . Note furthermore
that HW(q) ⊗Z[q] HW ′(q) ∼= HW×W ′(q).
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Proposition 7.8 If (X,ht) and (X′,ht′) are quasiparabolic W - and W ′-sets respec-
tively, then there are natural isomorphisms

H+
X (q) � H+

X′(q) ∼= H+
X×X′(q), (7.15)

H−
X (q) � H−

X′(q) ∼= H−
X×X′(q). (7.16)

Proposition 7.9 Let (X,ht) = (W,�), viewed as a W ×W -set. Then there is a natural
HW(q) ⊗ HW(q)-module isomorphism

HX(q) ∼= HW(q). (7.17)

Remark 7.10 Here we identify HW(q)op with HW(q) via the involution T (w) �→
T (w−1).

It is not clear how to interpret the construction of Theorem 3.8 in the Hecke al-
gebra setting. However, the special case of a quasiparabolic subgroup of a parabolic
subgroup is straightforward.

Theorem 7.11 Let H ⊂ WI be a quasiparabolic subgroup of the parabolic subgroup
WI ⊂ W . Then there is a natural isomorphism

IndHW (q)

HI (q) HWI /H (q) ∼= HW/H (q). (7.18)

Proof It follows from standard results on induction of Hecke algebra modules from
parabolic subalgebras that the induced module has a basis over Z[q] of the form
T (u)⊗T (vH) with (u, vH) ranging over WI ×WI/H . The desired isomorphism is
then given by

T (u) ⊗ T (vH) �→ T (uvH). (7.19)

This is clearly an isomorphism of free Z[q]-modules, so it remains only to show
that it is a homomorphism of HW(q)-modules. Observe that there is in general a
homomorphism

T (w) ⊗ T (vH) �→ T (w)T (vH) (7.20)

obtained via the left adjointness of induction to restriction from the natural inclusion
HWI /H (q) ⊂ HW/H (q) of HI (q)-modules. When w = u ∈ WI , this map takes

T (u) ⊗ T (vH) �→ T (u)T (vH) = T (uvH) (7.21)

as required. (For the second equality (i.e., the fact that ht(uvH) = �(u) = ht(vH)),
see Remark 3.11 following Corollary 3.10.) �

One nice property of our Hecke algebras modules is the existence of a natural
symmetric bilinear form. Define a pairing on T (X) by

〈
T (x), T (y)

〉 = δxyq
ht(x) (7.22)

and extending linearly.



492 J Algebr Comb (2013) 37:455–502

Proposition 7.12 The linear transformations T±(s) are self-adjoint with respect to
this pairing.

Proof We simply need to verify that
〈
T±(s)T (x), T (y)

〉 = 〈
T (x), T±(s)T (y)

〉
. (7.23)

If {x, sx} �= {y, sy}, then both sides are 0, and if y = x, the claim is obvious by
symmetry. We thus reduce to the case y = sx �= x. Moreover, we may assume that
ht(sx) = ht(x) + 1, as we can otherwise exchange x and y. But then

〈
T (s)T (x), T (sx)

〉 = qht(x)+1, (7.24)

while
〈
T (x), T (s)T (sx)

〉 = 〈
T (x), qT (x) + (q − 1)T (sx)

〉 = qqht(x). (7.25)
�

In particular, in the case X = W , this is just the usual invariant inner product on
the Hecke algebra, namely 〈T (w),T (w′)〉 = δww′q�(w).

Theorem 7.13 Let W be a finite Coxeter group, and let (X,ht) be a transitive quasi-
parabolic W -set with minimal element x0. Then over Z[q, q−1], there is a natural
injection

H±
X (q) → HW(q) (7.26)

of Hecke algebra modules.

Proof Simply take the adjoint of the surjection

HW(q) → H±
X (q) (7.27)

given by

T (w) �→ T (w)T (x0). (7.28)
�

In the case X is transitive and bounded from below, the corresponding Hecke
algebra modules are cyclic, generated by T (x0), where x0 is the minimal element
of X. One can thus express H±

X (q) as a quotient HW(q)/IX , for some left ideal IX ,
the annihilator of T (x0). It is therefore natural to ask whether we can give a nice set of
generators for IX . By Proposition 7.7, one can essentially reduce to the case X even;
the ideal IX can be obtained from the ideal IX̃ ⊂ HW(q) by adding one generator of
the form T (s) − ε∓, s ∈ S.

Lemma 7.14 Suppose H is an even quasiparabolic subgroup of W . The ideal IW/H

is generated by elements of the form T (w)−T (w′) where wH = w′H and ht(wH) =
�(w) = �(w′).
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Proof Since for any minimal coset representative w, T (w)T (H) = T (wH), we see
that the above elements are indeed in the ideal, so it remains to show that they
generate. Choose a map φ : W/H → W with the property that φ(x)H = x and
ht(x) = �(φ(x)) for all x ∈ W/H , i.e., φ chooses a minimal representative of each
coset. The elements T (φ(x))T (H) = T (x), x ∈ W/H , form a basis of T (W/H), so
we need simply to show that modulo the possibly smaller ideal, every element T (w)

is congruent to a linear combination of elements T (φ(x)).
By induction on �(w), it suffices to show that this holds for an element of the form

T (s)T (φ(x)). If ht(sx) = ht(x) + 1, then sφ(x) is a minimal coset representative,
and therefore

T
(
sφ(x)

) − T
(
φ(sx)

)
(7.29)

is one of our chosen generators. Otherwise, ht(sx) = ht(x)− 1, in which case sφ(sx)

is a minimal coset representative,

T
(
φ(x)

) − T
(
sφ(sx)

)
(7.30)

is one of our chosen generators, and

T
(
sφ(x)

) − (
T (s) − (q − 1)

)(
T

(
φ(x)

) − T
(
sφ(sx)

))

= (q − 1)T
(
φ(x)

) + qT
(
φ(sx)

)
. (7.31)

�

This set of generators is highly redundant, however, so we would like to find a
small subset that still generates IX . In general, it is too much to hope for this subset
to be finite, but we can still reduce the complexity considerably. Note first that if w,
w′ are minimal representatives of the same coset of H ⊆ W , and there exists a simple
reflection s such that �(sw) = �(sw′) = �(w) − 1, then we have

T (w) − T
(
w′) = T (s)

(
T (sw) − T

(
sw′)), (7.32)

so any such generator is redundant. More generally, if we could find an element w′′
such that �(sw) = �(sw′′) = �(w) − 1 and �(tw′) = �(tw′′) = �(w′) − 1, s, t ∈ S,
then

T (w) − T
(
w′) = (

T (w) − T
(
w′′)) − (

T
(
w′) − T

(
w′′)) (7.33)

is also redundant. In general, T (w)− T (w′) will be redundant so long as there is any
path from w to w′ along the above lines. There is, however, an implied condition on s

and t , namely that wH is {s, t}-maximal and moreover that the 〈s, t〉-orbit of wH has
size 2m(s, t) = |〈s, t〉|. After all, w′′ must have a reduced expression beginning with
one side of the braid relation between s and t , and removing that subword gives a
reduced expression for the minimal element of the 〈s, t〉-orbit. This suggests looking
at the following graph Γx for each element x ∈ W/H : the vertices of Γx are precisely
the simple reflections such that ht(sx) = ht(x)−1, while the edges are the pairs {s, t}
such that the 〈s, t〉-orbit of x has size 2m(s, t). The above considerations tell us that
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if the graph is connected, then all relations of the form T (w) − T (w′) arising from x

are redundant, i.e., can be expressed in terms of relations arising from elements of
smaller height. If the graph is not connected, we need simply add enough relations so
that the corresponding additional edges make the graph connected.

Given a pair {s, t} of vertices of Γx which is not an edge, there is a particularly nice
choice of generator, as follows. Consider the 〈s, t〉-orbit of x, of size 2k, k strictly
dividing m(s, t), and let y be the minimal element of that orbit, of height ht(y) =
ht(x) − k. Choose an expression y = wH with �(w) = ht(y) and observe that

(st)k/2w and (ts)k/2w (7.34)

both give rise to reduced expressions for x (with the obvious interpretation of the k/2
power when k is odd, as in the braid relation), and thus

T
(
(st)k/2w

) − T
(
(ts)k/2w

)
(7.35)

is in the annihilator ideal. We call such generators dihedral generators based at x.
Since adding an edge connecting vertices in different components of Γx reduces the
number of components by 1, we obtain the following result.

Theorem 7.15 The ideal IX has a generating set consisting of dihedral generators,
in such a way that the number of dihedral generators based at x in the generating set
is one less than the number of components of Γx .

Remark 7.16 When X is finite, this set of generators is finite (even if W itself is
not) and in practice is quite small. For instance, in Example 9.2 below, we mention a
quasiparabolic E8 × A2 × A2-set X of size 113400 for which the above generating
set consists of only 8 elements, whereas the first generating set we gave is signifi-
cantly larger. Also observe that this gives rise to a fairly small set of generators of the
quasiparabolic subgroup H stabilizing the minimal element.

8 Poincaré series

Given a quasiparabolic subgroup H ⊂ W , one natural invariant is the Poincaré series

PSW/H (q) :=
∑

x∈W/H

qht(x) ∈ Z
[[q]]. (8.1)

In the case H = WI , one has

PSW/WI
(q)PSWI

(q) = PSW(q), (8.2)

where the other two Poincaré series are in terms of the regular representation (i.e.,
the usual Poincaré series of a Coxeter group). In particular, it follows that when W is
finite, the zeroes of PSW/WI

(q) are roots of unity, as this is true for PSW(q). The proof
of this fact relies heavily on the fact that the restriction of W to a WI -set is a union of
[W : WI ] copies of WI , with appropriately shifted heights. No such decomposition
exists for a general quasiparabolic subgroup, and yet the following still holds.
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Theorem 8.1 Let H be a quasiparabolic subgroup of the finite Coxeter group W .
Then PSW/H (q) is a divisor of PSW(q).

Proof We compute the product
( ∑

w∈W

T+(w)

)( ∑

x∈W/H

T (x)

)

(8.3)

in two different ways. On the one hand, for any w ∈ W ,

T+(w)
∑

x∈W/H

T (x) = q�(w)
∑

x∈W/H

T (x), (8.4)

by induction on �(w), so the product (8.3) is

PSW(q)
∑

x∈W/H

T (x). (8.5)

On the other hand, for all x ∈ W/H ,
( ∑

w∈W

T+(w)

)

T (x) = qht(x)

( ∑

w∈W

T+(w)

)

T (H), (8.6)

by induction on ht(x). Therefore,

PSW/H (q)

( ∑

w∈W

T+(w)

)

T (H) = PSW(q)
∑

x∈W/H

T (x). (8.7)

But the coefficients of
( ∑

w∈W

T+(w)

)

T (H) (8.8)

lie in Z[q], and thus so does the ratio of Poincaré series. �

Remark 8.2 We may thus define a Poincaré series of H as the ratio

PSH (q) = PSW(q)

PSW/H (q)
. (8.9)

As observed in Remark 3.11 following Corollary 3.10, this is preserved by induction
from parabolic subgroups. Note that because the proof that PSH (q) is a polynomial
is not combinatorial in nature, we do not obtain an interpretation of PSH (q) as a
generating function for elements of H . There does, however, seem to be a surprising
amount of structure in PSH (q). For instance, Example 9.5 below discusses a quasi-
parabolic subgroup H ⊂ E8 with

PSH (q) = (1 − q2)(1 − q12)(1 − q20)(1 − q30)

(1 − q)4
= PSH4(q), (8.10)
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and indeed H is abstractly isomorphic to the Coxeter group H4; similar agreement
appears to occur whenever the quasiparabolic subgroup is abstractly isomorphic to a
Coxeter group. Even more strikingly, there are several examples of Poincaré series of
a similar form in which the degrees of invariants are replaced by degrees of invariants
in characteristic 2, see Example 9.4 below.

Corollary 8.3 With hypotheses as above,

qm PSW/H

(
q−1) = PSW/H (q), (8.11)

where m = maxx∈W/H ht(x).

Proof It is known that the zeros of PSW(q) are all roots of unity, and thus the same
is true for its divisor PSW/H (q). Since PSW/H (q) has integer coefficients, its roots
are permuted by the absolute Galois group of Q. In particular, for every root of
PSW/H (q), its complex conjugate is also a root, or in other words, the reciprocal
of each root is a root. But then

qm PSW/H

(
q−1) (8.12)

has the same roots with multiplicities as PSW/H (q) (note that m = deg(PSW/H (q))).
Since W/H has unique maximal and minimal elements, both polynomials are monic,
with the same roots, so must agree. �

If W is infinite, it is too much to hope for the ratio PSW(q)/PSW/H (q) to be a
polynomial. When W is affine, we suspect that an analogous statement should hold,
to wit that the ratio is a rational function, with zeros and poles only at roots of unity.
The above methods appear to be completely insufficient for this case, however.

Despite the symmetry of the above corollary, the scaled W -sets (W/H,ht) and
(W/H,m − ht) are not in general isomorphic. In particular, in such a case, we obtain
two different deformations of the same permutation representation. We conjecture
that not only are these deformations isomorphic, but also that the isomorphism can
be chosen to have a particularly nice form. If (X,ht) is a scaled W -set, let X− denote
the scaled W -set (X,−ht).

Conjecture 8.4 Let H ⊂ W be a quasiparabolic subgroup. Then there is an isomor-
phism (with coefficients in Z[q,1/q])

H±
W/H (q) ∼= H±

(W/H)−(q) (8.13)

of HW(q)-modules in which T ±(H) maps to T ±(H).

Recall that on the left, the Hecke algebra acts by

T (s)T+(x) =

⎧
⎪⎨

⎪⎩

T+(sx), ht(sx) > ht(x),

ε±T+(x), ht(sx) = ht(x),

(q − 1)T+(x) + qT+(sx), ht(sx) < ht(x),

(8.14)
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while on the right, the Hecke algebra acts by

T (s)T−(x) =

⎧
⎪⎨

⎪⎩

T−(sx), ht(sx) < ht(x),

ε±T−(x), ht(sx) = ht(x),

(q − 1)T−(x) + qT−(sx), ht(sx) > ht(x).

(8.15)

We may rewrite this in terms of T ′(s) = q − 1 − T (s), T ′−(x) = (−q)ht(x)T−(x):

T ′(s)T ′−(x) =

⎧
⎪⎨

⎪⎩

T ′−(sx), ht(sx) > ht(x),

ε∓T ′−(x), ht(sx) = ht(x),

(q − 1)T ′−(x) + qT ′−(sx), ht(sx) < ht(x).

(8.16)

It follows that the desired isomorphism exists iff the annihilator of T (H) in
T ±(W/H) is taken to the annihilator of T (H) in T ∓(W/H) by the automorphism
T (s) �→ T ′(s).

Since in finite cases we can find relatively small generating sets for these annihila-
tors, it is straightforward in most cases to verify the existence of these isomorphisms.
In particular, this isomorphism exists in every finite case we have checked.

Note that the coefficients of such an isomorphism would give an analogue for
quasiparabolic W -sets of the R-polynomials of Kazhdan–Lusztig theory. There is a
formula for the latter polynomials due to Deodhar [7] expressed in terms of a gener-
ating function for “distinguished” subexpressions. It appears that there is no obstacle
to constructing the corresponding generating function in the quasiparabolic setting,
but Deodhar’s proof makes essential use of the fact that the natural family of recur-
rences for R-polynomials are consistent. In other words, if we knew that our isomor-
phism existed, there would almost certainly be a formula for the relevant coefficients
à la Deodhar. In the few cases where quasiparabolic W -sets carry the structure of a
“diamond,” [4] has constructed corresponding R-polynomials and Kazhdan–Lusztig
polynomials.

In addition, since the theory of Kazhdan–Lusztig polynomials themselves has ana-
logues for quotients by parabolic subgroups, we expect there to be a corresponding
analogue for quotients by quasiparabolic subgroups.

9 Examples

Example 9.1 We begin with an example of a non-quasiparabolic W -set. Let B3 be
the hyperoctahedral group of signed permutations, with simple reflections (12), (23),
and (3)−, and consider the subgroup H ⊂ B3 of order 8 generated by (13)(2)−, (1)−,
and (3)−, and the corresponding self-dual scaled B3-set B3/H . This, together with its
even subgroup, is the only indecomposable example we know of a non-quasiparabolic
subgroup such that all restrictions to rank 2 are quasiparabolic. We also note that this
subgroup violates many of the conclusions of our theorems above; for instance, it
fails to map to a quasiparabolic subgroup of A2 × A1 (not even when restricted to
rank 2) and does not induce a well-behaved Bruhat order.
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Example 9.2 One of the more fruitful constructions is the fact that perfect involutions
form quasiparabolic W -sets. As we mentioned above, it is relatively straightforward
to classify perfect involutions in finite Coxeter groups. Note that if W is a product,
then the relevant diagram automorphism permutes the factors of W , and if the action
on factors is not transitive, then the corresponding sets of perfect involutions are
just products of the sets of perfect involutions from each orbit. In addition, if W =
W ′ ×W ′ and the diagram automorphism swap the factors, then up to conjugation by a
further diagram automorphism, the only perfect involutions come from the diagonal.
Thus the only interesting cases arise from diagram automorphisms of simple Coxeter
groups.

In type A, as we mentioned above, there are two noncentral conjugacy classes of
perfect involutions, one with the trivial diagram automorphism and one with the non-
trivial diagram automorphism. Indeed, it is easy to see that a perfect involution must
act as the inner automorphism corresponding to a fixed-point-free involution. (If r is
the reflection swapping a fixed point and a non-fixed point of the image of ι in Sn,
then ιr would have order 3 or 6.) Note that although the two resulting quasiparabolic
sets are dual (i.e., related by negating heights), the stabilizers of their respective min-
imal elements are qualitatively quite different. For instance, the centralizer of the
diagram automorphism contains only one simple reflection, while the centralizer of
the minimal fixed-point-free involution in S2n contains n simple reflections. How-
ever, it follows by considering the corresponding ideals that the two Hecke algebra
modules are isomorphic as in Conjecture 8.4 and the discussion following it.

In type B/C, a noncentral order 2 element of Bn is a perfect involution iff its image
in Sn is the identity or a fixed-point-free involution. In the former case, the small
subgroup zW (ι) contains the kernel of the natural Coxeter homomorphism Bn →
An−1 × A1, and the image is a product of the form Altj ×Altn−j , embedded in the
natural way. In the latter case, zW (ι) is just the even subgroup of ZW(ι).

In type D, again the image in Sn of a perfect involution must be the identity
or a fixed-point-free involution. The first case includes all perfect involutions that
involve the nontrivial diagram automorphism and is analogous to the B case. The
fixed-point-free involutions now come in two conjugacy classes (swapped by the dia-
gram automorphism), and the corresponding quasiparabolic sets are dual (i.e., differ
by reversing the heights). As mentioned above, this is the one case where we do
not know whether zW (ι) (an index 4 subgroup of the centralizer of the minimal ι) is
quasiparabolic.

It remains to consider the sporadic cases. Other than B2, no dihedral group has a
noncentral perfect involution (even including diagram automorphisms), and similarly
for H3 and H4. For F4, the noncentral perfect involutions (none of which involve the
nontrivial diagram automorphism) form a single conjugacy class generated by the
longest element of the parabolic B2 ⊂ F4. In each of E6, E7, and E8, the longest
element of the parabolic D4 is perfect; in E6 and E7, one also has another conju-
gacy class of perfect involutions giving a dual quasiparabolic set. (For E6, take the
conjugacy class of the nontrivial diagram automorphism; for E7, the other minimal
involution is the product of three commuting roots.)

Note that for E8, the small group zW (ι) has index 36 = |A2 ×A2| in the centralizer,
so we obtain an action of E8 × A2 × A2 on a set of order 113400. Explicit computa-
tion gives the eight dihedral generators mentioned above: six of length 2 and two of
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length 8. For E7, the small group has index 12 = |A2 × A1| giving a quasiparabolic
action of E7 × A2 × A1 on a set of size 3780.

Given a transitive quasiparabolic W -set X, sometimes we can extend the action to
a larger Coxeter group W ′ in which W is standard parabolic, while retaining quasi-
parabolicity. Note that by Theorem 5.12, the Bruhat order as a W ′-set will be the same
as the original Bruhat order. We can thus produce a relatively short list of candidates
for the actions of simple reflections in W ′. We find, at least when X has even stabiliz-
ers, that a simple reflection in W ′ must be a special matching in the sense of [4]. There
is, of course, the additional requirement that if we adjoin a new simple reflection, that
all resulting new reflections must only swap comparable elements. Note, however,
that even when W ′ is infinite, if X is finite, the image of W ′ in Sym(X) is finite, so
it is a finite computation to verify quasiparabolicity. Moreover, only the condition of
comparability remains to be checked, via Proposition 5.5. Note that as a special case,
if W is a Weyl group, and the reflection in one of its highest roots induces a special
matching, we can always extend to a quasiparabolic action the corresponding affine
Weyl group, as this will not enlarge the image of R(W) inside Sym(X).

Example 9.3 Let ι be the diagram automorphism of E6, which as we have observed
is perfect. We can directly check that the normal subgroup zE6(ι) (of index 6 = |A2|
in the centralizer) is quasiparabolic and thus gives rise to a transitive quasiparabolic
E6 ×A2-set of size 270. The stabilizer in E6 ×A2 of the minimal element is abstractly
isomorphic to F4, and the corresponding Poincaré series agree.

There are, it turns out, precisely 10 special matchings on this set, of which eight
are accounted for by the simple reflections in E6 × A2. If we adjoin the remaining
two special matchings, we obtain an action of a Coxeter group O10 of rank 10 on X,
with diagram as in Fig. 1.

(The image in Sym(X) is isomorphic to E8/Z(E8), but this does not factor
through a Coxeter homomorphism O10 → E8.) It is computationally straightforward
to verify that this gives a quasiparabolic action of the quite large Coxeter group O10
on X; moreover, the diagram automorphisms of O10 extend to Bruhat-preserving au-
tomorphisms of X. Since O10 is simply-laced, it has only one conjugacy class of re-
flections, which correspond to the 120 reflections of E8. Various parabolic subgroups
of O10 act transitively: any subgroup containing one of the two parabolic subgroups
of type E6 is transitive, as are the four parabolic subgroups of type A8.

Fig. 1 Coxeter diagram of O10
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In particular, we obtain a quasiparabolic subgroup of E7 abstractly isomorphic to
F

7
2 � PGL3(2), and a quasiparabolic subgroup of E8 abstractly isomorphic to 21+6

�

PGL4(2) (where 21+6 denotes a 2-group of order 128 with center of order 2). We
also obtain quasiparabolic actions of the corresponding affine groups, in which the
additional reflection has the same action on X as the reflection in the highest root.
The quasiparabolic subgroup of A8 we obtain is actually contained in a maximal
parabolic subgroup of type A7 which we consider in the next example.

O10 contains various transitive parabolic subgroups which can be obtained in sev-
eral ways and in particular by removing the s ∈ S corresponding to marked nodes as
in Fig. 1. One obtains A8 removing the two nodes marked A8 and AE8; one obtains
E6 × A2 removing the two nodes marked E6 and E678; one obtains Ẽ8 removing
the node marked E678, and then E8 by further removing AE8; one obtains Ẽ7 × A1
removing the node marked E7, and then E7 × A1 by further removing E678.

Example 9.4 The action of A8 in the previous example is induced from an action of
A7 on a set of size 30, with quasiparabolic subgroup isomorphic to AGL3(2). The
Poincaré series of this subgroup has the striking structure

PSAGL3(2)(q) = (1 − q4)(1 − q6)(1 − q7)(1 − q8)

(1 − q)4
. (9.1)

If AGL3(2) had been a Coxeter group, we would have concluded that its invariant
ring was freely generated by elements of degrees 4, 6, 7, and 8. Surprisingly, there
is indeed an action of AGL3(2) with such an invariant ring, but in characteristic 2.

Indeed, there are two actions of AGL3(2) on F̄2
4
, one with an invariant subspace

of dimension 1 and one with an invariant subspace of dimension 3. The latter has
precisely the desired invariants.

We could also have obtained this set as in the previous example, beginning with
either of the classes of perfect involutions in A5. There is also a transitive action of
A4, induced from the action of A3 on A2 via the natural Coxeter homomorphism. In
the other direction, the reflection in the highest root of A7 is a special matching, and
thus we obtain a quasiparabolic action of Ã7 on this set.

This characteristic 2 invariant theory phenomenon also arises for two other quasi-
parabolic subgroups of symmetric groups. First, the transitive action of A6 on the
same set of size 30 has stabilizer PGL3(2) ∼= GL3(2). The invariant ring of GL3(2) in
its three-dimensional characteristic 2 representation is freely generated by invariants
of degrees 4, 6, and 7, which again agrees with the Poincaré series of the subgroup.

The other example comes from the transitive action of Alt5 on a set of six
elements. It turns out that one representative of the resulting conjugacy class of
subgroups of A5 ∼= S6 is actually quasiparabolic, of index 12. There is a three-
dimensional representation of Alt5 in characteristic 2, namely Alt5 ∼= O−

3 (F4) (in
the version with a two-dimensional invariant subspace), with invariant ring freely
generated by elements of degrees 2, 5, and 6. Once more, the Poincaré series of this
quasiparabolic Alt5 agrees with the product suggested by the degrees of invariants.

It should be noted, however, that not all quasiparabolic subgroups have a Poincaré
series of this form. For instance, the Poincaré series of the index 113400 quasi-
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parabolic subgroup H ⊂ E8 has the factorization

PSH (q) = (1 + q3)(1 + q6)(1 + q9)(1 + q5)(1 + q10)(1 + q15)(1 − q8)(1 − q12)

(1 − q)2
.

(9.2)

Note that this still has positive coefficients. There would seem to be no particular
reason why such Poincaré series of nonparabolic quasiparabolic subgroups should
have positive coefficients, but we do not know a counterexample.

Example 9.5 Inside E8, apart from quasiparabolic subgroups of parabolic subgroups,
the above index 270 example, and the index 113400 example coming from perfect in-
volutions, there are essentially two more quasiparabolic subgroups (apart from those
obtained via Theorem 3.16). The larger of the two (i.e., with the smaller E8-set) corre-
sponds to a subgroup of E8 ×A1 isomorphic to F

8
2 �AGL3(2), of index 4050. Again,

the highest root induces a special matching, so we obtain an action of Ẽ8 × A1. The
other corresponds to an even subgroup of E8 abstractly isomorphic to H4, of index
48384; as in the F4 ⊂ E6 case above, again the Poincaré series of the subgroup is the
same as its Poincaré series as a Coxeter group, despite the fact that it is far from being
a reflection subgroup of E8.

For E7 and E6, there are no quasiparabolic subgroups other than those already
mentioned, or those they produce via Theorem 3.16.

Example 9.6 The case of fixed-point-free involutions in A2n−1 has a nice geometric
interpretation due to Richardson and Springer [14]. Let k be an algebraically closed
field of characteristic �= 2, and consider the algebraic group G = GL2n(k), with the
Borel subgroup B of upper triangular matrices. It is classical that the double cosets
B\G/B are in natural bijection with A2n−1, with dimension essentially given by
length. If we now consider the subgroup H = Sp2n(k) ⊂ G, we may consider instead
the double cosets B\G/H . It turns out that these are in natural bijection with fixed-
point-free involutions in A2n−1, or somewhat more naturally, with conjugates of the
diagram automorphism. Moreover, the dimension of such a double coset is (up to
an additive constant) given by height. The action of A2n−1 is somewhat tricky to
reconstruct from the geometry, but the action of the corresponding Hecke monoid is
straightforward: if one decomposes

BsBιH (9.3)

into double cosets (where BιH denotes the double coset identified with ι), there will
be a unique double coset of maximal dimension, which gives the image of ι under the
monoid action of s. More generally, the Bruhat order on the given conjugacy class of
involutions corresponds to inclusion of closures of double cosets.

One can also obtain the corresponding Hecke algebra module for q a prime power
by considering the same double cosets, but now over the finite field Fq . It appears
that similarly the double cosets

B\GL2n(Fq)/GLn(Fq2), (9.4)
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where we map Fq2 → Mat2(Fq) in the obvious way, give rise to the Hecke algebra
module corresponding to the dual quasiparabolic set.

The (extended) affine Weyl group Ã2n−1 has a similar geometric interpretation in
terms of double cosets of the Iwahori subgroup of GL2n(K) where K is now a local
field with residue field Fq . One could then replace one of the Iwahori subgroups with
Sp2n(K) or GLn(L) for either of the two quadratic extensions L/K and consider
the resulting double cosets. In each case, a back of the envelope calculation suggests
that the double cosets are classified by suitable conjugacy classes of involutions. This
gives rise to three conjecturally quasiparabolic actions of Ã2n−1. The corresponding
(conjectural) ideals in the Hecke algebra were used in [13], along with two analogous
ideals in H

C̃2n
.
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