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Abstract The reducible Specht modules for the Hecke algebra HF,q (Sn) have been
classified except when q = −1. We prove one half of a conjecture which we believe
classifies the reducible Specht modules when q = −1.
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1 Introduction

Fix a field F of characteristic p � 0 and an element q ∈ F×. For n � 0, the Hecke
algebra Hn = HF,q (Sn) of the symmetric group Sn is defined to be the unital asso-
ciative F-algebra with generators T1, . . . , Tn−1 subject to the relations

(Ti − q)(Ti + 1) = 0 for 1 � i � n − 1,

TjTj+1Tj = Tj+1TjTj+1 for 1 � j � n − 2,

TiTj = TjTi for 1 � i < j − 1 � n − 2.

For each partition λ of n, Dipper and James defined an Hn-module Sλ known as a
Specht module. An important open problem in representation theory is to determine
the decomposition matrices of the Hecke algebras; this is equivalent to determining
the composition factors of the Specht module Sλ for each partition λ. An interesting
special case of this problem is the question of which Specht modules are irreducible.
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For the symmetric group algebra FSn, the answer to this question is completely
known, and for the Hecke algebra Hn, the answer is known except in the case where
q = −1 [7, 8, 15, 16, 19, 20]. For the case where q = −1 and p = 0, a conjectured
classification has been put forward by the first author and Mathas, and the purpose
of the present paper is to prove half of this conjecture; that is, we prove that the
supposedly reducible Specht modules really are reducible. We also present for the
first time a conjectured classification of irreducible Specht modules for the case where
q = −1 and p > 0 (which agrees with the already known classifications for the cases
p = 2,3). Our characteristic zero result, together with the first author’s work [9] on
the case of positive characteristic, shows that half of this conjecture is true too.

The layout of the paper is as follows. In Sect. 2 we give some background on
partitions and Specht modules, and state the main result of this paper, Theorem 2.4.
In Sect. 3 we describe some results and techniques for proving reducibility of Specht
modules, and use these to prove Theorem 2.4 subject to the proof of Proposition 3.5;
this is a technical result on homomorphisms, which requires a long proof. In Sect. 4
we give detailed background on homomorphisms between Specht modules and prove
Proposition 3.5.

2 The main theorem

Throughout Sect. 2, we assume that q = −1 and that F has characteristic p � 0.
Recall that a composition of n is a sequence λ = (λ1, λ2, . . .) of non-negative integers
such that

∑∞
i=1 λi = n. If in addition λ1 � λ2 � · · · , we say that λ is a partition of n.

When writing a partition, we usually omit zeroes, and group together equal positive
parts with a superscript. We let �(λ) denote the number of non-zero parts of λ, and
we write |λ| to mean

∑∞
i=1 λi .

The Young diagram of λ is the set

{
(r, c) |1 � c � λr

} ⊂ N
2,

whose elements we call the nodes of λ. Throughout this paper, we identify λ with
its Young diagram; so for example we may write λ ⊆ μ to mean that λi � μi for
all i. We use the English convention for drawing Young diagrams, in which the first
coordinate increases down the page and the second increases from left to right.

A node u ∈ λ is said to be removable if λ \ u is a partition, and a node v /∈ λ is
said to be addable if λ ∪ v is a partition. The 2-residue of a node (r, c) ∈ N

2, which
we shall simply call the residue, is defined to be (c − r) (mod 2). The partition λ is
said to be 2-regular if λi > λi+1 for all 1 � i < �(λ), and is said to be 2-restricted if
λi − λi+1 � 1 for all i � 1. If λ is not 2-regular, we will say it is 2-singular.

If λ is a partition, we write Sλ for the Specht module, as defined by Dipper and
James [5]. If λ is 2-regular then Sλ has a unique irreducible quotient Dλ, and the set
{Dλ | λ is 2-regular} is a complete set of non-isomorphic irreducible Hn-modules.
The conjugate λ′ of a partition λ is defined to be the partition whose Young diagram
is given by {(c, r) | 1 � c � λr}. Conjugation is useful in this paper because of the
following result.
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Lemma 2.1 Suppose λ is a partition of n. Then Sλ is irreducible if and only if Sλ′
is

irreducible.

As far as we can tell, this lemma appears for the first time in Mathas’s book [23,
p. 89], though it was surely known to earlier authors.

2.1 Irreducible Specht modules in characteristic zero

We now discuss the problem of classifying irreducible Specht modules. In this
section we assume that F has characteristic zero.

The classification of irreducible Specht modules labelled by 2-regular partitions is
well known. In characteristic zero this takes the following simple form.

Proposition 2.2 ([16], Theorem 4.15) Let λ be a partition of n and suppose that λ is
2-regular. Then Sλ is irreducible if and only if λi − λi+1 is odd for all 1 � i < �(λ).

We say that λ is alternating if it satisfies the condition of Proposition 2.2. Using
this proposition and Lemma 2.1, it remains only to classify the irreducible Specht
modules Sλ when λ and λ′ are both 2-singular; we call such a partition doubly singu-
lar. A conjecture for this classification has been given by the first author and Mathas.
First we need to make a definition.

Definition Let λ be a doubly singular partition of n. Set

• a to be maximal such that λa − λa+1 � 2,
• b to be maximal such that λb = λb+1 � 1, and
• c to be maximal such that λa+c > 0.

Say that λ is an FM-partition if the following conditions all hold.

• λi − λi+1 � 1 for all i �= a.
• λb � a − 1 � b.
• λ1 > · · · > λc.
• If c = 0 then all addable nodes of λ except possibly those in the first row and first

column have the same residue.
• If c > 0, then all addable nodes of λ have the same residue.

Conjecture 2.3 Let Hn = HF,−1(Sn) where char(F) = 0, and let λ be a doubly
singular partition of n. The Hn-module Sλ is irreducible if and only if λ or λ′ is an
FM-partition.

The main result of this paper is the proof of half of this conjecture.

Theorem 2.4 Let Hn = HF,−1(Sn) where char(F) = 0, and let λ be a doubly singu-
lar partition of n. If the Hn-module Sλ is irreducible then λ or λ′ is an FM-partition.

Example Since the definition of an FM-partition is somewhat complicated, we pro-
vide some examples. The partition (11,103,93,8,7,2,1) is an FM-partition, with
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a = 9, b = 6 and c = 2. The addable nodes all have residue 1, as can be seen from
the following Young diagram, in which nodes are labelled with their residues:

0 1 0 1 0 1 0 1 0 1 0
0101010101

0 1 0 1 0 1 0 1 0 1
0101010101

0 1 0 1 0 1 0 1 0
101010101

0 1 0 1 0 1 0 1 0
01010101

0 1 0 1 0 1 0
01

0

Additionally, any ‘rectangular’ partition (da) with d � a −1 is an FM-partition (with
b = a−1 and c = 0), and an argument due to Mathas shows that Conjecture 2.3 holds
for rectangular partitions.

In spite of Lemma 2.1, the conjugate of an FM-partition is not always an FM-
partition, and this is why we need λ or λ′ in Conjecture 2.3. For example, the conju-
gate (11,10,95,8,7,4,1) of the partition above is not an FM-partition, since it fails
the first condition.

2.2 Irreducible Specht modules in positive characteristic

We make some brief comments on the case where F has positive characteristic p

(and q = −1). In this case, the classification of irreducible Specht modules remains
unsolved, but here we conjecture a solution.

For the case of Specht modules labelled by 2-regular or 2-restricted partitions,
a more complicated version of Proposition 2.2 (also covered by [16, Theorem 4.15])
holds, so the difficulty lies with doubly singular partitions. In this case, Theorem 2.4
still holds, thanks to the theory of decomposition maps [12]; however, there are FM-
partitions which label reducible Specht modules in positive characteristic. In order
to formulate a conjecture, we need to recall another definition. Recall that if λ is a
partition and (r, c) is a node of λ, then the (r, c)-hook length of λ is the integer

hr,c(λ) = λr − r + λ′
c − c + 1.

Given a positive integer s, we say that λ is an s-core if none of the hook lengths of λ

are divisible by s. Now we have the following result, proved by the first author in [9].

Theorem 2.5 Suppose F has characteristic p and q = −1. If λ is a doubly singular
partition which is not a 2p-core, then the Hn-module Sλ is reducible.

Based on computer calculations, we now make the following conjecture.
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Conjecture 2.6 Let Hn = HF,−1(Sn) where char(F) = p > 0, and let λ be a doubly
singular partition of n. The Hn-module Sλ is irreducible if and only if λ is a 2p-core
and λ or λ′ is an FM-partition.

Theorems 2.4 and 2.5 show that the ‘only if’ part of this conjecture is true. The
results of [9] also show that for a given prime p there are only finitely many FM-
partitions which are also 2p-cores. So in order to verify the ‘if’ part of Conjecture
2.6 in a given non-zero characteristic, there are only finitely many Specht modules to
consider. The case p = 2 (which amounts to the classification of irreducible Specht
modules for the symmetric group in characteristic 2) is the main result of [17]. Using
computer programs written in GAP [13], the first author has been able to verify the
conjecture also for p = 3,5 and 7.

3 The proof of Theorem 2.4

Throughout Sect. 3, we assume that q = −1 and that F is a field of characteristic 0.
Our aim is to prove Theorem 2.4, that is, if λ is a doubly singular partition of n and
the HF,−1(Sn)-module Sλ is irreducible then λ or λ′ is an FM-partition.

3.1 Techniques for proving reducibility

We begin by describing some methods—some well-known and some new—which
can be used to prove the reducibility of a Specht module.

3.1.1 Ladders

For k � 1, the kth ladder in N
2 is defined to be the set of nodes

Lk = {
(i, j) ∈ N

2 | i + j = k + 1
}
.

We say that Ll is a longer ladder than Lk if l > k.
The kth ladder of a partition λ is the intersection of Lk with the Young diagram

of λ. We say that the kth ladder of λ is broken if the nodes it contains are not con-
secutive in Lk ; that is, there exist 1 � r < s < t � k such that (r, k + 1 − r) and
(t, k + 1 − t) lie in [λ] but (s, k + 1 − s) does not.

The following proposition is the main result of [11].

Proposition 3.1 ([11], Theorem 2.1) Suppose that λ has a broken ladder. Then Sλ is
reducible.

A more helpful description of the condition in Proposition 3.1 is as follows: λ has
a broken ladder if there exist 1 � a < b such that λa − λa+1 � 2 and λb = λb+1 > 0.

3.1.2 Regularisation and homomorphisms

Recall that the dominance order � on partitions is defined by saying that μ � λ if
and only if

l∑

i=1

μi �
l∑

i=1

λi for all l � 1.
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If λ is a partition, let λR denote the partition whose Young diagram is obtained by
moving the nodes of λ as high as possible in their ladders. It is easy to see that λR is
a 2-regular partition, and that λR � λ. We also have λR = (λ′)R for any λ.

For example, if λ = (3,23), then λR = (5,3,1); this can be seen from the follow-
ing diagrams, in which we label the nodes of these two partitions with the numbers
of the ladders in which they appear.

3
4
54

3
2
1 2 3 1 2 3 4 5

432
3

The importance of regularisation lies in the following result.

Lemma 3.2 ([14], Theorem 6.21) Let λ be a partition of n. Then DλR
occurs as a

composition factor of Sλ with multiplicity 1. If Dν is a composition factor of Sλ then
ν � λR.

This result is particularly useful when classifying irreducible Specht modules,
since it implies that if Sλ is irreducible, then Sλ ∼= DλR

. One application of this
is as follows.

Corollary 3.3 Suppose λ and μ are partitions of n, such that λR � μ and
HomHn

(Sμ,Sλ) �= 0. Then Sλ is reducible.

Proof Since HomHn
(Sμ,Sλ) �= 0, the Hn-modules Sμ and Sλ have a common com-

position factor, Dν say. By Lemma 3.2 we have ν � μR � μ, so ν �= λR. So Sλ has
at least two composition factors. �

We shall apply Corollary 3.3 using two different explicit constructions of homo-
morphisms. The first is a q-analogue, due to the second author, of the ‘one-node
homomorphisms’ constructed by Carter and Payne in [3].

Definition Say that a partition λ is CP-reducible if λ has

• an addable node lying in ladder Lm, and
• a removable node lying in ladder Ll ,

where m > l and l ≡ m (mod 2).

Reference [20, Theorem 4.1.1] shows that if λ is a CP-reducible partition of n,
then there is a partition μ of n with μ � λR, and a non-zero Hn-homomorphism
from Sμ to either Sλ or Sλ′

. Hence by Lemma 2.1 and Corollary 3.3 we have the
following.

Proposition 3.4 ([11], Proposition 4.6) Suppose that λ is CP-reducible. Then Sλ is
reducible.
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Now we give the second result we require on homomorphisms. This also defines a
certain family of pairs of partitions where the corresponding homomorphism space is
non-zero; however, the partitions in question are rather less natural than in the Carter–
Payne case, and the result below was proved solely for the purposes of the present
paper.

Definition Say that a partition λ is hom-reducible if there exists x � 0 such that
(x + 1, λx+1 + 1) is an addable node of λ, and the partition ν = (λx+1, λx+2, . . . ) has
the form

((
g + f + s′)s

, g + f + s′ − 1, g + f + s′ − 2, . . . , g + s′, g, g − 1, . . . ,2
)

where s, s′, f, g are integers such that f � 0, g � 2, s′ � s � 2 and either

• s and s′ are odd; or
• s = 2, s′ is even and f = 0.

Proposition 3.5 Suppose λ is a partition of n which is hom-reducible, and let x be
as in the definition of hom-reducible. Define a partition μ by

μi =

⎧
⎪⎨

⎪⎩

λi + 1 (i = x + 1, x + 2)

λi − 2 (i = �(λ))

λi (otherwise).

Then HomHn
(Sμ,Sλ) �= 0.

The partitions appearing in Proposition 3.5 may be visualised using the following
diagram (in which we take s = s′ = 5, g = 4, f = 2). The dotted nodes at the bottom
of the diagram are present in λ, while those at the top right are present in μ.

g−1

f

s

g s′ f
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The proof of Proposition 3.5 is somewhat lengthy, and we postpone it to Sect. 4,
where we introduce all the necessary background concerning homomorphisms.

Proposition 3.6 Suppose that λ is hom-reducible. Then Sλ is reducible.

Proof Since λ is hom-reducible, we may define the partition μ as in Proposition 3.5
so that HomHn

(Sμ,Sλ) �= 0. Furthermore, the condition s′ � s guarantees that μ

is obtained from λ by moving two nodes to longer ladders, so by [7, Lemma 2.1],
λR � μ and hence Sλ is reducible by Corollary 3.3. �

3.1.3 Fock space techniques

Definition Say that a partition λ with �(λ) = l is LLT-reducible if λ is 2-singular, has
no broken ladders and satisfies:

• λ1 � l + 1;
• λl � 2;
• there exists 1 � x < l with λx − λx+1 > 1.

Proposition 3.7 Suppose λ is LLT-reducible. Then Sλ is reducible.

Before proving Proposition 3.7 we give some background. In [11], the authors
show how Ariki’s Theorem [1] may be used to prove that certain Specht modules are
reducible. We summarise the relevant results here. For details, and to put these results
into context, we refer the reader to [11, Sect. 5].

Suppose that λ is a partition. If μ is a partition such that μ ⊆ λ and μi − μi+1 is
odd for 1 � i < �(λ), we will say that μ is alternating in λ. In this case, we define a
sequence of partitions μ = μ0,μ1,μ2, . . . by setting μj+1 to be the partition obtained
from μj by adding all addable nodes that are contained in λ. Now define a λ-tableau
T = T (λ,μ) as follows. Begin by filling in each node of μ with a 0, then, for j � 1
fill in each node of μj \ μj−1 with j . We write Tr,c for the (r, c)-entry of the tableau
T (see Sect. 4.1 below for basic definitions concerning tableaux).

Now for each node (r, c) ∈ λ, let j = Tr,c and define

Nr,c = ∣
∣
{
m < r |Tm,λm < j, Tm,λm �≡ j (mod 2)

}∣
∣

− ∣
∣
{
m < r |Tm,λm < j, Tm,λm ≡ j (mod 2)

}∣
∣.

Let

N (λ,μ) =
∑

(r,c)∈λ

Nr,c.
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Example Let λ = (13,125,7,4,3) and μ = (13,12,11,10,9,8,7,2,1). The tableaux
T ,N are shown in the two diagrams below, and we see that N (λ,μ) = 10.

T =

0000000000000
0 0 0 0 0 0 0 0 0 0 0 0

100000000000
0 0 0 0 0 0 0 0 0 0 1 2

321000000000
0 0 0 0 0 0 0 0 1 2 3 4

0000000
0 0 1 2

210

N =

0000000000000
0 0 0 0 0 0 0 0 0 0 0 0

200000000000
0 0 0 0 0 0 0 0 0 0 2 −1

2−12000000000
0 0 0 0 0 0 0 0 2 −1 2 −1

0000000
0 0 3 −2

−230

The following lemma follows from [11, Lemmas 5.4 & 5.5].

Lemma 3.8 Let λ be a partition of n. Suppose that μ and μ̃ are alternating in λ. If
N (λ,μ) �= N (λ, μ̃) then Sλ is reducible.

We can now prove Proposition 3.7.

Proof of Proposition 3.7 Suppose that λ is LLT-reducible. Let l = �(λ) and let x < l

be maximal such that λx − λx+1 > 1; since λ has no broken ladders, we have λi −
λi+1 = 1 for x + 1 � i < l. Now we consider two cases.

• Suppose first that λ1 + 1 � λl + l. Define σ as follows. Set σ1 to be maximal such
that σ1 � λ1 and σ1 + 1 ≡ λl + l (mod 2). For 2 � i � x, define σi to be maximal
such that σi � min{λi, σi−1 − 1} and σi + i ≡ λl + l (mod 2). Since λ has no
broken ladders and λ1 + 1 � λl + l, we have λi + i � λl + l for all 1 � i � x, and
using this it is easy to show by induction that σi � λl + l − i for all 1 � i � x. In
particular, σx � λl + l −x > λl + l −x −1 = λx+1. So we can define two partitions
μ and μ̃ by setting

μ = (σ1, σ2, . . . , σx, λx+1, λx+2, . . . , λl),

μ̃ = (σ1, σ2, . . . , σx, λx+1 − 2, λx+2 − 2, . . . , λl − 2).

By construction, μ and μ̃ are alternating in λ, and we claim that N (λ,μ) �=
N (λ, μ̃). The entries in T (λ,μ) and T (λ, μ̃) agree except in the last two entries
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in rows x + 1, . . . , l, which are 0 0 in T (λ,μ), and 1 2 in T (λ, μ̃). So the
definition of N (λ,μ) gives

N (λ, μ̃) − N (λ,μ) = (l − x)
∣
∣
{
1 � m � x |Tm,λm = 1

}∣
∣.

Choose 1 � g � x minimal such that σg �= λg . Then by construction λg − σg = 1
and Tg,λg = 1. Hence N (λ, μ̃) − N (λ,μ) > 0 and Sλ is reducible by Lemma 3.8.

• Now suppose that λ1 + 1 < λl + l. Define μ and μ̃ by

μ = (λ1, λ1 − 1, . . . , λ1 − x + 1, λ1 − x, . . . , λ1 − l + 1),

μ̃ = (λ1, λ1 − 1, . . . , λ1 − x + 1, λ1 − x − 2, . . . , λ1 − l − 1).

Again we claim that μ and μ̃ satisfy the conditions of Lemma 3.8. Since λ1 + 1 <

λl + l, the nodes (1, λ1), (l, λ1 − l + 1) and (l, λ1 − l) all lie in λ, so since λ

has no broken ladders, μ and μ̃ are both alternating in λ. Again, T (λ,μ) and
T (λ, μ̃) agree except in rows x + 1, . . . , l. If we let k = λl − λ1 + l − 1, then rows
x + 1, . . . , l of T (λ,μ) have the form 0 0 1 2 k , while in T (λ, μ̃)

these rows have the form 0 0 1 2 k+2 . Hence

N (λ, μ̃) − N (λ,μ) = (l − x)
∣
∣
{
1 � m � x |Tm,λm = k + 1

}∣
∣.

It remains to show that Tm,λm = k + 1 for some 1 � m � x, which is equivalent
to saying that the ladder L = Ll+λl

intersects non-trivially with the set of nodes
{(m,λm) | 1 � m � x}. Certainly L intersects with {(x, c) | 1 � c � λx} since λx −
λx+1 > 1, so choose r � 1 minimal such that L intersects with {(r, c) | 1 � c � λr}.
Then r > 1 since λ1 + 1 < λl + l, so the fact that r is minimal means that (r, λr )

lies on L as required. �

3.1.4 Induction and restriction

Definition For i ∈ {0,1} let λ(i) be the partition obtained by removing all removable
nodes of residue i from λ.

The proof of the following proposition is a simple consequence of [18, Lemma
11.3], which is the q-analogue of [2, Lemma 2.13].

Proposition 3.9 ([11], Lemma 3.13) Suppose i ∈ {0,1}. If Sλ(i)
is reducible then so

is Sλ.

Obviously this result will enable us to prove Theorem 2.4 by induction. In order
to do this, we make the following definition.

Definition Say that λ is inductively reducible if for some i ∈ {0,1} we have λ(i) �= λ

and one of the following holds.

• λ(i) is 2-regular or 2-restricted and Sλ(i)
is reducible.

• λ(i) is doubly singular and neither λ(i) nor λ(i)′ is an FM-partition.
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3.2 Analysis of partitions

The aim of this section is to complete the proof of Theorem 2.4, modulo the proof
of Proposition 3.5. The strategy is simple: we show that a Specht module which is
not shown to be reducible by any of the techniques in Sect. 3.1 is labelled by an
FM-partition or the conjugate of one. That is, we prove the following result.

Proposition 3.10 Suppose λ is a partition of n which satisfies the following condi-
tions:

• λ is doubly singular;
• λ does not have a broken ladder;
• neither λ nor λ′ is CP-reducible;
• λ is not hom-reducible;
• neither λ nor λ′ is LLT-reducible;
• λ is not inductively reducible.

Then either λ or λ′ is an FM-partition.

Throughout this section we fix a partition λ with �(λ) = l satisfying the hypotheses
of Proposition 3.10. We begin by introducing some additional notation.

Definition Suppose ν is a partition. If ν is not 2-restricted, we define:

• a∗(ν) to be minimal such that νa∗(ν) − νa∗(ν)+1 � 2;
• a∗(ν) to be maximal such that νa∗(ν) − νa∗(ν)+1 � 2;
• c(ν) to be maximal such that νa∗(ν)+c(ν) > 0.

If a∗(ν) = a∗(ν) we will write a(ν) = a∗(ν) = a∗(ν).
If ν is not 2-regular, we define b(ν) to be maximal such that νb(ν) = νb(ν)+1 > 0.

Now consider our chosen partition λ. Since λ has no broken ladders, we have
a∗(λ) � a∗(λ) > b(λ) and a∗(λ′) > b(λ′).

Definition Say that λ is pointed if b(λ) + 1 = a∗(λ). Note that λ is pointed if and
only if λ′ is pointed. If λ is pointed, we call the removable node in row a∗(λ) the
point.

Lemma 3.11 If λ is not pointed then all removable nodes of λ have the same residue.
If λ is pointed then all removable nodes of λ except possibly the point have the same
residue.

Proof First note that any removable node (r, c) of λ which is not the point has an
addable node adjacent to it: if r < a∗(λ), then the node (r + 1, c) must be addable,
while if r > b(λ) + 1 then the node (r, c + 1) is addable.

Now suppose there are two removable nodes (r, c) and (r ′, c′) of different
residues, neither of which is the point, lying in ladders k, k′ say. Since the residues of
the nodes are not the same we have k �= k′ and we suppose without loss of generality
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that k < k′. There is an addable node adjacent to (r ′, c′), and this must lie in ladder
k′ + 1. Since k′ + 1 > k and k′ + 1 ≡ k (mod 2), λ is CP-reducible; contradiction. �

Corollary 3.12 All addable nodes of λ except possibly those in the first row and first
column have the same residue.

Proof Every addable node except possibly those in the first row or column has a
removable node (which is not the point) adjacent to it. �

Definition Define μ to be the partition obtained from λ by removing all removable
nodes if all the removable nodes have the same residue, and all removable nodes
except the point otherwise.

Note that μ �= λ, so since λ is not inductively reducible, either μ or μ′ must be
either alternating or an FM-partition.

The following properties of μ follow easily from the definitions.

Lemma 3.13

• Suppose that μ is not 2-restricted. Then a∗(λ) = a∗(μ).
• Suppose that μ is not 2-regular. Then λb(λ) = μb(μ).
• Suppose that λl �= 2 or that μl = λl . Then μ is not 2-restricted and a∗(λ) = a∗(μ).
• Suppose that λ1 > λ2 or that λ2 = λ3 or that μ2 = λ2. Then μ is not 2-regular.

Lemma 3.14 Suppose that all addable nodes of λ have the same residue and that
λl �= 2 or λl = μl . If μ is an FM-partition then λ is an FM-partition.

Proof By Lemma 3.13 we have

a∗(λ) = a∗(μ) = a∗(μ) = a∗(λ),

λb(λ) = λb(μ) � a(μ) − 1 = a(λ) − 1.

It remains only to show that λ1 > · · · > λc(λ). If c(λ) � 1 there is nothing to check, so
assume that c(λ) � 2. Then c(μ) = c(λ) − 1 � 1, so all the addable nodes of μ have
the same residue. This means that the node (1, λ1 + 1) cannot be an addable node of
μ, so λ1 > λ2. Now since we have μ1 > · · · > μc(λ)−1 and λ does not have a broken
ladder, we must have λ1 > · · · > λc(λ). �

Lemma 3.15 Suppose that λl � 3 and μ is an FM-partition. Then λ is an FM-
partition.

Proof Using Lemma 3.13, we have

a∗(λ) = a∗(μ) = a∗(μ) = a∗(λ),

λb(λ) = μb(μ) � a(μ) − 1 = a(λ) − 1,

c(λ) = c(μ) = 0.

Since a(λ) − 1 � b(λ) and all addable nodes of λ (except possibly for those in the
first row and the first column) have the same residue, λ is also an FM-partition. �
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Lemma 3.16 Suppose λ1 > l and λl � 2. Then λ is an FM-partition.

Proof Since λ is not LLT-reducible we have a∗(λ) = a∗(λ) = l. Since λ1 > l and λ is
not 2-regular this implies that λl � 3 and therefore a∗(μ) = a∗(μ) = l and c(μ) = 0.
If b(λ) = 1 then λ = ((l +1)2, l, l −1, . . . ,3) is an FM-partition, so assume b(λ) > 1.
Then μ is doubly singular, so either μ or μ′ is an FM-partition. In fact, we claim that
μ must be an FM-partition. If μ′ is an FM-partition then we have c(μ′) � 1 (because
μ′

1 = μ′
2 = l) and a∗(μ′) = a∗(μ′), so that

μb(μ) = μ1 − c
(
μ′) � λ1 − 2 � l − 1 = a(μ) − 1.

Hence μb(μ) � a(μ) − 1 and μ is also an FM-partition.
Now Lemma 3.15 implies that λ is also an FM-partition. �

Lemma 3.17 Suppose that λ1 � l and λl = 1. Then λ or λ′ is an FM-partition.

Proof Since λ1 � l, the addable node (1, λ1 + 1) lies in a longer ladder than the
removable node (l,1). Since λ is not CP-reducible, these nodes must have different
residues, so the addable node (1, λ1 + 1) has the same residue as the addable nodes
(l,2) and (l + 1,1). So by Corollary 3.12 all the addable nodes of λ have the same
residue.

Now we claim that μ is doubly singular. By Lemma 3.13 μ is not 2-restricted, and
the only way μ could be 2-regular is if λ1 = λ2 > λ3. But if this is the case then the
removable nodes (2, λ1) and (l,1) of λ have different residues, so (2, λ1) must be the
point; and this means that μ1 = μ2, so μ is not 2-regular.

So either μ or μ′ is an FM-partition. If μ is an FM-partition, then by Lemma
3.14 λ is an FM-partition. If μ′ is an FM-partition, then (from the argument in the
last paragraph) either λ′

�(λ′) �= 2 or μ′
�(λ′) = λ′

�(λ′); so by Lemma 3.14 λ′ is an FM-
partition. �

Lemma 3.18 Suppose that λ1 = λ2 = l and λl = 2. If μ is an FM-partition then λ

or λ′ is an FM-partition.

Proof First note that since λ1 = λ2 and λl = 2, we cannot have a∗(λ) = a∗(λ),
because this would give λ = (l2, l − 1, l − 2, . . . ,2) so that μ is 2-regular. So
a∗(λ) < a∗(λ); since μ is an FM-partition, we have a∗(μ) = a∗(μ) = a∗(λ).

Let x � 0 be minimal such that λx+1 = λb(λ) and let ν = (λx+1, . . . , λl). Since
a∗(μ) = a∗(μ), ν has the form

ν = ((
g + f + s′)s

, g + f + s′ − 1, . . . , g + s′, g, . . . ,2
)

where g � 2, f � 0 and s, s′ � 2. If λ = ν then λ1 = λ2 so, since μ is an FM-
partition, c(μ) = 1; that is, g = 2. Then λ′

b(λ′) = l − 1 = a∗(λ′) − 1 and λ′ is an
FM-partition. Assume then that λ �= ν. Then we have

x + s + f + g − 1 = l, g + s′ + f = λx+1 � λ1 − x + 1 = l − x + 1,

which gives s′ � s.
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Suppose all removable nodes of λ have the same residue. Then s and s′ are both
odd, so λ is hom-reducible, a contradiction.

Next suppose that not all removable nodes of λ have the same residue. Then f = 0
and s, s′ are even. Let σ be the partition obtained by removing the point of λ; then σ

is doubly singular, so either σ or σ ′ is an FM-partition. In particular, either a∗(σ ) =
a∗(σ ) or a∗(σ ′) = a∗(σ ′), which means that either s or s′ equals 2. Since s′ � s, we
get s = 2, so again λ is hom-reducible; contradiction. �

By combining the results in this section, we can prove Proposition 3.10.

Proof of Proposition 3.10 Suppose λ is a partition with the given properties. Then λ′
has the same properties, and we may replace λ with λ′ if necessary.

If λ1 > l, then by Lemmas 3.16 or 3.17, either λ or λ′ is an FM-partition. So we
may assume λ1 � l. Applying the same argument to λ′, we may assume that λ1 = l.

Now by Lemma 3.17 applied to both λ and λ′, we can assume that λl � 2 and
λ1 = λ2. Now the only way μ could be 2-regular or 2-restricted is if λ = (l2, l −
1, l−2, . . . ,2), which is an FM-partition. So we can assume that μ is doubly singular.
Hence either μ or μ′ is an FM-partition. Replacing λ with λ′ if necessary, we can
assume μ is an FM-partition. And now we are done using Lemma 3.15 or 3.18. �

We are now ready to prove Theorem 2.4.

Proof of Theorem 2.4 The proof is by induction on |λ|. If λ = ∅ the theorem is triv-
ially true. Suppose that λ is a doubly singular partition of n � 1 such that neither λ

nor λ′ is an FM-partition, and suppose that Theorem 2.4 holds for all partitions of
m < n. By Proposition 3.10 at least one of the following statements holds for λ.

• λ has a broken ladder.
• λ or λ′ is CP-reducible.
• λ is hom-reducible.
• λ or λ′ is LLT reducible.
• λ is inductively reducible.

If any of the first four statements hold then Sλ is reducible by Lemma 2.1, Propo-
sitions 3.1, 3.4, 3.6 or Proposition 3.7. So suppose λ is inductively reducible. Then
there exists i ∈ {0,1} such that λ(i) �= λ and λ(i) satisfies one of the following condi-
tions.

• λ(i) is 2-regular and is not alternating.
• λ(i)′ is 2-regular and is not alternating.
• λ(i) is doubly singular and neither λ(i) nor λ(i)′ is an FM-partition.

By Proposition 2.2 or the inductive hypothesis, Sλ(i)
is reducible. Then Sλ is reducible

by Proposition 3.9. �

To complete the proof of Theorem 2.4 it remains only to give the deferred proof
of Proposition 3.5.
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4 Homomorphisms between Specht modules

4.1 Tableaux

If μ is a composition of n, a μ-tableau is defined to be a filling of the nodes of μ

with integers; if T is a tableau, we write Tr,c for the (r, c)-entry. The type of a tableau
is the composition λ, where λi is the number of nodes filled with the integer i, for
each i. A tableau is row-standard if the entries are weakly increasing along the rows.
We write T (μ,λ) for the set of row-standard μ-tableaux of type λ. If μ is a partition,
we say that a μ-tableau is semistandard if the entries are weakly increasing along
the rows and strictly increasing down the columns; we write T0(μ,λ) for the set of
semistandard μ-tableaux of type λ. We remark that T0(μ,λ) is empty unless μ �

−→
λ ,

where
−→
λ is the partition obtained by arranging the parts of λ in decreasing order.

4.2 Permutation modules and Specht modules

Now take F to be an arbitrary field with q ∈ F
×. For each composition λ of n,

we let Mλ denote the ‘permutation module’ defined by Dipper and James; if λ is a
partition, then the Specht module Sλ is a submodule of Mλ. If μ,λ are compositions
of n and T is a row-standard μ-tableau of type λ, then there is an Hn-homomorphism
Θ̌T : Mμ → Mλ. The set {Θ̌T |T ∈ T (μ,λ)} is a basis for HomHn

(Mμ,Mλ) [5,
Theorem 3.4].

These homomorphisms may be used to define the Specht module. Suppose λ and
μ are partitions of n, and 1 � d < �(λ) and 1 � t � λd+1. Define the composition
λ(d, t) by

λ(d, t)i =

⎧
⎪⎨

⎪⎩

λi + t (i = d)

λi − t (i = d+1)

λi (otherwise).

Then there is a unique row-standard λ-tableau of type λ(d, t) with the property that
for every i �= d+1 all the entries in row i are equal to i. The corresponding homo-
morphism from Mλ to Mλ(d,t) is denoted ψd,t .

The Kernel Intersection Theorem [5, Theorem 7.5] says that

Sλ =
�(λ)−1⋂

d=1

λd+1⋂

t=1

ker(ψd,t ).

Remark Our notation is not universally used: the partition λ(d, t) is referred to else-
where in the literature as ν(d, t); we use the notation λ(d, t) in order to emphasise
the dependence on λ. In addition, the homomorphism ψd,t is sometimes denoted ψt

d

or ψd,λd+1−t .

If μ is a partition and λ a composition of n and T ∈ T (μ,λ), we shall
often consider the restriction of Θ̌T to Sμ, which we denote ΘT . We write
EHomHn

(Sμ,Mλ) for the subspace of HomHn
(Sμ,Mλ) spanned by all the ΘT ; by
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[6, Corollary 8.7], {ΘT |T ∈ T0(μ,λ)} is a basis for EHomHn
(Sμ,Mλ); in particular,

EHomHn
(Sμ,Mλ) = 0 unless μ �

−→
λ .

Remark In fact, EHomHn
(Sμ,Mλ) is almost always equal to HomHn

(Sμ,Mλ); the
exception is the case of most interest in this paper, when q = −1 and μ is 2-singular.

We also remark that the homomorphisms denoted Θ̌T ,ΘT are denoted ΘT , Θ̂T

elsewhere in the literature. Since we shall almost exclusively be considering the re-
stricted homomorphism, we use the less cluttered notation for this.

4.3 Constructing homomorphisms between Specht modules

Suppose now that λ,μ are partitions of n, and Θ ∈ HomHn
(Sμ,Mλ). By the Ker-

nel Intersection Theorem, we have im(Θ) ⊆ Sλ if and only if ψd,t ◦ Θ = 0 for all
d, t . We shall only be considering the cases where Θ ∈ EHomHn

(Sμ,Mλ); we write
EHomHn

(Sμ,Sλ) for the set of Θ ∈ EHomHn
(Sμ,Mλ) for which im(Θ) ⊆ Sλ.

It turns out that it is possible to give an expression for ψd,t ◦ ΘT , which shows
in particular that ψd,t ◦ΘT ∈ EHomHn

(Sμ,Mλ(d,t)). One consequence of this which
will save a lot of effort later is that we automatically have ψd,t ◦ ΘT = 0 unless
μ �

−−−−−→
λ(d, t).

In order to give our expression for ψd,t ◦ ΘT , we need to recall quantum integers
and quantum binomial coefficients. For m � 0 define

[m] = 1 + q + · · · + qm−1,

and [m]! = ∏m
i=1[i]. If q is an indeterminate, then for integers m,j , set

[
m

j

]

=
{ [m]!

[j ]![m−j ]! (m � j � 0)

0 (otherwise).

Then
[ m

k

]
is a polynomial in q; so we can extend the definition of

[ m
k

]
to the case

where q is algebraic by defining it to be the specialisation of this polynomial.
In this paper, we are only concerned with the case q = −1, in which case we have

[m] =
{

0 (if m is even)

1 (if m is odd),

and the majority of the quantum binomial coefficients we consider will be of the form[ m
1

] = [m], which will simplify calculations considerably.
For a tableau T , let T i

j denote the number of entries equal to i in row j of T . Let

T >i
j = ∑

k>i T
k
j , and define terms such as T <i

j similarly. Now we can describe the
composition ψd,t ◦ ΘT .

Proposition 4.1 ([20], Proposition 2.14) Suppose that T is a row-standard μ-tableau
of type λ. Choose d with 1 � d < �(λ) and t with 1 � t � λd+1. Let S be the set of
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row-standard tableaux of type λ(d, t) obtained by replacing t of the entries in T

which are equal to d+1 with d . Then

ψd,t ◦ ΘT =
∑

S∈S

(
�(μ)∏

j=1

q
T d

>j (Sd
j −T d

j )

[
Sd

j

T d
j

])

ΘS.

A difficulty with Proposition 4.1 is that it expresses ψd,t ◦ ΘT in terms of homo-
morphisms labelled by tableaux which are not necessarily semistandard. In order to
be able to use this result to show that a composition ψd,t ◦ Θ is zero, we need the
following result, which allows a homomorphism ΘT to be written in terms of other
tableaux. In this proposition, we write Z+ for the set of non-negative integers; given
g ∈ Z

l+, we write ḡd−1 for the partial sum
∑d−1

i=1 gi .

Proposition 4.2 ([21], Theorem 4.2) Suppose μ is a partition and ν a composition
of n, and S ∈ T (μ, ν).

1. Suppose 1 � r � �(μ) − 1 and that 1 � d � �(ν). Let

G =
{

g ∈ Z
�(ν)
+ |gd = 0,

�(ν)∑

i=1

gi = Sd
r+1 and gi � Si

r for 1 � i � �(ν)

}

.

For g ∈ G , let Ug be the row-standard tableau formed from S by moving all entries
equal to d from row r + 1 to row r and for i �= d moving gi entries equal to i from
row r to row r + 1. Then

ΘS = (−1)S
d
r+1q

−(
Sd
r+1+1

2 )q−Sd
r+1S

<d
r+1

∑

g∈G
qḡd−1

�(ν)∏

i=1

qgiS
<i
r+1

[
Si

r+1 + gi

gi

]

ΘUg .

2. Suppose 1 � r � �(μ) − 1 and μr = μr+1 and that 1 � d � �(ν). Let

G =
{

g ∈ Z
�(ν)
+ |gd = 0,

�(ν)∑

i=1

gi = Sd
r and gi � Si

r+1 for 1 � i � �(ν)

}

.

For g ∈ G , let Ug be the row-standard tableau formed form S by moving all entries
equal to d from row r to row r + 1 and for i �= d moving gi entries equal to i from
row r + 1 to row r . Then

ΘS = (−1)S
d
r q−(Sd

r
2 )q−Sd

r S>d
r

∑

g∈G
q−ḡd−1

�(ν)∏

i=1

qgiS
>i
r

[
Si

r + gi

gi

]

ΘUg .

Remarks

• We shall be considering only the case q = −1, in which case the unwieldy formulæ

in Proposition 4.2 simplify a little; for example, the product (−1)S
d
r+1q

−(
Sd
r+1+1

2 ) in

(1) becomes (−1)(
Sd
r+1
2 ).
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• Since the first draft of this paper was written, the first author has proved a more
general result giving linear relations between tableau homomorphisms [10], which
yields an explicit fast algorithm for ‘semistandardising’ a homomorphism. How-
ever, the result above will be sufficient in this paper.

The following result [22, Theorem 3.1] or [4, Proposition 10.4] often allows us to
simplify our calculations.

Proposition 4.3 Suppose that λ and μ are partitions of n and that for some x � 0
we have λi = μi for 1 � i � x. Let

λ̄ = (λx+1, λx+2, . . .) and μ̄ = (μx+1,μx+2, . . .),

and let

m = |λ̄| = |μ̄|.
Then

dimF EHomHn

(
Sμ,Sλ

) = dimF EHomHm

(
Sμ̄, Sλ̄

)
.

We will also make use of the next result.

Lemma 4.4 Suppose V is a λ-tableau such that for some k there are m entries equal
to k which all lie in rows of length strictly less than m. Then ΘV = 0.

Proof Choose y minimal such that V k
y �= 0. We may apply Proposition 4.2 repeatedly

to write ΘV as a linear combination of homomorphisms indexed by tableaux obtained
by moving all entries equal to k in V upwards until they are all contained in row y.
But by assumption there are no such tableaux. �

4.4 Notation for tableaux

We list here a few items of notation which we shall use below.

• If V,W are row-standard tableaux, we shall use the notation V
d; r−→ W to mean

that W is obtained from V by replacing a d+1 in row r with a d , and we write

V
d; r,s−→ W to mean that W is obtained by replacing two d+1 s with d s, in rows

r and s (where r may equal s).
• If T is a tableau and 1 � i � j , we write T〈i,j〉 for the tableau consisting of rows

i, . . . , j of T .
• If T ,U are tableaux of the same shape and 1 � i � j , we write T

∣
∣i
j

∣
∣U to mean that

the entries of T and U are the same except in rows i, . . . , j .

4.5 Some simple relations between tableau homomorphisms when q = −1

Now we give some simple consequences of Proposition 4.2 which we shall use re-
peatedly. We assume in this subsection that q = −1; this will mean that our relations
take a particularly simple form.
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Lemma 4.5 Suppose μ is a partition and i � 1 is such that μi+1 = μi − 1. Suppose
V,W,X are μ-tableaux such that V

∣
∣ i
i+1

∣
∣W

∣
∣ i
i+1

∣
∣X and

V〈i,i+1〉 = a a c c

b b
, W〈i,i+1〉 = a a b c

b b c
,

X〈i,i+1〉 = a a b b

b b c c
,

where a < b < c. Then ΘV = −ΘW − ΘX .

Proof Applying Proposition 4.2, we get

ΘV = (−1)(
m
2)+1ΘY + (−1)(

m+1
2 )ΘZ,

where m = μi+1, Y
∣
∣ i
i+1

∣
∣Z

∣
∣ i
i+1

∣
∣V and

Y〈i,i+1〉 = b b c

a a c
, Z〈i,i+1〉 = a b b

a a c c
.

Proposition 4.2 again (together with the fact that [2] = 0 when q = −1) gives

ΘY = (−1)(
m
2)ΘW , ΘZ = (−1)(

m−1
2 )ΘX,

and the fact that
(
m+1

2

) �≡ (
m−1

2

)
(mod 2) for any m gives the result. �

Lemma 4.6 Suppose μ is a partition and i � 1 is such that μi+1 = μi − 1. Suppose
V,W,X,Y are μ-tableaux such that V

∣
∣ i
i+1

∣
∣W

∣
∣ i
i+1

∣
∣X

∣
∣ i
i+1

∣
∣Y and

V〈i,i+1〉 = a a c d

b b
, W〈i,i+1〉 = a a b d

b b c
,

X〈i,i+1〉 = a a b c

b b d
, Y〈i,i+1〉 = a a b b

b b c d
,

where a < b < c < d . Then ΘV = −ΘW − ΘX − ΘY .

Proof As in the proof of Lemma 4.5, we apply Proposition 4.2 to ΘV to move the
b s up to row 1, and then again to move the a s up to row 1. �

Lemma 4.7 Suppose μ is a partition with μi = μi+1 for some i, and V,W are μ-
tableaux such that V

∣
∣ i
i+1

∣
∣W and

V〈i,i+1〉 = a a b d

b b c
, W〈i,i+1〉 = a a b b

b b c d
,

where a < b < c < d . Then ΘV = ΘW .
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Proof By Proposition 4.2(2), both homomorphisms equal −ΘX , where

X〈i,i+1〉 = a a c d

b b
. �

Lemma 4.8 Suppose μ is a partition and 1 � a < b − 1 such that μa = μb−1, and
that X,Y are μ-tableaux with X

∣
∣ a
b−1

∣
∣Y and

X〈a,b−1〉 =

a a b

a+1 a+1 a+2

a+2 a+2 a+3

b−2 b−2 b−1

b−1 b−1 b

, Y〈a,b−1〉 =

a a a+1

a+1 a+1 a+2 a+2

a+2 a+2 a+3 a+3

b−2 b−2 b−1 b−1

b−1 b−1 b b

.

Then ΘX = −ΘY .

Proof Define the tableau Z by Z
∣
∣ a
b−1

∣
∣X and

Z〈a,b−1〉 =

a a a+1

a+1 a+1 b b

a+2 a+2 a+2

b−2 b−2 b−2

b−1 b−1 b−1

.

We define a sequence of tableaux X = Xb,Xb−1, . . . ,Xa+2, where for k = b − 1, . . . ,

a + 2, Xk is formed from Xk+1 by swapping the k in row k − 1 and the b in row
k. Applying Proposition 4.2(2), we find that ΘXk

= −ΘXk−1 . We then apply Propo-
sition 4.2(2) to Xa+2 to move the b from row 1 to row 2, so that ΘXa+2 = −ΘZ .

Hence ΘX = (−1)a+b+1ΘZ .
We do a similar thing for Y : for k = b − 1, . . . , a + 2 we move the two ks from

row k − 1 to row k. We get ΘY = (−1)a+bΘZ , which gives the result. �

5 The proof of Proposition 3.5

We now use the results of the preceding section to give a proof of Proposition 3.5,
thereby completing the proof of our main theorem. We assume from now on that
q = −1.

Proposition 3.5 follows from Proposition 4.3 and the following result.

Proposition 5.1 Fix integers s, s′, f, g with f � 0, g � 2, s′ � s � 2 and

• s and s′ are odd; or
• s = 2, s′ is even and f = 0.
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Define

μ = ((
g + f + s′ + 1

)2
,
(
g + f + s′)s−2

, g + f + s′ − 1,

g + f + s′ − 2, . . . , g + s′, g, g − 1, . . . ,3
)
,

λ = ((
g + f + s′)s

, g + f + s′ − 1, g + f + s′ − 2, . . . , g + s′, g, g − 1, . . . ,2
)
,

and let n = |λ| = |μ|. Then

EHomHn

(
Sμ,Sλ

) �= 0.

The remainder of this paper is devoted to proving Proposition 5.1.

5.1 Proof of Proposition 5.1 when s and s′ are both odd

5.1.1 Constructing the homomorphism

Fix integers s, s′, f, g,λ,μ as in the statement of Proposition 5.1 and assume s

and s′ are odd. Let l = �(μ) = s + f + g − 2. We will say a μ-tableau (of arbitrary
type) is usable if for every row i, all except possibly the last two entries are equal
to i. All the tableaux we consider will be usable. Given a usable tableau of shape μ,
we will often encode it simply by giving a tableau of shape (2l ), recording the last
two entries in each row. Conversely, given a tableau of shape (2l ), we will talk about
the ‘corresponding usable μ-tableau’.

Now we need some more definitions. Suppose 2 � i < j � s. Then there is a
unique (2s−1)-tableau S(i, j) of type (12,2s−2) such that

S(i, j)1,2 = i, S(i, j)2,2 = j,

S(i, j)1,1 � S(i, j)2,1 � S(i, j)3,1 � S(i, j)3,2 � S(i, j)4,1 � · · · � S(i, j)s−1,2.

(∗)

Define

mij =
{

1
2 (s − 1) (if i = 2 and j = 3)

(−1)j+1 (otherwise).

Later we shall also need a slight variant of the above definition. Suppose 1 � d �
s − 1 and let

νd =

⎧
⎪⎨

⎪⎩

(2,0,2s−2) (d = 1)

(1,2,1,2s−3) (d = 2)

(12,2d−3,3,1,2s−d−1) (d � 3);
that is, νd is the composition obtained from (12,2s−2) by increasing the d th part
by 1 and decreasing the (d+1)th part by 1. Now given i < j � s, there is a unique
(2s−1)-tableau Sd(i, j) of type νd satisfying (∗). (In the case d = 1, we now allow
the possibility that i = 1, but exclude the possibility that i or j equals 2.)
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Next, we need to consider tableaux of shape (2g−1) and type (2g−1). Given such a
tableau T and given 1 � i � g − 1, we will say that T is split at row i if all the entries
in rows 1, . . . , i are less than all the entries in rows i + 1, . . . , g − 1. Let A denote the
set of (2g−1)-tableaux T of type (2g−1) for which:

• the entries in each row are weakly increasing;
• for each k, the entries in row k are at least k − 1;
• for all 2 � k � g − 2, the first entry in row k is strictly less than the second entry

in row k + 1;
• if T is split at row k, then it is split at all rows k + 1, k + 2, . . . , g − 1.

For example, when g = 5, the tableaux in A are

1 1
22

3 3
,

1 2
21

3 3
,

2 2
11

3 3
,

1 2
31

2 3
,

1 3
21

2 3
,

2 3
11

2 2
,

1 3
31

2 2
,

3 3
11

2 2
.

If T ∈ A, we define sgn(T ) to be (−1)a , where a is the first row at which T is split.
Now we can construct the semistandard μ-tableaux which we will combine to give

our homomorphism. Set

I = {
(i, j) |2 � i < j � s, and either j is odd or i � 3

}
.

Given (i, j) ∈ I and T ∈ A, construct a tableau of shape (2s+f +g−2) as follows:

• the first s − 1 rows are just the rows of S(i, j);
• for s � k � s + f − 1, the entries in row k are both equal to k + 1;
• rows s + f, . . . , s + f + g − 2 are the rows of T , with each entry increased by

s + f .

Let U(i, j, T ) be the corresponding usable μ-tableau, and let Θ(i, j, T ) denote the
corresponding homomorphism from Sμ to Mλ.

Then we claim that

Θ =
∑

(i,j)∈I

∑

T ∈A
mi,j sgn(T )Θ(i, j, T )

gives a homomorphism in EHomHn
(Sμ,Sλ). One can check that all the U(i, j, T )

are semistandard, so Θ is certainly non-zero. All we then need to do is check that
ψd,t ◦Θ = 0 for all d, t . By dominance considerations (see the remarks in the second
paragraph of Sect. 4.3), the only pairs (d, t) that we need to consider are (d,1) for
1 � d � s + f + g − 2, and (d,2) for s + 1 � d � s + f + g − 2.

Example Suppose (s, s′, f, g) = (5,5,2,5). Then (2,5) ∈ I , and the tableau

T =
2 3

11
2 3

44
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lies in A. We have m2,5 = 1 and sgn(T ) = −1, and

S(2,5) =
1 2

53
3 4

54

, U(2,5, T ) =

2111111111111
2 2 2 2 2 2 2 2 2 2 2 3 5

433333333333
4 4 4 4 4 4 4 4 4 4 4 5

665555555555
6 6 6 6 6 6 6 6 6 7 7

10977777777
8 8 8 8 8

10999
10 11 11

.

For later use, we extend the notation above: given 1 � d � s − 1, we define
Ud(i, j, T ) and Θd(i, j, T ) in the same way, but using the tableau Sd(i, j) instead of
S(i, j); as above, we allow i = d = 1 but exclude the cases where d = 1 and i or j is
equal to 2.

5.1.2 Rows 1 to s

Throughout this section, we let m = g + f + s′. To prove that ψd,1 ◦ Θ = 0 for
1 � d � s − 1, we need to compute ψd,1 ◦ Θ(i, j, T ) for each i, j . This is given by
the following result.

Proposition 5.2 Suppose (i, j) ∈ I , T ∈ A and 1 � d � s−1. Then ψd,1 ◦Θ(i, d,T )

equals:

(a) (−1)mΘd(i, d, T ), if j = d ;
(b) (−1)mΘd(i, d, T ), if i < d and j = d+1;
(c) 0, if i < d � 4 and j �= d, d+1;
(d) (−1)m+d+1Θd(2, d, T ), if i = d � 3 and j = d+1;
(e) (−1)m+1Θd(d, j, T ), if i = d and j � d + 2;
(f) (−1)mΘd(d, j, T ), if i = d+1 � 3;
(g) 0, if i � d + 2 � 5;
(h) (−1)m+1Θ3(2,3, T ), if d = 3, i = 2 and j � 5;
(i) 0, if i = d = 2 and j = 3;
(j) (−1)m+iΘ2(2, i, T ), if d = 2 and i � 4;
(k) 0, if d = 1 and i = 2;
(l) (−1)mΘ1(1, j, T ), if d = 1 and i = 3;

(m) (−1)m+iΘ1(1, i, T ) + (−1)m+i+1Θ1(1, j, T ), if d = 1 and i � 4.

Given this, it is straightforward to check the following corollary.

Corollary 5.3 Suppose T ∈ A. Then for 1 � d � s − 1, we have

ψd,1 ◦
( ∑

(i,j)∈I
mi,jΘ(i, j, T )

)

= 0.

Hence ψd,1 ◦ Θ = 0 for 1 � d � s − 1.
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Proof of Proposition 5.2

(a) This is a simple application of Proposition 4.1 and Proposition 4.2. All the d+1 s
in U(i, d, T ) lie in rows d and d+1, and we have

U(i, d, T )〈d,d+1〉 = d d d+1 d+1

d+1 d+1 d+2 d+2
.

So applying Proposition 4.1, we get

ψd,1 ◦ Θ(i, d,T ) = [m − 1]Θd(i, d, T ) + ΘV ,

where U(i, d, T )
d;d−→ Ud(i, d, T ) and U(i, d, T )

d;d+1−→ V . To express ΘV in
terms of semistandard homomorphisms, we apply Proposition 4.2(1) (with
r = d), and we obtain

ΘV = −[m − 2]Θd(i, d, T ).

Now the result follows, using the fact that [m − 1] − [m − 2] = (−1)m.
(b) U(i, d+1, T ) has d+1 s in rows 2, d, d+1, and Proposition 4.1 gives

ψd,1 ◦ Θ(i, d+1, T ) = (−1)mΘd(i, d, T ) + [m]ΘV + ΘW,

where U(i, d+1, T )
d;d−→ V and U(i, d+1, T )

d;d+1−→ W . Proposition 4.2 gives
ΘW = −[m − 2]ΘV , and the fact that [m] = [m − 2] gives the result.

(c) This is a simple application of Proposition 4.1 and Lemma 4.4: Proposition 4.1
expresses ψd,1 ◦ Θ(i, j, T ) as a linear combination of homomorphisms labelled
by tableaux containing m+1 d s, all contained in rows of length m; by Lemma
4.4, these homomorphisms are equal to zero.

(d) The d+1 s in U(d,d+1, T ) lie in rows 2, d and d+1. Proposition 4.1 gives

ψd,1 ◦ Θ(d,d+1, T ) = (−1)m+1ΘV + [m]ΘW + ΘX,

where

U(d,d+1, T )
d;2−→ V, U(d, d+1, T )

d;d−→ W, U(d, d+1, T )
d;d+1−→ X.

Proposition 4.2 gives ΘX = −[m − 2]ΘW , and so we just need to show that
ΘV = (−1)dΘd(2, d, T ). Applying Proposition 4.2(2) in rows 1 and 2 and then
Lemma 4.5, we find that ΘV = ΘY + ΘZ , where

Y〈1,3〉 =
1 1 2
2 2 3 d

3 3 d

, Z〈1,3〉 =
1 1 2
2 2 3 3
3 3 d d

and Y
∣
∣1
3

∣
∣Z

∣
∣1
3

∣
∣U(d,d+1, T ). By Lemma 4.4 we have ΘZ = 0, so we concentrate

on ΘY . For k = 4, . . . , d − 1 the kth row of Y consists entirely of ks. So we can
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repeatedly apply Proposition 4.2(2) to move the d in row 3 down to row d −1,

and we get ΘY = (−1)dΘd(2, d, T ), as required.
(e) If d � 3, then this is a simple application of Proposition 4.1 and Proposition 4.2:

all the d+1 s in U(i, j, T ) lie in rows d and d+1, and Proposition 4.1 gives

ψd,1 ◦ Θ(d, j, T ) = [m]Θd(d, j, T ) + ΘW,

where U(d, j, T )
d;d+1−→ W . Proposition 4.2 gives ΘW = −[m − 1]Θd(d, j, T ),

and the fact that [m] − [m − 1] = (−1)m+1 gives the result.
Now suppose d = 2. Then

U(2, j, T )〈1,3〉 =
1 1 2
2 2 3 j

3 3 4

and Proposition 4.1 gives

ψ2,1 ◦ Θ(2, j, T ) = [m]Θ2(2, j, T ) + ΘV ,

where U(2, j, T )
2;3−→ V . Proposition 4.2 gives ΘV = −[m−1]Θ2(2, j, T ) plus

a scalar multiple of ΘW , where

W〈2,3〉 = 2 2 3
3 3 4 j

and W
∣
∣2
3

∣
∣U(2, j, T ). Since [m]− [m− 1] = (−1)m+1, we just need to show that

ΘW = 0. For 4 � k � j − 1 we have

W〈k,k〉 = k k k+1 .

We apply Lemma 4.7 in rows k, k + 1, for k = 3, . . . , j − 3 in turn, and we find
that ΘW = ΘX , where

X〈j−2,j−1〉 = j−2 j−2 j−1 j

j−1 j−1 j
.

Now Proposition 4.2 gives ΘX = 0, since we get a factor of [2] = 0.
(f) The tableau U(d+1, j, T ) contains a d+1 in row 1, with the remaining d+1 s

in row d+1. Proposition 4.1 yields

ψd,1 ◦ Θ(d+1, j, T ) = (−1)mΘd(d, j, T ) + ΘW,

where U(d+1, j, T )
d;d+1−→ W . But ΘW = 0 by Lemma 4.4, and we are done.

(g) In this case all the d s and d+1 s in U(i, j, T ) lie in rows of length at most m;
so by Proposition 4.1 and Lemma 4.4 we have ψd,1 ◦ Θ(i, j, T ) = 0.
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(h) In this case

U(2, j, T )〈2,4〉 =
2 2 3 j

3 3 4
4 4 5

,

and Proposition 4.1 gives

ψ3,1 ◦ Θ(2, j, T ) = [m]ΘV + ΘW,

where U(2, j, T )
3;3−→ V and U(2, j, T )

3;4−→ W . Proposition 4.2 gives ΘW =
−[m − 1]ΘV , so we just need to show that ΘV = Θ3(2,3, T ).

Applying Proposition 4.2 twice, we find that ΘV = −ΘX , where X is ob-
tained from V by interchanging the j in row 2 with a 3 in row 3. We can apply
Lemma 4.8 to X (with a = 3, b = j ) and we obtain ΘX = −Θ3(2,3, T ).

(i) This is a simple application of Proposition 4.1 and Proposition 4.2; it is similar
to case (a), but using the identity [m] − [m − 2] = 0.

(j) The 3s in U(i, j, T ) all appear in row 3, so Proposition 4.1 gives ψ2,1 ◦
Θ(i, j, T ) = ΘV , where U(i, j, T )

2;3−→ V . Applying Proposition 4.2, this
equates to (−1)mΘW , where

W〈1,3〉 =
1 1 1 i

2 2 2 2
3 3 j

(and W
∣
∣1
3

∣
∣U(i, j, T )). For k = 4, . . . , i − 1 row k of W consists entirely of ks,

so we can apply Proposition 4.2(2) repeatedly to move the j from row 3 down
to row i − 1. We also apply Proposition 4.2(2) in rows 1 and 2, and we find that
ΘW = (−1)i+1ΘX , where

X〈i−1,j−1〉 =

i−1 i−1 j

i i i+1

i+1 i+1 i+2

j−1 j−1 j

.

By Lemma 4.8, we have ΘX = −Θ2(2, i, T ), and we are done.
(k) This is a simple application of Proposition 4.1 and Proposition 4.2; it is similar

to (a), using the identity [m + 1] − [m − 1] = 0.
(l) This is a simple application of Propositions 4.1 and 4.2.

(m) Applying Propositions 4.1 and 4.2 gives ψ1,1 ◦ Θ(i, j, T ) = (−1)mΘV , where

V〈1,2〉 = 1 1
2 2 i j

and V
∣
∣1
2

∣
∣U(i, j, T ). Applying Lemma 4.6 gives

ΘV = −ΘW − ΘX − ΘY ,
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where

W〈2,3〉 = 2 2 3 j

3 3 i
, X〈2,3〉 = 2 2 3 i

3 3 j
,

Y〈2,3〉 = 2 2 3 3
3 3 i j

and V
∣
∣2
3

∣
∣W

∣
∣2
3

∣
∣X

∣
∣2
3

∣
∣Y . In particular, for k = 4, . . . , i − 1 the kth row of any of

these tableaux consists entirely of ks.
For W , we can repeatedly apply Proposition 4.2(2) to move the i from row 3

down to row i − 1. We get ΘW = (−1)iΘ1(1, j, T ).
We do the same for X to reach a tableau in which the row i − 1 has the form

i−1 i−1 j .

We can apply Lemma 4.8 to this tableau (with a = i − 1, b = j ) to obtain ΘX =
−(−1)iΘ1(1, i, T ).

It remains to show that ΘY = 0. Examining the tableau Y〈3,i−1〉, we find that
there is a unique semistandard tableau with the same shape and content, so ΘY

must equal a scalar multiple of ΘZ , where Z〈3,i−1〉 is this semistandard tableau
and Z

∣
∣ 3
i−1

∣
∣Y . Then

Z〈i−1,j−1〉 =

i−1 i−1 i j

i i i i+1

i+1 i+1 i+1 i+2

j−1 j−1 j−1 j

.

Applying Lemma 4.7 repeatedly, we can move the j from row i − 1 down to
row j − 2; we obtain a tableau in which rows j − 2, j − 1 have the form

j−2 j−2 j−1 j

j−1 j−1 j
.

Now Proposition 4.2 tells us that the corresponding homomorphism is zero. �

5.1.3 Rows s to s + f

Proposition 5.4 Suppose s � d � s + f − 1, (i, j) ∈ I and T ∈ A. Then ψd,1 ◦
Θ(i, j, T ) = 0.

Proof We apply Proposition 4.1. Note that the d+1 s in U(i, j, T ) occur in rows

d, d+1. Row d contains μd − 2 d s and two d+1 s, and all the remaining d s are
in higher rows, so we get

ψd,1 ◦ Θ(i, j, T ) = [μd − 1]ΘV + ΘW,
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where U(i, j, T )
d;d−→ V and U(i, j, T )

d;d+1−→ W . But Proposition 4.2 immediately
gives ΘW = −[μd − 3]ΘV , and we are done. �

Proposition 5.5 Suppose s + 1 � d � s + f , (i, j) ∈ I and T ∈ A. Then ψd,2 ◦
Θ(i, j, T ) = 0.

Proof This follows from Proposition 4.1 and Lemma 4.4. �

5.1.4 Rows s + f to s + f + g − 1

In the next few sections we prove the following, which will complete the proof of
Proposition 5.1 when s, s′ are odd.

Proposition 5.6 Suppose that (i, j) ∈ I , that s + f � d � s + f + g − 2 and that
t = 1 or 2. Then

ψd,t ◦
(∑

T ∈A
sgn(T )Θ(i, j, T )

)

= 0.

Note that the case t = 2, d = s + f has already been covered in Proposition 5.5.
If T ∈ A, then the d+1 s in U(i, j, T ) lie within rows s + f, . . . , d+1. Given

s + f � k � d+1, we write ak, bk for the entries at the end of row k of U(i, j, T ),
with ak � bk ; that is, ak = Tk−s−f +1,1 + s + f , bk = Tk−s−f +1,2 + s + f .

Now assume d � s + f + g − 3 (the easier case d = s + f + g − 2 is addressed
below). The multiset {ak, bk | s + f � k � d+1} contains two each of the integers
s + f + 1, . . . , d+1, together with two larger integers a, b. We partition A according
to these integers a, b: given d+1 < a � b, we define Aa,b to be the set of T ∈ A such
that {ak, bk | s +f � k � d+1} includes the integers a and b. We prove the following
refinement of Proposition 5.6.

Proposition 5.7 Suppose (i, j) ∈ I and that s + f � d � s + f + g − 3, t = 1 or 2
and d+1 < a � b. Then

ψd,t ◦
( ∑

T ∈Aa,b

sgn(T )Θ(i, j, T )

)

= 0.

We consider several different cases, according to whether d equals s + f or s +
f + g − 2, and whether a < b.

5.1.5 The case s + f + 1 � d � s + f + g − 3, a < b

We start by defining some subsets of Aa,b:

Aa,b
1 = {

T ∈ Aa,b | (ad, bd, ad+1, bd+1) = (d, d, d+1, d+1)
};

Aa,b
2 = {

T ∈ Aa,b | (ad, bd, ad+1, bd+1) = (d, d+1, d+1, a)
};
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Aa,b
3 = {

T ∈ Aa,b | (ad, bd, ad+1, bd+1) = (d, d+1, d+1, b)
};

Aa,b
4 = {

T ∈ Aa,b | (ad, bd, ad+1, bd+1) = (d, d, d+1, a)
};

Aa,b
5 = {

T ∈ Aa,b | (ad, bd, ad+1, bd+1) = (d, a, d+1, d+1)
};

Aa,b
6 = {

T ∈ Aa,b | (ad, bd, ad+1, bd+1) = (d, d, d+1, b)
};

Aa,b
7 = {

T ∈ Aa,b | (ad, bd, ad+1, bd+1) = (d, b, d+1, d+1)
};

Aa,b
8 = {

T ∈ Aa,b | (ad, bd, ad+1, bd+1) = (d, a, d+1, b), as+f = d
};

Aa,b
9 = {

T ∈ Aa,b | (ad, bd, ad+1, bd+1) = (d, b, d+1, a), as+f = d
};

Aa,b
10 = {

T ∈ Aa,b | (ad, bd, ad+1, bd+1) = (d, a, d+1, b), bk = d, bl = d+1

for some k < l < d
};

Aa,b
11 = {

T ∈ Aa,b | (ad, bd, ad+1, bd+1) = (d, b, d+1, a), bk = d, bl = d+1

for some k < l < d
};

Aa,b
12 = {

T ∈ Aa,b | (ad, bd, ad+1, bd+1) = (d, a, d+1, b), bk = d+1, bl = d

for some k < l < d
};

Aa,b
13 = {

T ∈ Aa,b | (ad, bd, ad+1, bd+1) = (d, b, d+1, a), bk = d+1, bl = d

for some k < l < d
}
.

Using the definition of A, it is easy to check that these sets partition Aa,b . (Note
that because a < b, a tableau T ∈ Aa,b cannot have (ad+1, bd+1) = (a, b), because
then T would not lie in A: T would be split at row d − s − f + 1 but not at row
d − s − f + 2. Similarly, we cannot have {ad, bd, ad+1, bd+1} = {d+1, d+1, a, b}
as multisets.) Now Proposition 5.7 in this case will follow from the following two
results.

Proposition 5.8 Suppose i, j, d, a, b are as above with a < b.

(1) If T ∈ Aa,b
1 ∪ Aa,b

2 ∪ Aa,b
3 , then ψd,1 ◦ Θ(i, j, T ) = 0.

(2) There is a bijection T �→ T ′ from Aa,b
4 to Aa,b

5 such that

ψd,1 ◦ (
sgn(T )Θ(i, j, T ) + sgn

(
T ′)Θ

(
i, j, T ′)) = 0 for each T ∈ Aa,b

4 .

(3) There is a bijection T �→ T ′ from Aa,b
6 to Aa,b

7 such that

ψd,1 ◦ (
sgn(T )Θ(i, j, T ) + sgn

(
T ′)Θ

(
i, j, T ′)) = 0 for each T ∈ Aa,b

6 .

(4) There is a bijection T �→ T ′ from Aa,b
8 to Aa,b

9 such that

ψd,1 ◦ (
sgn(T )Θ(i, j, T ) + sgn

(
T ′)Θ

(
i, j, T ′)) = 0 for each T ∈ Aa,b

8 .
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(5) There are bijections

Aa,b
10 −→ Aa,b

11 Aa,b
10 −→ Aa,b

12 Aa,b
10 −→ Aa,b

13

T �−→ T ′ T �−→ T ′′ T �−→ T ′′′

such that

ψd,1 ◦ (
sgn(T )Θ(i, j, T ) + sgn

(
T ′)Θ

(
i, j, T ′)

+ sgn(T )Θ
(
i, j, T ′′) + sgn

(
T ′)Θ

(
i, j, T ′′′)) = 0 for each T ∈ Aa,b

10 .

Proof

(1) If T ∈ Aa,b
1 , then we get ψd,1 ◦Θ(i, j, T ) = 0 by Proposition 4.1 and Lemma 4.4.

If T ∈ Aa,b
2 or Aa,b

3 , then Proposition 4.1 gives

ψd,1 ◦ Θ(i, j, T ) = [μd ]ΘV + ΘW,

where V
d;d←− U(i, j, T )

d;d+1−→ W . But Proposition 4.2 gives ΘW = −[μd −
2]ΘV , so ψd,1 ◦ Θ(i, j, T ) = 0.

(2) Given T ∈ Aa,b
4 , there is one d+1 in a row k < d of U(i, j, T ). We define

T ′ by replacing this entry with d , and replacing (ad, bd, ad+1, bd+1) with
(d, a, d+1, d+1). It is easy to check that this really does define a bijection
from Aa,b

4 to Aa,b
5 . Moreover, it is clear that sgn(T ′) = sgn(T ). Now consider

ψd,1 ◦ Θ(i, j, T ). Applying Proposition 4.1, we replace a d+1 with a d in
row k or row d+1. But in the latter case the resulting homomorphism is zero, by

Lemma 4.4. So we have ψd,1 ◦Θ(i, j, T ) = (−1)μd ΘV , where U(i, j, T )
d;k−→ V .

On the other hand, we have ψd,1 ◦ Θ(i, j, T ′) = ΘW , where U(i, j, T ′) d;d+1−→
W . Applying Proposition 4.2 to W , we get ΘW = (−1)μd−1ΘV ; so ψd,1 ◦
(Θ(i, j, T ) + Θ(i, j, T ′)) = 0, as required.

(3) This is identical to (2), with the rôles of a and b interchanged.
(4) From the definition of A, we find that Aa,b

8 consists of a single tableau T ,

and Aa,b
9 consists of a single tableau T ′. T ′ is obtained from T simply by in-

terchanging the a and b in rows d and d+1 of U(i, j, T ), and we have

sgn(T ) = sgn(T ′). Now we apply Proposition 4.1 to compute ψd,1 ◦ Θ(i, j, T );
note that since we have as+f = d , we must have bs+f = d+1. Hence when
we replace a d+1 with a d in row s + f , we get a factor of [2] = 0.

So we just have ψd,1 ◦ Θ(i, j, T ) = ΘV , where U(i, j, T )
d;d+1−→ V . Similarly

ψd,1 ◦ Θ(i, j, T ′) = ΘW where U(i, j, T ′) d;d+1−→ W ; applying Proposition 4.2 to
V , we get ΘV = (−1)μd−1ΘX , where X is obtained by interchanging the d

in row d+1 and the a in row d . Similarly ΘW = (−1)μd ΘX (the difference

in signs arising because a < b), and so ψd,1 ◦ (Θ(i, j, T ) + Θ(i, j, T ′)) = 0, as
required.
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(5) Given T , we obtain T ′ by interchanging the a and b in rows d, d+1. We

obtain T ′′ by interchanging the d, d+1 in rows k and l, and we obtain T ′′′ by
doing both of these changes. It is easy to see that these maps are bijections, and
that sgn(T ) = sgn(T ′) = sgn(T ′′) = sgn(T ′′′). Proposition 4.1 gives

ψd,1 ◦ Θ(i, j, T ) = (−1)μd−1ΘV + ΘX1,

ψd,1 ◦ Θ
(
i, j, T ′) = (−1)μd−1ΘW + ΘX2,

ψd,1 ◦ Θ
(
i, j, T ′′) = (−1)μd ΘV + ΘY1 ,

ψd,1 ◦ Θ
(
i, j, T ′′′) = (−1)μd ΘW + ΘY2 ,

where

U(i, j, T )
d; l−→ V

d;k←− U
(
i, j, T ′′), U

(
i, j, T ′) d; l−→ W

d;k←− U
(
i, j, T ′′′)

and

U(i, j, T )
d;d+1−→ X1, U

(
i, j, T ′) d;d+1−→ X2,

U
(
i, j, T ′′) d;d+1−→ Y1, U

(
i, j, T ′′′) d;d+1−→ Y2.

Using Proposition 4.2 as in (4) above, we get ΘX1 = −ΘX2 and ΘY1 = −ΘY2 , so
that

ψd,1 ◦ (
Θ(i, j, T ) + Θ

(
i, j, T ′) + Θ

(
i, j, T ′′) + Θ

(
i, j, T ′′′)) = 0. �

Proposition 5.9 Suppose i, j, d, a, b are as above with a < b.

(1) If T ∈ ⋃9
i=1 Aa,b

i , then ψd,2 ◦ Θ(i, j, T ) = 0.

(2) There is a bijection T �→ T ′ from Aa,b
10 to Aa,b

11 such that

ψd,2 ◦ (
sgn(T )Θ(i, j, T ) + sgn

(
T ′)Θ

(
i, j, T ′)) = 0 for each T ∈ Aa,b

10 .

(3) There is a bijection T �→ T ′ from Aa,b
12 to Aa,b

13 such that

ψd,2 ◦ (
sgn(T )Θ(i, j, T ) + sgn

(
T ′)Θ

(
i, j, T ′)) = 0 for each T ∈ Aa,b

12 .

Proof

(1) If T ∈ Aa,b
i for 1 � i � 7, then the result follows by Proposition 4.1 and Lemma

4.4. So suppose T ∈ Aa,b
8 or Aa,b

9 , and consider applying Proposition 4.1. The
d+1 s in U(i, j, T ) lie in rows s + f and d+1. If we replace d+1 with d

in row s + f , then we get a factor of [2] = 0; on the other hand, if we replace
two d+1 s with d s in row d+1, then the resulting homomorphism is zero by
Lemma 4.4.
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(2) The bijection T �→ T ′ is the same as in Proposition 5.8(5). Now consider apply-
ing Proposition 4.1. The d+1 s in U(i, j, T ) all lie in row d+1 except for one,

which lies in row l. If we replace two of the d+1 s in row d+1 with d s, then by
Lemma 4.4 the corresponding homomorphism is zero, so Proposition 4.1 gives

ψd,2 ◦ Θ(i, j, T ) = (−1)μd−1ΘX,

where U(i, j, T )
d; l,d+1−→ X. Proposition 4.1 similarly gives

ψd,2 ◦ Θ
(
i, j, T ′) = (−1)μd−1ΘX′

where U(i, j, T ′) d; l,d+1−→ X′. Now we apply Proposition 4.2 to X and X′, in both
cases moving the d from row d+1 to row d . We find that ΘX = −ΘX′ , and

hence ψd,2 ◦ (Θ(i, j, T ) + Θ(i, j, T ′)) = 0, as required.
(3) This case is identical to the previous case, except that (−1)μd−1 should be re-

placed with (−1)μd . �

5.1.6 The case s + f + 1 � d � s + f + g − 3, a = b

Now we consider the case a = b. The method is the same as in the last section, but
we need to define some different subsets of Aa,a :

Aa,a
1 = {

T ∈ Aa,a | (ad, bd, ad+1, bd+1) = (d, d, d+1, d+1)
};

Aa,a
2 = {

T ∈ Aa,a | (ad, bd, ad+1, bd+1) = (d, d+1, d+1, a)
};

Aa,a
3 = {

T ∈ Aa,a | (ad, bd, ad+1, bd+1) = (d, d, d+1, a)
};

Aa,a
4 = {

T ∈ Aa,a | (ad, bd, ad+1, bd+1) = (d, a, d+1, d+1)
};

Aa,a
5 = {

T ∈ Aa,a | (ad, bd, ad+1, bd+1) = (d, d, a, a), as+f = d+1
};

Aa,a
6 = {

T ∈ Aa,a | (ad, bd, ad+1, bd+1) = (d, d+1, a, a), as+f = d
};

Aa,a
7 = {

T ∈ Aa,a | (ad, bd, ad+1, bd+1) = (d, a, d+1, a), bk = d, bl = d+1

for some k < l < d
};

Aa,a
8 = {

T ∈ Aa,a | (ad, bd, ad+1, bd+1) = (d, a, d+1, a), bk = d+1, bl = d

for some k < l < d
};

Aa,a
9 = {

T ∈ Aa,a | (ad, bd, ad+1, bd+1) = (d, d, a, a), bk = d+1, bl = d+1

for some k < l < d
};

Aa,a
10 = {

T ∈ Aa,a | (ad, bd, ad+1, bd+1) = (d, d+1, a, a), bk = d, bl = d+1

for some k < l < d
};

Aa,a
11 = {

T ∈ Aa,a | (ad, bd, ad+1, bd+1) = (d, d+1, a, a), bk = d+1, bl = d

for some k < l < d
};
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Aa,a
12 = {

T ∈ Aa,a | (ad, bd, ad+1, bd+1) = (d, a, d+1, a), as+f = d
};

Aa,a
13 = {

T ∈ Aa,a | (ad, bd, ad+1, bd+1) = (d+1, d+1, a, a)

and either ad−1 < d or d = s + f + 1
};

Aa,a
14 = {

T ∈ Aa,a | (ad−1, ad−1, ad, bd, ad+1, bd+1) = (d, d, d+1, d+1, a, a)

and d > s + f + 1
}
.

Note that Aa,a
5 , Aa,a

6 , Aa,a
9 , Aa,a

10 , Aa,a
11 , Aa,a

13 and Aa,a
14 are empty unless a = d + 2,

and in this case Aa,a
5 and Aa,a

6 each contain just one tableau. Aa,a
12 always contains

only one tableau.
Proposition 5.7 in this case follows from the next two results.

Proposition 5.10 Suppose i, j, d, a are as above.

(1) If T ∈ Aa,a
1 ∪ Aa,a

2 ∪ Aa,a
12 ∪ Aa,a

13 ∪ Aa,a
14 , then ψd,1 ◦ Θ(i, j, T ) = 0.

(2) There is a bijection T �→ T ′ from Aa,a
3 to Aa,a

4 such that

ψd,1 ◦ (
sgn(T )Θ(i, j, T ) + sgn

(
T ′)Θ

(
i, j, T ′)) = 0 for each T ∈ Aa,a

3 .

(3) There is a bijection T �→ T ′ from Aa,a
5 to Aa,a

6 such that

ψd,1 ◦ (
sgn(T )Θ(i, j, T ) + sgn

(
T ′)Θ

(
i, j, T ′)) = 0 for each T ∈ Aa,a

5 .

(4) There is a bijection T �→ T ′ from Aa,a
7 to Aa,a

8 such that

ψd,1 ◦ (
sgn(T )Θ(i, j, T ) + sgn

(
T ′)Θ

(
i, j, T ′)) = 0 for each T ∈ Aa,a

7 .

(5) There are bijections

Aa,a
9 −→ Aa,a

10 Aa,a
9 −→ Aa,a

11

T �−→ T ′ T �−→ T ′′

such that

ψd,1 ◦ (
sgn(T )Θ(i, j, T ) + sgn

(
T ′)Θ

(
i, j, T ′) + sgn(T )Θ

(
i, j, T ′′)) = 0

for each T ∈ Aa,a
9 .

Proof

(1) The cases where T ∈ Aa,a
1 ∪ Aa,a

2 are dealt with as in Proposition 5.8(1). In the

case where T ∈ Aa,a
12 , consider applying Proposition 4.1. If we replace a d+1

with a d in row s + f , then we get a factor of [2]. On the other hand, if we

replace a d+1 with a d in row d+1 and then apply Proposition 4.2 to move

this d up to row d , we again get a factor of [2].
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In the case where T ∈ Aa,a
13 or Aa,a

14 , we get

ψd,1 ◦ Θ(i, j, T ) = [μd − 1]ΘV + ΘW

with V
d;d←− U(i, j, T )

d;d+1−→ W . But Proposition 4.2 gives ΘW = −[μd −3]ΘW ,
so that ψd,1 ◦ Θ(i, j, T ) = 0.

(2) This is identical to cases (2) and (3) in Proposition 5.8.
(3) If Aa,a

5 and Aa,a
6 are non-empty, then Aa,a

5 contains a single tableau T , Aa,a
6

consists of a single tableau T ′. T ′ is obtained from T ′ by replacing a d+1 with

a d in row s + f of U(i, j, T ), and replacing a d with a d+1 in row d , and

we have sgn(T ) = sgn(T ′).
Consider applying Proposition 4.1 to compute ψd,1 ◦ Θ(i, j, T ). There are

two d+1 s in row s + f of U(i, j, T ), and the remaining d+1 s lie in row d+1.

If we replace a d+1 with a d in row d+1, then by Lemma 4.4 the result-
ing homomorphism is zero. So we get ψd,1 ◦ Θ(i, j, T ) = (−1)μd ΘV , where

U(i, j, T )
d; s+f−→ V .

For T ′, we get

ψd,1 ◦ Θ
(
i, j, T ′) = [μd ]ΘV + ΘW,

where V
d;d←− U(i, j, T ′) d;d+1−→ W . Applying Proposition 4.2, we get ΘW =

−[μd − 3]ΘV , and since (−1)x + [x] − [x − 3] = 0 for any x, we have
ψd,1 ◦ (Θ(i, j, T ) + Θ(i, j, T ′)) = 0, as required.

(4) Given T , we define T ′ by interchanging the d in row k of U(i, j, T ) and the

d+1 in row l.
Applying Proposition 4.1, we have

ψd,1 ◦ Θ(i, j, T ) = (−1)μd−1ΘV + ΘW

ψd,1 ◦ Θ
(
i, j, T ′) = (−1)μd ΘV + ΘX

where

U(i, j, T )
d; l−→ V

d;k←− U
(
i, j, T ′) U(i, j, T )

d;d+1−→ W, U
(
i, j, T ′) d;d+1−→ X.

Applying Proposition 4.2, we get ΘW = ΘX = 0 (Proposition 4.2 gives a factor
of [2] in both cases), and so we have ψd,1 ◦ (Θ(i, j, T ) + Θ(i, j, T ′)) = 0.

(5) Given T , define T ′ by replacing the last d in row d of U(i, j, T ) with a d+1 ,

and the d+1 in row k with a d . Define T ′′ by replacing the last d in row d

of U(i, j, T ) with a d+1 , and the d+1 in row l with a d . Again, it is easy to

see that we have bijections, and that sgn(T ) = sgn(T ′) = sgn(T ′′).
Consider applying Proposition 4.1 to compute ψd,1 ◦Θ(i, j, T ). If we replace

a d+1 with a d in row d+1, then by Lemma 4.4 the resulting homomorphism
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is zero; so

ψd,1 ◦ Θ(i, j, T ) = (−1)μd (ΘV + ΘW),

where V
d;k←− U(i, j, T )

d; l−→ W .
For T ′, T ′′ we have

ψd,1 ◦ Θ
(
i, j, T ′) = (−1)μd−1ΘX + [μd ]ΘV + ΘY

ψd,1 ◦ Θ
(
i, j, T ′′) = (−1)μd ΘX + [μd ]ΘW + ΘZ,

where

U
(
i, j, T ′) d; l−→ X, U

(
i, j, T ′) d;d−→ V, U

(
i, j, T ′) d;d+1−→ Y,

U
(
i, j, T ′′) d;k−→ X, U

(
i, j, T ′′) d;d−→ W, U

(
i, j, T ′′) d;d+1−→ Z.

Proposition 4.2 gives

ΘY = −[μd − 3]ΘV , ΘZ = −[μd − 3]ΘW,

so that

ψd,1 ◦ (
Θ(i, j, T ) + Θ

(
i, j, T ′) + Θ

(
i, j, T ′′)) = 0. �

Proposition 5.11 Suppose i, j, d, a are as above.

(1) If T ∈ Aa,a
1 ∪ Aa,a

2 ∪ Aa,a
3 ∪ Aa,a

4 ∪ Aa,a
6 ∪ Aa,a

7 ∪ Aa,a
8 ∪ Aa,a

12 ∪ Aa,a
14 , then

ψd,2 ◦ Θ(i, j, T ) = 0.
(2) There is a bijection T �→ T ′ from Aa,a

10 to Aa,a
11 such that

ψd,2 ◦ (
sgn(T )Θ(i, j, T ) + sgn

(
T ′)Θ

(
i, j, T ′)) = 0 for each T ∈ Aa,a

10 .

(3) There is a bijection T �→ T ′ from Aa,a
5 ∪ Aa,a

9 to Aa,a
13 such that

ψd,2 ◦ (
sgn(T )Θ(i, j, T )+ sgn

(
T ′)Θ

(
i, j, T ′)) = 0 for each T ∈ Aa,a

5 ∪ Aa,a
9 .

Proof

(1) If T ∈ Aa,a
1 ∪ Aa,a

2 ∪ Aa,a
3 ∪ Aa,a

4 ∪ Aa,a
14 , then ψd,2 ◦ Θ(i, j, T ) = 0 by Proposi-

tion 4.1 and Lemma 4.4.
If T ∈ Aa,a

6 , then we must have bk = d+1. When we apply Proposition 4.1,

if we replace d+1 with d in row k, then we get a factor of [2] = 0. On the

other hand, if we replace two d+1 s with d s in rows d, d+1, then the resulting
homomorphism is zero by Lemma 4.4.

If T ∈ Aa,a
7 , Aa,a

8 or Aa,a
12 , consider applying Proposition 4.1. If we replace

two d+1 s with d s in row d+1, then the resulting homomorphism is zero by

Lemma 4.4; so we need only consider changing a single d+1 into a d in
row d+1. Now, when we apply Proposition 4.2 to the resulting tableau to move
the d from row d+1 to row d , we get a factor of [2] = 0. And so we have
ψd,2 ◦ Θ(i, j, T ) = 0.
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(2) Given T , we define T ′ by exchanging the d in row k with the d+1 in row l.

Again, it is clear that this defines a bijection and that sgn(T ) = sgn(T ′). Now
consider applying Proposition 4.1 to Θ(i, j, T ). If we change replace two d+1 s

with d s in rows d, d+1, then the resulting homomorphism is zero by Lemma
4.4; so the only terms which can possibly be non-zero are those which involve
replacing d+1 with d in row k. The same statement applies to T ′, and it is then

immediate from Proposition 4.1 that ψd,2 ◦ Θ(i, j, T ) = −ψd,2 ◦ Θ(i, j, T ′).
(3) Suppose T ∈ Aa,a

5 or Aa,a
9 . Because T ∈ A we have either d = s + f + 1 or

ad−1 < d . So if we define T ′ by replacing the two d+1 s above row d with d s,

and replacing the last two d s in row d with d+1 s, then T ′ ∈ Aa,a
13 . This gives

a bijection from Aa,a
5 ∪ Aa,a

9 to Aa,a
13 , and we claim that sgn(T ) = − sgn(T ′).

Clearly T is split at row d − s − f + 1 and not at any higher row, so sgn(T ) =
(−1)d−s−f +1. T ′ is split at row d − s − f and not at any higher row (because
if there are any higher rows, then the first entry in row d − s − f is less than
d − s − f by assumption), so sgn(T ′) = (−1)d−s−f .

So all we need to do is show that ψd,2 ◦Θ(i, j, T ) = ψd,2 ◦Θ(i, j, T ′). Using
Proposition 4.1 and Lemma 4.4, we find that ψd,2 ◦ Θ(i, j, T ) = ΘX , where X

is obtained from U(i, j, T ) by replacing the two d+1 s above row d with d s.
On the other hand,

ψd,2 ◦ Θ
(
i, j, T ′) =

[
μd

2

]

ΘX + [μd − 1]ΘY + ΘZ,

where

U
(
i, j, T ′) d;d,d−→ X, U

(
i, j, T ′) d;d,d+1−→ Y, U

(
i, j, T ′) d;d+1,d+1−→ Z.

Proposition 4.2 gives

ΘY = −[μd − 3]ΘX, ΘZ = −
[
μd − 3

2

]

ΘX,

and now the easy identity
[ x

2

] − [x − 1][x − 3] − [
x−3

2

] = 1 gives the result.
�

5.1.7 The case d = s + f, g � 3, t = 1, a < b

This case and the next are simpler than previous cases, so we spare the reader
some of the details. We define the following sets which partition Aa,b:

Aa,b
1 = {

T ∈ Aa,b | (ad, bd, ad+1, bd+1) = (d+1, a, d+1, b)
};

Aa,b
2 = {

T ∈ Aa,b | (ad, bd, ad+1, bd+1) = (d+1, b, d+1, a)
};

Aa,b
3 = {

T ∈ Aa,b | (ad, bd, ad+1, bd+1) = (a, b, d+1, d+1)
}
.

Now we have the following, from which Proposition 5.7 follows in this case.
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Proposition 5.12 Suppose d = s + f , and i, j, a, b are as above with a < b. There
are bijections

Aa,b
1 −→ Aa,b

2 Aa,b
1 −→ Aa,b

3

T �−→ T ′ T �−→ T ′′

such that

ψd,1 ◦ (
sgn(T )Θ(i, j, T ) + sgn

(
T ′)Θ

(
i, j, T ′) + sgn(T )Θ

(
i, j, T ′′)) = 0

for each T ∈ Aa,b
1 .

Proof The bijections in question are the obvious ones; we get sgn(T ) = sgn(T ′) =
sgn(T ′′).

Applying Proposition 4.1 followed by Proposition 4.2, we have

ψd,1 ◦ Θ(i, j, T ) = (−1)μd ΘV + (−1)μd+1−1ΘX,

ψd,1 ◦ Θ
(
i, j, T ′) = (−1)μd ΘW + (−1)μd+1ΘX,

ψd,1 ◦ Θ
(
i, j, T ′′) = (−1)μd+1ΘV + (−1)μd+1ΘW,

where

U(i, j, T )
d;d−→ V, U

(
i, j, T ′) d;d−→ W

and X has d, d+1 at the end of row d , and a, b at the end of row d+1. Since s′ is
odd, μd,μd+1 have opposite parities, and so we get

ψd,1 ◦ (
Θ(i, j, T ) + Θ

(
i, j, T ′) + Θ

(
i, j, T ′′)) = 0. �

5.1.8 The case d = s + f, g � 3, t = 1, a = b

In this case there are only two or three tableaux in Aa,a : for any a, there
are tableaux T and T ′ which have (ad, bd, ad+1, bd+1) equal to (d+1, d+1, a, a)

and (a, a, d+1, d+1) respectively; and if a = d + 2 there is a tableau T ′′ with
(ad, bd, ad+1, bd+1) = (d+1, d+1, a, a).

For the tableaux T and T ′, we have

ψd,1 ◦ Θ(i, j, T ) = (−1)μd ΘV ,

ψd,1 ◦ Θ
(
i, j, T ′) = (−1)μd+1ΘV ,

where U(i, j, T )
d;d−→ V . Since μd and μd+1 have opposite parities and sgn(T ) =

sgn(T ′), we get

ψd,1 ◦ (
sgn(T )Θ(i, j, T ) + sgn

(
T ′)Θ

(
i, j, T ′)) = 0.

In the case a = d + 2, we also have

ψd,1 ◦ Θ
(
i, j, T ′′) = 0

using the same argument as in Proposition 5.10(1).
So Proposition 5.7 follows in this case.
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5.1.9 The case d = s + f + g − 2, g � 3

In this case there are just two d+1 s in U(i, j, T ), and we do not have the integers
a, b. We define the following sets, which partition A:

A1 = {
T ∈ A | (ad, bd) = (d+1, d+1) and either ad−1 < d or g = 3

};
A2 = {

T ∈ A | (ad−1, bd−1, ad, bd) = (d, d, d+1, d+1) and g > 3
};

A3 = {
T ∈ A | (ad, bd) = (d, d+1), as+f = d

};
A4 = {

T ∈ A | (ad, bd) = (d, d), as+f = d+1
};

A5 = {
T ∈ A | (ad, bd) = (d, d), bk = d+1, bl = d+1

for some k < l < d
};

A6 = {
T ∈ A | (ad, bd) = (d, d+1), bk = d, bl = d+1

for some k < l < d
};

A7 = {
T ∈ A | (ad, bd) = (d, d+1), bk = d+1, bl = d

for some k < l < d
}
.

Proposition 5.13 Suppose i, j are as above, and d = s + f + g − 2.

(1) If T ∈ A1 or A2, then ψd,1 ◦ Θ(i, j, T ) = 0.
(2) There is a bijection T �→ T ′ from A3 to A4 such that

ψd,1 ◦ (
sgn(T )Θ(i, j, T ) + sgn

(
T ′)Θ

(
i, j, T ′)) = 0 for each T ∈ A3.

(3) There are bijections

A5 −→ A6 A5 −→ A7

T �−→ T ′ T �−→ T ′′

such that

ψd,1 ◦ (
sgn(T )Θ(i, j, T ) + sgn

(
T ′)Θ

(
i, j, T ′) + sgn(T )Θ

(
i, j, T ′′)) = 0

for each T ∈ A5.

Proof

(1) When we apply Proposition 4.1, get a factor of [2] = 0, since μd = 3.
(2) This is very similar to case (3) of Proposition 5.10. The difference here is that

there is no tableau W ; but in this case we have μd = 3, so that (−1)μd +[μd ] = 0
and the computation still works.

(3) This is very similar to case (5) of Proposition 5.10. In this case there are no
tableaux Y,Z, but the computation goes through because μd = 3. �
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Proposition 5.14 Suppose i, j are as above, and d = s + f + g − 2.

(1) If T ∈ A2 or A3, then ψd,2 ◦ Θ(i, j, T ) = 0.
(2) There is a bijection T �→ T ′ from A6 to A7 such that

ψd,2 ◦ (
sgn(T )Θ(i, j, T ) + sgn

(
T ′)Θ

(
i, j, T ′)) = 0 for each T ∈ A6.

(3) There is a bijection T �→ T ′ from A4 ∪ A5 to A1 such that

ψd,2 ◦ (
sgn(T )Θ(i, j, T ) + sgn

(
T ′)Θ

(
i, j, T ′)) = 0 for each T ∈ A4 ∪ A5.

Proof

(1) The proof here is very similar to the proof of Proposition 5.11(1).
(2) The proof here is the same as for Proposition 5.11(2).
(3) The proof here is very similar to the proof of Proposition 5.11(3), but simpler,

because there are no tableaux Y,Z. The calculation still goes through because
μd = 3. �

5.1.10 The case d = s + f, t = 1, g = 2

In this case, A consists of a single tableau T = 1 1 , and for any i, j the

last row of U(i, j, T ) consists of μd − 2 d s followed by two d+1 s. Applying

Proposition 4.1, we get a factor of [λd − 1] = [2 + s′ − 1] = 0, since s′ is odd; so
ψd,1 ◦ Θ(i, j, T ) = 0.

5.2 Proof of Proposition 5.1 when s = 2, s′ is even and f = 0

We now address the cases where s = 2, s′ is even and f = 0. We let A be the
set of tableaux of shape and type (2g−1) defined in Sect. 5.1.1. Given T ∈ A, con-
struct a (2g)-tableau by increasing each entry by 2 and adding a row 1 2 at the
top. Let U(T ) be the corresponding usable μ-tableau, and Θ(T ) the corresponding
homomorphism.

Example Suppose s′ = 4 and g = 5, and

T =
1 4

31
2 2

43

.

Then T ∈ A, and

U(T ) =

1 1 1 1 1 1 1 1 1 2
6322222222

3 3 3 3 5
4444

5 5 6

.
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Now we claim that the sum
∑

T ∈A
sgn(T )ΘU(T )

gives a non-zero homomorphism from Sμ to Sλ, which completes the proof of Propo-
sition 5.1. The proof of this is very similar to the proof in the previous case, in par-
ticular the parts in Sects. 5.1.4–5.1.10. We leave the reader to check the details.

We remark that Proposition 5.1 seems to be true more generally: one can take
f > 0 and s′ � s even, and it seems to be the case that there is still a non-zero
homomorphism from Sμ to Sλ. But it does not seem quite so easy to write this ho-
momorphism down.
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